Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
Research data


Query: "keywords" (phenology modelling) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
Calculation procedure for RITY-A phenology model of Ips typographus
Nikica Ogris, 2020

Abstract: The RITY-2 phenology model was developed for the spatiotemporal simulation of the seasonal development of European spruce bark beetle, Ips typographus . RITY-2 is based on the PHENIPS model and was developed through improving PHENIPS with innovative approaches and calibrating and validating it for Slovenia. RITY-2 predictions are based on air temperatures from Integrated Nowcasting through a Comprehensive Analysis (INCA) system, which is used to calculate the effective bark temperature for beetle development. In this paper we describe the calculation procedure for RITY-2.
Keywords: European spruce bark beetle, phenology, ecological modelling, voltinism, population dynamics
DiRROS - Published: 19.03.2020; Views: 1055; Downloads: 587
URL Fulltext (0,00 KB)
This document has many files! More...

Empirical approach for modelling tree phenology in mixed forests using remote sensing
Koffi Dodji Noumonvi, Gal Oblišar, Ana Žust, Urša Vilhar, 2021

Abstract: : Phenological events are good indicators of the effects of climate change, since phenological phases are sensitive to changes in environmental conditions. Although several national phenological networks monitor the phenology of different plant species, direct observations can only be conducted on individual trees, which cannot be easily extended over large and continuous areas. Remote sensing has often been applied to model phenology for large areas, focusing mostly on pure forests in which it is relatively easier to match vegetation indices with ground observations. In mixed forests, phenology modelling from remote sensing is often limited to land surface phenology, which consists of an overall phenology of all tree species present in a pixel. The potential of remote sensing for modelling the phenology of individual tree species in mixed forests remains underexplored. In this study, we applied the seasonal midpoint (SM) method with MODIS GPP to model the start of season (SOS) and the end of season (EOS) of six different tree species in Slovenian mixed forests. First, substitute locations were identified for each combination of observation station and plant species based on similar environmental conditions (aspect, slope, and altitude) and tree species of interest, and used to retrieve the remote sensing information used in the SM method after fitting the best of a Gaussian and two double logistic functions to each year of GPP time series. Then, the best thresholds were identified for SOS and EOS, and the results were validated using cross-validation. The results show clearly that the usual threshold of 0.5 is not best in most cases, especially for estimating the EOS. Despite the difficulty in modelling the phenology of different tree species in a mixed forest using remote sensing, it was possible to estimate SOS and EOS with moderate errors as low as <8 days (Fagus sylvatica and Tilia sp.) and <10 days (Fagus sylvatica and Populus tremula), respectively.
Keywords: phenology modelling, start of season, end of season, remote sensing, MODIS GPP, vegetation indices, threshold methods
DiRROS - Published: 23.08.2021; Views: 364; Downloads: 233
.pdf Fulltext (2,63 MB)

Search done in 0 sec.
Back to top