Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (geochemistry) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Solid carriers of potentially toxic elements and their fate in stream sediments in the area affected by iron ore mining and processing
Saša Kos, Nina Zupančič, Mateja Gosar, Miloš Miler, 2022, original scientific article

Abstract: The potential environmental impact of historical mining and ore processing on stream sediments and water was studied in a small siderite iron ore deposit with diverse sulfide mineral paragenesis. The main aim was to characterize solid carriers of potentially toxic elements (PTEs) in stream sediments and mine waste, to understand their fate in fluvial systems. General mineralogy (X-ray powder diffraction) and individual solid PTE carriers (scanning electron microscopy/energy dispersive spectroscopy) were correlated with the geochemical composition of stream sediments, mine waste, and stream waters (inductively coupled plasma mass spectrometry). Primary solid PTE carriers were pyrite, chalcopyrite, sphalerite, Hg-bearing sphalerite, galena, and siderite. Slightly alkaline and oxidizing conditions in stream water promoted the transformation of primary phases into secondary PTE carriers. Fe(Mn)-oxide/oxyhydroxides were major sinks for Pb, Zn, and As. Compared to background levels, Co (14.6 ± 2.1 mg/kg), Cu (30 ± 2.9 mg/kg), Ni (32.1 ± 2.9 mg/kg), Pb (64.5 ± 16.4 mg/kg), Zn (175.3 ± 22.5 mg/kg), As (81.1 ± 63.7 mg/kg), and Hg (2 ± 0.8 mg/kg) were elevated in mining area. Mine waste contained similar PTE carriers as stream sediments, but much higher PTE contents. Prevailingly low PTE concentrations in streams, with the exception of As (1.97 ± 2.4 µg/L) and Zn (4.5 ± 5.7 µg/L), indicate the stability of PTE carriers. Environmental effects were not significant, and additional monitoring is recommended.
Keywords: environmental mineralogy, environmental geochemistry, potentially toxic elements, stream sediments, solid phases, iron ore deposit, SEM/EDS
Published in DiRROS: 16.11.2022; Views: 525; Downloads: 170
.pdf Full text (8,07 MB)

2.
Multi-method study of the Roman quarry at Podpeč sedimentary succession and stone products
Rok Brajkovič, Luka Gale, Bojan Djurić, 2022, original scientific article

Abstract: The paper presents a multi-method characterisation of the Roman quarry of the middle Lower Jurassic (Pliensbachian) limestone situated in the village of Podpeč, south of Ljubljana, and examples of the placement of stone products made from micritic, fine-grained, and oolithic facies into the known extent of the quarry. 23 m of the rock succession from the ancient quarry was exposed at the northern tip of the St. Ana Hill by archaeological trenching. Petrological, micropaleontological, mineralogical, geochemical, and isotopic analyses of carbon, oxygen, and strontium were performed in order to characterise the rocks exploited in the quarry. Additionally, a new detailed geological map of the wider Podpeč area was prepared, which defines in detail the lithostratigraphic units in the area.
Keywords: Lower Jurassic, Podbukovje Formation, provenance, facies, foraminifera, geochemistry, Emona, geoarchaeology
Published in DiRROS: 27.07.2022; Views: 741; Downloads: 261
.pdf Full text (6,47 MB)

3.
Attic dust: an archive of historical air contamination of the urban environment and potential hazard to health?
Martin Gaberšek, Michael J. Watts, Mateja Gosar, 2022, original scientific article

Abstract: A comprehensive study of attic dust in an urban area is presented. Its entire life cycle, from determining historical emission sources to recognising the processes that take place in attic dust and its potential to impact human health is discussed. Its chemical composition and morphological characteristics of individual solid particles reflect past anthropogenic activities. High levels of Be-Cd-Cu-Sb-Sn-Pb-Te-Zn and occurrence of Cu-Zn shavings are typical for an industrial zone characterised by a foundry and a battery factory. High levels of Co-Fe-Mo-Ni-W-Ba-Cr-Mg-Mn-Nb-Ti and occurrence of various solid Fe-oxides, particularly spherical particles, were identified in another industrial zone, which was dominated by the automotive and metal-processing industries. Emissions from coal combustion affected the distribution of S-Se-Hg-Tl-As-Ag-U. The predominant mineral in attic dust is gypsum, which was presumably formed in situ by the reaction of carbonate dust particles and atmospheric SO2 gas. The high oral bioaccessibility of As-Cd-Cu-Pb-Zn in the gastric phase and high bioaccessibility of As-Cu-Cd-Ni in the gastrointestinal phase were identified. Determined characteristics of attic dust and identified possibilities of prolonged human exposure to it indicate that attic dust should be treated as an excellent proxy for historical air contamination as well as a potentially hazardous material for human health.
Keywords: multi-element composition, scanning electron microscopy, oral bioaccessibility, unified BARGE method, urban geochemistry
Published in DiRROS: 23.06.2022; Views: 563; Downloads: 217
.pdf Full text (1,39 MB)

Search done in 0.09 sec.
Back to top