Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Uroš Marušič) .

1 - 10 / 35
First pagePrevious page1234Next pageLast page
1.
Participation in youth sports influences sarcopenia parameters in older adults
Kaja Teraž, Miloš Kalc, Boštjan Šimunič, Uroš Marušič, Primož Pori, Saša Pišot, Rado Pišot, 2023, original scientific article

Abstract: Background The degree of deterioration in sarcopenia parameters may be affected by a person’s level of physical activity (PA) and sedentary behavior (SB). Our study focused on examining the PA and SB of active older adults including those with and without history of sports in youth. Methods Forty-four participants (20 men and 24 women, mean age of total sample 76.1 ± 5.2 years) were included in analysis of PA, SB habits and sarcopenia parameters, determined by skeletal muscle index, hand-grip strength, gait speed, Timed Up and Go tests (TUG). PA and SB were recorded with accelerometers. Our primary aim was to compare participants with (AH) or without a sport history in youth (NAH), in their sarcopenia parameters and PA and SB habits. Results When divided participants in two groups (AH and NAH) and adjusting for age, we have detected the differences for skeletal muscle index (p = 0.007) and hand-grip strength (p = 0.004) in favor of participants who were engaged in sports in youth. We did not find any differences in PA and SB habits between the AH and NAH groups. After adjusting for age, participants with a higher number of daily steps, longer moderate to vigorous physical activity (MVPA) bouts, a higher number of MVPA bouts in a day and higher overall MVPA engagement achieved better results in hand-grip strength and TUG. Participants with lower SB had better TUG and gait speed results. Conclusions Our findings suggest that engaging in sports activities in youth can make a difference with sarcopenia parameters. Although we found no differences in PA and SB habits between participants with AH and NAH, participants with an athlete history performed better results in sarcopenia parameters.
Keywords: muscles, muscle disorder, elderly, exercise, sedentarism
Published in DiRROS: 10.11.2023; Views: 80; Downloads: 32
.pdf Full text (1,04 MB)
This document has many files! More...

2.
Neuromuscular assessment of force development, postural, and gait performance under cognitive-motor dual-tasking in healthy older adults and early Parkinson's disease patients : study protocol for a cross-sectional Mobile Brain/Body Imaging (MoBI) study
Uroš Marušič, Manca Peskar, Maja Maša Šömen, Miloš Kalc, Aleš Holobar, Klaus Gramann, Bettina Wollesen, Anna Wunderlich, Christoph M. Michel, Aleksandar Miladinović, Mauro Catalan, Alex B. Stella, Miloš Ajčević, Paolo Manganotti, 2023, original scientific article

Abstract: Background: Neuromuscular dysfunction is common in older adults and more pronounced in neurodegenerative diseases. In Parkinson's disease (PD), a complex set of factors often prevents the effective performance of activities of daily living that require intact and simultaneous performance of the motor and cognitive tasks. Methods: The cross-sectional study includes a multifactorial mixed-measure design. Between-subject factor grouping the sample will be Parkinson’s Disease (early PD vs. healthy). The within-subject factors will be the task complexity (single- vs. dual-task) in each motor activity, i.e., overground walking, semi-tandem stance, and isometric knee extension, and a walking condition (wide vs. narrow lane) will be implemented for the overground walking activity only. To study dual-task (DT) effects, in each motor activity participants will be given a secondary cognitive task, i.e., a visual discrimination task for the overground walking, an attention task for the semi-tandem, and mental arithmetic for the isometric extension. Analyses of DT effects and underlying neuronal correlates will focus on both gait and cognitive performance where applicable. Based on an a priori sample size calculation, a total N = 42 older adults (55-75 years) will be recruited. Disease-specific changes such as laterality in motor unit behavior and cortical control of movement will be studied with high-density surface electromyography and electroencephalography during static and dynamic motor activities, together with whole-body kinematics. Discussion: This study will be one of the first to holistically address early PD neurophysiological and neuromuscular patterns in an ecologically valid environment under cognitive-motor DT conditions of different complexities. The outcomes of the study aim to identify the biomarker for early PD either at the electrophysiological, muscular or kinematic level or in the communication between these systems.
Keywords: Parkinson's disease, mobile brain imaging, body brain imaging, MoBi, dual tasking, neuromuscular function, older adults
Published in DiRROS: 15.09.2023; Views: 167; Downloads: 71
.pdf Full text (1,36 MB)
This document has many files! More...

