Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "keywords" (finite element (FE)) .

1 - 6 / 6
First pagePrevious page1Next pageLast page
1.
Lessons learned from the monitoring of retaining structures, built in demanding geotechnical conditions in Slovenia
Pavel Žvanut, Janko Logar, 2019, published scientific conference contribution

Abstract: A typical retaining structure built with large-diameter bored piles in soft clastic rock, and sup-ported by pre-stressed permanent ground anchors, is discussed. Step-by-step back analyses were performed. A simplified geological structure was first used in the analyses, together with a simple Mohr-Coulomb model. The results were compared with more complex analyses using a Hardening Soil model and a more detailed geological structure. Much better results were obtained with the use of the HS model, which is more suitable for the modelling of rock of such a type, but even with the use of the MC model the final results were quite good, making the use of the observational method attractive for engineers.
Keywords: geotechnics, gretaining structures, bored piles, numerical modelling, finite element method, observational method
Published in DiRROS: 27.03.2024; Views: 32; Downloads: 10
.pdf Full text (1,67 MB)
This document has many files! More...

2.
Numerical modeling in electroporation-based biomedical applications
Nataša Pavšelj, Damijan Miklavčič, 2008, original scientific article

Abstract: Background. Numerous experiments have to be performed before a biomedical application is put to practical use in clinical environment. As a complementary work to in vitro, in vivo and medical experiments, we can use analytical and numerical models to represent, as realistically as possible, real biological phenomena of, in our case, electroporation. In this way we canevaluate different electrical parameters in advance, such as pulse amplitude, duration, number of pulses, or different electrode geometries. Suchnumerical models can contribute significantly to the understanding of an experiment and treatment planning as well as to the design of new electroporation devices and electrodes. Methods. We used commercially available modeling software, based on finite element method. We constructed a model of a subcutaneous tumor during electrochemotherapy (EMAS) and a model ofskin during gene electrotransfer (COMSOL Multiphysics). Tissue-electrode geometries, pulse parameters and currentvoltage measurements from in vivo experiments were used to develop and validate the models. Results. To describeadequately our in vivo observations, a tissue conductivity increase during electroporation was included in our numerical models. The output currents of the models were compared to the currents and the voltages measuredduring in vivo experiments and a good agreement was obtained. Also, when comparing the voltages needed for a successful electropermeabilization assuggested by the models, to voltages applied in experiments and achieving a successful electrochemotherapy or in vivo gene electrotransfer, good agreementcan be observed. Conclusions. Modeling of electric current and electric field distribution during cell and tissue electroporation proves to be helpful in describing different aspects of the process and allowing us to design electrodes and electroporation protocols as a part of treatment planning.
Keywords: electroporation, gene electrotransfer, electrochemotherapy, subcutaneous tumor, finite-element method
Published in DiRROS: 07.03.2024; Views: 70; Downloads: 24
.pdf Full text (549,62 KB)

3.
3D finite element analysis of a concrete dam behavior under changing hydrostatic load : a case study
Pavel Žvanut, 2022, original scientific article

Abstract: In this study, a large arch-gravity Moste Dam was analyzed, where an automated system for the measurements of horizontal displacements of the upper part of the dam was established. Two-dimensional (2D) and three-dimensional (3D) analyses of dam behavior, taking into account the earth pressures and the hydrostatic load, using the finite element method (FEM)-based computer program DIANA, were performed. The influence of lowering the water level of the reservoir by 6.2 m, on the horizontal displacements of the upper part of the dam, at stationary temperature conditions, was investigated. It was found that the results of the performed 2D and 3D FEM analyses fitted in very well with the result of experimentally determined measurement of horizontal displacements (which was 0.48 mm in the upstream direction) that was obtained using a hanging pendulum. An additional comparison of the results of 3D calculations showed that the finite element mesh density had a small effect on the calculated horizontal displacements.
Keywords: concrete dam, finite element method, material properties, structure behavior, measuring instruments, monitoring, ime series analysis, horizontal displacements, hydrostatic pressure
Published in DiRROS: 21.06.2023; Views: 315; Downloads: 178
.pdf Full text (5,35 MB)
This document has many files! More...

4.
Model updating concept using bridge Weigh-in-Motion data
Doron Hekič, Andrej Anžlin, Maja Kreslin, Aleš Žnidarič, Peter Češarek, 2023, original scientific article

Abstract: Finite element (FE) model updating of bridges is based on the measured modal parameters and less frequently on the measured structural response under a known load. Until recently, the FE model updating did not consider strain measurements from sensors installed for weighing vehicles with bridge weigh-in-motion (B-WIM) systems. A 50-year-old multi-span concrete highway viaduct, renovated between 2017 and 2019, was equipped with continuous monitoring system with over 200 sensors, and a B-WIM system. In the most heavily instrumented span, the maximum measured longitudinal strains induced by the full-speed calibration vehicle passages were compared with the modelled strains. Based on the sensitivity study results, three variables that affected its overall stiffness were updated: Young’s modulus adjustment factor of all structural elements, and two anchorage reduction factors that considered the interaction between the superstructure and non-structural elements. The analysis confirmed the importance of the initial manual FE model updating to correctly reflect the non-structural elements during the automatic nonlinear optimisation. It also demonstrated a successful use of pseudo-static B-WIM loading data during the model updating process and the potential to extend the proposed approach to using random B-WIM-weighed vehicles for FE model updating and long-term monitoring of structural parameters and load-dependent phenomena.
Keywords: monitoring, bridge, viaduct, bridge weigh-in-motion (B-WIM), structural health monitoring (SHM), finite element (FE), calibration, model updating
Published in DiRROS: 29.05.2023; Views: 373; Downloads: 196
.pdf Full text (26,28 MB)
This document has many files! More...

5.
Impact of metakaolin on mechanical performance of flax textile-reinforced cement-based composites
Filip Majstorović, Václav Sebera, Maruša Mrak, Sabina Dolenec, Marco Wolf, Laetitia Sarah Jennifer Marrot, 2022, original scientific article

Abstract: This study presents research on the effect of Portland cement (PC) replacement with metakaolin on the mechanical behavior of flax textile-reinforced cementitious matrices (TRCM). The composition of cementitious matrices and in-situ flax fibres was determined using X-ray diffraction and thermogravimetric analysis, while the reinforcement efficiency of the textile and mechanical behavior of TRCMs was investigated by three-point bending tests and finite element analysis. High amounts of PC replacement with metakaolin provided a calcium hydroxide-free environment, more suitable for the natural fibres, to avoid their degradation and embrittlement and, thus, significantly contribute to the ductility of the cement-based composite material.
Keywords: textile-reinforced concrete (TRC), flax textile, natural fibres, finite element, metakaolin, cement-based composites, open access
Published in DiRROS: 22.05.2023; Views: 340; Downloads: 160
.pdf Full text (8,40 MB)
This document has many files! More...

6.
Search done in 0.19 sec.
Back to top