Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Matjaž Finšgar) .

1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The corrosion resistance of dental Ti6Al4V with differing microstructures in oral environments
Mirjam Bajt Leban, Tadeja Kosec, Matjaž Finšgar, 2023, izvirni znanstveni članek

Povzetek: The impact of the microstructural properties of a Ti6Al4V alloy on its electrochemical properties, as well as the effect of the α- and β-phases present within it, is still unclear. With the introduction of new, emerging technologies, such as selective laser melting and post heat treatments, the effect of the microstructure on an alloy's corrosion properties has become increasingly interesting from a scientific perspective. When these alloys are produced through different methods, despite an identical chemical composition they have diverse microstructures, and consequently display varying resistance to corrosion. In the present research study, Ti–6Al–4V alloy specimens produced by three different processes, leading to the formation of three different microstructures were investigated: heat treated specimen fabricated by selective laser melting, wrought and cast specimens. The impact of the microstructure of these alloys when immersed in artificial saliva was studied through the use of various electrochemical techniques, by microscopical examinations, and time-of-flight secondary ion mass spectrometry. Corrosion properties were investigated by the measurement of open circuit potential, linear polarization, and potentiodynamic curve measurements followed by microscopical examinations, and time-of-flight secondary ion mass spectrometry examination was conducted to reveal spatial distribution of alloying species on oxide film. It was found that the difference between specimens containing an α+β microstructure was small and not dependent on the aspect ratio of the β-phase, alloy grain size, and vanadium partitioning coefficient, but rather on the size, shape, and content of this phase.
Ključne besede: Ti6Al4V, dental alloy, microstructure, corrosion resistance, heat treatment, ToF-SIMS
Objavljeno v DiRROS: 26.10.2023; Ogledov: 438; Prenosov: 220
.pdf Celotno besedilo (8,12 MB)
Gradivo ima več datotek! Več...

2.
3.
Photo, thermal and photothermal activity of ▫$TiO_2$▫ supported Pt catalysts for plasmon-driven environmental applications
Gregor Žerjav, Zafer Say, Janez Zavašnik, Matjaž Finšgar, Christoph Langhammer, Albin Pintar, 2023, izvirni znanstveni članek

Povzetek: TiO2+Pt plasmonic solids with 1 wt% Pt and different TiO2 supports (anatase nanoparticles (TNP), polycrystalline nanorods (a-TNR) and single-crystal anatase nanorods (TNR)) were synthesized using the wet impregnation technique and tested as photo, thermal and photothermal catalysts in gas-solid and gas-liquid-solid reactions. Due to the different charges of the TiO2 support surfaces, Pt particles with different sizes, crystallinities and degrees of interaction with the TiO2 supports were formed during the synthesis. The heights of the Schottky barrier (SBH) were 0.38 eV for the a-TNR+Pt, 0.41 eV for the TNP+Pt, and 0.50 eV for the TNR+Pt samples, respectively. The low visible-light-triggered photocatalytic activity of the TNR+Pt catalyst toward the oxidation of water-dissolved bisphenol A (BPA) is attributed to its high SBH and active site deactivation due to the adsorption of BPA and/or BPA oxidation products. The highest photothermal catalytic H2-assisted NO2 reduction rate was expressed by the TNR+Pt catalyst. This can be ascribed to the presence of a narrow particle size distribution of small Pt particles, the absence of the Pt catalysed reduction of the TNR support at higher temperatures, and the lower rate of re-injection of “hot electrons” from the TNR support to the Pt particles.
Ključne besede: heterogeneous photocatalysis, titanium dioxide, plasmonic noble metal, platinum particles, visible light illumination, Schottky barrier height, bisphenol A, wastewater treatment, NOx abatement, air cleaning, microreactor, thermal catalysis, photothermal catalysis
Objavljeno v DiRROS: 23.06.2023; Ogledov: 348; Prenosov: 178
.pdf Celotno besedilo (2,98 MB)
Gradivo ima več datotek! Več...