3.
Environmental enrichment through virtual reality as multisensory stimulation to mitigate the negative effects of prolonged bed rest
Luka Šlosar, Manca Peskar, Rado Pišot, Uroš Marušič, 2023, review article

Abstract: Prolonged bed rest causes a multitude of deleterious physiological changes in the human body that require interventions even during immobilization to prevent or minimize these negative effects. In addition to other interventions such as physical and nutritional therapy, non-physical interventions such as cognitive training, motor imagery, and action observation have demonstrated efficacy in mitigating or improving not only cognitive but also motor outcomes in bedridden patients. Recent technological advances have opened new opportunities to implement such non-physical interventions in semi- or fully-immersive environments to enable the development of bed rest countermeasures. Extended Reality (XR), which covers augmented reality (AR), mixed reality (MR), and virtual reality (VR), can enhance the training process by further engaging the kinesthetic, visual, and auditory senses. XR-based enriched environments offer a promising research avenue to investigate the effects of multisensory stimulation on motor rehabilitation and to counteract dysfunctional brain mechanisms that occur during prolonged bed rest. This review discussed the use of enriched environment applications in bedridden patients as a promising tool to improve patient rehabilitation outcomes and suggested their integration into existing treatment protocols to improve patient care. Finally, the neurobiological mechanisms associated with the positive cognitive and motor effects of an enriched environment are highlighted.
Keywords: physical inactivity, bed rest, nonphysical interventions, virtual reality
Published in DiRROS: 11.09.2023; Views: 178; Downloads: 77
.pdf Full text (1,18 MB)
This document has many files! More...

4.
Effects of digital-based interventions on muscular strength in adults : a systematic review, meta-analysis and meta-regression of randomized controlled trials with quality of evidence assessment
Armin Paravlić, Luka Šlosar, Ensar Abazović, Uroš Marušič, 2023, review article

Abstract: Background: In the last three decades, both medical and sports science professionals have recognized the considerable potential of digital-based interventions (DBI) to enhance the health-related outcomes of their practitioners.Objectives: This study aimed to investigate the effectiveness and potential moderators of DBI on measures of muscular strength.Methods: Six databases (PubMed/MEDLINE, Web of Science, SportDiscus, Embase, Cochrane Register of Controlled Trials and Google Scholar) were searched for eligible studies up to June 2022. The GRADE, PEDRO, and TIDieR checklists were used to assess the quality of evidence, methodology, and completeness of intervention descriptions, respectively.Results: A total of 56 studies were included in the meta-analysis (n = 2346), and participants were classified as healthy (n = 918), stroke survivors (n = 572), diagnosed with other neurological disorders (n = 683), and frail (n = 173). The DBI showed a small effect (standardized mean difference [SMD] = 0.28, 95% CI 0.21 to 0.31; p < 0.001) on strength, regardless of the type of intervention, control group, or tested body part. More specifically, while splitting the studies into different subgroups, a meta-analysis of 19 studies (n = 918) showed a small effect (SMD = 0.38, 95% CI 0.12 to 0.63; p = 0.003) on strength in the asymptomatic population. Similarly, small but positive effects of DBI were observed for stroke survivors (SMD = 0.34, 95% CI 0.13 to 0.56; p = 0.002), patients diagnosed with other neurological disorders (SMD = 0.17, 95% CI 0.03 to 0.32; p = 0.021), and the frail population (SMD = 0.25, 95% CI 0.0 to 0.5; p = 0.051). Sub-group analysis and meta-regression revealed that neither variable modified the effects of the DBI on measures of strength.Conclusions: Overall, DBI may serve as an effective method to improve measures of strength in adults, regardless of their health status as well as the type of digital device, the presence of human-computer interaction, and the age of participants. In addition, the DBI was found to be more effective than traditional training or rehabilitation methods.
Keywords: cognitive training, physical function, strength, neurodegenerative disorders, older adults
Published in DiRROS: 07.08.2023; Views: 180; Downloads: 87
.pdf Full text (1,87 MB)
This document has many files! More...

