GDK 561.015.5
Math. Subj. Class. (1985) 62J02, 90C30

EKSTREMNE KORELACIJE

Anton CEDILNIK*

Izvleček

V članku je definirana količina, ki meri kvaliteto aproksimacije tabelarično podane funkcije s funkcijo iz neke družine D nekonstantnih funkcij. V ta namen je treba poiskati infimum in supremum množice korelacijskih koeficientov med dano funkcijo in funkcijami iz D. Tu je to storjeno za družino vseh nekonstantnih funkcij in za družino rastnih funkcij.

Ključne besede: aproksimacija, ekstremna korelacija, nelinearni program

EXTREME CORRELATIONS

Anton CEDILNIK*

Abstract

In the article we define a quantity which measures the quality of the approximation of a function, given by a table, with a function from a certain family D of nonconstant functions. For this purpose one has to find the infimum and the supremum of the set of correlation coefficients between the given function and functions from D. We do this for the family of all nonconstant functions and for the family of growth functions.

Key words: approximation, extremal correlation, nonlinear programming

CONTENTS

I. Introduction
II. F_{n} - approximation
III. R_{n}^{0} - approximation $(n>2)$

Appendix: a nonlinear program

I. INTRODUCTION

In table 1 and table 2 we have measurings of function values of a function $y(x)$, which we approximate with the function $w_{1}=0.5 x+3.0$. Its correlation coefficient with data from table 1 is 0.7048 and with data from table 2 is 0.9986 . In the first case the correlation is weak and in the second one very strong. Nevertheless, it can be shown that, contrary to the expectations, in the first case this approximation is the best (in the sense that the correlation cannot be increased), but in the second case we easily find a better approximation, for instance $w_{2}=0.05 x^{2}+0.35 x+$ +3.10 , for which the correlation coefficient is 1 . Therefore, the correlation coefficient is not necessarily a good measure of the quality of approximation.

x			y		
1	3.3	3.4	3.5	3.5	3.8
2	3.0	4.0	4.1	4.9	
3	4.1	4.4	4.7	4.8	

Table 1

x	y
1	3.5
2	4.0
3	4.6

Table 2

The purpose of this article is to introduce a better measure of the quality of approximation (definition 1) and to calculate it in two special cases.

But, firstly, some conventions and definitions!
We deal with a function $\boldsymbol{y}(\boldsymbol{x})$ for which the measurings of function values are in table 3. The table is ordered: $x_{1}<x_{2}<\ldots<x_{n}$.

x	y				
x_{1}	y_{11}	y_{12}	\cdots	$y_{1 s_{1}}$	
x_{2}	y_{21}	y_{22}	\cdots	$y_{2 s_{2}}$	
\vdots			\vdots		
x_{n}	$y_{n 1}$	$y_{n 2}$	\cdots	$y_{n s_{n}}$	

Table 3
$s_{k} \geq 1 \quad(k=1, \ldots, n) . \sum_{k} \sim \sum_{k=1}^{n}, \sum_{l} \sim \sum_{l=1}^{s_{k}}(k$ and l will be the summation indexes only in these two sums).

$$
\begin{equation*}
s:=\sum_{k} s_{k} \geq n \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{y}_{k}:=\frac{1}{s_{k}} \sum_{l} y_{k l} \quad(k=1, \ldots, n) \tag{2}
\end{equation*}
$$

The values $\overline{\boldsymbol{y}}_{\mathrm{k}}$ form a new function $\overline{\boldsymbol{y}}$.

$$
\begin{equation*}
\bar{y}:=\frac{1}{s} \sum_{k} s_{k} \bar{y}_{k} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
::=\left[\sum_{k} \sum_{l}\left(y_{k l}-\bar{y}\right)^{2}\right]_{7-1 / 2}^{1 / 2}=\left[\sum_{k} \sum_{1} y_{k l}^{2}-s \bar{y}^{2}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

Presumption:
(P) There is at least one k with $\bar{y}_{k} \neq \bar{y}$.

Obviously, $n \geq 2, \tau>0, \omega \geq 1 . \omega=1$ if and only if $s_{1}=\ldots=s_{n}=1$, hence if $s=n$.
Correlation coefficient $r(y, u)$ between the function y from table 3 and some other function u with values $u_{k}(k=1, \ldots, n)$ is the correlation coefficient for table 4:

y	$y_{11}, \ldots, y_{1 s_{1}}, y_{21}, \ldots, y_{2 s_{2}}, \ldots, y_{n 1}, \ldots, y_{n s_{n}}$
u	$u_{1}, \ldots, u_{1}, u_{2}, \ldots, u_{2}, \ldots, u_{n}, \ldots, u_{n}$

