

## 



##   

E990.

## $0 \times t .144(497.12)$

## INŠTITUT ZA GOZDNO. IN LESNO GOSFODARSTVO

PRI BIOTEHNIŠKI FAKULTETI
V LJUBLLJANI

## KORELACIJA MED FIZIKALNIMI IN KEMIČNIMI LASTNOSTMI TER PRODUKTIVNOSTJO GOZDNIH TAL V SLOVENIJI

Şestavil:
Pavser ing. Marjan

1. Poman


Direktor: Kuder ing. Milan


$$
\text { Ijubljana, } 1973
$$



## Vsebina

stran

1. Uvod ..... I
2. Pedološke teronske in laboratorijske raziskovelne metode ..... 4
3. Značilnost gozdnih tal v Sloveniji ..... 8
4. Osnovne podnebne značilnosti Slovenije ..... 18
5. Dendrometrična metoda za primerjavo proiz- vodne sposobnosti tal na raziskovalnih ploskvah ..... 21
6. Statistična metoda ..... 25
7. Računanje odvisnosti zgornjih višin smreke, jelke in bukve od talnih lastnosti po postop- ku linesrne multiregresije z elektronskim računalnikom ..... 35
8. Klimatične značilnosti skupin reziskovalnih ploskev, sestavljenih po prvi obdelavi re- zultatov računanja multiregresije ..... 46
9. Podetki o klimi raziskovalnih ploskev za ra- čunanje multiregresije z elektronskim ra- čunalnikom ..... 48
10. Podatki o lastnostih povprečnih talnih vzor- cev raziskovalnih ploskev za računanje multi- regresije z elektronskim računslnikom ..... 58
11. Mejne vrednosti rezultatov analiz klimatično izensčenih skupin ..... 72
12. Soodvisnost zgornjih višin jelke s talnimi lastnostmi na istih raziskovalnih ploskvah, razdeljenih zaradi različnih tal ..... 73
13. Aritmetično sredina rezultatov analiz klima- tično izenačenih skupin ..... 74
14. T-test (\% zanesljivosti pozitivnege ali ne- gativnega vpliva lastnosti tal na višino obravnavahih dreves) ..... 14
15. Zaključki ..... 87
16. Literatura ..... 100

## U vod

V gozdnogospodarskih načrtih so za večino gozdov $V$ Sloveniji s pedoloskimi kartami prikazane tudi talne lastnosti. Posebno pri raziskavah in kartiranju tal, ki jih je izvršil Inštitut za gozdno in lesno gospodarstvo pri Biotehniski fakulteti, smo dali poseben poudarek onim lastnostim tal, ki odločilno vplivajo na ekološke pogoje gozdnega restiš̌̌a. Tako je lahko n. pr. neka talna lastnost pomembnejša za rast, kakor sam talni tip. To delo naj bi prispevalo k pravilnejšemu vrednotenju najrazširjenejših tal gospodarskih gozdov v Sloveniji in to posebej za smreko, jelko in bukev.

Mnogi avtorji so dosedaj že poizkušali bonitirati plodnost tal. Plodnost tal je njih sposobnost, da oskrbi rastlinstvo s potrebnimi količinami mineralnih snovi, z vodo in zrakom. To je kompleksno delovanje fizikalnih, kemičnih in bioloških lastnosti tal. Pri tem pa ne smemo pozabiti tudi na negativno delovanje nekaterih toksičnih snovi, ki so v gozdnih tleh se zelo malo raziskane.

Na kmetijskih površinah je moč dokaj ekzaktno oceniti plodnost tal in jo tudi točkovati, a tudi tukaj predvsem na $v$ ta namen postavljenih raziskovalnih ploskvah. $V$ naslednjem delu bomo govorili o proizvodni sposobnosti gozdnih tal, ki ni odvisna samo od talnih lastnosti, ampak tudi od klimatičnih pogojev, lastnosti matične podlage, lastnosti drevesnih vrst in gojenja gozdov. Poizkušali smo sicer deloma izločiti vpliv klime, tako da smo formirali klimatično podobne skupine. S tem, da smo vzeli zgornje višine zrelih sestojev, kot pokazatelja proizvodne spodobnosti tal, smo se tudi izognili vplivom na rast drevja, ki nastajajo zaradi različnega načina gojenja gozdov. Res, da smo se tako približali zopet pojmu plodnosti tal. Toda ob pravilnem izboru drevesne vrste glede na tal-
ne lastnosti, lehko proizvodno sposobnost gozdnega rastišča močno povečamo.

O boniteti gozdnega rastišča so poizkušali sklepati po fitosocioloških metodah: na severu se je obnesla Cajandrova metoda zaradi siromaštva gozdne flore, medtem ko se je v srednji Evropi uveljevila Braun-Blanquetova metoda. Na Inštitutu za gozdno in lesno gospodarstvo pri Biotehniški fakulteti smo razvili metodo kompleksne ocene gozdnega rastišča vseh činiteljev hkrati in smo jo tudi poskušali dokumentirati z dendrometričnimi meritvami sestojev. Vsekakor pa je najbolj zanesljivo merilo proizvodne sposobnosti gozdnega rastišča intenzivnost tistega priraščanja gozdnega drevja, ki ni odvisno od oblike sestoja. Najbolj dognane so zato danes za oceno gozdnega rastišča dendrometrične meritve.

To obsežno nalogo - za primer navajomo, da je bilo odvzetih blizu 1000 talnih vzorcev in izvršenih okoli 10000 laboratorijskih pedoloških analiz - sta financirala Poslovno združenje gozdnogospodarskih organizacij in Sklad Borisa Kidriča. Med potekom raziskav smo zaradi napovedi, da bo omogočena obdelava podatkov na velikem elektronskem računalniku Cyber 72 na Republiškem računalniškem centru, morali zbrati dodatne podatke. Mnogi podatki, ki smo jih zbrali, omogočajo še nadaljno obdelavo z različnih vidikov.

Zbiranje dendrometrične dokumentacije sestojev na raziskovalnih ploskvah je s sugestijami vodil izredni univ. profesor ing. Martin Čokl. Podatke o klimi na raziskovalnih ploskvah je obdelal dr. Milan Piskernik, ki je tudi posredoval fitocenološko opredelitev raziskovalnih ploskev. Sodelovala sta še ing. Niko Pehani in višji tehnični sodelavec Viktor Preželj.

Program za računanje multiregresije je izdelal mr. ing. Karel Kuzman, ki je s požrtvovalnostjo sledil pripravi po-
datkov in tudi zaključni obdelavi.

Pedološke laboratorijske analize sta izvršili tehnični sodelavki Frenčiška Hočevar in Zdenka Rakar.

Vsem sodelavcem se za požrtvovalno delo iskreno zahvaljujemo.

Nosilec naloge<br>Marjan ing. Pavser

Pedoloske terenske in laboratorijske raziskovalne metode

Terenske raziskave

Vpliv lastnosti tal na rast smreke, jelke in bukve smo proučevali na raziskovelnih ploskvah inštituta, kjer se vrŠe dendrometrične meritve večinoma že 15 let (za nekaj ploskev celo 20 let) in so bile meritve izvrsene vsakih 5 let to je najmanj 3-krat. Le na Gorskem krasu je nekaj ploskev, kjer so bile zgornje višine določene le po enkratnih meritvah. Sredstva, ki so bila na razpolago, niso dopuščala postavitev posebnih raziskovalnih ploskev za proučevanje vpliva tal na rast $v$ gospodarskih gozdovih na tako širokem območju Slovenije, kot smo ga zajeli.

Na raziskovalnih ploskvah, ki so večinoma velike približno 1 ha, smo po predhodnem sondiranju določili reprezentančne talne profile in jih opisali glede njihovih ge-. netičnih in ekoloških značilnosti. Ker tla nismo razvrstili samo po pedološki sistematiki, imenujemo nazive tal, talne enote. Tako imamo n. pr. isti talni tip posebej razvrsčen glede globine ali količine humusa. Ker je bil glavni namen naloge predvsem ugotoviti proizvodno sposobnost tal, je ostalo mnogo pedogenetičnih problemov odprtih (n. pr. detajlna definicija rjavih tal na apnencu in dolomitu). Iz reprezentančnih talnih profilov smo odvzeli talne vzorce posebej za kemično in v nekaterih primerih za fizikalno laboratorijsko analizo. Za določitev poroznosti in kapacitete za vlago, smo morali v zelo poroznih tleh odvzeti talne vzorce s cilindri in sicer $v$ treh repeticijah.

Mnoge raziskovalne ploskve talno niso homogene. Na nekaterih je bilo moč ločiti talne enote in za vsako posebej določiti zgornjo višino (vsa drevesa na raziskovalni ploskvi so oštevilčena). V nekaterih primerih pa so tla drobnopovrsinsko heterogena in zajema talna enota le po nekaj $\mathrm{m}^{2}$, tako da se korenine enega drevesa hkrati razraščajo po več talnih enotah. Skupine teh talnih enot imenujemo talne komplekse. Da bi tudi talne komplekse lahko statistično obravnavali,smo jim morali določiti vrednost po ključu za talne enote. To je bilo mogoče na osnovi števila sond pri odvzemu povprečnih talnih vzorcev. Tudi globino talnega kompleksa smo dolocili po naslednji formuli:

$$
G=\frac{T_{1} g_{1}+T_{2} g_{2}+T_{3} g_{3}}{g_{1}+g_{2}+g_{3}}
$$

$G=$ globina talnega kompleksa
$g=$ globina talne enote
$T=$ talna enota

Za statističen izračun vpliva talnih lastnosti na rast smreke, jelke in bukve smo uporabili rezultate analiz povprečnih talnih vzorcev. Povprečne talne vzorce smo odvzeli s pedološko sondo (modificirana holandska pedološka sonda) posebej za humozni in posebej za mineralni horizont. Razdalja med sondami je bila merjena s koraki. Povprečni talni vzorec je sestavljen iz tal $15-20$ sond; od tega je bil za laboratorijsko analizo odvzet potreben del s četrtinsko metodo. Povprečni talni vzorci so bili vzeti bodisi za homogeno talno enoto ali zo talni kompleks.

