Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Gordana Ispirova) .

1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
MsGEN : measuring generalization of nutrient value prediction across different recipe datasets
Gordana Ispirova, Tome Eftimov, Sašo Džeroski, Barbara Koroušić-Seljak, 2023, izvirni znanstveni članek

Povzetek: In this study, we estimate the generalization of the performance of previously proposed predictive models for nutrient value prediction across different recipe datasets. For this purpose, we introduce a quantitative indicator that determines the level of generalization of using the developed predictive model for new unseen data not presented in the training process. On a predefined corpus of recipe embeddings from six publicly available recipe datasets (i.e., projecting them in the same meta-feature vector space), we train predictive models on one of the six recipe datasets and test the models on the rest of the datasets. In parallel, we define and calculate generalizability indexes which are numbers that indicate how generalizable a predictive model is i.e., how well will a predictive model learned on one dataset perform on another one not involved in the training. The evaluation results prove the validity of these indexes – their relation with the accuracy of the predictions. Further, we define three sampling techniques for selecting representative data instances that will cover all parts from the feature space uniformly (involving data from all datasets) and further will improve the generalization of a predictive model. We train predictive models with these generalized datasets and test them on instances from the six recipe datasets that are not selected and included in the generalized datasets. The results from the evaluation of these predictive models show improvement compared to the results from the predictive models trained on one recipe dataset and tested on the others separately.
Ključne besede: ML pipeline, predictive modeling, nutrient prediction, recipe datasets
Objavljeno v DiRROS: 25.09.2023; Ogledov: 637; Prenosov: 313
.pdf Celotno besedilo (3,27 MB)
Gradivo ima več datotek! Več...

2.
Assessing the generalizability of a performance predictive model
Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: algorithms, predictive models, machine learning
Objavljeno v DiRROS: 15.09.2023; Ogledov: 603; Prenosov: 379
.pdf Celotno besedilo (935,67 KB)
Gradivo ima več datotek! Več...

3.
Iskanje izvedeno v 0.15 sek.
Na vrh