Table 4

$$
\begin{align*}
r(y, u): & =\frac{\sum_{k} \sum_{l}\left(y_{k l}-\bar{y}\right)\left(u_{k}-\bar{u}\right)}{\left[\sum_{k} \sum_{l}\left(y_{k l}-\bar{y}\right)^{2} \cdot \sum_{k} \sum_{1}\left(u_{k}-\bar{u}\right)^{2}\right]^{1 / 2}} \tag{6}\\
& =\frac{\sum_{k} s_{k} \bar{y}_{k} u_{k}-s \bar{y} \bar{u}}{\tau \cdot\left[\sum_{k} s_{k} u_{k}^{2}-s \bar{u}^{2}\right]^{1 / 2}}
\end{align*}
$$

where

$$
\begin{equation*}
\overline{\mathrm{u}}:=\frac{1}{s} \sum_{k} s_{k} u_{k} \tag{7}
\end{equation*}
$$

Let us approximate the function \boldsymbol{y} from table 3 with a function \boldsymbol{w} from some family D of nonconstant functions, defined on the set $\left\{x_{1}, \ldots, x_{n}\right\} .\{r(y, u) \mid u \in D\}$ is a subset of the interval $[-1,1]$ with

$$
\begin{align*}
& A(y):=\inf \{r(y, u) \mid u \in D\} \tag{8}\\
& B(y):=\sup \{r(y, u) \mid u \in D\} \\
& A(y) \leq r(y, w) \leq B(y) \tag{10}
\end{align*}
$$

Definition 1. Quality of D-approximation of function y with function $w \in D$ is

$$
\begin{equation*}
K(y, w \in D):=\frac{2 r(y, w)-B(y)-A(y)}{B(y)-A(y)} \tag{11}
\end{equation*}
$$

The definition is based on fig. 1.

Figure 1

The quality of D-approximation is again a number between -1 and 1 , and

$$
\begin{equation*}
K(y, w \in D)=K(\alpha y+\beta, \gamma w+\delta \in D) \tag{12}
\end{equation*}
$$

for all such $\alpha, \beta, \gamma, \delta$ that $\alpha \gamma>0$ and still is $\gamma \boldsymbol{w}+\delta \in D$.
Obviously, the family D must be at least so extensive that for each y from table 3 and with the presumption (P), the denominator $B(y)-A(y)$ in (11) is >0. We shall name such family sufficient.

Examples.

1. The family $F_{n}(\mathrm{n} \geq 2)$ of all nonconstant functions on the set $\left\{x_{1}, \ldots, x_{n}\right\}$ is sufficient. For proving this, calculate $r(y, u)$, where $u_{k}=0(k \neq i), u_{i}= \pm 1$, and demand that the result is always the same for all i and both signs.
2. A function u on $\left\{x_{1}, \ldots, x_{n}\right\}$ is growth function if $0 \leq u_{1} \leq \ldots \leq u_{n}$ and is nonconstant if $u_{1} \neq u_{n}$. The family $R_{n}^{0}(n \geq 3)$ of such functions is sufficient. To see this, calculate $r(y, u)$, where $u_{1}=\ldots=u_{i-1}=0, u_{i}=\lambda, u_{i+1}=\ldots=u_{n}=1$ $(2 \leq i \leq n-1)$, and demand that for each i and any $\lambda \in(0,1): \partial r / \partial \lambda=0$. The family R_{2}^{0} is not sufficient.
3. A function u on $\left\{x_{1}, \ldots, x_{n}\right\}$ is nonconstant linear if $u_{k}=\alpha x_{k}+\beta(k=1, \ldots, n)$ and $\alpha \neq 0$. The family $L_{n}(n \geq 3)$ of these functions is not sufficient, since for the function y from table 5 we have: $A(y)=B(y)=0$.

x	y
x_{1}	$x_{n}-\bar{x}$
x_{k}	$0(2 \leq k \leq n-1)$
x_{n}	$\bar{x}-x_{1}$

Table 5

We already said that the family $L_{2}=F_{2}$ is sufficient.
In the next two sections we shall find $A(y)$ and $B(y)$ and so also $K(y, w \subseteq D)$ for the families $D=F_{n}(\mathrm{n} \geq 2)$ and $R_{n}^{0}(n \geq 3)$.