## Metode pedoloških laboratorijskih raziskav

Priprava zzorca: talni vzorci so sušeni pri sobni temperaturi. Vzorce smo drobili ročno v terilnici. Mlini za drobljenje gozdnih tal $v$ večini primerov ne pridejo $v$ postev, ker moramo pri drobljenju s pinceto sproti odstranjevati primesi (koreninice, stelja). Nato je določen \% skeleta s sejanjem na situ 2 mm .
pH smo določili elektrometrično $v \mathrm{n}-\mathrm{KCl}$ in dest. $\mathrm{H}_{2} \mathrm{O}$.

Zaradi prevelikega.števila spremenljivk talnih lastnosti $z a$ računanje multiregresije, smo uporabili samo rezultat $\mathrm{pH} v$ dest. $\mathrm{H}_{2} \mathrm{O}$.

Količino humusa smo določili po Kotzmann-u. Po tejmetodi smo dokončali analize humusa, ker so bili prvi vzorci naloge po njej analizirani in je tako možna enotna primerjava.

Celokupno količino dušika smo določili po mikro-Kjeldahl metodi in razklopom s selensko reakcijsko zmesjo.
\% ogljika smo dobili pri izračunu humusa.

Celokupne količine fosforja, kalija in kalcija smo določili z ekstrakcijo v $10 \%$ solni kislini 3 ure na vodni kopeli. Nato smo določili kalij in kalcij na spektrofotometru Beckman model $B$ in fosfor kolorimetrično po amonvanadatni metodi na istem aparatu.

Fiziološko aktivna fosfor in kalij smo določili po Almetodi.


Hidrolitično kislino in baze smo določili po Kappen-u in iz teh rezult tov izrsčunali zasičenost adsorbícijskega kompleksa z bazami (V \%).

Tekstura je analizirana po kombinirani mokrosejalni metodi in pipet metodi po Köhnu (določene so naslednje frakcije: 2-0,2, 0,2-0,02, 0,02-0,002 in 0,002 mm).

Kapaciteto za vlago in poroznost smo določili z aparatom s porozno in tlačno membrano po metodi Richards-a. Aparst smo izdelali za potrebe te naloge po načrtih, ki smo jih dobili na Gozdarskem inštitútu v Zürich-u. Le nekaj sestavnih delov smo morali uvoziti, večinoma pa je bil aparat izdelan v lastni mehanični delevnici. Kapaciteto za vłago in poroznost smo določali v 5 repeticijah. Ker so v gozdnih tleh zaradi korenin, rovov odmrlih korenin in rovov favne vzorci odvzeti s cilindri zelo neizenačeni, smo rezultate izrazili s celimi števili. (Prilagamo primer desorbcijske krivulje vlege $v$ tleh za raziskovalno ploskev Hudi kot na Pohorju). Stabilnost smo določali glede na čas razpadənja strukturnih agregatov v mirujoči destilirani vodi.

Značilnosti gozdnih tal v Sloveniji

Vpliv tlotvornih činiteljev.
Zaradi zelo različnih tlotvornih činiteljev - matične podlage, klime, reliefa, živega sveta in časa - so slovenske gozdne tla prave zbirka talnih enot. Na obravnavanih raziskovalnih ploskvah niso zajete vse tipološke enote, temveč le tla, ki najčešče nastopajo in zavzemajo največje gozdne površine.

Največ gozdov v Sloveniji je na apnencu in dolomitu, manj na eruptivnih kameninah. Precejšnjo površino flišnega laporja in peščenjaka pokrivajo grmišča in degradirani gozdovi v Slovenskem Primorju. V nižinah so gozdne površine, predvsem na za kmetijstvo manj produktivnih tleh, bodisi na plitvih tleh na prodnatih terasah ali na težkih zaglejenih tleh na glinestih nanosih. Ob rekah so na poplavnih območjih logi na manj razvitih lahkih naplavinah. Le-te so več ali manj karbonatne - kar je odvisno od kamenin porečij.

Matična podlaga daje odločilen pečat talnim lastnostim - predvsem fizikalnim. Zaredi izpiranja se namreč tla na mineralno bogati podlagi v razvoju često približajo lastnostim tal, ki se razvijajo na kameninah z malo količino hranljivih elementov, ali pa so ti v težko topni obliki. Odločilno pa vpliva kamenina na globino tal. Matična podlaga, ki hitro fizikalno prepereva npr. lapor, peščenjak, škriljasti gnajs, blestnik in keratofir, daje globoka, rahla, zracna tla. Tudi na miocenskih peskih in ilovkah prodira koreninje gozdnega drevja celo v sloje, ki imajo vse značilnosti matične podlage (C - horizont). Na apnencu in dolomitu so predvsem plitva humozns tla - rendzine, le na zaravnjenih legah, $v$ depresijah in razpokah kamenine najdemo tudi ilovnate do glinaste mineralne horizonte. Posebnost pri nas so vsekakor tla, ki se razvijajo na apnencu in dolomitu s primesjo roženca. Do določene stopnje razvoja tal roženec lahko kot težko topen skelet povečuje prepustnost tal za vlago. Vendar,kadar se ves ostali mate.rial kamenine raztopi in izpere in ostane samo še roženec, se razvijejo zelo kisla in z bazami siromašna tla, kljub temu, da leže na karbonatni podlagi. Prav pri takem primeru iramo pri nas najizrazitejši talni profil podzola na Pokljuki in Trnovskem gozdu.

V Julijskih in Kamniskih Alpah zavzema dokajšnje površine karbonatna morena. Tudi ta vsebuje često mnogo roženca, kar vpliva na razvoj tal. Ker prodirajo korenine
dreves na moreni lahko globlje in črpajo hrano in vlago med oblicami morene, smo domnevali, da so na moreni tla plodnejša. Vender raziskave na naših raziskovalnih ploskvah za smreko in jelko tega niso potrdile.

Izredno razčlenjen relief nedvomno močno vpliva na razvoj tal. Na strmih legah se zaradi erozije razvijajo le plitva mlajša tla, medtem ko so na zaravnjenih starejša, bolj razvita in globlja tla. Vpliv reliefa se pa kaže posredno tudi v različni klimi. Saj se zaradi velikih strmin že na majhni razdalji močno razlikujejo klimatični pogoji.

Prav gotovo je v slovenskih gozdovih posebnost drobnopovršinska rezgibanost reliefa. To se kaže predvsem na apnencu, manj pa na dolomitu. Na eruptivnih kameninah imamo večinoma dolga, nerazgibana pobočja z globokimi jarki. Ravno ta drobna površinska razgibanost reliefa na apnencu, ki je vsekakor tudi v povezavi s.kraškimi pojavi, je razlog, da moremo često prikazati tla le v obliki talnega kompleksa. Na grebenih med vrtačami imamo lahko na primer protorendzino in moder rendzino, na pobočju vrtače mulrendzino, a na dnu celo koluvialna zaglejena rjava tla - vse to le na razdalji nekaj desetin metrov.

Značilno je, da je človek občasno zmenjševal gozdno površino ali jo delno izkoriščal za kmetijske namene, a kasneje to negozdno površino zopet pustil zaresti z gozdnim restlinstvom ali jo celo pogozdil. Tosse odraža tudi na tleh. Okoli zelo naseljenih krajev z ekstenzivnim kmetijskim gospodarstvom je s steljarjenjem človek zelo osiromašil gozdna tla (v nižinskih gozdovih v Podravju, Fosavju in Pomurju, v Slovenskih goricah, Halozah, na Dolenjskem in $v$ Beli krajini). V planinskih predelih, kjer je močno razvita živinoreja, se predvsem zaredi hoje živine slabšajo tla. Na pobočjih se tvori stopničast mikrorelief in povečuje erozijo, a ne zaravnjenih legeh na srednje težkih in težkih tleh se površinski sloj stlaǩi, zmanjša se zrač-
nost tal ter začne proces zaglejevanja. Ker se ta proces vrši neposredno pod humoznim slojem, je ta tla na prvi pogled moč zamenjati s podzolom. Pri naših raziskavah smo jih uvrstili $v$ antropogeni stagnoglej.

Iz zgodovine je znano, da je ob naseljevanju naših krajev človek često požigal gozdove. Pri naših raziskavah in pedološkem kartiranju večjega dela naših gozdov pooglenelih ostankov nismo našli. Našli smo jih le poredko na majhnih površinah na Kočevskem. Najizraziteje se ti poogleneli ostanki pojavljajo tam, kjer je takšen sloj prekrit s koluvijalnimi tlemi. Ker je iz zapisov znano, da so bile večje površine gozdov izkrčene s požigenjem, lahko sklepamo, da so se tedanja tla vsaj delno erodirala in razvila nova, ali pa so ostanki požigenja sodelovali pri tvorbi tal.

V nižinskih gozdovih je dokazana tvorba prekritih talnih profilov. Prepričani pa smo, da. je pri proučevenju geneze tal tudi $v$ gorskih gozdovih potrebno posvetiti pozornost prekrivanju nekdanjih tal, ki so morebiti ostala v razpokeh ali depresijah. Mlajša tla so bila nanešena zaradi erozije $z$ vetrom, vodo in celo s pedofovno.

Zelo močan je tudi vpliv podrtic zaradi vetra na razvoj tal. Koreninski sistem dvigne formiren talni profil in ga premeša. Znano je, da pri nas veter podre naenkrat tudi več hektarov gozdov in popolnoma spremeni talni profil.

Orientacijski pregled tal.
Opis morfoloških, fizikalnih in kemičnih lastnosti tal raziskanih ploskev je razviden iz opisa tolnih profilov v prilogi. V tem sestavku bomo poudarili le nekatere značilnosti gozdnih tal v Sloveniji.

Nastanek Ěrnice (organogena rendzina) je pogojen s hladno klimo in kratko vegetacijsko dobo. Zato nastopa predvsem v višinskih legah in nastaja pri svojstveni pretvorbi rastlinskih ostankov, ki se kopičijo na kamenini.

Značilna je izrazito črna barva. Makroskopsko. ni opaziti rastlinskih delcev. Ker mineralna komponenta pri nastanku teh tal še ne sodeluje, so tla disperzns in brezstrukturna. Ne našem področju izjemoma lahko najdemo na teh tleh lepe bukove sestoje, sicer pa so poraščena le s pionirskimi grmisisci.

