1. Modulation of the proteasome pathway by nano-curcumin and curcumin in retinal pigment epithelial cellsJ. Emanuel Ramos de Carvalho, Milan T. Verwoert, Ilse M.C. Vogels, Sabine Schipper-Krom, Cornelis J. F. van Noorden, Eric A. Reits, Ingeborg Klaassen, Reinier O. Schlingemann, 2018, original scientific article Abstract: Introduction: Curcumin has multiple biological effects including the modulation of protein homeostasis by the ubiquitin-proteasome system. The purpose of this study was to assess the in vitro cytotoxic and oxidative effects of nano-curcumin and standard curcumin and characterize their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. Methods: Viability, cell cycle progression, and reactive oxygen species (ROS) production were determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of nano-curcumin and curcumin on proteasome activity and the gene and protein expression of proteasome subunits PA28α, α7, β5, and β5i were assessed. Results: Nano-curcumin (5-100 μM) did not show significant cytotoxicity or anti-oxidative effects against H2O2-induced oxidative stress, whereas curcumin (≥10 μM) was cytotoxic and a potent inducer of ROS production. Both nano-curcumin and curcumin induced changes in proteasome-mediated proteolytic activity characterized by increased activity of the proteasome subunits β2 and β5i/β1 and reduced activity of β5/β1i. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of household and immunoproteasome subunits. Conclusions: Nano-curcumin is less toxic to RPE cells and less prone to induce ROS production than curcumin. Both nano-curcumin and curcumin increase proteasome-mediated proteolytic activity. These results suggest that nano-curcumin may be regarded as a proteasome-modulating agent of limited cytotoxicity for RPE cells.
Keywords: curcumin, nano-curcumin, proteasome, retinal pigment epithelium Published in DiRROS: 26.02.2025; Views: 188; Downloads: 83
Full text (737,80 KB) This document has many files! More... |
2. Solitary ovarian cancer cells in the peritoneum : what happens below the surface?Laura M.C. Vos, Willemien J. van Driel, Gabe S. Sonke, Juliette O. A. M. van Baal, Koen K. van de Vijver, Cornelis J. F. van Noorden, Christianne A. R. Lok, 2022, original scientific article Abstract: Background
In advanced epithelial ovarian cancer (EOC), the peritoneum is the primary site of disease recurrence which occurs in >75% of patients despite complete cytoreductive surgery (CRS) and chemotherapy. Macroscopically undetectable remaining cancer cells are deemed to be a source for recurrent disease. We investigated characteristics of occult disease in biopsies of macroscopically normal peritoneum during CRS.
Materials and methods
We included 14 patients with advanced stage high grade serous ovarian cancer (HGSOC). Eleven patients had received neoadjuvant chemotherapy (NACT) and three patients were chemotherapy naïve. Each patient underwent three study-related peritoneal biopsies: 1) of a metastasis, 2) adjacent to a metastasis and 3) at distance from metastases. Cryostat sections were immunohistochemically stained for PAX8 and PanCK as markers of EOC cells and for CD31 as a marker for vascular and lymphatic endothelium. The sections were analyzed semi-quantitatively.
Results
Macroscopically normal peritoneum showed solitary PAX8-positive cells adjacent to and at distance from metastases in all patients. Thirteen percent of these PAX8-positive cells were found to be attached to the mesothelium and are presumably spread through intra-abdominal fluid. Eighty-seven percent of the solitary PAX8-positive cells were found in the stroma underneath the mesothelium, of which 59% were firmly attached to endothelium and 33% were found in the stroma. In most cases, no sign of proliferation of the solitary cells was observed. Only a few clusters of PAX8-positive cells were found. Chemotherapy did not affect these results.
