Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (jelka) .

1 - 10 / 44
First pagePrevious page12345Next pageLast page
1.
2.
3.
4.
5.
6.
7.
8.
Primerjava različnih regresijskih modelov za napovedovanje debelinskega priraščanja jelke
Andrej Ficko, Vasilije Trifković, 2021, original scientific article

Abstract: V prispevku na primeru jelke predstavljamo sedem regresijskih modelov za modeliranje priraščanja dreves s podatki periodičnih meritev na stalnih vzorčnih ploskvah. Poleg polinomske regresije, modela z dodanim šumom in mešanega linearnega modela, predstavljamo regresijo z naravnimi zlepki in tri modele z omejenimi odvisnimi spremenljivkami: truncated regression, tobit regression in grouped data regression. Modele lahko uporabimo, kadar se zaradi načina merjenja in zaokroževanja podatkov ter hierarhičnosti podatkov srečamo z rezanimi ali krnjenimi slučajnostnimi spremenljivkami, nezveznostjo odvisne spremenljivke in pristransko oceno prirastka. Pri pojasnitvi debelinskega priraščanja 21.013 jelk na 4.405 ploskvah v obdobju 1990–2014 v raznomernih gozdovih v dinarskih jelovo-bukovjih so vsi modeli pokazali podoben vpliv prsnega premera, sestojne temeljnice, temeljnice debelejših dreves, raznomernosti, nagiba, nadmorske višine in le manjše razlike v regresijskih koeficientih in merah prileganja. Največje povprečne napovedi prirastka daje tobit model, mešani model pa se najbolj prilega podatkom. V primerjavi z drugimi modeli model z zlepki kaže na počasnejše zmanjševanje prirastka zelo debelih jelk po kulminaciji prirastka.
Keywords: prirastek, multipla regresija, statistične metode, tobit model, krnjenje, mešani modeli, jelka, modeli z omejenimi odvisnimi spremenljivkami, stalne vzorčne ploskve
Published in DiRROS: 01.12.2021; Views: 2114; Downloads: 1442
.pdf Full text (2,97 MB)
This document has many files! More...

9.
10.
Search done in 0.54 sec.
Back to top