Tvorba moderrendzine je posledice neugodnih pogojev za razvoj tal. V dolgem hladnem zimskem obdobju se prekine delovanje mikroflore, a poleti plitev rahel humozni sloj ne zadrži zadosti vlage in.se v njem nasele predveem plesni in zastopniki pedofavne, ki rastlinske delce samo zgrizejo in jih ne predelajo. Vseeno najdemo med delci z ohronjeno celično strukturo tudi nekaj koprolitov in karbonatnih peščenih zrnc. Globina tel je do $20 \mathrm{~cm} . \mathrm{V}$ pogledu sposobnosti za gozdno proizvodnjo jih lahko le slabo ocenimo. Humus je kisel in ima malo rezerve hronilnih snovi. Predvsem pa je kritična oskrb z vlago, saj se že v nekaj dnevih po dežju tla popolnome osuše.

Na legah, kjer je omogočeno trajnejše delovanje tlotvornih procesov, se organska snov popolnoma pretvori in veže $z$ mineralnimi koloidnimi delci v novo kompleksno spojino mulrendzino (sprstenina - organomineralna rendzina). Fogoj za tak razvoj pa je, da je humozni sloj vedno svež, a še dovolj zračen, tako da so življenjski pogoji za mikrofloro in mikrofevno optimalni. Površina tal mora biti dovolj zasenčena, a rastlinstvo sestavljeno tako, da ni ekstremnega kopičenja stelje. Fod takimi pogoji nastene mulrendzina, ki je zelo plodna, povprečna globina tal je okoli 25 cm .

Slabo humozna mulrendzing: to talno enoto smo iz izločili semo zarełi manjšega odstotka humusa (manj od 10\%). Kljub temu, da je količina mineralnega dela večja, je neko-
liko kompaktnejša, sicer pa istih lastnosti kakor mulrendzina.

Mulrendzina s_površinskim slojem humusa oblike moder je posledica gospodarjenja z gozdovi, kadar se talna površina za več let izpostavi poletni sončni pripeki in osuševenju površinskega sloja.

Koluvij rendzin je reliefno pogojen in nastopa ob vznožju pobočij in na dnu kotanj ali vrtač. Ker so tla nanešena, so rahla, vsebujejo apnen skelet in so globoka tudi do en meter.
R.java tla (tipični kalkdkombisol) se tvorijo iz netopnega ostanka apnenca. Ta tla so zelo stara, saj je po ugotovitvah dr. Werner-ja za nastanek 1 cm . globokih mineralnih tal iz apnenca s $7 \%$ netopnega ostanke, potrebno okoli 2000 let pri neših klimatičnih pogojih. Za nastanek 50 cm globokih mineralnih tal je potrebno torej okoli 100.000 let. Za rjava tla je značilen $A /(B)$ talni profil. Humozni $A_{I}$ horizont je različne globine in humus je mul-oblike. Mineralni horizont je ilovnato glinaste teksture in grudičaste strukture. Zaradi ekoloških razlik smo posebej ločili tla, ki so plitvejša od 30 cm in jih označili kod plitva rjava tla, Kadar se rjava tla zaradi erozije nenašajo, so globoka tudi nad 60 cm , imajo globlji humozni horizont in več hranilnih snovi. Taka tla imenujemo koluvislna rjava tla.

Na naših raziskovalnih ploskvah na moreni s primesjo roženca ali keratofirja se tvorijo tla, ki so po morfoloških in kemičnih lastnostih zelo slična tlem na kisli matični podlagi. Značilen je sloj surovega humusa, izbeljen $A_{2}$ horizont in pas iluviacije huminskih kislin; ločili smo slebo podzoljena in podzoljena rjave tla glede na izraženost procesa podzoljenja. Na eni od raziskovalnih ploskev nastopajo atipična tla z zaglejenim B-horizontom, ki smo jih imenovali zasle.jena podzoljena rjava tla. Ta proces zaglejevanja je atipičen, saj se ploskev nahaja na področju nekdanjega
ledeniškega delovanja in je ta sloj posledica reliktnih tal, ali pa so redukcijski procesi nastali zaredi stalnega vlaženja s snežnico.

Lesivirana (ilimerizirana - luvisol) rjova tla so diferencirana na $A_{1}, A_{2}$, $B$ in C - horizont. Za tvorbo tal je značilen proces lesiviranja. Fri tem procesu se glina izpira od zgoraj navzdol in nastaja kompaktnejši B- horizont. Na naših raziskovalnih ploskvah je humozni $A_{1}$ - horizont večinoma slabo izražen. Kadar nastopajo lesivirana tla na pobočjih, vsebujejo skelet apnenca ali roženca in so nekoliko rahlejša, zato smo izločili posebno talno enote; skeletoidna lesivirena rjava tla. Ta lesivirana rjava tla so bila v nekaterih elaboratih često opisana kot podzoljena rjava tla. Ker pa je po vsem profilu odnos $\mathrm{SiO}_{2}: \mathrm{R}_{2} \mathrm{O}_{3}$ enak, to dokazuje, da v teh tleh ni procesov podzoljenja.

Fri naših ekoloških raziskavah in primerjovi povezave tal in rastlinstva, smo zadržali talni tip, opisan po Kubieni kot terra fusca. Odlikuje se po veliki količini gline in je plastične konsistence. Kadar je površinski sloj rahlejši in spodnji vsebuje več gline, imenujemo taka tla lesivirana terra fusca. Nanos terrae fuscae je globlji, ilovnato glinaste teksture in se v njem pogosto pojavljajo zaradi slabe zračnosti že znaki zaglejevenja. Imenovali smo ga koluvij terrae fuscae.

Antropogeni stagnoglej se na naših raziskovalnih ploskvah razvija na karbonatni moreni in sicer iz plitvih rjavih in srednje globokih rjavih tal. Zaradi tlačenja površinskega sloja pri paši živine, nastaja neposredno pod humoznim horizontom izrazit, nekaj centimetrov globok zaglejen horizont svetlo sivkaste barve. (B) horizont ima navadno značilnosti rjavih tal, le pri globokem antropogenem stagnogleju se pojavljajo sivkaste lise zaglejevanja tudi v (E) horizontu.

Vpliv površinskega zaglejevanja se kaže pri pomlajevanju smreke. Na dvignjenem mikroreliefu, kjer je zaglejevanje menj izrazito, se smrekョ še pomlajuje, medtem ko v vmesnih depresijah pomlajevanja ni,zaradi slabše zračnosti v površinskem sloju.

Ranker (humusna silikatna tla) smo opisali na emfibolitu. Tla imajo A/C profil in so srednje globoka. Rahel, kisel, dobro prekoreninjen humozni horizont leži neposredno na matični podlagi. Oblika humusa je delno prhninastega in delno sprsteninastega značaja. Humus je pomešan s peščenimi zrnci in s skeletom. V prehodnem AC horizontu prevladuje skelet.

Kisla rjave tla (distrični kambisol) zevzemajo največje površine na eruptivnih kameninəh pri nas na Pohorju. Ker je fizikalno preperevanje matične kamenine močnejše od kemičnega, so večinoma rahla, globoka, peščena in skeletna; drenažnost je dobra. Znečaj humusa je kisel, a preperevanje rastlinskih ostankov nepopolno, tako, da je v humusu delno ohranjena celična struktura. Tla imajo A-(B)-C profil, vendar je humozni horizont večinoma že diferenciran na gornji površinski prhninast sloj, ki postopno prehaja v sloj z več sprstenine. V kemičnem pogledu so tla zelo kisla in siromašna s hranilnimi snovmi. Kisla rjeva tla se lahko zaradi izpiranja in tvorbe surovega humusa razvijejo v podzoljena kisla rjava tle. Te talni profil se diferencira na sloj surovega humusa (AO), izbeljen sloj izpiranja $A_{2}$, sloj iluvijacije huminskih kislin $\mathrm{B}_{1}$ in prehodni BC - horizont. Na strmejših legah so zaradi erozije procesi podzoljenja manj izraziti. Ker se tla nanašajo, imajo globlji profil. Imenovali smo jih slabo podzol.jena koluvialna kisla rjava_tla.

V Sloveniji najdemo le poredko izrazite talne profile podzola. Predpogoj za razvoj je kisla matična podlaga. Na primer na Pohorju, kjer so dani pogoji tudi za tvorbo surovega humusa, ki s huminskimi kislinami pospešuje zakisovanje in izpiranje, se tvori humusni podzol. Zanj je značil-
no kopičenje huminskih kislin pod izbeljenim $A_{2}$ horizontom. Ker tla ne vsebujejo mnogo koloidnih delcev, je B-horizont še vedno rahel. Dobro izražen profil humusno železnega podzola smo v Sloveniji ugotovili na primer na moreni, ki vsebuje mnogo roženca. Ko se apnena komponenta izpere, se tla moc̆no zakisajo, tvori se surovi humus in izrazit pepelast horizont izpiranja. Pod njim je nekaj centimetrov globok sloj, kjer se izloča železo rjaste barve. そ̌elezo se v tem slučaju ne izloča v obliki konkrecij, ampak veže skeletna tla enakomerno, zato je talni sloj kompakten ("Orterde"). Kot posebnost lahko omenimo še humusno železni podzol na keratofirju. Ugotovljen je le na majhni površini. Fod izrazitim slojem surovega humusa, pepelnatim slojem in slojem iluviacije huminskih kislin čokoladne barve se izloča trovalentno železo. Izloča se v obliki rjaste do enega centimetra debele skorje neposredno na matični kamenini ali skeletu keratofirja ("Bändchenpodsol"). Tak profil smo opisali na Jelovici.

Psevdoglejnastopa v Sloveniji predvsem v nižinskih gozdovih, ki smo jih v našem elaboratu zajeli le z manjšim številom raziskovalnih ploskev. Za razvoj psevdogleja so potrebni pogoji, ki omogočajo občasno menjevanje procesov redukcije in oksidacije $v$ tleh. Ravno zaradi tega razloga jih na plitvih skeletnih tleh v višinskih gozdovih s hladno in vlažno klimo ne najdemo. Psevdoglej ima $A_{1}-, A_{d}-$, $\mathrm{Bg}-\mathrm{C}$ profil (ali Ag - Bg - C). V okoli 20 cm globokem humoznem horizontu $A_{1}-$ je humus sprsteninaste oblike (mul-humus). Pod njim sledi bolj ali manj izražen $A_{o}$ horizont, kjer še prevladujejo oksidacijski procesi. Nato sledi Bg ehorizont, ki vsebuje večinoma več koloidnih delcev kakor zgornji horizonti in ima značilno sliko vertikalne marmoracije rjasto rjavih in sivomodrikastih lis, ki nastajajo ob razpokah ali ob koreninah zaradi menjavanja oksidacijskih in redukcijskih ppocesov. Pri proučevanju psevdogleja pa moramo $v$ Sloveniji upoštevati, da dajejo povsem podobno sliko često tudi prekriti talni profili.

