Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
Research data

Options:
  Reset

Query: "keywords" (ectomycorrhiza) .

1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Ectomycorrhizae of Norway spruce from its southernmost natural distribution range in Serbia
Hojka Kraigher, Milan Drekić, Saša Pekeč, Tine Grebenc, Marko Bajc, Saša Orlović, Marina Katanić

Abstract: Norway spruce (Picea abies Karst.) reaches its southernmost limit in the mountainous regions of south Serbia and Bulgaria. The species is a regionally important timber species for the wood industry and a significant host for various ectomycorrhizal fungi, including edible species. We analysed ectomycorrhizal community and fine root parameters of high continental / subalpine Norway spruce stands at three sites (Stara planina, Kopaonik, Tara) located in protected areas in Serbia. In addition, we assessed the potential effects of altitude and growing season on the ectomycorrhizal diversity and fine root parameters. Using standardised sampling in combination with morpho-anatomical and molecular identification of ectomycorrhizae, we recorded 29 different anatomorphotypes. None of the identified fungi belonged to commercial edible fungal species. Compared to other Norway spruce ectomycorrhiza studies in central Europe, sites in Serbia exhibited lower species diversity and different dominant species composition, with Cenococcum spp. and Russula spp. as the dominant ectomycorrhizal fungi. A number of ectomycorrhizal types and the value of the species richness index differed between Stara planina and Tara in the autumn, but the influence of site and season on the studied diversity indices was not significant. The total number of fine roots increased in the spring, while percentage of vital ectomycorrhizal root tips increased in the autumn. This study was the first examination of Norway spruce ectomycorrhizal communities at the edge of the natural geographical range of the species.
Keywords: ectomycorrhiza, Picea abies Karst, community structure, fine roots
DiRROS - Published: 22.01.2019; Views: 1987; Downloads: 1134
.pdf Fulltext (553,32 KB)

2.
Different belowground responses to elevated ozone and soil water deficit in three European oak species (Quercus ilex, Q. pubescens and Q. robur)
Tanja Mrak, Ines Štraus, Tine Grebenc, Jožica Gričar, Yasutomo Hoshika, Giulia Carriero, Elena Paoletti, Hojka Kraigher, 2019

Abstract: Effects on roots due to ozone and/or soil water deficit often occur through diminished belowground allocation of carbon. Responses of root biomass, morphology, anatomy and ectomycorrhizal communities were investigated in seedlings of three oak species: Quercus ilex L., Q. pubescens Willd. and Q. robur L., exposed to combined effects of elevated ozone (ambient air and 1.4 x ambient air) and water deficit (100% and 10% irrigation relative to field capacity) for one growing season at a free-air ozone exposure facility. Effects on root biomass were observed as general reduction in coarse root biomass by -26.8 % and in fine root biomass by -13.1 % due to water deficit. Effect on coarse root biomass was the most prominent in Q. robur (-36.3 %). Root morphological changes manifested as changes in proportions of fine root (<2 mm) diameter classes due to ozone and water deficit in Q. pubescens and due to water deficit in Q. robur. In addition, reduced fine root diameter (-8.49 %) in Q. robur was observed under water deficit. Changes in root anatomy were observed as increased vessel density (+18.5 %) due to ozone in all three species, as reduced vessel tangential diameter (-46.7 %) in Q. ilex due to interaction of ozone and water, and as generally increased bark to secondary xylem ratio (+47.0 %) due to interaction of ozone and water. Water deficit influenced occurrence of distinct growth ring boundaries in roots of Q. ilex and Q. robur. It shifted the ectomycorrhizal community towards dominance of stress-resistant species, with reduced relative abundance of Tomentella sp. 2 and increased relative abundances of Sphaerosporella brunnea and Thelephora sp. Our results provide evidence that expression of stress effects varies between root traits; therefore the combined analysis of root traits is necessary to obtain a complete picture of belowground responses.
Keywords: ozone, drought, fine roots, ectomycorrhiza, anatomy, morphology, plants
DiRROS - Published: 20.02.2020; Views: 1253; Downloads: 701
URL Fulltext (0,00 KB)
This document has many files! More...

3.
First report of European truffle ectomycorrhiza in the semi%arid climate of Saudi Arabia
Seema R. Bajaj, Sandesh J. Marathe, Tine Grebenc, Alessandra Zambonelli, Salem Shamekh, 2021

Abstract: Tuber melanosporum Vittad. (Black or Périgord truffle) is a truffle native to the Mediterranean Southern Europe, popular for its unique flavor, and has great economic importance. The present work focused on assessing the possibility of cultivating T. melanosporum associated with Quercus robur L. in the desert climate of Saudi Arabia. The plantation was initiated in November 2018 by planting 271 oak seedlings in the Al-Qassim desert area and checked for survival and ectomycorrhiza development after 1.5 years of plantation maintenance. Amongst the 271 seedlings planted, 243 plants survived two harsh seasons (2019 and 2020), and the randomly selected and tested seedlings were still mycorrhized with T. melanosporum. The mycorrhization level with T. melanosporum was between 5 and 35% of all fine roots, and the share of contaminant ectomycorrhiza was low. In comparison to other areas where T. melanosporum is successfully cultivated, the Al-Qassim desert area has 10%15 °C higher average summer temperatures and a low total annual precipitation, which necessitates regular irrigation of the plantation. This work opens the avenue for an adapted, yet sustainable cultivation of T. melanosporum-inoculated oak tree in a desert climatic condition and introduces new opportunities of the agro-forest business in Saudi Arabia and GCC region.
Keywords: Tuber melanosporum, Quercus robur, Desert climate, Truffle cultivation, Ectomycorrhiza
DiRROS - Published: 26.01.2021; Views: 576; Downloads: 108

Search done in 0 sec.
Back to top