Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in


Query: "author" (Klaus Gramann) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
Removal of movement-induced EEG artifacts : current state of the art and guidelines
Daša Gorjan, Klaus Gramann, Kevin De Pauw, Uroš Marušič, 2022, review article

Abstract: Electroencephalography (EEG) is a non-invasive technique used to record cortical neurons' electrical activity using electrodes placed on the scalp. It has become a promising avenue for research beyond state-of-the-art EEG research that is conducted under static conditions. EEG signals are always contaminated by artifacts and other physiological signals. Artifact contamination increases with the intensity of movement. In the last decade (since 2010), researchers have started to implement EEG measurements in dynamic setups to increase the overall ecological validity of the studies. Many different methods are used to remove non-brain activity from the EEG signal, and there are no clear guidelines on which method should be used in dynamic setups and for specific movement intensities. Currently, the most common methods for removing artifacts in movement studies are methods based on independent component analysis (ICA). However, the choice of method for artifact removal depends on the type and intensity of movement, which affects the characteristics of the artifacts and the EEG parameters of interest. When dealing with EEG under non-static conditions, special care must be taken already in the designing period of an experiment. Software and hardware solutions must be combined to achieve sufficient removal of unwanted signals from EEG measurements. We have provided recommendations for the use of each method depending on the intensity of the movement and highlighted the advantages and disadvantages of the methods. However, due to the current gap in the literature, further development and evaluation of methods for artifact removal in EEG data during locomotion is needed.
Published in DiRROS: 01.03.2022; Views: 146; Downloads: 129
.pdf Full text (535,26 KB)
This document has many files! More...

Dual-task performance in hearing-impaired older adults : study protocol for a cross-sectional mobile brain/body imaging study
Anna Wunderlich, Oliver Vogel, Maja Maša Šömen, Manca Peskar, Madeleine Fricke, Klaus Gramann, Janna Protzak, Uroš Marušič, Bettina Wollesen, 2021, original scientific article

Abstract: Background: Hearing impairments are associated with reduced walking performance under Dual-task (DT) conditions. Little is known about the neural representation of DT performance while walking in this target group compared to healthy controls or younger adults. Therefore, utilizing the Mobile Brain/Body Imaging approach (MoBI), we aim at gaining deeper insights into the brain dynamics underlying the interaction of cognitive and motor processes during different DT conditions (visual and auditory) controlling for age and the potential performance decrements of older adults with hearing impairments. Methods: The cross-sectional study integrates a multifactorial mixed-measure design. Between-subject factors grouping the sample will be age (younger vs. older adults) and hearing impairment (mild vs. not hearing impaired). The within-subject factors will be the task complexity (single- vs. DT) and cognitive task modality (visual vs. auditory). Stimuli of the cognitive task will vary according to the stimulus modality (visual vs. auditory), presentation side (left vs. right), and presentation-response compatibility (ipsilateral vs. contralateral). Analyses of DT costs and underlying neuronal correlates focus either on gait or cognitive performance. Based on an a priori sample size calculation 96 (48 healthy and 48 mildly hearing impaired) community-dwelling older adults (50%70 years) and 48 younger adults (20%30 years) will be recruited. Gait parameters of speed and rhythm will be captured. EEG activity will be recorded using 64 active electrodes. Discussion: The study evaluates cognitive-motor interference (CMI) in groups of young and older adults as well as older adults with hearing impairment. The underlying processes of the interaction between motor and cognitive tasks will be identified at a behavioral and neurophysiological level comparing an auditory or a visual secondary task. We assume that performance differences are linked to different cognitive-motor processes, i.e., stimulus input, resource allocation, and movement execution. Moreover, for the different DT conditions (auditory vs. visual) we assume performance decrements within the auditory condition, especially for older, hearing-impaired adults. Findings will provide evidence of general mechanisms of CMI (ST vs. DT walking) as well as task-specific effects in dual-task performance while over ground walking.
Keywords: older adults, overground walking, dual-tasks, MoBi, hearing impairments
Published in DiRROS: 23.11.2021; Views: 309; Downloads: 259
.pdf Full text (362,73 KB)
This document has many files! More...

Search done in 0.16 sec.
Back to top