Pregled kemičnih lastnosti pogosto nastopajočih gozdnih tal v Sloveniji (po povprečnih vzorcih raziskovalnih ploskev za humozni in mineralni horizont)

| Tek. stt. | Talni tip | ho-rizont | glo- <br> bina <br> (cm) | $\begin{aligned} & \mathrm{pH} \mathrm{v} \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$ | $\begin{gathered} \text { \% } \\ \text { humusa } \end{gathered}$ | $\begin{aligned} & \% \\ & \mathrm{~N} \end{aligned}$ | $\mathrm{C}: ~ \mathrm{~N}$ | Celokupna količina v \% |  |  | $\begin{gathered} \text { Fiziološko aktivna v } \\ \mathrm{mg} / 100 \mathrm{~g} \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{K}_{2} \mathrm{O}$ | CaO | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{K}_{2} \mathrm{O}$ |
| 1 | Crrnica | hum. | 0-15(20) | 5, 40-6, 10 | 15,47-23,94 | 0, $25-0,51$ | 27,21-34,00 | 0,001-0,075 | 0, 080-0, 100 | 0,090-0,245 | 0,50-0, 80 | 2, 0-8, 0 |
| 2 | moderrendzina | hum. | 0-10(15) | 4, 45-4,97 | 30, 0-36, 88 | 0,89-1, 08 | 19, 31-19, 55 | 0,074 | 0,037-0, 073 | 0,175 | 4, 62-4, 88 | $10,75^{7}$ |
| 3 | mulrendzina | hum. | 0-8(30) | 4,90-7, 30 | 11,54-26, 61 | 0,30-1, 02 | 13, 56-25, 80 | 0,022-0, 122 | 0, 035-0, 135 | 0,125-2, 072 | 0,50-3,25 | 1,60-10, 65 |
| $4$ | mulrendzina s površ. slojem humusa oblike moder | hum. | 0-10(35) | 4,76-6,30 | 13, $69-26,31$ | 0,23-0,90 | 14, 65-34, 53 | 0,018-0,093 | 0016-0,088 | 0, 039-1, 10 | 0,94-3,33 | 2,75-13,30 |
| 5 | plitva rjava tla | hum. <br> $\min$. | $\begin{aligned} & 0-5(20) \\ & 5(20)-25(35) \end{aligned}$ | $4,15-6,00$ | $20,05-39,30$ | $0,53-1,23$ | $17,94-23,02$ | $0,011-0,124$ | $0,078-0,150$ | $\begin{aligned} & 0,075-0,175 \\ & 0 \end{aligned}$ | $2,01-5,12$ | $15,2-19,89$ |
|  |  |  | 5(20)-25(35) | $5,45 \cdots 6,40$ | $2,10-8,12$ | $0,20 \sim 0,27$ | $11,30-18,63$ | $0,054-0,061$ | $0,066 \cdots 0,111$ | $0,100-0,387$ | $0,37-0,63$ | $0,8-5,80$ |
| 6 | lesivirana rjava tla | hum. <br> min. | 0-2(15) | 4, 20~5, 60 | 12,80-21, 45 | 0,42-0, 58 | 13,18-28, 28 | 0, 051-0, 069 |  | $0,075-0,137$ | $1,16 \cdots 2,55$ | $8,0-19,9$ |
|  |  |  | 2(15)-45(80) | 4,48-5, 63 | 1,91-5,11 | 0,007~0, 02 | 6, 00-19,11 | 0, 030-0, 061 | 0, 045-0, 111 | $0,087 \ldots 0,150$ | $0,57-1,30$ | $1,3-8,1$ |
| 7 | ranker | hum. | 0-30(40) | 4, 00-4, 55 | 19, 0-25, 0 | 0,93~1, 06 | 10,39-15, 49 | 0,084-0,137 | 0,028-0,064 | 0,100-0,112 | 0, 83-2,48 | 16, 60-19, 28 |
| 8 | kisla rjava tla | hum. | --5(25) | 4, 10~4, 78 | 10, 00-18, 00 | 0,030~0,09 | $011,95-19,33$ | 0,073-0,116 | 0, 042-0, 067 | 0, 062m0,100 | 0,50-3,28 | 2, 60-19, 30 |
|  |  | min. | 5(25)-80(99) | 4,50-4,98 | 1,96-13,25 | 0,012-0,030 | 90,27-28, 69 | 0,077~0,116 | 0,043-0, 057 | 0,062 0, 11 | 0, 05-0,96 | 2, $02-4,18$ |
|  | slabo podzoljena kisla koluvialna rjava tla | hum. | 0-7(16) | 4, 05-4, 10 | 15, 00-25, 30 | 0,74-0, 80 | 11, 82-18, 29 | 0,114-0,133 | 0,088-0,125 | 0,062-0, 125 | 1,16-2,15 | 13, 33-17, 60 |
|  |  | min. | 7(16)-35(40) | $4,65-4,80$ | 5, 79-8, 81 | 0,74-0, 80 | 10, 03-12, 40 | 0,064-0,094 | 0, 088-0,125 | 0,062-0,150 | 0,63-1,30 | 3, 60-4, 80 |
|  | podzoljena kisla rjava tla | hum. | 0-5(27) | 3,45-4,21 | 10, 0-28, 56 | 0,2-0,99 | 16,52-29, 00 | 0,071-0,162 | 0,042-0,095 | 0,050-0, 112 | 1, 23-4, 19 | 9,64-19,90 |
|  |  | min. | 5(27)-35(99) | 3,87-4,90 | 2,00-8, 64 | 0,1-0,26 | 11, 60-20, 64 | 0,033-0,138 | 0, 042-0,172 | 0,050-0,137 | 0,37-2,00 | 2,25-3,05 |
|  | psevdoglej | hum. | 0-4(15) | 4,18-4, 75 | 13,90-15, 00 | 0,46~0, 60 | 13, 85-17, 61 | 0,078~0,154 | 0,050-0,056 | 0,075-0, 100 | 0,63-5,18 | 7,90-15, 88 |
|  |  | min. | 4(15)-80(99) | 4,30-4,95 | 1,63-3, 08 | 0,09-0,16 | 12,57-17, 33 | 0,038-0,08 | 0,035-0,050 | 0, 075-0, 100 | $\therefore, 0,16 \cdots 0,123$ | 3, 05-5, 45 |

## Osnovne podnebne značilnosti Slovenije

Klimatolokki del ekologije raziskovalnih ploskev smo preizkušali zajeti analitično glede tistih činiteljev, ki po nǎisih dosedanjih izkušnjah najbolj izrazito vplivajo na rast.drevja, hkrati pa so v prostoru velikopotezno razvrščeni, tako.da se ne spreminjajo bistveno. Ker za posamezne. raziskovalne ploskve nimamo konkretnih podatkov o klimi, so zato vsi naši podatki mezoklimatskega značaja. Med te podnebne elemente sodijo podnebne lastnosti vegetacijske dobe in sicer trajanje poletne sušnosti in količina padavin v poletnih mesecih: junij, julij, avgust. .K tem podatkom smo dodali še relativno toplotno stopnjo, tako da smo dobili območja, ki imajo v enakih nedmorskih višinah približno enako poprečno toploto in pa temperaturno karakteristiko najtoplejšega polletnega mesecs, tj. poprečni dnevni temperaturni maksimum in minimum.

Da bi smiselno obvladali množico teh podatkov in jih urejeno prikazali kartografsko, smo najpreje razčlenili ozemlje Slovenije v območja po podobni stopnji sušnosti. Po tem kriteriju se členi Slovenije v tri območja:

1) v poleti dobro nemočeni severni pas, ki zejema celotno alpsko območje in severni del severovzhodne Slovenije.
2) v slabše namočeno osrednje območje, ki obsega Folhograjske Dolomite in Ljubljansko kotlino in večji del Dolenjske in
3) v še slabše.namočeni južni del, ki zajema Primorsko, Gorski kras, južno Dolenjsko in južne dele severovzhodne Slovenije.

Ti podatki so prikazani v priloženih tabelah in kartah Slovenije. Izračunali smo jih na podlegi posameznih podatkov publikacij republiškega in zveznega meteorološkega zavoda. Podatki obsegajo razdobje med letom 1953 in 1961.

Vrednosti podatkov o posameznih podnebnih lastnostih se v prostoru spreminjajo v pasovih v katere smo vključili raziskovalne ploskve in jih s tem klimatsko opredelili.

V kolikor je za posamezne ploskve navedena samo ena vrednost, pomeni to približno srednjo vrednost razponov.

Pri opisih talnih profilov so prikazane se nekatere druge podnebne značilnosti, ki določajo osnovne podnebne kategorije. Navedena je ena izmed glavnih podnebnih enot, ki temeljijo na padavinskem razporedu po mesecih. Glavne podnebne enote so od morja proti Fanonski nižini.

1 Primorsko podnebje
2 Pregredno podnebje
3 Folcelinsko podnebje
4 Zaledno podnebje
51 Celinsko podnebje
Razpored padavin po mesecih je prikazan na naslednji. način. Najpreje so z zaporednimi številkami navedeni meseci s padavinskimi vrhunci. Nato dva meseca z obema osnovnima padavinskima upadkoma in končno meseci, katerih količine padevin so višje od najmanjših (v februarju ali januarju), toda nižji od padavinskih količin.v juliju. Frimer formule za primorsko podnebje 3, 5, 6, 9, 10, ll-2n71,12.