II. F_{n} - APPROXIMATION

Theorem 2.

$$
\left.A(y)=\min |r(y, u)| u \in F_{n}\right\}=-\omega-1,
$$

14)

$$
B(y)=\max |r(y, u)| u \in F_{n} \mid=\omega^{-1}=r(y, \bar{y}) .
$$

For any $w \in F_{n}$ there is
15)

$$
K\left(y, w \in F_{n}\right)=\omega . r(y, w) .
$$

roof. It's easy to verify (using (1)-(6)) that

$$
r(y, u)=\frac{1}{\omega} \cdot \frac{\sum_{k} s_{k}\left(\bar{ज}_{k}-\eta\right)\left(u_{k}-\bar{a}\right)}{\left[\sum_{k} s_{k}\left(\bar{y}_{k}-\bar{y}\right)^{2} \cdot \sum_{k} s_{k}\left(u_{k}-\bar{u}\right)^{2}\right]^{1 / 2}}
$$

The numerator in (16) can be ragarded as a scalar product, therefore, by Cauchy--Schwartz inequality, $r(y, u)$ is the biggest for $u_{k}-\bar{u}=\lambda\left(\bar{y}_{k}-\bar{y}\right)$ ($\lambda>0, k=1, \ldots, n$), and for such u we have: $r(y, u)=\omega^{-1}$.

Obviously, $r(y, u)=-r(y,-u)$, from where we get (13). Then, (15) follows from the definition (11).

QED.
Notes.

1. For $s_{1}=\ldots=s_{n}=1$ we have: $K\left(\boldsymbol{y}, \boldsymbol{w} \in F_{n}\right)=r(\boldsymbol{y}, \boldsymbol{w})$.
2. The function \bar{y} has not only the highest correlation with y but also the lowest sum of squares of declinations from y (even if the presumption (P) is not valid). The proof is simple.
3. For $n>2$ we can continuously deform y to $-y$ not going through the constant. Therefore:

$$
\begin{equation*}
|r(y, u)| u \in F_{n} \mid=\left[-\omega^{-1}, \omega-1\right] \tag{17}
\end{equation*}
$$

III. $R_{n}^{0}-$ APPROXIMATION $(n>2)$

This time we'll approximate the function y with a function $u \in R_{n}^{0}$: $0 \leq u_{1} \leq \ldots \leq u_{n} \neq u_{1}$. Let us change y with a new function p :

$$
\begin{equation*}
p_{k}:=\frac{s_{k}}{\zeta}\left(\nabla_{k}-y\right) \quad(k=1, \ldots, n) \tag{18}
\end{equation*}
$$

For this function it holds

$$
\begin{align*}
& \sum_{k} p_{k}=0 \tag{19}\\
& \sum_{k} p_{k}^{2} / s_{k}=\omega-2 \leq 1
\end{align*}
$$

Let us also change \boldsymbol{u} with \boldsymbol{q} :

$$
\begin{equation*}
q_{k}:=\left(u_{k}-u_{1}\right) / \delta(u) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(u):=\frac{1}{s} \sum_{k} s_{k}\left(u_{k}-u_{1}\right)>0 \tag{22}
\end{equation*}
$$

For \boldsymbol{q} it holds:

$$
\begin{align*}
& 0=q_{1} \leq q_{2} \leq \ldots \leq q_{n} \tag{23}\\
& \sum_{k} s_{k} q_{k}=s . \tag{24}
\end{align*}
$$

Because of $q \in R_{n}^{0}$ and $q_{k}=\left(q_{k}-q_{1}\right) / \delta(q)$ for each k, we conclude that while u having traversed all the set R_{n}^{0}, q traverses all that subset defined with (23) and (24). Easy computation shows:

$$
\begin{equation*}
r(y, u)=\sum_{k} p_{k} q_{k} \cdot\left[\sum_{k} s_{k} q_{k}^{2}-s\right]^{-1 / 2} . \tag{25}
\end{equation*}
$$

The maximum of this function is found in Appendix. If we consider also that $\min r=-\max (-r)$, the equations (26) and (27) of the next theorem follow.

Theorem 3. Let $\boldsymbol{a}:=\left[p_{2}, \ldots, p_{n}\right]$ and $\boldsymbol{b}:=\left[s_{2}, \ldots, s_{n}\right]$. Then:

$$
\begin{align*}
& A(y)=-\mathrm{H}_{n-1}(-a, b, s,-s), \tag{26}\\
& B(y)=H_{n-1}(a, b, s,-s),
\end{align*}
$$

$$
\begin{equation*}
\left\{r(v, u) \mid u \in R_{n}^{0}\right\}=[A(y), B(y)] . \tag{28}
\end{equation*}
$$

Proof. We have to prove (28) else. The family R_{n}^{0} is convex. If $\min r(y, u)=$ $=r\left(y, u^{\prime}\right)$ and $\max r(y, u)=r\left(y, u^{\prime}\right)$, then $\lambda \rightarrow r\left(y, \lambda u^{\prime \prime}+(1-\lambda) u^{\prime}\right)$ is a continuous function, which maps the interval $[0,1]$ onto the interval $[A(y), B(y)]$. QED.