4.
Exploring the protection mechanism of a combined fluoropolymer coating on sulphide patinated bronze
Tadeja Kosec, Živa Novak, Erika Švara Fabjan, Luka Škrlep, Matjaž Finšgar, 2022, izvirni znanstveni članek

Povzetek: When bronze or artificially patinated bronze is exposed to an outdoor environment that contains aggressive ions such as sulphates, nitrates, and carbonates, the surface of the bronze changes its appearance due to the formation of corrosion products on the surface. Research is being conducted on versatile protective measures that can be used to protect the surface from these changes. A recently synthesised fluoropolymer-based coating with mercaptopropyl groups, i.e. a 3-component fluoropolymer coating FA-MS-SH (silane-modified poly methylmethacrylate (MS) with added mercaptopropyltrimethoxy silane (SH) and a fluoroacrylate (FA)) was explored in detail in this work where its protective mechanism on sulphide patinated bronze was investigated. Electrochemical tests were conducted on the sulphide patinated bronze with and without the 3-component coating FA-MS-SH. Furthermore, FA, MS and SH alone and various combinations and concentrations of FA-MS were studied in order to determine the protective effect and properties of each component. Colour change and contact angle measurements were also defined. FIB-SEM measurements and GCIB-XPS depth profiles were carried out to study surface bonding with the sulphide patina in detail. A mechanism for the protection of sulphide patinated bronze was presented through the use of a multianalytical tool approach. It was shown that FA physisorbed on the patinated surface, while MS and blends of the components chemisorbed on the layer of sulphide patinated bronze, also resulting in the surface being efficiently protected from corrosion processes.
Ključne besede: bronze, protection, brown patina, fluoropolymer coating
Objavljeno v DiRROS: 31.05.2023; Ogledov: 325; Prenosov: 186
.pdf Celotno besedilo (7,67 MB)
Gradivo ima več datotek! Več...

5.
Corrosion characterization and ion release in SLM-manufactured and wrought Ti6Al4V alloy in an oral environment
Mirjam Bajt Leban, Tadeja Kosec, Matjaž Finšgar, 2022, izvirni znanstveni članek

Povzetek: As-produced and heat-treated TiAlV samples were prepared by selective laser melting and compared to wrought samples of identical chemical composition. Microstructural, corrosion, and spectroscopic studies of additively manufactured samples in artificial saliva at 37 °C, with NaF and at pH 2.3 were as a novelty combined with metal ion release during 42 days immersion. In artificial saliva higher amount of ions was released on SLM specimen when compared to wrought alloy. The total amount of ions released from SLM specimen in AS containing NaF was 10-times higher than in AS, while in AS with lactic acid it was 100-times higher.
Ključne besede: Ti6Al4V, SLM, corrosion, ion release, XPS, ToF-SIMS
Objavljeno v DiRROS: 31.05.2023; Ogledov: 301; Prenosov: 249
.pdf Celotno besedilo (15,86 MB)
Gradivo ima več datotek! Več...

6.
Properties of the fluoroacrylate and methacryloxypropyl-trimethoxysilane applied to a layer of Cu2O on bronze as either single or multi-component coatings
Luka Škrlep, Tadeja Kosec, Matjaž Finšgar, Andrijana Sever Škapin, Erika Švara Fabjan, 2023, izvirni znanstveni članek

Povzetek: Various coatings have been developed and explored to protect bronze surfaces against the uncontrolled formation of different corrosion products when exposed to outdoor environments. In this research, the surfaces of artificially-formed oxidized bronze patinas (OB), consisting of Cu2O, were covered with either a single-component (fluoroacrylate, FA or methacryloxypropyl-trimethoxysilane, MS) or multi-component (a mixture of FA and MS, FA-MS) fluoropolymer coating and investigated. Variations in the concentration of each component in the coating were studied. Electrochemical tests were performed to determine the corrosion protection efficiency, followed by detailed surface analyses of the OBs, both uncoated and covered with single and multi-component coatings. A variety of investigative methods were used, including focused ion beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The coating made from a combination of FA and MS resulted in a very high protection efficiency. Despite the increased hydrophilicity of the single MS component, however, it was shown to efficiently protect the oxidized bronze surface. The FA-MS systems showed high hydrophobicity, but no improvement was measured in the efficiency of the corrosion protection when it was compared to the coating that contained 10% MS. According to XPS and ToF-SIMS imaging, the FA component of the FA-MS coating was not present only on the uppermost surface of the coating but throughout the whole coating, which could affect its corrosion protection efficiency.
Ključne besede: bronze, Cu2O layer on bronze, fluoropolymer coating, protection efficiency, surface spectroscopy
Objavljeno v DiRROS: 30.05.2023; Ogledov: 331; Prenosov: 175
.pdf Celotno besedilo (8,49 MB)
Gradivo ima več datotek! Več...

