Digitalni repozitorij raziskovalnih organizacij Slovenije

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po

Možnosti:
  Ponastavi


Iskalni niz: "avtor" (B. B. Carvalho) .

1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Virome analysis of irrigation water sources provides extensive insights into the diversity and distribution of plant viruses in agroecosystems
Olivera Maksimović, Katarina Bačnik, Mark Paul Selda Rivarez, Ana Vučurović, Nataša Mehle, Maja Ravnikar, Ion Gutiérrez-Aguirre, Denis Kutnjak, 2024, izvirni znanstveni članek

Povzetek: Plant viruses pose a significant threat to agriculture. Several are stable outside their hosts, can enter water bodies and remain infective for prolonged periods of time. Even though the quality of irrigation water is of increasing importance in the context of plant health, the presence of plant viruses in irrigation waters is understudied. In this study, we conducted a large-scale high-throughput sequencing (HTS)-based virome analysis of irrigation and surface water sources to obtain complete information about the abundance and diversity of plant viruses in such waters. We detected nucleic acids of plant viruses from 20 families, discovered several novel plant viruses from economically important taxa, like Tobamovirus and observed the influence of the water source on the present virome. By comparing viromes of water and surrounding plants, we observed presence of plant viruses in both compartments, especially in cases of large-scale outbreaks, such as that of tomato mosaic virus. Moreover, we demonstrated that water virome data can extensively inform us about the distribution and diversity of plant viruses for which only limited information is available from plants. Overall, the results of the study provided extensive insights into the virome of irrigation waters from the perspective of plant health. It also suggested that an HTS-based water virome surveillance system could be used to detect potential plant disease outbreaks and to survey the distribution and diversity of plant viruses in the ecosystem.
Ključne besede: plant viruses, environmental water testing, high-throughput sequencing, agroecosystems, irrigation water, virome
Objavljeno v DiRROS: 29.03.2024; Ogledov: 99; Prenosov: 43
URL Povezava na datoteko
Gradivo ima več datotek! Več...

2.
In-depth study of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem
Mark Paul Selda Rivarez, Anja Pecman, Katarina Bačnik, Olivera Maksimović, Ana Vučurović, Gabrijel Seljak, Nataša Mehle, Ion Gutiérrez-Aguirre, Maja Ravnikar, Denis Kutnjak, 2023, izvirni znanstveni članek

Povzetek: Background: In agroecosystems, viruses are well known to influence crop health and some cause phytosanitary and economic problems, but their diversity in non-crop plants and role outside the disease perspective is less known. Extensive virome explorations that include both crop and diverse weed plants are therefore needed to better understand roles of viruses in agroecosystems. Such unbiased exploration is available through viromics, which could generate biological and ecological insights from immense high-throughput sequencing (HTS) data. Results: Here, we implemented HTS-based viromics to explore viral diversity in tomatoes and weeds in farming areas at a nation-wide scale. We detected 125 viruses, including 79 novel species, wherein 65 were found exclusively in weeds. This spanned 21 higher-level plant virus taxa dominated by Potyviridae, Rhabdoviridae, and Tombusviridae, and four non-plant virus families. We detected viruses of non-plant hosts and viroid-like sequences and demonstrated infectivity of a novel tobamovirus in plants of Solanaceae family. Diversities of predominant tomato viruses were variable, in some cases, comparable to that of global isolates of the same species. We phylogenetically classified novel viruses and showed links between a subgroup of phylogenetically related rhabdoviruses to their taxonomically related host plants. Ten classified viruses detected in tomatoes were also detected in weeds, which might indicate possible role of weeds as their reservoirs and that these viruses could be exchanged between the two compartments. Conclusions: We showed that even in relatively well studied agroecosystems, such as tomato farms, a large part of very diverse plant viromes can still be unknown and is mostly present in understudied non-crop plants. The overlapping presence of viruses in tomatoes and weeds implicate possible presence of virus reservoir and possible exchange between the weed and crop compartments, which may influence weed management decisions. The observed variability and widespread presence of predominant tomato viruses and the infectivity of a novel tobamovirus in solanaceous plants, provided foundation for further investigation of virus disease dynamics and their effect on tomato health. The extensive insights we generated from such in-depth agroecosystem virome exploration will be valuable in anticipating possible emergences of plant virus diseases and would serve as baseline for further post-discovery characterization studies.
Ključne besede: tomato, weed, virus, viroid, virome, virus discovery, virus diversity, phylogenetics, metagenomics, viromics
Objavljeno v DiRROS: 13.04.2023; Ogledov: 579; Prenosov: 126
URL Povezava na datoteko

3.
4.
Morphologic and molecular classification of lung neuroendocrine neoplasms
Jasna Metovic, Marco Barella, Fabrizio Bianchi, Paul Hofman, Veronique Hofman, Myriam Remmelink, Izidor Kern, Lina Carvalho, Linda Pattini, Angelica Sonzogni, 2021, izvirni znanstveni članek

Povzetek: Neuroendocrine neoplasms (NENs) of the lung encompass neuroendocrine tumors (NETs) composed of typical (TC) and atypical (AC) carcinoids and full-fledged carcinomas (NECs) inclusive of large cell neuroendocrine carcinoma (LCNEC) and small cell carcinoma (SCLC). NETs and NECs are thought to represent distinct and separate lesions with neither molecular overlap nor common developmental continuum. Two perspectives were addressed regarding the morphologic and molecular classification of lung NENs: (i) a supervised approach by browsing the traditional classification, the relevant gene alterations, and their clinical implications; and (ii) an unsupervised approach, by reappraising neoplasms according to risk factors and natural history of disease to construct an interpretation model relied on biological data. We herein emphasize lights and shadows of the current classification of lung NENs and provide an alternative outlook on these tumors focused on what we currently know about the biological determinants and the natural history of disease.
Ključne besede: neuroendocrine tumors, lung neoplasms, carcinoma, lung tumors, morphologic classification, molecular classification
Objavljeno v DiRROS: 02.02.2021; Ogledov: 1154; Prenosov: 764
.pdf Celotno besedilo (2,60 MB)
Gradivo ima več datotek! Več...