Frimer zalednega podnebja 3, 4. 5, 6, 9, 10, 11 - 2n7 - 1, 3, 4, 11, 12

Frimer polcelinskega podnebja 5, 6, 7, 8, 9, 10, -2n7-1, 2, 4, 5, 9, 10, 11, 12

Frimer celinskega podnebja 7, 8 - 1
Relativne toplotna karakteristika, tj. toplota reducirana na morsko gladino obsega naslednje stopnje:

Reảucirena poprečna letna toplota l2,1 - 14,2 -- izredno toplo (IZT)

$$
\begin{aligned}
& 10,9-13,2 \text { - zelo toplo (ZT) } \\
& 10,1-12,0 \text { - toplo (T) } \\
& 9,7-11,3 \text { - zmerno toplo (ZT) } \\
& 9,0-10,7 \text { - zmerno hladno (ZH) } \\
& 8,1-9,6 \text { - hladno (H) }
\end{aligned}
$$

Orientacijski kartografski prikaz posameznih podnebnih lastnosti daje za leta 1953-1961 naslednjo m sliko:

Poletne sušne periode.
Razpored trajanja sušnih period v poletnih mesecih je zonalen. V Primorju, zlasti v Koprščini, so suše najdaljše in postajajo proti notranjosti vse krajše. V notranji Sloveniji so najdaljše v Beli Krajini, odtod pa se v severovzhodni smeri spreminjajo v več pasovih. Spočetka so krajse, toda v zaledju Istre se ponovno podaljšujejo, in sicer v nepretrganem pasu skozi južno Primorje vse do madžarske meje. Proti severu se spet krajšajo in so zelo kratke v zaledju Tržaškega zaliva, potem pa se ponovno podaljŠajo in so v Alpah najkrajše. Razmerje med najdaljšimi in najkrajšimi sušami je 2.75 : 1.

Poletne padavine.
Količina poletnih padavin je najmanjša v južnem Pomurju in v Koprščini in se veča $v$ smeri proti Alpam. Najvišja je v breginjskem kotu. Razmerje med največjimi in najmanjšimi poletnimi padavinami je 3.25 : 1.

Minimalna relativna poletna zračna vlaga.
Področja razmeroma visoke poletne zračne vlage leži-• jo po eni strani $v$ gorskih predelih z vrhuncem okrog Triglava in na Pohorju, po drugi strani pa v zaledju Tržaškega zaliva in v podaljsku alpskega roba $v$ Slovenske gorice in severno Pomurje. Vmes je v Primorju in v dolini

Soče, še posebno v spodnji Vipavski dolini, v zaledju Reškega zaliva in v pasu neposredno južno od Alp pa je poletna vlažnost manjša. Razpon med najvišjo in najnižjo vlago je $30.3 \%$.

Poletna toplota.

Poletni temperaturni maksimum upada iz najnižjih v najvišje lege, pri cemer pa je treba poudariti, da je Pomurje hladnejse kot vse druge nižine. Koprščina, Vipava, Bela Krajina so najtoplejša območja in so enako topla. Razpon med največjo in najmanjšo toploto je $18.7^{\circ}$.

Poletni temperaturni dnevni minimum je najmilejši $v$ Primorju in nekoliko manj v Beli Krajini, ob Sotli ter v Pomurju, večjem delu Slovenskih goric in na Dravskem polju. Posamezne stopnje naraščajočega hladu segajo naj bolj globoko proti Alpam tesno ob njihovem robu : stopnja $17^{\circ}$ do Konjic, stopnja $16^{\circ}$ do Gornjega gradu, stopnja $15^{\circ}$ do Bleda. Razpon med najmilejšimi in najostrejšimi minimi je $16.8^{\circ}$.

Dendrometrična metoda za primerjavo proizvodne sposobnosti tal na raziskovalnih ploskvah

Kot pokazatelja proizvodne sposobnosti tal na raziskovalnih ploskvah smo izbrali "zgornjo višino" drevja (po Assmanu), da bi se izognili vplivom na rast drevja, ki nastajajo zaradi različne gostote sestojev oziroma zaradi različne intenzitete redčenj. Upoštevane so bile torej visine najdebelejših in v prebiralnem sestoju hkrati najstarejših dreves, pri katerih višinska rest ni ovirana zara-
di zasenčenja. Da ne bi nastale razlike zaradi različne starosti enodobnih sestojev (višinska krivulja enodobnega sestoja se s starostjo dviga), smo med njimi izbrali le starejše, $v$ glavnem nad 100 let stare sestoje, ko višinska rast že pojema. Razlike v starosti upoštevanih sestojev se gibljejo od $\pm 5$ let do $\pm 20$ let; večja odstopanja so pri starejsih, manjša pa pri mlajših, okrog 90 - 100 let starih sestojih. Pri prebiralnih sestojih pa se višinska krivulja z leti ni bistveno spreminjala, saj ni bilo večjih sprememb $v$ strukturi sestojev po debelinskih stopnjah, samo gospodarjenje na raziskovalnih ploskvah pa je bilo dokaj enotno.

Po drevesnih vrstah, ki so v primerjavi z dominantnimi le malo zastopane (običajno je to bukev, ki životari pod krošnjami jelke in smreke ali pa je vsaj delno zasenčena in ovirana $v$ rasti), smo bonitirali le ploskve, kjer je bukev zastopana z najmanj $35-40 \%$ in je mešenost vsaj deloma skupinska. Sicer pa je v mešanih sestojih bukev običajno potisnjena in je je največ v nižjih debelinskih stopnjah. Tudi pri mešanih sestojih smreke in jelke smo obravnavali le tiste, kjer je ena in druga vrsta dovolj zastopana.

Vse višine so bile merjene $z$ višinomerom Blume-Leiss (srednja napaka $\pm 1 \%$ ). Za izdelavo višinske krivulje je bilo na vsaki ploskvi izmerjenih vsaj 60 dreves.

Pri enodobnih sestojih so bile po izmerjenih višinah najprej izračunane srednje vrednosti po 5 cm debelinskih stopnjah, te pa izravnane po enačbi parabole druge stopnje:

$$
h=a+b d+c d^{2}
$$

(h = višina, $d=$ prsni premer). S pomočjo tako izravnanih višin je bila izračunana srednje višina (ponderirana aritmetična sredina) $20 \%$ najdebelejsih dreves. Posamezna naj-
debelejša drevesa, ki so presegala običajne največje premere, niso bila upoštevana (upoštevana je bila le sklenjena frekvenca po centimetrskih stopinjah).

Pri prebiralnih sestojih naj bi imela višinska krivulja praviloma "S" obliko; vendar ṿ našem primeru nima nobena krivulja višin prebiralnih sestojev izrazito majhnih višin pri drevju nižjih premerov, kot je to primer pri do 100 let starih kapnikih. Po izmerjenih višinah so bile podobno kot pri enodobnih sestojih izračunane srednje višine po debelinskih stopnjah. Te vrednosti so bile izravnane po enačbi:

$$
h-1,3=\frac{d^{2}}{a+b x+c x^{2}},
$$

zgornja višina pa je bila računana za zgornjo tretjino dreves nad meritvenim pragom 30 cm .
$V$ primerih, ko je bila raziskovalna ploskev zaradi neenotnih tal skartirana in tako razdeljena na 2 ali 3 dele, je bila za vsak posamezni del posebej izračunana krivulja višin kot izraz lastnosti tal, ki vplivajo na rast. Celotna ploskev je namreč pod vplivom enih in istih klimatskih činiteljev, gospodari se na vsej površini enako, starost drevja je enotna, višine meri isti merilec $z$ istim višinomerom, tako da je kljub možnim napakam v vrednosti primerjava med enim in drugim delom ploskve možna. Pri nekaterih talno neenotnih ploskvah je bi10 potrebno izločiti le manjše površine (običajno vrtače), za katere pa se zaradi premajhnega la izdelati krivulja višin. Tu je bila možna le primerjava med krivuljo višin za celotno ploskev - talni kompleks - in med krivuljo za večji enotni del površine.

Druge vrednosti za primerjavo proizvodne sposobnosti tal so bile izračunane takole:

1. Višinski prirastek - Iz individualnih vrednosti za posamezno ploskev je bil izračunan odnos med premeri in višinami dreves oziroma višinska krivulja kot funkcija oblike:

$$
h-1,3=\frac{d^{2}}{a+b d+c d^{2}}
$$

V primerih, ko tako izrevnana krivulja v skrejnem desnem delu upada, je bila izravnana s funkcijo oblike:

$$
h-1,3=\frac{d}{a+b d}
$$

S pomočjo tako izravnanih vrednosti višinske krivulje in na podlagi podatkov o detelinskem prirastku je bil z Mayerjevo tarifno-diferenčno metodo izračunan višinski prirastek.
2. Debelinski prirastek - Kot poprečni debelinski prirastek dreves za gornje tretjine dreves je bila upostevana aritmetična srednja vrednost debelinskih prirastkov tega razreda. Posamezne vrednosti pa so bile ugotovljene iz krivulje debelinskih prirastkov, analitično izravnane kot parabola druge stopnje oblike:

$$
d^{\prime}=a+b d+c d^{2}
$$

3. Volumni prirastek - S pomočjo izravnane višinske krivulje in $z$ dvovhodnimi deblovnicami je bila izdelana volumenska krivulja. Iz vrednosti te krivulje ter iz vrednosti izravnanih debelinskih prirastkov so bili po Mayerjevi tarifno-diferenčni metodi-diferenčni metodi izračunani volumni prirastki.

## Statistična metoda

1. Linearna multiregresija

Linearna multiregresija je linearna povezava odvisne spremenljivke y $z k$ med seboj neodvisnih spremenljivk $x$. Dobimo jo na podlagi eksperimentalnih rezultatov. Če smo za ugotovitev nam še nepoznane odvisnosti med $y$ in $x_{1}, x_{2}$, ... .. $x_{k}$ napravili $N$ poizkusov, lahko rezultate teh poizkusov zapišemo $v$ obliki $N$ enačb

$$
\begin{aligned}
& y_{1}=B_{0}+B_{1} x_{11}+\beta_{2} x_{21}+\cdots \cdots+\beta_{k} x_{k_{1}}-e_{1} \\
& y_{2}=B_{0}+B_{1} x_{12}+\beta_{2} x_{22}+\cdots+\beta_{k} x_{k 2}-e_{2}
\end{aligned}
$$

$$
\begin{equation*}
y_{u}=\beta_{0}+B_{1} x_{1 u}+B_{2} x_{2 u}+\cdots \cdots+\beta_{k} x_{k u}-e_{u} \tag{I}
\end{equation*}
$$

$$
y_{N}=\beta_{0}+\beta_{I} x_{1 N}+\beta_{2} x_{2 N}+\cdots \cdots+\beta_{k} x_{k N}-e_{N}
$$

kjer so

$\mathrm{x}_{1 \mathrm{u}}, \mathrm{x}_{2 \mathrm{u}}, \mathrm{x}_{\mathrm{ku}}$ - izmerjene vrednosti k neodvisnih spremenljivk pri u- tem preizkusu,
$B_{1}, B_{2}$ k - faktorji, ti predstavljajo jakost vplive pripadajoče neodvisne spremenljivke na odvisno,
$e_{1}, e_{2}, e_{u}, e_{N}$ - napake pri vsaki meritvi.