5.
Functional characteristics and subjective disease perception in patients with COVID-19 two months after hospital discharge
Kaja Teraž, Boštjan Šimunič, Manca Peskar, Uroš Marušič, Saša Pišot, Luka Šlosar, Mladen Gasparini, Rado Pišot, 2023, original scientific article

Abstract: Introduction: Although early inpatient and post-hospital rehabilitation is recognized as necessary, not all COVID-19 patients have access to rehabilitation. There are no published reports in the literature that investigate the outcomes of patients who do not receive rehabilitation after COVID-19. Our aim was to evaluate possible improvements in determinate functional and psychological parameters in COVID19 patients two months after their hospital discharge. Methods: On both time points various motor, cognitive, and clinical measurements such as body composition, tensiomyography, blood pressure, spirometry, grip strength test, Timed Up and Go test, gait speed, 30-second chair-stand test, and Montreal Cognitive Assessment, were performed. Additionally, questionnaires such as the SARC-CalF test, Edmonton frail scale, International Physical Activity questionnaire andThe Mediterranean Lifestyle index were conducted to assess lifestyle characteristics. Results: A total of 39 patients (87.2% male; mean age of 59.1 ± 10.3 years), who were hospitalized due to COVID-19 at the Izola General Hospital (IGH), Slovenia between December 2020 and April 2021, were included. Patients were assessed at two time points (T1 and T2): T1 was taken after receiving a negative COVID-19 test and T2 was taken two months after T1. After two months of self-rehabilitation, we have detected a BMI increase (p < .001), fat free mass increase (p < .001), better Edmonton frail scale (p < .001), SARC-CalF score (p = .014) and MoCA score (p = .014). There were no detected changes in lifestyle habits nor in physical performance tests. Discussion: It is already known that COVID-19 has long-term negative consequences regardless of the stage of the disease. Our findings support the notion that patients cannot fully regain all their functions within a two-month period without receiving structured or supervised rehabilitation. Therefore, it is crucial to offer patients comprehensive and structured rehabilitation that incorporates clinical, cognitive, and motor exercises.
Keywords: pandemics, coronavirus, functional improvement, hospital stay, health perception
Published in DiRROS: 26.07.2023; Views: 200; Downloads: 100
.pdf Full text (892,24 KB)
This document has many files! More...

6.
Unleashing the potential of dance : a neuroplasticity-based approach bridging from older adults to Parkinson’s disease patients
Cécil J. W. Meulenberg, Kathrin Rehfeld, Saša Jovanović, Uroš Marušič, 2023, review article

Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder that affects >1% of individuals worldwide and is manifested by motor symptoms such as tremor, rigidity, and bradykinesia, as well as non-motor symptoms such as cognitive impairment and depression. Non-pharmacological interventions such as dance therapy are becoming increasingly popular as complementary therapies for PD, in addition to pharmacological treatments that are currently widely available. Dance as a sensorimotor activity stimulates multiple layers of the neural system, including those involved in motor planning and execution, sensory integration, and cognitive processing. Dance interventions in healthy older people have been associated with increased activation of the prefrontal cortex, as well as enhanced functional connectivity between the basal ganglia, cerebellum, and prefrontal cortex. Overall, the evidence suggests that dance interventions can induce neuroplastic changes in healthy older participants, leading to improvements in both motor and cognitive functions. Dance interventions involving patients with PD show better quality of life and improved mobility, whereas the literature on dance-induced neuroplasticity in PD is sparse. Nevertheless, this review argues that similar neuroplastic mechanisms may be at work in patients with PD, provides insight into the potential mechanisms underlying dance efficacy, and highlights the potential of dance therapy as a non-pharmacological intervention in PD. Further research is warranted to determine the optimal dance style, intensity, and duration for maximum therapeutic benefit and to determine the long-term effects of dance intervention on PD progression.
Keywords: dance, neurodegeneration, tremor, rhythm, sensorimotor integration
Published in DiRROS: 29.06.2023; Views: 222; Downloads: 97
.pdf Full text (1,72 MB)
This document has many files! More...

