Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (methods) .

1 - 10 / 20
First pagePrevious page12Next pageLast page
1.
Experimental investigation of the shear force capacity of prismatic cross laminated timber beams
Henrik Danielsson, Tomaž Pazlar, Erik Serrano, Boris Azinović, 2024, original scientific article

Abstract: Experimental tests of Cross Laminated Timber (CLT) under in-plane beam loading conditions are presented. The influence of the element layup, the individual lamination width, and the beam overhang at the supports on the shear force capacity was investigated. All the CLT beams had the same gross cross section, and a 4-point-bending test setup was used. The experimentally determined load-bearing capacities are compared with the load-bearing capacities resulting from analytical methods proposed for structural design, focusing on shear failure in the crossing areas of flatwise bonded laminations (shear failure mode III). The test results indicate no or very small influence of the element layup and the lamination width on the shear force capacity. These results partly contradict the predictions of the proposed design methods. Of the three studied beam geometry parameters, the beam overhang at the support had the greatest influence on the load-bearing capacity.
Keywords: cross laminated timber, CLT, beam, shear testing, shear capacity, design methods
Published in DiRROS: 15.04.2024; Views: 100; Downloads: 50
.pdf Full text (3,32 MB)
This document has many files! More...

2.
Influence of test methodology on the characterization of the parallel-to-grain timber embedment strength and foundation modulus of dowels
Caroline D. Aquino, Rodrigues Leonardo G., Michael Schweigler, Meta Kržan, Zheng Li, Jorge M. Branco, 2024, original scientific article

Abstract: A reliable determination of the embedment strength and foundation modulus of timber elements is critical for the design and safety assessment of joints in timber structures. However, the existence of various test configurations for characterising the embedding properties of large diameter steel fasteners in timber elements poses challenges in directly comparing and utilising available test data. This paper aims to provide an insight into the influence of embedment property test methods, comparing experimental results from different test setups within the guidelines of the EN 383 and ASTM D 5764-97a standards for European softwood species, Scots pine wood (Pinus sylvestris) and Norway spruce (Picea abies). In addition to the test guidelines, the thickness of the specimen and the application of the load was evaluated within the protocols. A comprehensive statistical analysis was performed to identify statistically significant differences between the groups evaluated. The results of the analysis revealed disagreement between the standards in the evaluation of the strength of the embedding, highlighting the potential bias inserted by the experimental setup and protocol. Furthermore, it was proven that the thickness of the specimens influences both the embedding strength and the foundation modulus of the wood species tested. Finally, no distinctions were observed between tensile and compressive loading within the guidelines of the EN 383 standard.
Keywords: embedment strength, foundation modulus, dowel-type connections, test methods
Published in DiRROS: 15.04.2024; Views: 82; Downloads: 50
.pdf Full text (3,96 MB)
This document has many files! More...

3.
Researching the change in the weight of split oak firewood due to different drying methods
Amina Gačo, 2021, published scientific conference contribution

Abstract: In this paper, the influences of stacking methods and drying places of split oak firewood in winter conditions (Quercus cerris) have been experimentally and theoretically investigated, due to the great importance of use in heating with such wood. The research was conducted on a sample of 48 pieces of logs with bark made of freshly cut oak. The logs were obtained by mechanized technology with the help of grafting by a hydraulic splitter and a chainsaw. Each log was measured for a research length of 0.30 m, marked with numbers 1-24. On each log, the weight was measured on a scale of 5 kg with an accuracy of 0.5 grams. Drying of logs was performed in two places. The first drying place was in outdoor conditions, sheltered from the snow and ventilated. The second place was indoors, at approximately constant room temperature. The logs were stacked in a crossed way for better air circulation. They were dried between 15/12/2020 and 15/02/2021, a total of 62 days. The average initial weight of logs dried in the facility was 1130.3 g, in the dried state the average weight was 952.87 g, which represented 84.3% of the original weight. The average initial weight of logs dried in outdoor conditions was 1192.125 g, in the dried state 1076.37 g, which represented 90.29% of the original weight. The average initial water content in the logs dried in the facility was 37.9%, in the dried state it was 27.5%. For logs dried in outdoor conditions, the average initial amount of water was 36.6%, in the dried state the average amount of water was 31.2%.
Keywords: weight, drying methods, splitting firewood, oak, stacking methods
Published in DiRROS: 09.04.2024; Views: 73; Downloads: 33
.pdf Full text (871,77 KB)
This document has many files! More...

