Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in

Options:
  Reset


Query: "author" (Rao Martand Singh) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Influence of geology, hydrogeology, and climate on ground source heat pump distribution in Slovenia and selected European countries
Simona Adrinek, Mitja Janža, Rao Martand Singh, 2024, original scientific article

Abstract: Shallow geothermal energy (SGE) is a renewable energy that could contribute to the decarbonatization of the heating and cooling sector. SGE is predominantly harnessed through ground source heat pump (GSHP) systems. The choice of which type of GSHP system depends on various factors. Understanding these factors is crucial for optimizing the efficiency of GSHP systems and fostering their implementation. In this paper, we have analysed the spatial distribution of GSHPs in Slovenia. We identified 1073 groundwater and 1122 ground-coupled heat pump systems with a total heat pump capacity of almost 30 MW. We quantitatively assessed the influence of geological, hydrogeological, and climate conditions on their spatial distribution. Using the χ2 test and information value method, we identified hydrogeological conditions as the most influential factor for the GSHP systems’ spatial distribution. We also performed the spatial analysis of geological and hydrogeological data in 22 European countries, including Slovenia. We collected the reported numbers of installed GSHP units in 2020 and were able to distinguish the shares of groundwater and ground-coupled heat pump systems for 12 of these countries. The analysis showed that ground-coupled heat pumps predominate in most countries, even if the natural conditions are favourable for groundwater heat pumps.
Keywords: shallow geothermal energy, renewable heating and cooling, ground-source heat pump, spatial distribution, natural condition
Published in DiRROS: 19.03.2024; Views: 68; Downloads: 37
.pdf Full text (15,39 MB)

2.
Evaluation of thermal conductivity estimation models with laboratory-measured thermal conductivities of sediments
Simona Adrinek, Rao Martand Singh, Mitja Janža, Mateusz Żeruń, Grzegorz Ryżyński, 2022, original scientific article

Abstract: Thermal conductivity is one of the key parameters for estimating low-temperature geothermal potential. In addition to field techniques, it can be determined based on physical parameters of the sediment measured in the laboratory. Following the methodology for cohesive and non-cohesive sample preparation, laboratory measurements were carried out on 30 samples of sediments. Density, porosity and water content of samples were measured and used in thermal conductivity estimation models (TCEM). The bulk thermal conductivity (λb) calculated with six TCEMs was compared with the measured λb to evaluate the predictive capacity of the analytical methods used. The results show that the empirical TCEMs are suitable to predict the λb of the analysed sediment types, with the standard deviation of the residuals (RMSE) ranging from 0.11 to 0.35 Wm−1 K−1. To improve the fit, this study provides a new modified parameterisation of two empirical TCEMs (Kersten and Côté&Konrad model) and, therefore, suggests the most suitable TCEMs for specific sample conditions. The RMSE ranges from 0.11 to 0.29 Wm−1 K−1. Mixing TCEM showed an RMSE of up to 2.00 Wm−1 K−1, meaning they are not suitable for predicting sediment λb. The study provides an insight into the analytical determination of thermal conductivity based on the physical properties of sediments. The results can help to estimate the low-temperature geothermal potential more quickly and easily and promote the sustainable use of this renewable energy source, which has applications in environmental and engineering science.
Keywords: thermal conductivity, non-cohesive sediment, cohesive sediment, estimation model
Published in DiRROS: 25.08.2022; Views: 547; Downloads: 243
.pdf Full text (2,61 MB)
This document has many files! More...

Search done in 0.27 sec.
Back to top