7.
Effects of COVID-19 on cognition and mood after hospitalization and at 2-month follow-up
Manca Peskar, Boštjan Šimunič, Luka Šlosar, Saša Pišot, Kaja Teraž, Mladen Gasparini, Rado Pišot, Uroš Marušič, 2023, original scientific article

Abstract: A plethora of evidence links SARS-CoV-2 infection with concomitant cognitive dysfunction, which often persists weeks to months after the acute stages of illness and affects executive function, attention, memory, orientation, and movement control. It remains largely unclear which conditions or factors exacerbate the recovery. In a cohort of N=37 Slovenian patients (5 females, aged M = 58, SD = 10.7 years) that were hospitalized because of COVID-19, the cognitive function and mood states were assessed immediately after discharge and 2-months later to investigate the early post-COVID recovery changes. We assessed the global Montreal Cognitive Assessment (MoCA), Simple and Choice Reaction Times, executive functions (Trail-Making Test – TMT-A and TMT-B), short-term memory (Auditory Verbal Learning Test – AVLT), and visuospatial memory. We monitored depressive and anxiety symptoms and applied general self-efficacy and cognitive complaints questionnaires. Our results showed a global cognitive impairment (MoCA, Z = 332.5; p = 0.012), poorer performance on executive functions (TMT-A, Z = 188; p = 0.014; and TMT-B, Z = 185; p = 0.012), verbal memory (AVLT, F = 33.4; p < 0.001), and delayed recall (AVLT7, F = 17.1; p < 0.001), and higher depressive (Z = 145; p = 0.015) and anxiety (Z = 141; p = 0.003) symptoms after hospital discharge compared to 2-month follow-up, indicating that SARS-CoV-2 may transiently impair cognitive function and adversely affect the mood. No improvement in MoCA was observed in 40.5% of the patients at follow-up, indicating possible long-term effects of COVID-19 on global cognitive performance. Medical comorbidities (p = 0.035) significantly predicted the change in MoCA score over time, while fat mass (FM, p = 0.518), Mediterranean diet index (p = .0.944), and Florida Cognitive Activities Score (p = 0.927) did not. These results suggest that the patients’ medical comorbidities at the time of SARS-CoV-2 infection could importantly contribute to the acute impairment of cognitive function and stress the importance of systemic implementation of countermeasures to limit the negative consequences on public health.
Keywords: Coronavirus, recovery, acute respiratory sindrom, cognitive functions, cognitive impairment, MOCA, trail-making test
Published in DiRROS: 01.06.2023; Views: 255; Downloads: 110
.pdf Full text (643,65 KB)
This document has many files! More...

8.
Sarcopenia parameters in active older adults – an eight-year longitudinal study
Kaja Teraž, Uroš Marušič, Miloš Kalc, Boštjan Šimunič, Primož Pori, Bruno Grassi, Stefano Lazzer, Marco Vicenzo Narici, Mojca Gabrijelčič Blenkuš, Pietro Enrico Di Prampero, Carlo Reggiani, Angelina Passaro, Gianni Biolo, Mladen Gasparini, Rado Pišot, 2023, original scientific article

Abstract: Background Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. Methods The 52 active older adults (22 men and 30 women, mean age: 68.4±5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants’ overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. Results In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p<.001), muscle mass index (-5.4%; p<.001), and physical performance measured with gait speed (-28.6%; p<.001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p=.030 and −48.5%; p<.001, respectively). Conclusions Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. Trial registration The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531
Keywords: elderly, physical activities, sedentary behavior, skeletal muscle disorder, sarcopenia
Published in DiRROS: 29.05.2023; Views: 185; Downloads: 99
.pdf Full text (1,47 MB)
This document has many files! More...