4.
Additive manufacturing multi-material components of SAF 2507 duplex steel and 15-5 PH martensitic stainless steel
Martina Koukolíková, Pavel Podaný, Sylwia Rzepa, Michal Brázda, Aleksandra Kocijan, 2023, original scientific article

Abstract: The study reports the successful deposition of 15–5 precipitation-hardened (PH) martensitic steel on SAF 2507 duplex stainless steel (and vice versa) to form functionally graded materials (FGMs) using powder-based, directed-energy-deposition (DED) technology. The evolution of the microstructure and the mechanical properties of the 15–5 PH/SAF 2507 functionally graded material in the as-built state were investigated systematically. The results proved that the microstructural transition zone (MTZ) is formed above the fusion line due to the dilution effect of both steels. The phase composition of the MTZ consists of ferrite and, in comparison to the base materials, an increased amount of austenite. The interface has the lowest hardness owing to the formation of a significant proportion of the austenitic phase. However, the tensile mechanical properties were not affected by the interface as failure occurred in both SAF 2507 and at the interface regions. The research presents a promising application of FGMs in a horizontal configuration to form a high - quality, metallurgical joint between heterogeneous materials. This study introduces a novel approach by additive manufacturing (AM) of heterogeneous multi-materials, merging the favorable properties of duplex SAF 2507 and martensitic 15-5 PH stainless steels through superior metallurgical bonding. The combination of SAF 2507 and 15-5 PH in a functionally graded material has not been previously explored, as the existing studies deal with the duplex stainless steels SAF 2507 and either martensitic stainless-steel 15-5 PH deposited separately by laser powder-bed-fusion (L-PBF) or DED methods. This research pioneers the investigation of these materials in tandem, paving the way for the development of novel FGMs with optimized properties for specific applications. The resulting FGM exhibits exceptional corrosion resistance and high strength, making it highly versatile for applications in diverse industries such as offshore oil and gas production, aerospace, aviation, and chemical processing equipment.
Keywords: directed energy deposition, functionally graded materials, miniaturized specimen testing methods, SAF 2507, 15-5 PH
Published in DiRROS: 04.04.2024; Views: 60; Downloads: 28
URL Link to file

5.
Numerical modelling of macrosegregation in three-dimensional continuous casting of steel billets
Katarina Mramor, Robert Vertnik, Božidar Šarler, 2023, published scientific conference contribution

Abstract: Macrosegregation presents a considerable defect in the continuous casting of billets and can critically affect the final properties of the product. The numerical modelling can help to predict and better understand the segregation and flow patterns inside the mould. The process is modelled with a physical model described by a set of conservation equations describing the t heat transfer, turbulence, fluid flow, solidification and segregation. A two-equation low-Re k-epsilon model and Abe-Kondoh-Nagano closures are used to close governing equations in this incompressible fluid flow example. The Boussinesq approximation is applied to account for the thermo-solutal buoyancy effects, and the Darcy approximation is applied for the description of the flow through the porous mushy zone. On a microscale, a lever rule solidification model is used to couple liquid fraction, temperature and concentration. The three-dimensional model is solved with the method based on local collocation with multiquadric radial basis functions on seven-nodded subdomains. The aim of this contribution is to explore the three-dimensional macrosegregation patterns of 0.51 wt% carbon steel in the solidified shell of the steel in the mould.
Keywords: modeling, continuous casting of steel, CFD, turbulence modeling, LES, meshless methods, RANS
Published in DiRROS: 21.03.2024; Views: 104; Downloads: 61
.pdf Full text (1,48 MB)
This document has many files! More...

6.
Meshless simulation of a macrosegregation benchmark considering the solid motion
Viktor Govže, Igor Vušanović, Božidar Šarler, 2023, published scientific conference contribution

Abstract: We have extended the existing two-dimensional rigid solid phase benchmark for binary substance with the solid phase motion in the present paper. Incompressible laminar Newtonian flow is assumed, and a standard mixture formulation is used for the mass, momentum, energy, and solute transport. A coherency solid motion model accounts for the free-floating grains, assuming that the solid velocity is proportional to the mixture velocity and the liquid fraction. The lever rule is used to describe the mass fractions of the phases. A two-dimensional benchmark is solved using the semi-implicit meshless diffuse approximate method with an adaptive subdomain upwinding strategy. The results of the meshless method are compared to the finite volume method results with a reasonable agreement. The new benchmark results show that the solid motion has an essential effect on the macrosegregation pattern.
Keywords: solidification, meshless methods, grain motion, benchmarks
Published in DiRROS: 21.03.2024; Views: 115; Downloads: 63
.pdf Full text (1,11 MB)
This document has many files! More...