5.
Completeness of tuberculosis (TB) notification : inventory studies and capture-recapture analyses, six European Union countries, 2014 to 2016
Masja Straetemans, Mirjam I Bakker, Sandra Alba, Christina Mergenthaler, Ente Rood, Peter H Andersen, Henrieke Schimmel, Aleksandar Šimunović, Petra Svetina, Carlos Carvalho, 2020, izvirni znanstveni članek

Povzetek: Background. Progress towards the World Health Organization's End TB Strategy is monitored by assessing tuberculosis (TB) incidence, often derived from TB notification, assuming complete case detection and reporting. This assumption is unlikely to hold in many settings, including European Union (EU) countries. Aim. We aimed to assess observed and estimated completeness of TB notification through inventory studies and capture-recapture (CRC) methodology in six EU countries: Croatia, Denmark, Finland, the Netherlands, Portugal, Slovenia. Methods. We performed record linkage, case ascertainment and CRC analyses of data collected retrospectively from at least three national TB-related registers in each country between 2014 and 2016. Results. Observed completeness of TB notification by inventory studies was 73.9% in Croatia, 98.7% in Denmark, 83.6% in Finland, 81.6% in the Netherlands, 85.8% in Portugal and 100% in Slovenia. Subsequent CRC analysis estimated completeness of TB notification to be 98.4% in Denmark, 76.5% in Finland and 77.0% in Portugal. In Croatia, CRC analyses produced implausible results while in the Netherlands and Slovenia, it was methodologically considered not meaningful. Conclusion. Inventory studies and CRC methodology suggest a TB notification completeness between 73.9% and 100% in the six EU countries. Mandatory reporting by clinicians and laboratories, and cross-checking of registers, strongly contributes to accurate notification rates, but hospital episode registers likely contain a considerable proportion of false-positive TB records and are thus less useful. Further strengthening routine surveillance to count TB cases, i.e. incidence, accurately by employing record-linkage of high-quality TB registers should make CRC studies obsolete in EU countries.
Ključne besede: Mycobacterium tuberculosis, tuberculosis, incidence, public health surveillance, registries, reporting, notification, data collection, data analysis
Objavljeno v DiRROS: 27.07.2020; Ogledov: 1476; Prenosov: 1056
.pdf Celotno besedilo (214,77 KB)
Gradivo ima več datotek! Več...

6.
A real-time architecture for the identification of faulty magnetic sensors in the JET Tokamak
A.C. Neto, D. Alves, B. B. Carvalho, G. De Tommasi, R. Felton, H. Fernandes, P.R. Lomas, F. Maviglia, F.G. Rimini, F. Sartori, Adam V. Stephen, D. F. Valcárcel, L. Zabeo, Luka Snoj, Igor Lengar, Andrej Trkov, 2014, izvirni znanstveni članek

Povzetek: In a tokamak, the accurate estimation of the plasma boundary is essential to maximise the fusion performance and is also the first line of defence for the physical integrity of the device. In particular, the first wall components might get severely damaged if over-exposed to a high plasma thermal load. The most common approach to calculate the plasma geometry and related parameters is based in a large set of different types of magnetic sensors. Using this information, real-time plasma equilibrium codes infer a flux map and calculate the shape and geometry of the plasma boundary and its distance to a known reference (e.g. first wall). These are inputs to one or more controllers capable of acting on the shape and trajectory based in pre-defined requests. Depending on the device, the error of the estimated boundary distance must usually be less than 1 centimetre, which translates into very small errors on the magnetic measurement itself. Moreover, asymmetries in the plasma generated and surrounding magnetic fields can produce local shape deformations potentially leading to an unstable control of the plasma geometry. The JET tokamak was recently upgraded to a new and less thermally robust all-metal wall, also known as the ITER-like wall. Currently the shape controller system uses the output of a single reconstruction algorithm to drive the plasma geometry and the protection systems have no input from the plasma boundary reconstruction. These choices are historical and were due to architectural, hardware and processing power limitations. Taking advantage of new multi-core systems and of the already proved robustness of the JET real-time network, this paper proposes a distributed architecture for the real-time identification of faults in the magnetic measurements of the JET tokamak. Besides detecting simple faults, such as short-circuits and open-loops, the system compares the expected measurement at the coil location and the real measurement, producing a confidence valu- . Several magnetic reconstructions, using sensors from multiple toroidally distributed locations, can run in parallel, allowing for a voting or averaging scheme selection. Finally, any fault warnings can be directly fed to the real-time protection sequencer system, whose main function is to coordinate the protection of the JET's first wall.
Objavljeno v DiRROS: 24.11.2014; Ogledov: 3343; Prenosov: 0

Iskanje izvedeno v 0.16 sek.
Na vrh