For the illustration we'll examine a special case: R_{n}^{0} - approximation of a nonconstant increasing onevalued function. Instead of table 3 we have much more special table 6, for which we demand:

x	$x_{1}, x_{2}, \ldots, x_{n}$
y	$y_{1}, y_{2}, \ldots, y_{n}$

Table 6

1. $n>2$,
2. $x_{1}<x_{2}<\ldots<x_{n}$,
3. $y_{1} \leq y_{2} \leq \ldots \leq y_{n} \neq y_{1}$.

The function $u:=y-y_{1}\left(u_{k}:=y_{k}-y_{1}(k=1, \ldots, n)\right)$ is from R_{n}^{0}.
Because of $r(y, u)=1$ we already know:

$$
\begin{equation*}
B(y)=1 \tag{29}
\end{equation*}
$$

According to (26) we also have:

$$
\begin{equation*}
A(y)=-\mathrm{H}_{n-1}(-a, b, n,-n) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}=\left(y_{i+1}-\bar{y}\right) / \tau(i=1, \ldots, n-1) \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
b_{i}=1(i=1, \ldots, n-1) \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\bar{y}=\frac{1}{n} \sum_{k} y_{k}, \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\tau=\left[\sum_{k} y_{k}^{2}-n y^{2}\right]^{1 / 2} \tag{34}
\end{equation*}
$$

With the extension of (31) to index $i=0$ we have:

$$
\begin{equation*}
a_{0} \leq a_{1} \leq \ldots \leq a_{n-1} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=0}^{n-1} a_{i}=0 \tag{36}
\end{equation*}
$$

In the notation from Appendix there is

$$
\begin{equation*}
E_{j}=\frac{1}{j} \sum_{i=0}^{j-1} a_{i} \quad(j=1, \ldots, n-1) \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
E_{1} \leq E_{2} \leq \ldots \leq E_{n-1}<0 \tag{38}
\end{equation*}
$$

Therefore, $\beta=n-1$ and

$$
\begin{equation*}
\mathrm{H}_{n-1}(-a, b, n,-n)=\max _{0<\alpha<n} \sqrt{\frac{n}{\alpha(n-\alpha)}} \sum_{i=0}^{\alpha-1} a_{i} \tag{39}
\end{equation*}
$$

From (30) we endly get

$$
\begin{equation*}
A(y)=\frac{1}{\tau} \min _{0<\alpha<n} \sqrt{\frac{n}{\alpha(n-\alpha)}}\left(\overline{\alpha y}-\sum_{i=1}^{\alpha} y_{i}\right) \tag{40}
\end{equation*}
$$

It is not difficult to see that $A(y)=r(y, u)$, where u is a function such as: $u_{1}=\ldots=$ $=u_{x}=0, u_{x+1}=\ldots=u_{n}=1$ (for certain $x \in\{1, \ldots, n-1\}$. Hence: $A(y) \geq A(u)$. From (40) we find out:

$$
\begin{equation*}
A(u)=\min \left\{\sqrt{\frac{n-x}{x(n-1)}}, \sqrt{\frac{x}{(n-x)(n-1)}}\right\} \tag{41}
\end{equation*}
$$

Minimum is got for $x=1$ and $x=n-1$ and its value is $\frac{1}{n-1} \cdot$ So we have found found the infimum of the numbers $A(y)$:

$$
\begin{equation*}
A(y) \geq \frac{1}{n-1} . \tag{42}
\end{equation*}
$$

Note. The results of this section are because of (12) valid also for the R_{n}-approximations, where R_{n} is the family of nonconstant increasing functions.

APPENDIX: A NONLINEAR PROGRAM

We shall solve the next nonlinear program.
There are given $a=\left[a_{k}\right]_{m \times 1}, b=\left[b_{k}\right]_{\mathrm{mx1}}$ and numbers c and d.
These parameters answer the following four conditions:

$$
\begin{aligned}
& m \in\{1,2,3, \ldots\} \\
& b_{k}>(k=1, \ldots, m) \\
& c>0
\end{aligned}
$$

$$
\begin{equation*}
\varepsilon:=c^{2}+d \sum_{k} b_{k}>0 \tag{1}
\end{equation*}
$$

where, $\sum_{k} \sim \sum_{k=1}^{m}$ and - avoiding the triviality - at least one a_{k} is $\neq 0$.