Conclusions
Solitary PAX8-positive cells are present in the macroscopically healthy-looking peritoneum of all EOC patients investigated, irrespective of the distance to macroscopically-visible metastases and of previous treatment. The majority of these solitary cancer cells were attached to endothelium of capillaries, venules or lymphatic vessels. Their solitary character and lack of proliferation suggests a dormant state, which could explain why these cells are unaffected by neo-adjuvant chemotherapy. Keywords: ovarian cancer, peritoneal metastasis, translational medical research, human pathology, PAX8, cancer recurrence Published in DiRROS: 26.02.2025; Views: 184; Downloads: 124
Full text (5,53 MB) This document has many files! More... |
3. Hepatic alterations in a BTBR T + Itpr3tf/J mouse model of autism and improvement using melatonin via mitigation oxidative stress, inflammation and ferroptosisRita Rezzani, Marzia Gianò, Daniela Pinto, Fabio Rinaldi, Cornelis J. F. van Noorden, Gaia Favero, 2024, original scientific article Abstract: Autism spectrum disorder (ASD) is a complicated neurodevelopmental disorder, and its etiology is not well understood. It is known that genetic and nongenetic factors determine alterations in several organs, such as the liver, in individuals with this disorder. The aims of the present study were to analyze morphological and biological alterations in the liver of an autistic mouse model, BTBR T + Itpr3tf/J (BTBR) mice, and to identify therapeutic strategies for alleviating hepatic impairments using melatonin administration. We studied hepatic cytoarchitecture, oxidative stress, inflammation and ferroptosis in BTBR mice and used C57BL6/J mice as healthy control subjects. The mice were divided into four groups and then treated and not treated with melatonin, respectively. BTBR mice showed (a) a retarded development of livers and (b) iron accumulation and elevated oxidative stress and inflammation. We demonstrated that the expression of ferroptosis markers, the transcription factor nuclear factor erythroid-related factor 2 (NFR2), was upregulated, and the Kelch-like ECH-associated protein 1 (KEAP1) was downregulated in BTBR mice. Then, we evaluated the effects of melatonin on the hepatic alterations of BTBR mice; melatonin has a positive effect on liver cytoarchitecture and metabolic functions.
Keywords: autism spectrum disorder, liver, oxidative stress, inflammation, ferroptosis Published in DiRROS: 07.08.2024; Views: 488; Downloads: 370
Full text (12,47 MB) This document has many files! More... |
4. CXCR4 antagonists as stem cell mobilizers and therapy sensitizers for acute myeloid leukemia and glioblastoma?Vashendriya V. V. Hira, Cornelis J. F. van Noorden, Remco J. Molenaar, 2020, other scientific articles Abstract: Glioblastoma is the most aggressive and malignant primary brain tumor in adults and has a poor patient survival of only 20 months after diagnosis. This poor patient survival is at least partly caused by glioblastoma stem cells (GSCs), which are slowly-dividing and therefore therapy-resistant. GSCs are localized in protective hypoxic peri-arteriolar niches where these aforementioned stemness properties are maintained. We previously showed that hypoxic peri-arteriolar GSC niches in human glioblastoma are functionally similar to hypoxic peri-arteriolar hematopoietic stem cell (HSC) niches in human bone marrow. GSCs and HSCs express the receptor C-X-C receptor type 4 (CXCR4), which binds to the chemoattractant stromal-derived factor-1α (SDF-1α), which is highly expressed in GSC niches in glioblastoma and HSC niches in bone marrow. This receptor–ligand interaction retains the GSCs/HSCs in their niches and thereby maintains their slowly-dividing state. In acute myeloid leukemia (AML), leukemic cells use the SDF-1α–CXCR4 interaction to migrate to HSC niches and become slowly-dividing and therapy-resistant leukemic stem cells (LSCs). In this communication, we aim to elucidate how disruption of the SDF-1α–CXCR4 interaction using the FDA-approved CXCR4 inhibitor plerixafor (AMD3100) may be used to force slowly-dividing cancer stem cells out of their niches in glioblastoma and AML. Ultimately, this strategy aims to induce GSC and LSC differentiation and their sensitization to therapy.
