Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Tjaša Kanduč) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Impact assessment of the Gajke and Brstje landfills on groundwater status using stable and radioactive isotopes
Sonja Cerar, Luka Serianz, Polona Vreča, Marko Štrok, Tjaša Kanduč, 2023, original scientific article

Abstract: Waste disposal in landfills represents a severe threat to aquatic environments on the local, regional, and global levels. In Slovenia, there are 69 registered landfills where groundwater is regularly monitored. However, isotope techniques are not regularly employed. Therefore, we employed isotope analysis of hydrogen, carbon, and oxygen in combination with total alkalinity to assess the impact of the selected landfill on groundwater and to evaluate the biogeochemical processes at work. The δ18O, δ2H, δ13CDIC, 3H activity and total alkalinity were determined in October 2020 at 12 sampling points from the surrounding area of the Gajke and Brstje landfills and leachate from the Gajke landfill. The δ18O (-9.24 ± 0.3 ‰) and δ2H (-64.9 ± 2.7 ‰) in groundwater indicate that the main water source consists in direct infiltration of precipitation, with no significant isotopic fractionation. Total alkalinity in the investigated area ranges from 5.45 to 73 mM and δ13CDIC from –14.9 to +6.1 ‰, respectively. Higher values of total alkalinity (up to 73 mM), δ13CDIC (up to +6.1 ‰), δ18O (-7.64 ‰) and 3H (209.8 TU) are detected in the leachate, indicating biogeochemical process related to CO2 reduction or methanogenesis. Methanogenesis could be present at locations GAP-10/13 (Brstje landfill) and G-2 (Gajke landfill) with δ13CDIC values ranging from –8.2 to –7.6 ‰ and with dissolved oxygen values around 0 % and elevated 3H values (from 16 to 18 TU). This study demonstrates the effectiveness of isotopic analysis as a valuable tool for monitoring landfills, revealing shifts in biogeochemical processes within the groundwater there.
Keywords: groundwater, monitoring, landfill, stable isotopes, tritium, Gajke, Brstje
Published in DiRROS: 16.01.2024; Views: 179; Downloads: 63
.pdf Full text (8,52 MB)

2.
Carbon isotopic composition of methane and its origin in natural gas from the Petišovci-Dolina oil and gas field (Pannonian Basin System, NE Slovenia) – a preliminary study
Miloš Markič, Tjaša Kanduč, 2022, original scientific article

Abstract: The carbon isotopic composition of methane (δ13CCH4) in natural gas from the Petišovci-Dolina oil and gas field (NE Slovenia) was measured for the first time in August and September 2021. The gas samples from different depths were taken from three wells: Dolina-deep (Pg-6) from the depth interval 3102–3104 m, Petišovci-deep (Pg-5) from the depth interval 2772–2795 m, and Petišovci-shallow (D-5) from the depth interval 1212–1250 m. According to the available composition dataset of gas, available from the Petrol Geo d.o.o. documentation, the “deep” gases sampled from the Pg-6 and Pg-5 wells consist of 85 % methane (C1), 11 % hydrocarbons heavier than methane (C2–C6) and 4 % CO2. The “shallow” gas from well D-5 contains more than 89 % methane, up to 11 % C2–C6 gases, while the CO2 content is negligible. The “deep« gas from the Pg-6 and Pg-5 wells has δ13CCH4 -36.7 ‰ and -36.6 ‰, respectively, while the “shallow” gas from the D-5 well has the δ13CCH4 of -38.6 ‰. The methane from the “shallow” gas is slightly enriched in the lighter 12C isotope. δ13CCH4 in the range from -38.6 to -36.6 ‰ clearly indicates the thermogenic origin of methane formed during the catagenesis phase of gas formation.
Keywords: Petišovci-Dolina, gas, methane, isotopes, origin
Published in DiRROS: 26.07.2022; Views: 914; Downloads: 208
.pdf Full text (724,51 KB)

Search done in 0.06 sec.
Back to top