Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (Carola Doerr) .

1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Generalization ability of feature-based performance prediction models : a statistical analysis across benchmarks
Ana Nikolikj, Ana Kostovska, Gjorgjina Cenikj, Carola Doerr, Tome Eftimov, 2024, objavljeni znanstveni prispevek na konferenci

Povzetek: This study examines the generalization ability of algorithm performance prediction models across various bench-mark suites. Comparing the statistical similarity between the problem collections with the accuracy of performance prediction models that are based on exploratory landscape analysis features, we observe that there is a positive correlation between these two measures. Specifically, when the high-dimensional feature value distributions between training and testing suites lack statistical significance, the model tends to generalize well, in the sense that the testing errors are in the same range as the training errors. Two experiments validate these findings: one involving the standard benchmark suites, the BBOB and CEC collections, and another using five collections of affine combinations of BBOB problem instances.
Ključne besede: meta-learning, single-objective optimization, module importance
Objavljeno v DiRROS: 16.09.2024; Ogledov: 41; Prenosov: 25
.pdf Celotno besedilo (1,29 MB)
Gradivo ima več datotek! Več...

2.
Quantifying individual and joint module impact in modular optimization frameworks
Ana Nikolikj, Ana Kostovska, Diederick Vermetten, Carola Doerr, Tome Eftimov, 2024, objavljeni znanstveni prispevek na konferenci

Ključne besede: meta-learning, single-objective optimization, module importance
Objavljeno v DiRROS: 16.09.2024; Ogledov: 37; Prenosov: 24
.pdf Celotno besedilo (742,32 KB)
Gradivo ima več datotek! Več...

3.
4.
Sensitivity analysis of RF+clust for leave-one-problem-out performance prediction
Ana Nikolikj, Michal Pluhacek, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: automated performance prediction, autoML, single-objective black-box optimization, zero-shot learning
Objavljeno v DiRROS: 13.11.2023; Ogledov: 610; Prenosov: 391
.pdf Celotno besedilo (4,94 MB)
Gradivo ima več datotek! Več...

5.
Algorithm instance footprint : separating easily solvable and challenging problem instances
Ana Nikolikj, Sašo Džeroski, Mario Andrés Muñoz, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: black-box optimization, algorithms, problem instances, machine learning
Objavljeno v DiRROS: 15.09.2023; Ogledov: 545; Prenosov: 318
.pdf Celotno besedilo (2,03 MB)
Gradivo ima več datotek! Več...

6.
Assessing the generalizability of a performance predictive model
Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korošec, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: algorithms, predictive models, machine learning
Objavljeno v DiRROS: 15.09.2023; Ogledov: 604; Prenosov: 380
.pdf Celotno besedilo (935,67 KB)
Gradivo ima več datotek! Več...

7.
RF+clust for leave-one-problem-out performance prediction
Ana Nikolikj, Carola Doerr, Tome Eftimov, 2023, objavljeni znanstveni prispevek na konferenci

Ključne besede: algorithm performance prediction, automated machine learning, zero-shot learning, black-box optimization
Objavljeno v DiRROS: 30.08.2023; Ogledov: 605; Prenosov: 257
.pdf Celotno besedilo (4,47 MB)
Gradivo ima več datotek! Več...

8.
Iskanje izvedeno v 0.98 sek.
Na vrh