Keywords: glioblastoma, glioblastoma stem cells, niches, acute myeloid leukemia, hematopoietic stem cells, bone marrow, C-X-C receptor type 4, stromal-derived factor-1 ▫$[alpha]$▫, plerixafor Published in DiRROS: 06.08.2024; Views: 531; Downloads: 560
Full text (1,51 MB) This document has many files! More... |
5. Nanoparticles for hyperthermic therapy : synthesis strategies and applications in glioblastomaJyoti Verma, Sumit Lal, Cornelis J. F. van Noorden, 2014, review article Abstract: Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor. Major challenges in GBM treatment are drug delivery across the blood–brain barrier, restriction of damage to healthy brain tissues, and limitation of resistance to therapies. This article reviews recent advances in the application of magnetic nanoparticles (MNPs), gold nanorods (GNRs), and carbon nanotubes (CNTs) for hyperthermia ablation of GBM. First, the article introduces GBM, its current treatment, and hyperthermia as a potential modality for the management of GBM. Second, it introduces MNPs, GNRs, and CNTs as inorganic agents to induce hyperthermia in GBM. Third, it discusses different methodologies for synthesis of each inorganic agent. Finally, it reviews in vitro and in vivo studies in which MNPs, GNRs, and CNTs have been applied for hyperthermia ablation and drug delivery in GBM. Keywords: hyperthermia, targeted drug delivery, SPIONs, gold nanorods, carbon nanotubes Published in DiRROS: 06.08.2024; Views: 488; Downloads: 308
Full text (2,20 MB) This document has many files! More... |
6. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell nichesVashendriya V. V. Hira, Cornelis J. F. van Noorden, Hetty E. Carraway, Jaroslaw P. Maciejewski, Remco J. Molenaar, 2017, review article Abstract: Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Keywords: hematopoietic stem cell niche, hijacking, leukemic stem cells, bone marrow, therapy resistance, leukemia Published in DiRROS: 06.08.2024; Views: 470; Downloads: 337
Full text (1,69 MB) This document has many files! More... |
7. The hypoxic peri-arteriolar glioma stem cell niche, an integrated concept of five types of niches in human glioblastomaDiana A. Aderetti, Vashendriya V. V. Hira, Remco J. Molenaar, Cornelis J. F. van Noorden, 2018, review article Abstract: Glioblastoma is the most lethal primary brain tumor and poor survival of glioblastoma patients is attributed to the presence of glioma stem cells (GSCs). These therapy-resistant, quiescent and pluripotent cells reside in GSC niches, which are specific microenvironments that protect GSCs against radiotherapy and chemotherapy. We previously showed the existence of hypoxic peri-arteriolar GSC niches in glioblastoma tumor samples. However, other studies have described peri-vascular niches, peri-hypoxic niches, peri-immune niches and extracellular matrix niches of GSCs. The aim of this review was to critically evaluate the literature on these five different types of GSC niches. In the present review, we describe that the five niche types are not distinct from one another, but should be considered to be parts of one integral GSC niche model, the hypoxic peri-arteriolar GSC niche. Moreover, hypoxic peri-arteriolar GSC niches are structural and functional look-alikes of hematopoietic stem cell (HSC) niches in the bone marrow. GSCs are maintained in peri-arteriolar niches by the same receptor-ligand interactions as HSCs in bone marrow. Our concept should be rigidly tested in the near future and applied to develop therapies to expel and keep GSCs out of their protective niches to render them more vulnerable to standard therapies. Keywords: glioblastoma, glioma stem cells, niches, blood vessels, extracellular matrix, tumor microenvironment, hypoxia, therapy resistance, vasculature Published in DiRROS: 06.08.2024; Views: 546; Downloads: 330
Full text (966,30 KB) This document has many files! More... |
8. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood-brain and blood-retinal barriers : potential novel therapeutic target for cerebral edema and diabetic macular edemaEsmeralda K. Bosma, Cornelis J. F. van Noorden, Reinier O. Schlingemann, Ingeborg Klaassen, 2018, review article Abstract: Breakdown of the blood–brain barrier (BBB) or inner blood–retinal barrier (BRB), induced by pathologically elevated levels of vascular endothelial growth factor (VEGF) or other mediators, can lead to vasogenic edema and significant clinical problems such as neuronal morbidity and mortality, or vision loss. Restoration of the barrier function with corticosteroids in the brain, or by blocking VEGF in the eye are currently the predominant treatment options for brain edema and diabetic macular edema, respectively. However, corticosteroids have side effects, and VEGF has important neuroprotective, vascular protective and wound healing functions, implying that long-term anti-VEGF therapy may also induce adverse effects. We postulate that targeting downstream effector proteins of VEGF and