Maximize the objective function

$$
\begin{equation*}
z=\left[z_{k}\right]_{m \underline{x} 1} \rightarrow h_{m}(z ; a, b, c d):=\sum_{k} a_{k} z_{k} \cdot\left[\sum_{k} b_{k} z_{k}^{2}+d\right]^{-1 / 2} \tag{2}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
& 0 \leq z_{1} \leq \ldots \leq z_{m} \tag{3}\\
& \sum_{k} b_{k} z_{k}=c \tag{4}
\end{align*}
$$

The function h_{m} is well defined:

$$
\begin{equation*}
\sum_{k} b_{k} z_{k}^{2}+d=\sum_{k} b_{k}\left(z_{k}-\frac{c+\sqrt{\varepsilon}}{\sum_{k} b_{k}}\right)^{2}>0 \tag{5}
\end{equation*}
$$

The constraints (3) and (4) determine a nonvoid convex compact set S, so the function h_{m}, which is contionuous, for certain has the maximum

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d):=\max \left\{h_{m}(z ; a, b, c, d) \mid z \in S\right\} \tag{6}
\end{equation*}
$$

For $m=1$ there is only one point $z: z_{1}=c / b_{1}$ in S and so:

$$
\begin{equation*}
\mathrm{H}_{1}(a, b, c, d)=\frac{c a_{1}}{\sqrt{\varepsilon b_{1}}} . \tag{7}
\end{equation*}
$$

The case $m=2$ demands much more work - though quite elementary - than the previous one. If the condition

$$
\begin{equation*}
\frac{d\left(a_{1}+a_{2}\right)}{\varepsilon} \leq \frac{a_{1}}{b_{1}} \leq \frac{a_{1}+a_{2}}{b_{1}+b_{2}} \tag{8}
\end{equation*}
$$

is fulfilled, then

$$
\begin{equation*}
\mathrm{H}_{2}(a, b, c, d)=\left[\frac{a_{1}^{2}}{b_{1}}+\frac{a_{2}^{2}}{b_{2}}-\frac{d}{\varepsilon}\left(a_{1}+a_{2}\right)^{2}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

for z :

$$
\begin{equation*}
z_{k}=\frac{a_{k} \varepsilon}{c\left(a_{1}+a_{2}\right) b_{k}}-\frac{d}{c} \quad(k=1,2) . \tag{10}
\end{equation*}
$$

If the condition (8) is not true, then

$$
\begin{equation*}
\mathrm{H}_{2}(a, b, c, d)=\max \left\{a_{2}\left[\frac{1}{b_{2}}-\frac{d}{\varepsilon-d b_{1}}\right]^{1 / 2},\left(a_{1}+a_{2}\right)\left[\frac{1}{b_{1}+b_{2}}-\frac{d}{\varepsilon}\right]^{1 / 2}\right\} \tag{11}
\end{equation*}
$$

for z :

$$
\begin{equation*}
z_{1}=0, z_{2}=c / b_{2} \tag{12}
\end{equation*}
$$

(if the first term in (11) is greater) or

$$
\begin{equation*}
z_{1}=z_{2}=c /\left(b_{1}+b_{2}\right) \tag{13}
\end{equation*}
$$

(if the second term in (11) is greater).
From now on we shall suppose that $m>2$. The Lagrangian function:

$$
\begin{equation*}
L=h_{m}+\sum_{k=1}^{m-1} \lambda_{k}\left(z_{k+1}-z_{k}\right), \tag{14}
\end{equation*}
$$

where λ-s are the Lagrange multipliers. The corresponding Kahn-Tucker system ($j=1, \ldots, m-1$):

$$
\begin{equation*}
z_{j} \geq 0 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\partial L / \partial z_{j} \leq 0, \tag{16}
\end{equation*}
$$

$$
\begin{align*}
& z_{j} \cdot\left(\partial L / \partial z_{j}\right)=0, \tag{17}\\
& \lambda_{j} \geq 0, \tag{18}
\end{align*}
$$

$$
\begin{equation*}
\partial L / \partial \lambda_{j}=z_{j+1}-z_{j} \geq 0, \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{j} \cdot\left(\partial L / \partial \lambda_{j}\right)=\lambda_{j}\left(z_{j+1}-z_{j}\right)=0, \tag{20}
\end{equation*}
$$

considering (4) and

$$
\begin{equation*}
\partial z_{m} / \partial z_{j}=-b_{j} / b_{m} . \tag{21}
\end{equation*}
$$

Let us sum up the equations (17), using (4) and (20):

$$
\begin{equation*}
\lambda_{m-1}=-\left[a_{m}-b_{m}\left(z_{m}+\frac{d}{c}\right) \frac{\sum_{k} a_{k} z_{k}}{\sum_{k} b_{k} z_{k}^{2}+d}\right] \cdot\left(\sum_{k} a_{k} z_{k}^{2}+d\right)^{-1 / 2} \tag{22}
\end{equation*}
$$

We shall change λ-s:

$$
\begin{equation*}
\mu_{j}:=\lambda_{j} \sqrt{\sum_{k} b_{k} z_{k}^{2}+d} \quad(j=1, \ldots, m-1) \tag{23}
\end{equation*}
$$

