Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in


Query: "author" (Tine Grebenc) .

1 - 10 / 57
First pagePrevious page123456Next pageLast page
Taxonomy and multigene phylogeny of Pseudohydnum (Auriculariales, Basidiomycota)
Viacheslav Spirin, Vera Malysheva, Ilya Vine, Vasiliy Dudka, Tine Grebenc, Otto Miettinen, 2023, original scientific article

Abstract: Taxonomy of Pseudohydnum gelatinosum and its sister taxa is revised via morphological data and a four-gene dataset (ITS, nc LSU rDNA, TEF1, RPB1). Identity of P. gelatinosum and Tremellodon pusillus is re-established based on newly collected and sequenced material from their type localities. Pseudohydnum alienum from Europe; P. umbrosum from temperate East Asia; P. cystidiatum, P. meridianum, and P. placibile from Vietnam; and P. omnipavum from North America are described as new to science; P. translucens and P. brunneiceps from East Asia are redescribed. Most Pseudohydnum collections from North America belong to P. gelatinosum ssp. pusillum. A significant divergence of TEF1 sequences in P. gelatinosum is discussed.
Keywords: Heterobasidiomycetes, phylogeny, new species, new typifcations
Published in DiRROS: 24.05.2023; Views: 221; Downloads: 123
.pdf Full text (5,57 MB)
This document has many files! More...

Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide
Yu-Rong Liu, Marcel G. A. van der Heijden, Judith Riedo, Carlos Sanz-Lazaro, David J. Eldridge, Felipe Bastida, Eduardo Moreno-Jiménez, Xin-Quan Zhou, Hang-Wei Hu, Ji-Zheng He, Tine Grebenc, Tina Unuk Nahberger, 2023, original scientific article

Abstract: Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.
Keywords: soil contamination, urban greenspaces
Published in DiRROS: 28.03.2023; Views: 392; Downloads: 136
.pdf Full text (3,73 MB)
This document has many files! More...

How genomics can help biodiversity conservation
Kathrin Theissinger, Tine Grebenc, 2023, original scientific article

Abstract: The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics.
Keywords: genomics, biodiversity conservation
Published in DiRROS: 22.02.2023; Views: 287; Downloads: 140
.pdf Full text (1,52 MB)
This document has many files! More...

Effects of desiccation and freezing on microbial ionizing radiation survivability : considerations for Mars sample return
William H. Horne, Tine Grebenc, Rok Tkavc, Cene Gostinčar, Nina Gunde-Cimerman, 2022, original scientific article

Abstract: Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.
Keywords: ionizing radiation, life on Mars, astrobiology, radiation, fungi, bacteria, radiotolerance
Published in DiRROS: 03.11.2022; Views: 432; Downloads: 197
.pdf Full text (922,44 KB)
This document has many files! More...

Non-wood forest products
Anže Japelj, Tine Grebenc, 2020, independent scientific component part or a chapter in a monograph

Published in DiRROS: 19.10.2022; Views: 460; Downloads: 163
.pdf Full text (9,35 MB)

Odmrla lesna biomasa - vroča točka življenja in biotske raznolikosti gozdnih ekosistemov
Tine Grebenc, 2021, professional article

Keywords: biodiverziteta, odmrla lesna biomasa, gozdovi, gospodarjenje z gozdom
Published in DiRROS: 15.09.2022; Views: 429; Downloads: 207
.pdf Full text (911,86 KB)
This document has many files! More...

Distribution and phylogeography of the genus Mattirolomyces with a focus on the Asian M. terfezioides haplotypes
J. Wei, Tine Grebenc, Xuan Zhang, SiMin Xiang, Yongjun Fan, 2022, original scientific article

Abstract: Mattirolomyces is an edible commercial sequestrate genus that is globally distributed. From the five described taxa of this genus, Mattirolomyces terfezioides is the most common species in Asia. Our recent attempts to locate M. terfezioides outside its current distribution area in China documented its first records in areas of poplar trees with the lowest known temperature and precipitation averages ever recorded for this species. This peculiar ecology was not reflected on the species-morphological features nor on its phylogenetic position in the genus. The first attempt to apply the phylogenetic network approach to Mattirolomyces revealed its geographic origin in the Asian-Pacific areas prior to frequent long-distance migration events. Based on data from recent study areas, we found that the collections from Inner Mongolia and the Shanxi province were similar to European collections. Asian haplotypes were less distant from the outgroup comparing to collections from Europe, supporting the hypothesis that M. terfezioides was originated from this Chinese area and was subsequently transported to Europe. Exploring M. terfezioides ecology and its mycorrhiza potential to grow in association with poplars would be of great importance for planning cultivation projects of this valuable desert truffle species in Central and Eastern China, a currently underexploited economic sector that deserves further ecological and M. terfezioides mycorrhizal synthesis investigations.
Keywords: biodiversity, biogeography, mycology, Mattirolomyces terfezioides, Desert truffle, Inner Mongolia, phylogeography
Published in DiRROS: 05.08.2022; Views: 433; Downloads: 302
.pdf Full text (11,81 MB)
This document has many files! More...

Buckwheat milling waste effects on root morphology and mycorrhization of Silver fir seedlings inoculated with Black Summer Truffle (Tuber aestivum Vittad.)
Tina Unuk Nahberger, Tine Grebenc, Daniel Žlindra, Tanja Mrak, Matevž Likar, Hojka Kraigher, Zlata Luthar, 2022, original scientific article

Abstract: Large amounts of buckwheat waste are generated annually by the industry and are used in several different ways. To date, there has been little research regarding its suitability as a medium for growing seedlings in nurseries. The aim of this study was therefore to analyze the suitability of common and Tartary buckwheat wastes (brans and husks) as media used for raising seedlings. A pot experiment with five different treatments was carried out, in which silver fir root parameters were analyzed and compared 6 and 12 months after summer truffle-spore inoculation. A significantly higher concentration of the antioxidant rutin was confirmed in Tartary buckwheat bran compared to other buckwheat waste used. We also confirmed a significantly positive effect of added Tartary buckwheat husks on specific root length, root tip density, and specific root tip density compared to added common buckwheat husks or Tartary buckwheat bran, for which a significantly negative effect on branching density was confirmed. A significantly negative effect of added buckwheat husks and Tartary buckwheat bran was confirmed for summer truffle mycorrhization level.
Keywords: buckwheat waste, root growth, summer truffle, forest nursery, silver fir, inoculation with ectomycorrhizal fungi
Published in DiRROS: 09.02.2022; Views: 782; Downloads: 539
.pdf Full text (1,37 MB)
This document has many files! More...

The era of reference genomes in conservation genomics
Giulio Formenti, 2022, original scientific article

Abstract: Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics.
Keywords: conservation genetics, biodiversity conservation, European Reference Genome Atlas, ERGA
Published in DiRROS: 03.02.2022; Views: 575; Downloads: 444
.pdf Full text (519,06 KB)
This document has many files! More...

Search done in 0.71 sec.
Back to top