Digital repository of Slovenian research organisations

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
Research data

Options:
  Reset

Query: "author" (Katja Koren) .

1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Characterizing the groundwater flow regime in a landslide recharge area using stable isotopes: a case study of the Urbas landslide area in NW Slovenia
Mitja Janža, Luka Serianz, Katja Koren, 2022

Abstract: Slope stability strongly depends on the prevailing hydrological and hydrogeological conditions. The amount and intensity of precipitation and changing groundwater levels are important landslide triggering factors. Environmental tracers, including the chemical and stable isotope compositions of precipitation and groundwater, were used to gain insight into the groundwater dynamics of the Urbas landslide. The landslide is situated in a mountainous area with steep slopes and high precipitation amount and poses a high risk for the safety of the Koroška Bela settlement that lies downstream. The stable isotope analyses of oxygen-18 (18O) and deuterium (2H) in the precipitation and groundwater were used to estimate the groundwater mean residence time and the average altitude of the landslide recharge area. This information will help to plan and prioritize remedial landslide measures aiming to reduce the recharge of the landslide body and, thus, lower the risk of transformation of the sliding material into debris flow. The results of the chemical analysis of samples taken from springs and a piezometer show a Ca–HCO3 water type. This indicates low water–rock interaction in a landslide area composed of Upper Carboniferous and Permian clastic rocks and points to upper laying carbonate rocks and scree deposits as the main recharge area. Water samples for stable isotope analyses of δ18O and δ2H were collected from a rain gauge, springs, and a piezometer over a two-year period (2018–2020). The estimated mean recharge altitude of the groundwater at sampling points was from approximately 1700 to 1800 m a.s.l. with a mean residence time of 2–5 months.
Keywords: landslide, groundwater, stable isotopes, oxygen-18, deuterium, hydrogeology, recharge dynamic
DiRROS - Published: 16.03.2022; Views: 209; Downloads: 107
.pdf Fulltext (3,55 MB)

2.
Synoptic risk assessment of groundwater contamination from landfills
Nina Mali, Joerg Prestor, Katja Koren, Luka Serianz, Sonja Cerar, 2022

Abstract: Waste management in Europe has improved in recent years, reducing the amount of waste disposed at landfills. However, there are still many landfills in the countries. It is well known that landfills that do not have measures in place to control leachate entering groundwater can contaminate groundwater long after the landfill is closed. Collecting monitoring results from all landfills allows permitting and management agencies to improve action plans. This relies on a synoptic risk assessment that allows prioritization and milestones to be set for required actions. The developed method of synoptic risk assessment is based on a conceptual model of the landfill and the results of chemical groundwater monitoring tested at 69 landfills in Slovenia. The study confirms that most landfills have a direct or indirect impact on groundwater quality. All landfills were classified into three priority classes on the basis of the synoptic risk assessment. The results show that a total of 24 landfills have a clearly pronounced impact on groundwater. A total of 31 landfills have a less pronounced impact due to the favorable natural attenuation capacity of the soil or the technically appropriate design of the landfill itself. A total of 14 landfills have a less pronounced or negligible impact on groundwater.
Keywords: conceptual model, synoptic risk assessment, landfill, groundwater, chemical analysis
DiRROS - Published: 19.07.2022; Views: 57; Downloads: 39
.pdf Fulltext (3,09 MB)

Search done in 0 sec.
Back to top