Zaradi dejstva, ker se konstanta $\beta_{0}$ pojavlja v enaki enač-
bi, je z matematičnega stališča prikladno, da uvedemo izmišljeno spremenljivko $x_{o u}$, ki pa ima pri vseh preizkusih enako vrednost +l. Tako dobijo enačbe l obliko

$$
\begin{equation*}
y_{u}=\beta_{0} x_{o u}+\beta_{1} x_{1 u}+\beta_{2} x_{2 u}+\ldots \cdots+\beta_{k} x_{k u}-e_{u} \tag{2}
\end{equation*}
$$

Enačbo, ki bi najbolje ustrezala tem $N$ vsotem oziroma tem $\mathbb{N}$ poizkusom, dobimo tako, da zahtevamo, naj bo vsota kvadratov odstopanj vseh $N$ enačb sistema l od nje minimalna. Ta enačba je seveda podobno zgrajena, le da faktorje $k$ nadomestijo njihove nepristranske ocene $b_{k}$. Pogoj se torej napiše kot

$$
\begin{equation*}
\underset{I}{N}\left(y_{u}-b_{o} x_{o u}-b_{I} x_{l u}-\cdots \cdots-b_{k} x_{k u}\right)^{2}={\underset{I}{S}}_{N}^{N} e_{u} \tag{3}
\end{equation*}
$$

kjer pomeni
N
S - vsoto vseh vrednosti od 1 preko u do N.

Minimum dosežemo, če so prvi odvodi enačb 3 po faktorjih $b_{o}, b_{1}, b_{k}$ enako nič, torej

$$
\begin{align*}
& \stackrel{N}{N} \underset{1}{N} \frac{\partial e_{u}}{\partial b_{o}}=\stackrel{N}{S}\left(y_{u}-b_{o} x_{o u}-\ldots\left(-b_{k} x_{k u}\right) x_{0}=0\right. \\
& {\underset{S}{S}}_{N}^{N} \frac{\partial e_{u}}{\partial b_{1}}=\stackrel{N}{S}\left(y_{u}-b_{o} x_{o u}-\ldots \ldots-b_{k} x_{k u}\right) x_{1}=0 \tag{4}
\end{align*}
$$

${ }_{\mathrm{S}}^{\mathrm{S}} \frac{\partial e_{u}}{\partial b_{k}}=\stackrel{N}{S}\left(y_{u}-b_{o} x_{o u}-\ldots \ldots-b_{k} x_{k u}\right) x_{k}=0$
Po ureditvi teh pogojnih enačb dobimo sistem normalnih enačb




Z uvedbo novih spremenl jivk

$$
\begin{align*}
a_{i j} & =a_{j i}=\stackrel{N}{N}\left(x_{i u}-\bar{x}_{i}\right)\left(x_{j u}-\bar{x}_{j}\right),  \tag{b}\\
a_{i i} & =\stackrel{N}{N}{ }_{I}^{N}\left(x_{i u}-\bar{x}_{i}\right)^{2},  \tag{7}\\
B_{i} & =\stackrel{N}{S}\left(x_{i u}-\bar{x}_{i}\right)\left(y_{u}-\bar{y}\right),  \tag{8}\\
i & =0,1,2, \ldots \ldots, k  \tag{9}\\
j & =0,1,2, \ldots \ldots, k \tag{6}
\end{align*}
$$

$\overline{x_{i}}=$ aritmetična sredina vseh $N$ meritev spremenljivke $\mathbf{x}_{i}$,
$\bar{y}=$ aritmetična sredina vseh $N$ meritev spremenljivke $y$, lahko sistem enačb 5 opišemo kot

$$
\begin{align*}
& b_{0} a_{01}+b_{1} a_{02}+\ldots \quad . \cdot+b_{k} a_{o k}=B 0 \\
& b_{0} a_{11}+b_{1} a_{12}+\ldots \quad .+b_{k} a_{1 k}=B_{1} \tag{10}
\end{align*}
$$

$b_{0} a_{k 1}+b_{1} a_{k 2}+\ldots \ldots+b_{k} a_{k k}=B_{k}$
sli kot produkt matrik

$$
\left[\begin{array}{cccc}
a_{01} & a_{02} & \cdots & a_{o k}  \tag{11}\\
a_{11} & a_{12} & \cdots & a_{1 k} \\
\cdots & \cdots & \cdots & \\
a_{k 1} & a_{k 2} \cdots & a_{k k}
\end{array}\right] \times\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{k}
\end{array}\right]=\left[\begin{array}{l}
B_{0} \\
B_{1} \\
B_{k}
\end{array}\right]
$$

Faktorje $a_{i j}$ in. $B_{i}$ izračunamo iz merilnih rezultatov $s$ pomočjo enačb 6,7,8 nato pa jih zapišemo v obliki matrik /1/, /2/

$$
\begin{align*}
& A=\left\{a_{i j},\right\}  \tag{12}\\
& \left.B=\left\{b_{i 0}\right\}\right\}  \tag{13}\\
& y=\left\{B_{i 0}\right\} \tag{14}
\end{align*}
$$

Tako je produkt 11 enak

$$
\begin{equation*}
A \cdot B=Y \tag{15}
\end{equation*}
$$

konči $\begin{aligned} \text { rezultat } p a\end{aligned}$

$$
\begin{equation*}
B=Y \cdot A^{-1}=Y \cdot C \tag{16}
\end{equation*}
$$

Iskani faktorji, ki jih sedejǒ̌̌̌e lahko imenujemo regresijski koeficienti, so elementi matrike B, oziroma vsote

$$
\begin{equation*}
b_{i}=c_{i 0} B_{0}+c_{i l} B_{1}+\ldots \ldots+c_{i k} B_{k} \tag{17}
\end{equation*}
$$

## 2. Korelэсija

Čeprav je regresijska enačba izrečunana tako, da je odstopanje merjenih vrednosti od nje minimalno, je vseeno potrebno preveriti, kako verno opisuje proces ali odvisnost, za katerega smo opravili $N$ poizkusov.

Kot je znano $/ 3 /$, /4/, je merilo za jakost linearne odvisnosti med dvema spremenl jivkama koeficient parcialne korelacije r, jakost odvisnosti več neodvisnih spremenljivk (po-
vezanih z enačbo regresije) do odvisne pa ocenjujemo s koeficientom množične korelacije R.

Pomen koeficienta množične korelacije $R$ se da najenostavneje prikazati na primeru multiregresije $z$ eno samo neodvisno spremenljivko, ki v tem primeru postane premica (slika 1)

$$
\hat{y}=b_{0}+b_{1} x_{1}
$$

Za vsak $X_{u}$ lahko po tej enačbi izračunamo pripadajoči $y_{u}$, ki se od dejanskega $y_{u}$ seveda razlikuje. Vsoto kvadratov takih odstopanj od regresijskih vrednosti imenujemo /5/nepojasnjena varianca $V$, ker ta odstopanja nismo znali pojasniti z regresijsko zvezo

$$
V=\begin{gather*}
N  \tag{19}\\
S \\
1
\end{gather*}\left(y_{u}-\hat{y}_{u}\right)^{2}
$$

Vsoto kvadratov odstopanj od aritmetične sredine y imenujemo totalna ali celotna varianca

$$
\begin{equation*}
K=\stackrel{N}{\mathrm{~S}} \underset{1}{ }\left(\mathrm{y}_{\mathrm{u}}-\overline{\mathrm{y}}\right)^{2} \tag{20}
\end{equation*}
$$

razlika med njima pa je pojasnjena varianca, torej

$$
\begin{equation*}
K-V={\underset{S}{N}}_{N}^{N}\left(\hat{y}_{u}-\bar{y}\right)^{2} \tag{2I}
\end{equation*}
$$

Razmerje pojasnjene in totalne variance imenujemo determinacijski koeficient $D$ ali tudi $R^{2}$

$$
\begin{equation*}
D=\frac{K-V}{K}=1-\frac{V}{K} \tag{22}
\end{equation*}
$$

Kvadratni koren iz determinacijskega koeficienta pa je koefficient množične korelacije R.

Iz zgradbe enačbe 22 se vidi, da koeficient $R$ brezdimenzijsko meri, kakšen del celotnega razsipanja vrednosti za y nam je uspelo pojasniti $z$ enačbo regresije.

Povezavs med odvisno spremenljivko in enačbo regresije je popolna, če je seveda $V=0$, iz tega pa sledi, da je $R=1$. V primeru, ko je V zelo velika, je odvisnost slaba, tedaj pa je $R \doteq 0$.

Na podoben način, kot se ugotovi koeficient množične korelacije, se lahko ugotovijo tudi koeficienti parcialnih korelacij.

Če nas zanima, ali obstaja kakšna odvisnost med dvema za nas sicer neodvisnima spremenljivkama $x_{i}$ in $x_{j}$, lahko to preverimo s $r_{i j}$, samostojen vpliv določene neodvisne spremenl jivke $\mathrm{x}_{\mathrm{i}}$ na odvisno, pa meri parcialni korelacijski koeficient $r_{i y}$.
3. F - test

Čeprav je koeficient R že dokaj dobro merilo za ustreznost multiregresijske odvisnosti, hočemo to vseeno še natančneje določiti. $V$ ta namen lahko uporabimo (5) zelo znan in razŠirjen statistični test, imenovan $F$ - test.

