1. The impact of scald development on phenylpropanoid metabolism based on phenol content, enzyme activity, and gene expression analysisHeidrun Halbwirth, Anka Čebulj, Ana Slatnar, Robert Veberič, Maja Mikulič Petkovšek, 2020 Keywords: scald, gene expression, hydroxycinnamic acids, color, enzyme activity, phenol content, scald development, apples, cold storage DiRROS - Published: 03.09.2020; Views: 1186; Downloads: 179
Fulltext (907,32 KB) |
2. T2-high asthma, classified by sputum mRNA expression of IL4, IL5, and IL13, is characterized by eosinophilia and severe phenotypeMatija Rijavec, Tomaž Krumpestar, Sabina Škrgat, Izidor Kern, Peter Korošec, 2021 Abstract: Asthma is a common chronic disease, with different underlying inflammatory mechanisms. Identification of asthma endotypes, which reflect a variable response to different treatments, is important for more precise asthma management. T2 asthma is characterized by airway inflammation driven by T2 cytokines including interleukins IL-4, IL-5, and IL-13. This study aimed to determine whether induced sputum samples can be used for gene expression profiling of T2-high asthma classified by IL4, IL5, and IL13 expression. Induced sputum samples were obtained from 44 subjects, among them 36 asthmatic patients and eight controls, and mRNA expression levels of IL4, IL5, and IL13 were quantified by RT-qPCR. Overall, gene expression levels of IL4, IL5, and IL13 were significantly increased in asthmatic patients' samples compared to controls and there was a high positive correlation between expressions of all three genes. T2 gene mean was calculated by combining the expression levels of all three genes (IL4, IL5, and IL13) and according to T2 gene mean expression in controls, we set a T2-high/T2-low cutoff value. Twenty-four (67%) asthmatic patients had T2-high endotype and those patients had significantly higher eosinophil blood and sputum counts. Furthermore, T2-high endotype was characterized as a more severe, difficult-to-treat asthma, and often uncontrolled despite the use of inhaled and/or oral corticosteroids. Therefore, the majority of those patients (15 [63%] of 24) needed adjunct biological therapy to control their asthma symptoms/exacerbations. In conclusion, we found that interleukins IL4, IL5, and IL13 transcripts could be effectively detected in sputum from asthmatic patients. Implementation of T2 gene mean can be used as sputum molecular biomarker to categorize patients into T2-high endotype, characterized by eosinophilia and severe, difficult-to-treat asthma, and often with a need for biological treatment. Keywords: asthma, gene expression, interleukin-4, interleukin-5, interleukin-13, severe asthma, endotype, IL-4, IL-5, IL-13, biologic treatment DiRROS - Published: 02.02.2021; Views: 734; Downloads: 383
Fulltext (1,31 MB) |
3. Irisin attenuates muscle impairment during bed rest through muscle-adipose tissue crosstalkAndrea D'Amuri, Juana Maria Sanz, Stefano Lazzer, Rado Pišot, Boštjan Šimunič, Gianni Biolo, Giovanni Zuliani, Mladen Gasparini, Marco Vincenzo Narici, Bruno Grassi, Carlo Reggiani, Edoardo Dalla Nora, Angelina Passaro, 2022 Abstract: Simple Summary: Irisin is a known myokine secreted mainly by the muscle that is produced after physical activity. It induces browning in the adipose tissue with a consequent increase in mitochondrial oxidation of lipids and reduction of insulin resistance; thus, it has been hypothesized that irisin was the molecule mediating most of the beneficial effects related to exercise on adipose tissue and consequently on the whole organism. In our study we observed that extreme physical inactivity induces the loss of muscle mass and function, and an increase in the body adipose tissue as expected. However, of note, circulating irisin levels were increased secondary to enhanced irisin synthesis mainly from adipose tissue rather than muscle. In addition, subjects who produced more irisin had reduced muscle impairment. Therefore, our hypothesis is that there is negative feedback within the muscle-adipose tissue crosstalk, specifically not only does the muscle influence the adipose tissue through irisin during exercise, but also the adipose tissue protects the muscle during inactivity.Abstract: The detrimental effect of physical inactivity on muscle characteristics are well known. Irisin, an exercise-induced myokine cleaved from membrane protein fibronectin type III domain-containing protein-5 (FNDC5), mediates at least partially the metabolic benefits of exercise. This study aimed to assess the interplay between prolonged inactivity, circulating irisin, muscle performance, muscle fibers characteristics, as well as the FNDC5 gene expression (FNDC5ge) in muscle and adipose tissue among healthy subjects. Twenty-three healthy volunteers were tested before and after 14 days of Bed Rest, (BR). Post-BR circulating levels of irisin significantly increased, whereas body composition, muscle performance, and muscle fiber characteristics deteriorated. Among the subjects achieving the highest post-BR increase of irisin, the lowest reduction in maximal voluntary contraction and specific force of Fiber Slow/1, the highest increase of FNDC5ge in adipose tissue, and no variation of FNDC5ge in skeletal muscle were recorded. Subjects who had the highest FNDC5ge in adipose tissue but not in muscle tissue showed the highest circulating irisin levels and could better withstand the harmful effect of BR. Keywords: physical inactivity, bed rest, FNDC5 gene expression, myokines, sarcopenia, muscles fiber DiRROS - Published: 07.07.2022; Views: 89; Downloads: 51
Fulltext (798,63 KB) |