Putting (22) and (23) in (16) and (17) we get:

$$
a_{j}-b_{j}\left(z_{j}+\frac{d}{c}\right) \quad \frac{\sum_{k} a_{k} z_{k}}{\sum_{k} b_{k} z_{k}^{2}+d}+\left\{\begin{array}{rr}
\quad-\mu_{1}(j=1) \tag{24}\\
\mu_{j-1} & -\mu_{j}(1<j<m) \\
\mu_{m-1} & (j=m)
\end{array}\right\} \leq 0
$$

$$
\begin{equation*}
z_{j} .[\text { left side of }(24)]=0 \tag{25}
\end{equation*}
$$

We now have to solve the system (3), (4), (24), (25), (26) and (27):

$$
\begin{align*}
& \mu_{j} \geq 0 \tag{26}\\
& \mu_{j}\left(z_{j+1}-z_{j}\right)=0 \tag{27}
\end{align*}
$$

(for $j=1, \ldots, m-1$).
One more definiton $(k=1, \ldots, m)$:

$$
\begin{equation*}
E_{k}:=\sum_{j=k}^{m} a_{j} \cdot\left[c+\frac{d}{c} \sum_{j=k}^{m} b_{j}\right]^{-1} \tag{28}
\end{equation*}
$$

Let β be the index of the greatest E_{k} :
$\left(k>\beta \rightarrow E_{k}<E_{\beta}\right) \wedge\left(k \leq \beta \rightarrow E_{k} \leq E_{\beta}\right)$.
Suppose that α is the adjacent index, for which $z_{\alpha}>0, z_{\alpha-1}=0$ (or $\alpha=1$ if $z_{1}>0$). α could be any number in $\{1, \ldots, m\}$. Because of (27) it is for $\alpha \neq 1$:

$$
\begin{equation*}
\mu_{\alpha-1}=0 \tag{29}
\end{equation*}
$$

The inequalities (24) are because of (25) the equations, as well, for $\alpha \leq j \leq m$. Summing up these equations we get:

$$
\begin{equation*}
E_{\alpha}=\sum_{k} a_{k} z_{k} /\left(\sum_{k} b_{k} z_{k}^{2}+d\right) \tag{30}
\end{equation*}
$$

and (24) can be written in this way:

$$
a_{j}-b_{j}\left(z_{j}+\frac{\mathrm{d}}{c}\right) E_{\alpha}+\left\{\begin{array}{cc}
& -\mu_{1}(j=1) \tag{31}\\
\mu_{j-1} & -\mu_{j}(1<j<m) \\
\mu_{m-1} & (j=m)
\end{array}\right\} \quad \begin{array}{ll}
<0 & (0<j<\alpha) \\
=0 & (\alpha \leq j \leq m)
\end{array}
$$

Suppose that $\alpha>1$ and $i<\alpha$. Summing up the inequalities (31) for $i \leq j<\alpha$ we find out

$$
\left(E_{\alpha}-E_{i}\right) \cdot\left(c+\frac{d}{c} \sum_{j=i}^{m} b_{j}\right)-\left\{\begin{array}{ll}
0 & (i=1) \tag{33}\\
\mu_{j-1} & (i>1)
\end{array}\right\} \geq 0
$$

and therefore

$$
\begin{equation*}
E_{i} \leq E_{\alpha}(i<\alpha) \tag{34}
\end{equation*}
$$

hence

$$
\begin{equation*}
\alpha \leq \beta . \tag{35}
\end{equation*}
$$

For $\alpha>1$ and

$$
\begin{equation*}
\mu_{i}=\left(E_{a}-E_{i+1}\right) \cdot\left(c+\frac{d}{c} \sum_{j=i+1}^{m} b_{j}\right) \quad(1 \leq i<\alpha) \tag{36}
\end{equation*}
$$

the inequalities (31) are fulfilled, so we can forget them. But from the equations (32) we can calculate all other μ-s: from the first equation we get μ_{α}, from the second one $\mu_{\alpha+1}$, and so on. Summing up all this equations, we get the identity, which means that these equations are dependent and the system is surely solvable. We find out:

$$
\begin{equation*}
\mu_{i}=\left(E_{\alpha}-E_{i+1}\right)\left(c+\frac{d}{c} \sum_{j=i+1}^{m} b_{j}\right)-E_{\alpha} \sum_{j=\alpha}^{i} b_{j} z_{j} \quad(\alpha \leq i<m) . \tag{37}
\end{equation*}
$$