other mediators that are directly involved in the regulation of BBB and BRB integrity provide more attractive and safer treatment options for vasogenic cerebral edema and diabetic macular edema. The endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), a protein associated with trans-endothelial transport, emerges as candidate for this approach. PLVAP is expressed in a subset of endothelial cells throughout the body where it forms the diaphragms of caveolae, fenestrae and trans-endothelial channels. However, PLVAP expression in brain and eye barrier endothelia only occurs in pathological conditions associated with a compromised barrier function such as cancer, ischemic stroke and diabetic retinopathy. Here, we discuss the current understanding of PLVAP as a structural component of endothelial cells and regulator of vascular permeability in health and central nervous system disease. Besides providing a perspective on PLVAP identification, structure and function, and the regulatory processes involved, we also explore its potential as a novel therapeutic target for vasogenic cerebral edema and retinal macular edema. Keywords: plasmalemma vesicle-associated protein, blood-brain barrier, blood-retinal barrier, cerebral edema, diabetic macular edema Published in DiRROS: 06.08.2024; Views: 468; Downloads: 333
Full text (1,52 MB) This document has many files! More... |
9. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma : a critical evaluation of the literatureChung T. Le, William P. J. Leenders, Remco J. Molenaar, Cornelis J. F. van Noorden, 2018, review article Abstract: The review discusses the effects of Epigallocatechin-3-gallate Gallate (EGCG) on glioma as a basis for future research on clinical application of EGCG. Epidemiological studies on the effects of green tea or EGCG on the risk of glioma is inconclusive due to the limited number of studies, the inclusion of all tea types in these studies, and the focus on caffeine rather than EGCG. In vivo experiments using EGCG monotherapy are inconclusive. Nevertheless, EGCG induces cell death, prevents cellular proliferation, and limits invasion in multiple glioma cell lines. Furthermore, EGCG enhances the efficacy of anti-glioma therapies, including irradiation, temozolomide, carmustine, cisplatin, tamoxifen, and TNF-related apoptosis-inducing ligand, but reduces the effect of bortezomib. Pro-drugs, co-treatment, and encapsulation are being investigated to enhance clinical applicability of EGCG. Mechanisms of actions of EGCG have been partly elucidated. EGCG has both anti-oxidant and oxidant properties. EGCG inhibits pro-survival proteins, such as telomerase, survivin, GRP78, PEA15, and P-gp. EGCG inhibits signaling of PDGFR, IGF-1R, and 67LR. EGCG reduces invasiveness of cancer cells by inhibiting the activities of various metalloproteinases, cytokines, and chemokines. Last, EGCG inhibits some NADPH-producing enzymes, thus disturbing redox status and metabolism of glioma cells. In conclusion, EGCG may be a suitable adjuvant to potentiate anti-glioma therapies. Keywords: green tea, glioma Published in DiRROS: 06.08.2024; Views: 470; Downloads: 232
Full text (984,61 KB) This document has many files! More... |
10. Energy metabolism in IDH1 wild-type and IDH1-mutated glioblastoma stem cells : a novel target for therapy?Cornelis J. F. van Noorden, Vashendriya V. V. Hira, Amber J. van Dijck, Metka Novak, Barbara Breznik, Remco J. Molenaar, 2021, review article Abstract: Cancer is a redox disease. Low levels of reactive oxygen species (ROS) are beneficial for cells and have anti-cancer effects. ROS are produced in the mitochondria during ATP production by oxidative phosphorylation (OXPHOS). In the present review, we describe ATP production in primary brain tumors, glioblastoma, in relation to ROS production. Differentiated glioblastoma cells mainly use glycolysis for ATP production (aerobic glycolysis) without ROS production, whereas glioblastoma stem cells (GSCs) in hypoxic periarteriolar niches use OXPHOS for ATP and ROS production, which is modest because of the hypoxia and quiescence of GSCs. In a significant proportion of glioblastoma, isocitrate dehydrogenase 1 (IDH1) is mutated, causing metabolic rewiring, and all cancer cells use OXPHOS for ATP and ROS production. Systemic therapeutic inhibition of glycolysis is not an option as clinical trials have shown ineffectiveness or unwanted side effects. We argue that systemic therapeutic inhibition of OXPHOS is not an option either because the anti-cancer effects of ROS production in healthy cells is inhibited as well. Therefore, we advocate to remove GSCs out of their hypoxic niches by the inhibition of their binding to niches to enable their differentiation and thus increase their sensitivity to radiotherapy and/or chemotherapy. Keywords: glioblastoma stem cells, IDH1-mutation, energy metabolism Published in DiRROS: 05.08.2024; Views: 627; Downloads: 423
Full text (3,87 MB) This document has many files! More... |