Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (hydrogeology) .

1 - 5 / 5
First pagePrevious page1Next pageLast page
1.
Hydrogeological characterization of karst springs of the white (Proteus anguinus anguinus) and black olm (Proteus anguinus parkelj) habitat in Bela krajina (SE Slovenia)
Katja Koren, Rok Brajkovič, 2023, original scientific article

Abstract: The springs west of Črnomelj, in SE Slovenia, are the habitat of the black (Proteus anguinus parkelj) and the white olm (Proteus anguinus anguinus). Some of these springs are also the only known habitat in the world of endemic species of black olm. A steady decline in olm populations has been observed in this area over the past decades. Owing to the rapid runoff and groundwater flow high-resolution monitoring is essential in providing better insight into the hydrogeological characterization of the catchment area of springs. Specific factors and critical parameters of water behind said olm degradation have not yet been defined. Because the olm’s environment is largely aquatic, one potential critical parameter could be the higher water temperatures (>12 °C) or higher nitrate concentration (>9.2mg/l). The six-month observation of the springs (July – December 2021) point to water temperature as a potential critical parameter since the water temperature of the springs exceeded 12 °C in months July and August. Nitrate concentrations could also be a second critical parameter in the degradation of the olm’s habitat. Maximum nitrate concentrations above 9.2mg/l throughout much of the observation period (except for Dobličica spring). Due to less agricultural activity in December in the spring catchment area and a higher dilution rate due to reduced evapotranspiration and increased effective precipitation during this time of the year, the nitrate concentrations are decreased. The results of the measured parameters of groundwater could show the hydrogeological connection between the Otovski and Pački breg springs and between Šotor, Jamnice and Dobličica. The Obršec spring has an independent catchment area. A detailed estimation of the springs catchment area is possible due to a detailed geologic map. It is necessary to determine the origin of the nitrate (nitrate isotope analysis), to quantify the threshold values of the critical parameters, to define precisely all the causes of the olm deterioration, and to make proposals for appropriate measures to limit or even stop the decline of the olm population.
Keywords: hydrogeology, olm, ecology, nitrate, monitoring
Published in DiRROS: 16.01.2024; Views: 143; Downloads: 48
.pdf Full text (13,65 MB)

2.
Terminologies and characteristics of natural mineral and thermal waters in selected European countries
Daniel Elster, Teodóra Szőcs, Nóra Gál, Birgitte Hansen, Denitza D. Voutchkova, Jörg Schullehner, Julie Lions, Lucio Martarelli, Elena Giménez-Forcada, José Angel Díaz-Muñoz, Eline Malcuit, Gerhard Schubert, Gerhard Hobiger, Nina Rman, 2022, review article

Abstract: This study discusses 1) the national legislative frameworks, terminologies, and criteria for the recognition of natural mineral waters and thermal waters in selected European countries (Austria, Bosnia and Herzegovina, Denmark, France, Hungary, Iceland, Italy, Lithuania, Poland, Portugal, Romania, Serbia, Slovenia, and Spain), and 2) it provides a first extensive multi-national overview of hydrogeological and hydrogeochemical characteristics of numerous water sources from those regions.
Keywords: hydrogeology, regulatory framework, hydrogeochemical composition, natural mineral water, thermal water, Europe
Published in DiRROS: 26.07.2022; Views: 658; Downloads: 236
.pdf Full text (10,31 MB)

3.
Characterizing the groundwater flow regime in a landslide recharge area using stable isotopes: a case study of the Urbas landslide area in NW Slovenia
Katja Koren, Luka Serianz, Mitja Janža, 2022, original scientific article

Abstract: Slope stability strongly depends on the prevailing hydrological and hydrogeological conditions. The amount and intensity of precipitation and changing groundwater levels are important landslide triggering factors. Environmental tracers, including the chemical and stable isotope compositions of precipitation and groundwater, were used to gain insight into the groundwater dynamics of the Urbas landslide. The landslide is situated in a mountainous area with steep slopes and high precipitation amount and poses a high risk for the safety of the Koroška Bela settlement that lies downstream. The stable isotope analyses of oxygen-18 (18O) and deuterium (2H) in the precipitation and groundwater were used to estimate the groundwater mean residence time and the average altitude of the landslide recharge area. This information will help to plan and prioritize remedial landslide measures aiming to reduce the recharge of the landslide body and, thus, lower the risk of transformation of the sliding material into debris flow. The results of the chemical analysis of samples taken from springs and a piezometer show a Ca–HCO3 water type. This indicates low water–rock interaction in a landslide area composed of Upper Carboniferous and Permian clastic rocks and points to upper laying carbonate rocks and scree deposits as the main recharge area. Water samples for stable isotope analyses of δ18O and δ2H were collected from a rain gauge, springs, and a piezometer over a two-year period (2018–2020). The estimated mean recharge altitude of the groundwater at sampling points was from approximately 1700 to 1800 m a.s.l. with a mean residence time of 2–5 months.
Keywords: landslide, groundwater, stable isotopes, oxygen-18, deuterium, hydrogeology, recharge dynamic
Published in DiRROS: 16.03.2022; Views: 696; Downloads: 295
.pdf Full text (3,55 MB)

4.
Geophysical investigations in the Radovna River Spring area (Julian Alps, NW Slovenia)
Anja Torkar, Marjana Zajc, Jure Atanackov, Andrej Gosar, Mihael Brenčič, 2021, original scientific article

Abstract: The Radovna River Valley is located in the north-western part of Slovenia in the Julian Alps, where there is an extensive intergranular aquifer whose depth to pre-Quaternary bedrock is unknown. Therefore, to obtain information about the depth of the valley and the geometry of the aquif er two geophysical methods were used in our study; ground penetrating radar (GPR) and seismic reflection method. The low-frequency GPR method has shown to be useful for determining the depth of the groundwater and the predominant groundwater recharge. Also, the high-resolution seismic method provided an insight about the morphology of the pre-Quaternary basement with the deepest point at 141 meters below surface. Measurements of hydrogeological parameters such as groundwater level and river discharge measurements were carried out in the study area. Both data analyses showed that groundwater level and river discharge are highly fluctuatingand rapidly changing, indicating a well-permeable aquifer, implying that such an aquifer is extremely sensitive and vulnerable to extreme climate events. Both the geophysical methods and the hydrogeological information have provided important information about the morphology of the valley and the alluvial aquifer, as well as increasing the knowledge about the Radovna springs system, which will contribute very important information for future hydrogeological studies.
Keywords: Ground penetrating radar, Seismic reflection method, Radovna spring, hydrogeology, aquifer geometry, glacial valley, groundwater table
Published in DiRROS: 09.03.2022; Views: 669; Downloads: 306
.pdf Full text (6,27 MB)

5.
Search done in 0.1 sec.
Back to top