Now we shall prove that the system (27) is already fulfilled too. This system is quivalent with
38)

$$
\sum_{i=\alpha}^{m-1} \mu_{i}\left(z_{i+1}-z_{i}\right)=0,
$$

f, of course, $\alpha<n$; for $\alpha=n$ there is no equations (27) at all. Firstly we shall write 37) in another way:

$$
\begin{equation*}
\mu_{i}=\sum_{j=\alpha}^{i} a_{j}-\frac{d}{c} E_{\alpha} \sum_{j=\alpha}^{i} b_{j}-E_{a} \sum_{j=\alpha}^{i} b_{j} z_{j} \tag{39}
\end{equation*}
$$

An auxiliary formula:

$$
\begin{align*}
& \begin{array}{l}
\sum_{i=\alpha}^{m-1}\left(z_{i+1}-z_{i}\right) \cdot \sum_{j=\alpha}^{i} \sigma_{j}=\left(z_{\alpha+1}-z_{\alpha}\right) \sigma_{\alpha}+\left(z_{\alpha+2}-z_{\alpha+1}\right)\left(\sigma_{\alpha}+\sigma_{\alpha+1}\right)+\ldots+ \\
\quad+\left(z_{m}-z_{m-1}\right)\left(\sigma_{\alpha}+\ldots+\sigma_{m-1}\right)= \\
=\sigma_{\alpha}\left(z_{m}-z_{\alpha}\right)+\sigma_{\alpha+1}\left(z_{m}-z_{\alpha+1}\right)+\ldots+\sigma_{m-1}\left(z_{m}-z_{m-1}\right)= \\
=z_{m} \sum_{i=\alpha}^{m-1} \sigma_{i}-\sum_{i=\alpha}^{m-1} \sigma_{i} z_{i} \\
\text { (40) } \quad \sum_{j=\alpha}^{m-1}\left(z_{i+1}-z_{i}\right) \sum_{j=\alpha}^{i} \sigma_{j}=z_{m} \sum_{i=\alpha}^{m} \sigma_{i}-\sum_{i=\alpha}^{m} \sigma_{i} z_{i}
\end{array}
\end{align*}
$$

Putting (39) in (38) with the help of (4) and (40) we rediscover (30).
The previous Kuhn-Tucker system is now reduced to the following one:

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=\frac{\sum_{i=\alpha}^{m} a_{i} z_{j}}{\sqrt{\sum_{i=\alpha}^{m} b_{j} z_{i}^{2}+d}}=E_{\alpha} \sqrt{\sum_{i=\alpha}^{m} b_{i} z_{i k}^{2}+d} \tag{41}
\end{equation*}
$$

$$
\begin{align*}
& 0<z_{\alpha} \leq \ldots \leq z_{m} \tag{42}\\
& \sum_{i=\alpha}^{m} b_{i} z_{i}=c \tag{43}
\end{align*}
$$

$$
\begin{equation*}
\left(E_{\alpha}-E_{i+1}\right)\left(c+\frac{d}{c} \sum_{j=i+1}^{m} b_{j}\right) \geq E_{\alpha} \sum_{j=\alpha}^{i} b_{j} z_{j} \quad(\alpha \leq j<m) \tag{44}
\end{equation*}
$$

Now we shall consider the sign of E_{β}.
Case 1. $E_{\beta}=0$.
For the function $z^{\prime}: z_{i}=0(i<\beta), z_{i}=c / \sum_{j=\beta}^{m} b_{j}(i \geq \beta)$, we easily find: $h_{m}\left(z^{\prime} ; a, b, c, d\right)=0$. From (41) it follows then: $E_{\alpha} \geq 0$.

But since $E_{\beta} \geq E_{\alpha}$, there must be $E_{\alpha}=0$ and

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=h_{m}\left(z^{\prime} ; a, b, c, d\right)=0 \tag{45}
\end{equation*}
$$

Case 2. $E_{\beta}<0$.
For the function $z^{\prime \prime}: z_{i}=0 \quad(i<\alpha), \quad z_{i}=c / \sum_{j=\alpha}^{m} b_{j} \quad(i \geq \alpha)$, we get

$$
\begin{equation*}
\mathrm{H} m(a, b, c, d) \geq h_{m}\left(z^{\prime \prime} ; a, b, c, d\right)=E_{\alpha}\left[d+c^{2} / \sum_{i=\alpha}^{m} b_{i}\right]^{1 / 2} \tag{46}
\end{equation*}
$$

On the other side, by (41):

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d) \leq \max E_{\alpha}\left(\sum_{i=\alpha}^{m} b_{i} z_{i}^{2}+d\right)^{1 / 2}=E_{\alpha} \cdot\left(\min \sum_{i=\alpha}^{m} b_{i} z_{i}^{2}+d\right)^{1 / 2} \tag{47}
\end{equation*}
$$

where we determine the extreme for all $z-s$ satisfying (43) only. It is easy to see that the extreme is gotten for $z=z^{\prime \prime}$ and so:

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=h_{m}\left(z^{\prime \prime} ; a, b, c, d\right) \tag{48}
\end{equation*}
$$