7.
Application of a meshless space-time adaptive approach to phase-field modelling of polycrystalline solidification
Tadej Dobravec, Boštjan Mavrič, Božidar Šarler, 2023, published scientific conference contribution

Abstract: We have developed a 2-D numerical meshless adaptive approach for phase-field modelling of dendritic solidification. The quadtree-based approach decomposes the computational domain into quadtree sub-domains of different sizes. The algorithm generates uniformly-distributed computational nodes in each quadtree sub-domain. We apply the meshless radial basis function generated finite difference method and the forward Euler scheme to discretise governing equations in each computational node. The fixed ratio between the characteristic size and the node spacing of a quadtree sub-domain ensures space adaptivity. The adaptive time-stepping accelerates the calculations further. In the framework of previous research studies, we used the approach to solve quantitative phase-field models for single dendrite growth in pure melts and dilute binary alloys. In the present study, we upgrade the solution procedure for the modelling growth of multiple differently oriented dendrites. Along with the space-time adaptive approach, we apply non-linear preconditioning of the phase-field equation to increase computational efficiency. We investigate a novel numerical approach's accuracy and computational efficiency by simulating the equiaxed dendrite growth from a dilute binary alloy.
Keywords: dendritic growth, phase-field method, meshless methods, polycrystalline solidification
Published in DiRROS: 21.03.2024; Views: 99; Downloads: 54
.pdf Full text (2,77 MB)
This document has many files! More...

8.
On the $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity
Min Zhao, Yueqiang Song, Dušan Repovš, 2024, original scientific article

Abstract: In this article, we deal with the following $p$-fractional Schrödinger-Kirchhoff equations with electromagnetic fields and the Hardy-Littlewood-Sobolev nonlinearity: $ M\left([u]_{s,A}^{p}\right)(-\Delta)_{p, A}^{s} u+V(x)|u|^{p-2} u=\lambda\left(\int_\limits{\mathbb{R}^{N}} \frac{|u|^{p_{\mu, s}^{*}}}{|x-y|^{\mu}} \mathrm{d}y\right)|u|^{p_{\mu, s}^{*}-2} u+k|u|^{q-2}u,\ x \in \mathbb{R}^{N},$ where $0 < s < 1 < p$, $ps < N$, $p < q < 2p^{*}_{s,\mu}$, $0 < \mu < N$, $\lambda$ and $k$ are some positive parameters, $p^{*}_{s,\mu}=\frac{pN-p\frac{\mu}{2}}{N-ps}$ is the critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and functions $V$, $M$ satisfy the suitable conditions. By proving the compactness results using the fractional version of concentration compactness principle, we establish the existence of nontrivial solutions to this problem.
Keywords: Hardy-Littlewood-Sobolev nonlinearity, Schrödinger-Kirchhoff equations, variational methods, electromagnetic fields
Published in DiRROS: 16.02.2024; Views: 166; Downloads: 53
.pdf Full text (2,62 MB)
This document has many files! More...

9.
A coupled domain–boundary type meshless method for phase-field modelling of dendritic solidification with the fluid flow
Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor, Božidar Šarler, 2023, original scientific article

Abstract: Purpose - This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method. Design/methodology/approach - A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case. Findings - The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented. Originality/value - A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.
Keywords: dendritic solidification, Stokes flow, phase-field method, space-time adaptivity, meshless methods, RBF-FD, modified method of regularised sources
Published in DiRROS: 07.02.2024; Views: 144; Downloads: 62
.pdf Full text (1,07 MB)
This document has many files! More...

10.
Electroporator for in vitro cell permeabilization
Marko Puc, Karel Flisar, Stanislav Reberšek, Damijan Miklavčič, 2001, original scientific article

Abstract: The use of high voltage electric pulse technology, electroporation, in cell biology, biotechnology and medicine has attracted an enormous interest. Electroporation is a transient phenomenon that increases the permeability of cell plasma membrane. In the state of high permeability, the plasma membrane allows small and large molecules to be introduced into the cytoplasm, althoughthe cell plasma membrane represents a considerable barrier for them inits normal state. The effectiveness of electroporation depends on many parameters that can be divided into the parameters of the electric field and the parameters that define the state of cells and their surrounding i.e, temperature, osmotic pressure, etc. In this article, we present a prototype electroporator GT-1 for in vitro electropermeabilization that we have developed. Our electroporator offers a vast flexibility of parameters and can generate high and low voltage pulses, of which the latter ones are used for electrophoretic transfer of charged molecules through permeabilized cell plasma membrane.
Keywords: electroporation instrumentation methods, cell membrane permeabilization
Published in DiRROS: 25.01.2024; Views: 180; Downloads: 40
.pdf Full text (239,19 KB)

Search done in 0.29 sec.
Back to top