Vrednost F je

$$
\begin{equation*}
F=\frac{R^{2}(N-k-1)}{k\left(1-R^{2}\right)} \tag{23}
\end{equation*}
$$

kjer je

$$
\begin{gathered}
k=\text { število neodvisnih spremenl jivk, } \\
\mathrm{N}-\text { stevilo podatkov, poizkusov, } \\
\mathrm{f}_{1}=\mathrm{k}-\mathrm{prva} \text { prostostna stopnja (včasih imenovana tudi } \\
\quad \text { kot prostostna stopnja stevca), } \\
f_{2}=N-k-1-\begin{array}{l}
\text { druga prostostna stopnja (prostostna } \\
\text { stopnja imenovalca). }
\end{array}
\end{gathered}
$$

Iz statistike je znano, da se da /3/z F-testom določiti pomembnost regresijske zveze, če izračunamo vrednost za F primerjamo z vrednostmi $F_{0}$, dobljenimi iz tabel (tabela 1 ), ki so funkcije

$$
\begin{equation*}
F_{0}=F_{0}\left(f_{1}, f_{2}, \alpha\right) \tag{24}
\end{equation*}
$$

Faktor $\alpha$ predstavlja tveganje, faktor (100- $\mathcal{L}$ ) pa zanesljivost, verjetnost, da izračunana regresijska odvisnost opisuje opazovani pojav, za katerega smo opravili N meritev.

Najobičajneǰ̌e vrednosti za $\mathcal{L}$ so 5\%, kar pomeni, da je tveganje $5 \%$ ali verjetnost $95 \%$, da je sprejeta regresijska zveza dobra. Seveda pa mora pri tem biti tabelarični $F_{0}$ večji od izračunanega $F$.
$Z$ izrsčunanim $F$ pa lahko $v$ tabeli 1 toliko čase iščemo ta pogoj (seveda ob vedno večjem tveganju, oziroma vedno manjگi zanesljivosti), dokler ne najdemo kombinacije $F F_{0}$.
4. T - test

Z F-testom smo ocenili regresijsko odvisnost kot celoto. Ob ugotovljenem malem tveganju pa še ni nujno, da so vsi faktorji (vse neodvisne spremenljivke) znotraj regresije enako pomembni. To lahko preverimo z uporabo Studentovega t-testa /3/, /4/.

Vrednost $t$ za posamezni regresijski koeficient $b_{i} j e$

$$
\begin{equation*}
t_{i}=\frac{b_{i}}{s_{b i}} \tag{25}
\end{equation*}
$$

kjer je

$$
\begin{aligned}
s_{b i}= & \text { standardna napaka regresijskega koeficienta } \\
& b_{i}, k i \text { se izračuna iz }
\end{aligned}
$$

$$
\begin{equation*}
s_{b i}=s\left(c_{i i}\right)^{0,5} \tag{26}
\end{equation*}
$$

nepristranska ocena variance regresije pa iz

$$
\begin{equation*}
s^{2}=\frac{1}{N-k-1}{\underset{S}{S}}_{N}^{N}\left(y_{u}-\hat{y}_{u}\right)^{2} \tag{26}
\end{equation*}
$$

faktor $c_{i i}$ pa je prav tako že znan, saj to je element inverzne matrike C (enačba 16).

Tako izračunane koeficiente $t_{i}$ zopet primerjamo s teoretičnim $t_{0}$, ki ga dobimo iz tabel (tabela 2). Ta je odvisen od $f=N-k-1$ prostostnih stopenj ter od tveganja $\mathcal{\alpha}$ oziroma verjetnosti $100-\alpha$.

Za velike $f$ gre vrednost $t_{0}$ proti 1,96 kar je zelo znana statistična veličina.

Rezultat t-testa je sledeč: Če je $t_{i} \geqslant t_{0}$, tedaj obstaja $100-\mathcal{L}$ verjetnost, da je obravnavani korelacijski koeficient $b_{i}$ različen od nič. Če ta pogoj niti pri večjih $\mathcal{\alpha}$ $n i$ izpolnjen, tedaj faktor $b_{i}$ in $z$ njim tudi spremenljivka $x_{i}$ nimata pomembnega vpliva na $y$.
5. Opis računalniškega progrema

Vse do sedaj omenjene elemente, to je enačbo multiregresi$j e, ~ k o r e l a c i j s k e ~ k o e f i c i e n t e ~ r_{i y}, R$ ter faktorje za $F$ in t-test, se de izračunati s pomočjo programa, ki je sestavljen iz standardnih podprogramov IBM, pisanih v jeziku FORTRAN /6/. Ta program računa navedene elemente sicer na nekoliko drugačen način, ki je ugodnejši za obdelavo na elektronskem računalniku, po drugi strani, kot bo pojasnjeno kasneje, pa je tuđ̃i splošnejsi.

Shema programa je sledeča

1. Glevni program REGRE,
2. podprogrem DATA
3. podprogram CORRE
4. podprogram ORDER
5. podprogram MINV
6. podprogram MULTR

- čita in po potrebi prilagaja vhodne podatke,
- računa srednje vrednosti spremenl jivk, stendardne odklone ter splošno matriko C,
- izbere odvisno spremenljivko in podskupino neodvisnih spremenljivk iz večje skupine spremenljivk,
- preuredi matriko C za spremenljivke, izbrane v podprogramu ORDER,
- izračuna regresijske koeficiente in faktorje za testiranje zanesljivosti.

Kot je vidno iz tega kratkega opisa funkcij posameznih podprogramov, lahko za izhodišče računanja služi sistem $N$ enačb $z \mathrm{~m}$ neznankami, iz katerih pa s pomočjo določenih selektivnih kartic izberemo poljubne, manjše (do sedaj označene s k) sisteme spremenljivk.

Zaradi te zelo ugodne lastnosti programa lahko naenkrat testiramo več kombinacij izrazov, za katere smo že v naprej predvidevali, da utegnejo imeti pomemben vpliv na neodvisno spremenljivko.

S tem prográmom lahko za odvisno spremenljivko vzamemo katero koli spremenljivko, kar je v posameznih specifičnih primerih zelo ugodno.

Ob koncu vsakega izračuna za podani sklop spremenljivk, lahko zahtevamo še izpis analize ostankov. Za vsak preizkus, torej od $I$ do $N$, stroj odčita pripadajoči $y_{u}, ~ z ~ d a n i-~$ mi $X_{i u}$ ter z že znano enačbo multiregresije pa izračuna $\hat{y}_{u}$
(slika l). Iz razlike $y_{u}-\widehat{y}_{\mathrm{u}}$ lahko sklepamo, kako se določena meritev ujema s povprečjem, oziroma, koliko bi naj bila. V primeru večjih odstopanj (za to si sami določimo ustrezni kriterij) se lahko tudi vprašamo, če ni kaj narobe z obravnavanim podatkom in to preverimo, v najslabšem primeru pa ga tudi izpustimo in račun še enkrat ponovimo.

Pri studiju dobljenih rezultatov je treba vedeti, da parcialni korelacijski koeficienti ostajajo vedno enaki, čeprav spreminjamo kombinacije spremenljivk. Ti koeficienti merijo namreč jakost povezave dveh faktorjev, ostali nanje ne morejo vplivati. V primeru, ko pa izpustimo kaksen slab podatek, tedaj pa se seveda popolnoma vsi rezultati spremenijo.

Drugače je z F in t-testom. Ta dva sta odvisna od izbrane skupine spremenljivk, njihovega števila ter seveda od števila podatkov. Tako lahko s primernim načinom dela toliko časa izbiramo kombinacije podatkov in spremenljivk, dokler se ne približamo željenim signifikantnim mejam, oziroma se popolnoma ne prepričamo, kateri faktorji so pomembni in kateri ne, ali pa, da bi za potrditev njihove pomembnosti morali opraviti še dodatne preizkuse.

Zelo zanimiv problem nastane, če t-test in parcialna korelacija pokažeta, da je vpliv nekega faktorja nezanesljiv, iz izkušenj in teorije pa smo prepričani, da je vpliv pomemben. V takem primeru je treba pogledati, kakšni so podatki za ta faktor.

Če so $v$ vseh $N$ preizkusih podatki več ali manj enaki, je krivda že ugotovljena. Ker faktor $v$ naših podatkih ne dosega bistveno različnih vrednosti, je tudi nemogoče pričakovati pomembnejši odziv na odvisno spremenl jivḳo (skozi točke, ki so zelo blizu skupaj, se zelo težko potegne premica in določi njen nagib). Da bi pa željeni vpliv vseeno eksaktno dokazali, moramo v račun vstaviti podatke, ki se med seboj čim bolj razlikujejo $/ 1 /$.

Računanje odvisnosti zgornjih višin smreke, jelke in bukve od talnih lastnosti po postopku linearne multiregresije z elektronskim računalnikom

Po že opisanem postopku smo na raziskovalnih ploskvah širom Slovenije izračunali za smreko 38, za jelko 56 in za bukev 39 zgornjih viṣin. V teh zgornjih višinah se odraža proizvodna sposobnost gozdnega rastišč. Da bi bilo moč ugotoviti vpliv talnih lastnosti na rast imenovanih drevesnih vrst, smo morali sestaviti skupine s sorodnimi ostalimi rastiščnimi činitelji.
$V$ ta namen smo sestavili podatke s 36 spremenljivkami,vključno $z$ višino in klimo. Zastopane so naslednje spremenl jivke:

Pregled šifer podatkov za računanje multiregresije

1 zgornja višina (m)
2 matična podlaga
3 talni tip
4 globina (cm I - (I-humozni horizont)
5 tekstura I
6 vlaga (\%) I
7 poroznost (\%) I
$8 \mathrm{pH} v$ vodi I
9 humus (\%) I
10 dušik (\%) I
$11 \mathrm{C}: \mathrm{N} \quad \mathrm{I}$
12 celokupna količina $\mathrm{P}_{2} \mathrm{O}_{5}$ (\%) I
13 celokupna koliěina $\mathrm{K}_{2} \mathrm{O}$ (\%) I
14 celokupna količina CaO (\%) I
15 fiziološko aktivna količina $\mathrm{P}_{2} \mathrm{O}_{5}$ (mg) I
16 fiziološko aktivna količina $\mathrm{K}_{2} \mathrm{O}$ (mg) I


Računska obdelava je bila izvršena na Republiškem računalniškem centru z elektronskim računalnikom Cyber 72.

Pri prvi obdelavi podatkov smo sestavili deset selekcij. Selekcija predstavlja lastni izbor kombinacije neodvisnih spremenljivk z ozirom na odvisno spremenljivko. V vseh selekcijah je bila odvisna spremenljivka višina. Različne selekcije smo sestavili $z$ namenom, da bi ugotovili vpliv na rast vseh neodvisnih spremenljivk hkrati, vpliv klime, vpliv kemičnih, vpliv fizikalnih lastnosti humoznega in mineralnega horizonta in nekatere parcialne predvidoma pomembne lastnosti.