The question remains, how to find α. With some effort we transform (44) into

$$
\begin{equation*}
\sum_{j=\alpha}^{m} a_{j} / \sum_{j=\alpha}^{m} b_{j} \geq \sum_{j=i}^{m} a_{j} / \sum_{j=i}^{m} b_{j} \quad(\alpha<i \leq m) \tag{49}
\end{equation*}
$$

But this condition is complicated and perhaps it would be simplier to say:

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=\max _{1 \leq \alpha \leq \beta} E_{\alpha} \sqrt{d+c^{2} / \sum_{j=\alpha}^{m} b_{j}} \tag{50}
\end{equation*}
$$

Case 3. $E_{\beta}>0$.
For the function z^{\prime} from case 1 there is $h_{m}\left(z^{\prime} ; a, b, c, d\right)>0$. Hence $H_{m}(a, b, c, d)>0$ and $E_{\alpha}>0$ because of (41). From (44) it follows then that

$$
\begin{equation*}
\alpha=\beta \tag{51}
\end{equation*}
$$

If $\beta=m$, we have

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=\frac{c a_{m}}{\sqrt{b_{m}\left(c^{2}+d b_{m}\right)}} \tag{52}
\end{equation*}
$$

From now on let $\beta<m$. It is easy to verify that
(53) $\frac{1}{2} \sum_{k=\beta}^{\prime \prime \prime} b_{k} z^{2}{ }_{k}-\frac{1}{E_{\beta}} \sum_{k=\beta}^{m} a_{k} z_{k}=\frac{1}{2 E_{\beta}^{2}}\left[\left(E_{\beta} \sqrt{\sum_{k=\beta}^{\prime \prime} b_{k} z_{k}^{2}+d}-h_{m}\right)^{2}-h_{m}^{2}\right]-\frac{d}{2}$
for all z which correspond the conditions (42) and (43). The right side of this equation is minimal exactly for that z for which the function h_{m} is maximal. Hence, if:

$$
\begin{equation*}
M=\min _{((22),(43)}\left[\frac{1}{2} \sum_{k=\beta}^{m} b_{k} z_{k}^{2}-\frac{1}{E_{\beta}} \sum_{k=\beta}^{m} a_{k} z_{k}\right] . \tag{5}
\end{equation*}
$$

then (53) is equivalent to

$$
\begin{equation*}
M=\frac{1}{2 E_{\beta}^{2}}\left[-H_{m}^{2}\right]-\frac{d}{2} \tag{55}
\end{equation*}
$$

or, explicitely,

$$
\begin{equation*}
\mathrm{H}_{m}(a, b, c, d)=E_{\beta} \sqrt{-d-2 M} \tag{56}
\end{equation*}
$$

The determination of M is a problem of quadratic programming and there is no need to discuss it here.

POVZETEK

Ce je tabelarično podana neka funkcija in jo aproksimiramo s funkcijo iz neke izbrane družine nekonstantnih funkcij, ustrezni korelacijski koeficient v splošnem ne more biti katerokoli stevilo med - 1 in 1 . V tem sestavku zato s pomočjo ekstremnih korelacijskih koeficientov definiramo mero za kvaliteto aproksimacije (definicija 1). Ekstremne korelacije izračunamo najprej za družino vseh nekonstantnih funkcij, nato pa še za družino rastnih funkcij. Medtem ko je prva naloga preprosta, pa pri rastnih funkcijah zahteva po monotonosti povzroči, da je iskanje ekstremnih korelacij reševanje nelinearnega programa. Tega eksaktno rešimo v Dodatku.

SUMMARY

If a function given by a table is approximated by a function from a certain family of non-constant functions, then, in general, the correlation coefficient cannot be any number between -1 and 1 . The aim of the study was to define a quantity that measures the quality of approximation of a function by calculating extreme correlation coefficients (Definition 1). Extreme correlations were calculated first for the family of all non-constant functions and then for the family of growth functions. The former is an easy task while the latter, due to the demand for monotonicity, becomes in fact a solving of a non-linear program, the exact solution of which is given in the Appendix.

REFERENCES

CEDILNIK A., 1986. Optimalna aproksimacija rastnih funkcij. Zb . gozd in les. 28, 5-16.
CHIANG, A. C., 1974. Fundamental Methods of Mathematical Economics. McGraw-Hill, Inc., Tokyo.
JETER, M. W., 1986. Mathematical Programming. Marcel Dekker, Inc., New York.
LUENBERGER, D. G., 1969. Optimization by Vector Space Methods. John Wiley \& Sons. Inc., New York.
PETRIĆ, J., ZLOBEC, S., 1983. Nelinearno programiranje. Naučna knjiga, Beograd.