9.
Optimal sensor set for decoding motor imagery from EEG
Arnau Dillen, Fakhreddine Ghaffari, Olivier Romain, Bram Vanderborght, Uroš Marušič, Sidney Grosprêtre, Ann Nowé, Romain Meeusen, Kevin De Pauw, 2023, original scientific article

Abstract: Brain–computer interfaces (BCIs) have the potential to enable individuals to interact with devices by detecting their intention from brain activity. A common approach to BCI is to decode movement intention from motor imagery (MI), the mental representation of an overt action. However, research-grade electroencephalogram (EEG) acquisition devices with a high number of sensors are typically necessary to achieve the spatial resolution required for reliable analysis. This entails high monetary and computational costs that make these approaches impractical for everyday use. This study investigates the trade-off between accuracy and complexity when decoding MI from fewer EEG sensors. Data were acquired from 15 healthy participants performing MI with a 64-channel research-grade EEG device. After performing a quality assessment by identifying visually evoked potentials, several decoding pipelines were trained on these data using different subsets of electrode locations. No significant differences (p = [0.18–0.91]) in the average decoding accuracy were found when using a reduced number of sensors. Therefore, decoding MI from a limited number of sensors is feasible. Hence, using commercial sensor devices for this purpose should be attainable, reducing both monetary and computational costs for BCI control.
Keywords: brain-computer interface, motor imagery, feature reduction, electroencephalogram, machine learning
Published in DiRROS: 03.04.2023; Views: 330; Downloads: 130
.pdf Full text (670,67 KB)
This document has many files! More...

10.
Stroop in motion : neurodynamic modulation underlying interference control while sitting, standing, and walking
Manca Peskar, Nina Omejc, Maja Maša Šömen, Aleksandar Miladinović, Klaus Gramann, Uroš Marušič, 2023, original scientific article

Abstract: There is conflicting evidence about how interference control in healthy adults is affected by walking as compared to standing or sitting. Although the Stroop paradigm is one of the best-studied paradigms to investigate interference control, the neurodynamics associated with the Stroop task during walking have never been studied. We investigated three Stroop tasks using variants with increasing interference levels – word-reading, ink-naming, and the switching of the two tasks, combined in a systematic dual-tasking fashion with three motor conditions – sitting, standing, and treadmill walking. Neurodynamics underlying interference control were recorded using the electroencephalogram. Worsened performance was observed for the incongruent compared to congruent trials and for the switching Stroop compared to the other two variants. The early frontocentral event-related potentials (ERPs) associated with executive functions (P2, N2) differentially signaled posture-related workloads, while the later stages of information processing indexed faster interference suppression and response selection in walking compared to static conditions. The early P2 and N2 components as well as frontocentral Theta and parietal Alpha power were sensitive to increasing workloads on the motor and cognitive systems. The distinction between the type of load (motor and cognitive) became evident only in the later posterior ERP components in which the amplitude non-uniformly reflected the relative attentional demand of a task. Our data suggest that walking might facilitate selective attention and interference control in healthy adults. Existing interpretations of ERP components recorded in stationary settings should be considered with care as they might not be directly transferable to mobile settings.
Keywords: Stroop task, mobile brain imaging, mobile body imaging, event-related potential, dual tasking
Published in DiRROS: 29.03.2023; Views: 259; Downloads: 152
.pdf Full text (5,29 MB)
This document has many files! More...

Search done in 0.67 sec.
Back to top