7.
Synthesis and characterization of plasmonic ▫$Au/TiO_2$▫ nanorod solids for heterogeneous photocatalysis
Špela Slapničar, Gregor Žerjav, Janez Zavašnik, Matjaž Finšgar, Albin Pintar, 2023, izvirni znanstveni članek

Povzetek: Plasmonic Au (1 wt%) catalysts deposited on hydrothermally synthesized TiO2 nanorods (TNR) were investigated in this study. Based on the duration of mixing of the Au precursor/TNR suspension during the wet impregnation synthesis and parameters of the end calcination, Au/TiO2 catalysts with different sizes of Au nanoparticles (Au NPs) were obtained. The prepared solids were thoroughly characterized by several instrumental techniques to investigate property-activity relationships. Regardless of the size of Au particles on the catalyst surface, an absorption peak at 550 nm occurred in all UV-Vis diffuse reflectance spectra of the investigated Au/TiO2 catalysts, which is characteristic of the localized surface plasmon resonance effect exerted by metallic Au NPs. By measuring the formation of reactive oxygen species under visible-light illumination using various scavengers, the production of superoxide anion radicals (O2•single bond) and hydroxyl radicals were identified, however, the former were found to represent the main reactive oxygen species that govern the oxidation of aqueous bisphenol A (BPA) employed as a model organic pollutant. The activity of Au/TiO2 catalysts for the generation of O2•single bond radicals (and BPA oxidation) increases by increasing the Schottky barrier height, which is due to the slow reduction of water-dissolved O2 on the catalyst surface.
Ključne besede: heterogeneous photocatalysis, titanate nanorods, gold nanoparticles, wet impregnation, localized surface plasmon resonance effect
Objavljeno v DiRROS: 26.04.2023; Ogledov: 473; Prenosov: 215
.pdf Celotno besedilo (4,16 MB)
Gradivo ima več datotek! Več...

8.
Influence of the calcination duration of ▫$g-C_3N_4/TiO_2$▫ veggie-toast-like photocatalyst on the visible-light triggered photocatalytic oxidation of bisphenol A
Matevž Roškarič, Gregor Žerjav, Matjaž Finšgar, Janez Zavašnik, Albin Pintar, 2023, izvirni znanstveni članek

Povzetek: Two commercially available TiO2 (hexagonal-like and spherical-like particles) were used to investigate the effect of g-C3N4 “melting” on the photocatalytic properties of g-C3N4/TiO2 composites. Improvement in the contact between the components was observed when they were thermally treated at 350 °C for an extended period of time (between 2 and 72 h) due to the partial melting and phase fusion of g-C3N4. Consequently, the enhanced contact between the phases allows easier injection of photogenerated electrons from the conduction band of g-C3N4 into TiO2, improving charge carrier separation. The prepared composites were tested for bisphenol A degradation under visible-light illumination, which showed that the components that had been calcined for 24 h performed better due to the improved charge carrier separation. Superoxide anionic radicals and photogenerated holes were identified as active species in the photooxidation experiments conducted under visible-light illumination.
Ključne besede: titanium dioxide, photocatalyst, calcination time, photocatalysis under visible-light illumination, water remediation, bisphenol A
Objavljeno v DiRROS: 17.03.2023; Ogledov: 529; Prenosov: 255
.pdf Celotno besedilo (3,13 MB)
Gradivo ima več datotek! Več...

9.
10.
Iskanje izvedeno v 0.2 sek.
Na vrh