Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
Research data


Query: "keywords" (rehabilitation) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
Motor imagery and action observation as appropriate strategies for home-based rehabilitation : ǂa ǂmini-review focusing on improving physical function in orthopedic patients
Armin Paravlić, 2022

Abstract: Dynamic stability of the knee and weakness of the extensor muscles are considered to be the most important functional limitations after anterior cruciate ligament (ACL) injury, probably due to changes at the central (cortical and corticospinal) level of motor control rather than at the peripheral level. Despite general technological advances, fewer contraindicative surgical procedures, and extensive postoperative rehabilitation, up to 65% of patients fail to return to their preinjury level of sports, and only half were able to return to competitive sport. Later, it becomes clear that current rehabilitation after knee surgery is not sufficient to address the functional limitations after ACL reconstruction even years after surgery. Therefore, new therapeutic tools targeting the central neural system, i.e., the higher centers of motor control, should be investigated and integrated into current rehabilitation practice. To improve motor performance when overt movement cannot be fully performed (e.g., due to pain, impaired motor control, and/or joint immobilization), several techniques have been developed to increase physical and mental activation without the need to perform overt movements. Among the most popular cognitive techniques used to increase physical performance are motor imagery and action observation practices. This review, which examines the available evidence, presents the underlying mechanisms of the efficacy of cognitive interventions and provides guidelines for their use at home.
Keywords: motor imagery, action observation, virtual reality, rehabilitation, physical functions, mental simulation
DiRROS - Published: 03.03.2022; Views: 128; Downloads: 90
.pdf Fulltext (480,89 KB)

A perspective on implementation of technology-driven exergames for adults as telerehabilitation services
Cécil J. W. Meulenberg, Eling D. de Bruin, Uroš Marušič, 2022

Abstract: A major concern of public health authorities is to also encourage adults to be exposed to enriched environments (sensory and cognitive-motor activity) during the pandemic lockdown, as was recently the case worldwide during the COVID-19 outbreak. Games for adults that require physical activity, known as exergames, offer opportunities here. In particular, the output of the gaming industry nowadays offers computer games with extended reality (XR) which combines real and virtual environments and refers to human-machine interactions generated by computers and wearable technologies. For example, playing the game in front of a computer screen while standing or walking on a force plate or treadmill allows the user to react to certain infrastructural changes and obstacles within the virtual environment. Recent developments, optimization, and minimizations in wearable technology have produced wireless headsets and sensors that allow for unrestricted whole-body movement. This makes the virtual experience more immersive and provides the opportunity for greater engagement than traditional exercise. Currently, XR serves as an umbrella term for current immersive technologies as well as future realities that enhance the experience with features that produce new controllable environments. Overall, these technology-enhanced exergames challenge the adult user and modify the experience by increasing sensory stimulation and creating an environment where virtual and real elements interact. As a therapy, exergames can potentially create new environments and visualizations that may be more ecologically valid and thus simulate real activities of daily living that can be trained. Furthermore, by adding telemedicine features to the exergame, progress over time can be closely monitored and feedback provided, offering future opportunities for cognitive-motor assessment. To more optimally serve and challenge adults both physically and cognitively over time in future lockdowns, there is a need to provide long-term remote training and feedback. Particularly related to activities of daily living that create opportunities for effective and lasting rehabilitation for elderly and sufferers from chronic non-communicable diseases (CNDs). The aim of the current review is to envision the remote training and monitoring of physical and cognitive aspects for adults with limited mobility (due to disability, disease, or age), through the implementation of concurrent telehealth and exergame features using XR and wireless sensor technologies.
Keywords: older adults, telemedicine, virtual reality, rehabilitation, active video games
DiRROS - Published: 17.03.2022; Views: 114; Downloads: 105
.pdf Fulltext (258,68 KB)

The time course of quadriceps strength recovery after total knee arthroplasty is influenced by body mass index, sex, and age of patients
Armin Paravlić, Cécil J. W. Meulenberg, Kristina Drole, 2022

Abstract: Introduction: For patients with osteoarthritis who have undergone total knee arthroplasty (TKA), quadriceps strength is a major determinant of general physical function regardless of the parameters adopted for functional assessment. Understanding the time course of quadriceps strength recovery and effectiveness of different rehabilitation protocols is a must. Therefore, the aim of this study was to: (i) determine the magnitude of maximal voluntary strength (MVS) loss and the time course of recovery of the quadriceps muscle following TKA, (ii) identify potential moderators of strength outcomes, and (iii) investigate whether different rehabilitation practices can moderate the strength outcomes following TKA, respectively. Design: General scientific databases and relevant journals in the field of orthopedics were searched, identifying prospective studies that investigated quadriceps’ MVS pre-to post-surgery. Results: Seventeen studies with a total of 832 patients (39% males) were included. Results showed that in the early post-operative days, the involved quadriceps’ MVS markedly declined, after which it slowly recovered over time in a linear fashion. Thus, the greatest decline of the MVS was observed 3 days after TKA. When compared to pre-operative values, the MVS was still significantly lower 3 months after TKA and did not fully recover up to 6 months following TKA. Furthermore, a meta-regression analysis identified that the variables, time point of evaluation, patient age, sex, and BMI, significantly moderate the MVS of the quadriceps muscle. Conclusion: The analyzed literature data showed that the decrease in strength of the involved quadriceps muscles following TKA is considerable and lasts for several months post-surgery. Therefore, we recommend to specifically target the strengthening of knee extensor muscles, preserve motor control, and apply appropriate nutrition to ensure a holistic quadriceps muscle recovery. Since age, sex, and BMI were found to be moderating factors in patients’ recovery, further research should include specific analyses considering these moderators.
Keywords: knee osteoarthritis, total knee arthroplasty, rehabilitation, functional performance, voluntary activation, obesity, body mass index
DiRROS - Published: 26.05.2022; Views: 100; Downloads: 47
.pdf Fulltext (2,00 MB)

Search done in 0 sec.
Back to top