1. Solid carriers of potentially toxic elements and their fate in stream sediments in the area affected by iron ore mining and processingSaša Kos, Nina Zupančič, Mateja Gosar, Miloš Miler, 2022, izvirni znanstveni članek Povzetek: The potential environmental impact of historical mining and ore processing on stream sediments and water was studied in a small siderite iron ore deposit with diverse sulfide mineral paragenesis. The main aim was to characterize solid carriers of potentially toxic elements (PTEs) in stream sediments and mine waste, to understand their fate in fluvial systems. General mineralogy (X-ray powder diffraction) and individual solid PTE carriers (scanning electron microscopy/energy dispersive spectroscopy) were correlated with the geochemical composition of stream sediments, mine waste, and stream waters (inductively coupled plasma mass spectrometry). Primary solid PTE carriers were pyrite, chalcopyrite, sphalerite, Hg-bearing sphalerite, galena, and siderite. Slightly alkaline and oxidizing conditions in stream water promoted the transformation of primary phases into secondary PTE carriers. Fe(Mn)-oxide/oxyhydroxides were major sinks for Pb, Zn, and As. Compared to background levels, Co (14.6 ± 2.1 mg/kg), Cu (30 ± 2.9 mg/kg), Ni (32.1 ± 2.9 mg/kg), Pb (64.5 ± 16.4 mg/kg), Zn (175.3 ± 22.5 mg/kg), As (81.1 ± 63.7 mg/kg), and Hg (2 ± 0.8 mg/kg) were elevated in mining area. Mine waste contained similar PTE carriers as stream sediments, but much higher PTE contents. Prevailingly low PTE concentrations in streams, with the exception of As (1.97 ± 2.4 µg/L) and Zn (4.5 ± 5.7 µg/L), indicate the stability of PTE carriers. Environmental effects were not significant, and additional monitoring is recommended. Ključne besede: environmental mineralogy, environmental geochemistry, potentially toxic elements, stream sediments, solid phases, iron ore deposit, SEM/EDS Objavljeno v DiRROS: 16.11.2022; Ogledov: 291; Prenosov: 59
Celotno besedilo (8,07 MB) |
2. Retrieval of vertical mass concentration distributionsLonglong Wang, Samo Stanič, Klemen Bergant, William Eichinger, Griša Močnik, Luka Drinovec, Janja Vaupotič, Miloš Miler, Mateja Gosar, Asta Gregorič, 2019, izvirni znanstveni članek Povzetek: Aerosol vertical profiles are valuable inputs for the evaluation of aerosol transport models, in order to improve the understanding of aerosol pollution ventilation processes which drive the dispersion of pollutants in mountainous regions. With the aim of providing high-accuracy vertical distributions of particle mass concentration for the study of aerosol dispersion in small-scale valleys, vertical profiles of aerosol mass concentration for aerosols from different sources (including Saharan dust and local biomass burning events) were investigated over the Vipava valley, Slovenia, a representative hot-spot for complex mixtures of different aerosol types of both anthropogenic and natural origin. The analysis was based on datasets taken between 1–30 April 2016. In-situ measurements of aerosol size, absorption, and mass concentration were combined with lidar remote sensing, where vertical profiles of aerosol concentration were retrieved. Aerosol samples were characterized by SEM-EDX, to obtain aerosol morphology and chemical composition. Two cases with expected dominant presence of different specific aerosol types (mineral dust and biomass-burning aerosols) show significantly different aerosol properties and distributions within the valley. In the mineral dust case, we observed a decrease of the elevated aerosol layer height and subsequent spreading of mineral dust within the valley, while in the biomass-burning case we observed the lifting of aerosols above the planetary boundary layer (PBL). All uncertainties of size and assumed optical properties, combined, amount to the total uncertainty of aerosol mass concentrations below 30% within the valley. We have also identified the most indicative in-situ parameters for identification of aerosol type. Ključne besede: valley air pollution, aerosol vertical distributions, lidar remote sensing, in-situ measurements, aerosol identification Objavljeno v DiRROS: 03.03.2022; Ogledov: 436; Prenosov: 169
Povezava na celotno besedilo |
3. The environmental impact of historical Pb-Zn mining waste deposits in SloveniaMiloš Miler, Špela Bavec, Mateja Gosar, 2022, izvirni znanstveni članek Povzetek: Mining waste deposits (MWDs) represent significant and constant pollution source for the environment worldwide, thus it is very important to identify and diminish their environmental impacts. The aim of this study was to determine long-term environmental impacts and their temporal variations of MWDs in Pb–Zn mining districts in Slovenia and assess stability of potentially harmful element (PHE)-bearing phases in stream water. The results showed that investigated MWDs are important source of PHEs in stream sediments and that PHEs mostly occur as fine-grained and liberated PHE-bearing ore minerals. MWDs have generally stronger impact on sediments of smaller streams draining MWDs and main streams close to their confluences, however, fine-grained PHE-bearing material is transported along major watercourses over long distances causing regional pollution. Main ore minerals are mostly soluble in stream water. However, measured PHE leaching potential of MWDs is negligible. PHE levels in stream waters are thus low, demonstrating that drainage of MWDs predominantly contributes to PHE pollution in solid particulate form. Possible long-term remediation solution that would reduce environmental impact is recovery of metals from fine grain size fractions of MWDs, which could become an effective practice in sustainable management of historical MWDs. However, further studies of MWDs’ secondary resource potential, processing technology and evaluation of environmental aspects of extraction are needed. Ključne besede: metals, stream sediment, stream water, characterisation, mineral solubility Objavljeno v DiRROS: 03.03.2022; Ogledov: 430; Prenosov: 193
Celotno besedilo (19,64 MB) |
4. |