Obdelane so naslednje selekcije:

1. selekcija: vse odvisne spremenljivke od $2-36$
2. selekcija: vse odvisne spremenljivke razen klime
3. selekcija: padavine, sušnost, ekspozicija in nadmorska višina
4. selekcija: fizikalne lastnosti humoznega in mineralnega horizonta
5. selekcija: "kemične lastnosti humoznega in mineralnega horizonta
6. selekcija: \% N, $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}$ in CaO humoznega horizonta
7. selekcija: $\% \mathrm{~N}, \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~K}_{2} \mathrm{O}$ in CaO humoznega in mineralnega horizonta
8. selekcija: pH v vodii humoznega horizonta
9. selekcija: globina humoznega horizonta in celokupna globina
lo. selekcija: globina humoznega horizonta

Pri uvodni analizi rezultatov prve obdelave je bilo ugotovljeno, de klimatične lastnosti najodločilneje vplivajo na rast. Tako je za smreko dokazana $80 \%$ zanesljivost vpliva padavin na rast, medtem ko je bila sušnost na raziskovalnih ploskvah izenačena.

Pri jelki pa je ugotovljeno, da je pri danih podatkih vplivala sušnost z $90 \%$ zanesljivostjo.

Na bukev je vplivala nadmorska višina z $90 \%$ zanesljivostjo, a sušnost in padavine $z 60 \%$ zanesljivostjo. Ekspozicija se je pokazala kot nepomembno za vse obravnavane drevesne vrste.

Na osnovi teh rezultatov smo formirali nove skupine klimatično podobnih raziskovalnih ploskev. Zavedamo se, da skupine niso popolnoma klimatično izenačene. Da bi lahko namreč zajeli $v$ računsko obravnevo čim več talnih činiteljev in da bi dobili dovolj kvalitetne rezultate, smo morali formirati čim večje skupine raziskovalnih ploskev. Spremenljivk lahko vključimo vobravnavo namreč največ za 1 manj kakor imamo raziskovalnih ploskev. Zaradi tega po-
goja žal nekatere klimatično ekstremne raziskovalne ploskve sploh nismo mogli vključiti $v$ enotne skupine (pri smreki ll, pri jelki 12 in pri bukvi ni prišlo v poštev 14 ploskev za računsko obdelavo).

Tako imamo v skupini: smreka A 26 raziskovalnih ploskev
jelka A 14 raziskovalnih ploskev
jelka B 18 raziskovalnih ploskev
bukev A 13 raziskovalnih ploskev
bukev B 12 raziskovalnih ploskev

Iz tega razloga smo se odločili za obravnavo hkratnega vpliva 25 spremenljivk (največ možnih) pri smreki, medtem ko smo morali za jelko in bukev upoštevati parcialni vpliv istih spremenljivk.

Pri drugi obravnavi smo izločili za smreko klimatične lastnosti, fiziolosko aktivne $\mathrm{P}_{2} \mathrm{O}_{5}$ in $\mathrm{K}_{2} \mathrm{O}$ in $\mathrm{V} \% \mathrm{v}$ obeh horizontih. Fiziološko aktivni $\mathrm{P}_{2} \mathrm{O}_{5}$ in $\mathrm{K}_{2} \mathrm{O}$ niso pokazali pomembnega vpliva na višino pri prvi obravnavi.

Pri parcialnem obravnavanju jelke in bukve je število prostostnih stopenj dovoljevalo tudi upoštevanje fiziološko aktivnih $\mathrm{P}_{2} \mathrm{O}_{5}$ in $\mathrm{K}_{2} \mathrm{O}$.

Pri prvi obdelavi podatkov smo ugotovili, da nam $v$ primerih kadar nastopa samo humozni horizont, vpis O vrednosti v mineralni horizont znižuje aritmetično sredino spremenljivk v mineralnem horizontu in kvari koretacijske odnose (višine se spreminjajo, spremenljivke pa imajo konstantno vrednost o.). Ker je razumljivo, da so vplivi nekaterih spremenljivk na višino povezani z globino horizonta, smo to tudi preizkusili. Zato smo vse podatke pripravili $v$ naslednjih variantah:

A - rezultati analiz
B - rezultati analiz - v slučaju kadar nastopa samo humozni horizont, je polovica globine vpi-
sana v humozni horizont, a polovica $v$ mineralni horizont (a rezultati analiz so isti $v$ obeh horizontih).

C - rezultati analiz pomnoženi z globino horizonta
D - B verianta pomnožena z globino posameznega horizonta

Za upoštevanje globine horizonta pri vpisu podatkov smo se odločili na osnovi testnega poizkusa računanja, ki je pokazal,da so vplivi nekaterih činiteljev postali pomembnejši.

Podatke smo obdelovali v različnih variantah zato, ker smo želeli za vsak faktor dobiti čim ugodnejše statistične karakteristike. Torej so variante formirane samo iz potreb pri obdelevi podatkov. Selekcije, ki obravnavajo le nekaj vplivov iz celotne množice činiteljev, so sekundarnega pomena. Z njimi smo hoteli poiskati dodatno potrditev vpliva teh činiteljev na višino.

Primer igračuna linearne multiregresije l. selekcije variante $B$ (smreka):
V priloženem primeru originalnega izpisa imamo $v$ prvem delu v sedmih kolonah statistične veličine o vsakem faktorju posebej.

1. Variabla številka je tekoča številka spremenljivke, ki se ujema s številko po ključu
2. srednje vrednost - aritmetična sredina vseh podatkov za določeno spremenljivko
3. standardna deviacija - uporabna za analizol trosenja vzorcev
4. korelacija - $r_{x, ~}$ merilo za jakost medsebojnega odnosa obravnavane neodvisne spremenljivke z odvisno.
5. regresijski koeficient - s tem številom izračunamo velikost vpliva faktorja na odvisno spremenljivko.
6. standardna napaka regresijskega koeficienta služi za testiranje pripadojočega regresijskega koeficienta.
7. t-test - vrednost s katero testiramo pomembnost regresijskega koeficienta.

Drugi del izpisa vsebuje:

1. konstanto obravnavane multiregresije zveze
2. koeficient množične korelacije - merilo jakosti vpliva vseh neodvisnih spremenljivk skupaj na odvisno
3. standardna napaka ocene - standardne napake s pomočjo dane regresijske odvisnosti izračunane neodvisne spremenljivke.

Tretji del vsebuje variance za obravnevano regresijsko odvisnost. V njem so podatki o številu prostostnih stopenj s pomočjo katerih lahko testiramo podano F-vrednost.

Primer izračuna F-vrednosti priložene selekcije:

Prva prostostna stopnja je l, druga pa 24. Za to kombinacijo poiščemo $v$ tabeli vrednosti za Fo $v$ odvisnosti od različnih $\alpha$. Pri tisti vrednosti za izračunani $F$, ki je večii od Fo ugotovimo tveganje oziroma zanesljivost obravnevane regresijske odvisnosti.

Za obravnavani primer je $F=927710865,77378$, kar da $\mathcal{\alpha}=$ $0,5 \%$, oziroma $100-\mathcal{L}=99,5 \%$

Primer izračuna t-vrednosti za dušik $v$ humoznem horizontu:

Izračunana t-vrednost znaša 15684.51007 , prostostna stop-
nja je 1. V tabeli odčitan $\alpha$ nam pove, da je vpliv dušika na višino $99 \%$ zanesljiv.

Vpliv posameznih spremenljivk izražen v m dobimo tako, da vrednost analiz pomnožimo z regresijskim koeficientom. Za vsako posamezno spremenljivko lahko izračunamo minimalni in maksimalni vpliv na višino iz podatkov pripravljenih za strojno računanje, srednjo vrednost vpliva na višino pa dobimo, če srednjo vrednost rezultata analiz pomnožimo z regresijskim koeficientom (kolona $2 \times \mathrm{kolona} 5)$. Ta izračun je uporaben seveda le tedaj, če ima dotična spremenl jivka ugoden t-test.

Primer: Izračunan regresijski koeficient za dušik v humoznem horizontu je 29.05856, izračunana srednja vrednost rezultata analiz je 0,656554, iz tega sledi, da je m vpliv dušika na višino $v$ humoznem horizontu $v$ tej kombinaciji spremenljivk 19.078 m .

Minimalni vpliv dušika : $0,23 \times 29.05856=6,683 \mathrm{~m}$
Maksimalni vpliv dušika: $1,23 \times 29.05856=35.472 \mathrm{~m}$
Maksimalni vpliv nekega činitelja je lahko večji od določene zgornje višine, ker ni upoštevan tudi negativni vpliv drugih činiteljev.

Pri zakl jučkih smo obravnavali samo one selekcije, kjer je izračunani $F$ večji od Fo. Tako je odpadlo pri smreki 14 od skupno 25 selekcij. Tudi pri jelki in bukvi imamo take selekcije, ki jih nismo upoštevali, kar je razvidno iz priloženih preglednic.

Nedvoumno je, da vplivi posameznih faktorjev na rast (zgornje višine dreves) niso popolnoma linearni, pač pa imajo znotraj opazovanega intervala ekşremalne vrednosti. Zato smo v primeru, ko je za obravnavani činitelj jasno, da bi utegnil imeti ekstrem, vzeli za optimalno vrednost

MULTIPLF REGRESSTON．．．．．LMーラーB
SELECTLOH．．．．．



DEPENDENT
1 31．70462
3.42355

INTERCEPT
68.93696

MULTIPLF CORRELA IION
STD．ERROR OF ESTIMATE

$$
\begin{gathered}
1.00000 \\
00011
\end{gathered}
$$

ANALYSISOFGVRIANCETROR．THE REGRESSION
SOURCE OF YA IATION
področje med aritmetično sredino in eno od mej, ne pa mejo samo. Glede na predznak vpliva činitelja leži optimum torej v zgornji ali spodnji polovici.

* Primer: Izračunan regresijski koeficient za dušik v humoznem horizontu je 29.05856, izračunana srednja vrednost rezultata analiz je 0,656554 , iz tega sledi, da je vpliv dušika na višino v humoznem horizontu v tej kombinaciji spremenl jivk 19.078 m .

Minimalni vpliv dušika : 0,23 x $29.05856=6,683 \mathrm{~m}$ Maksimalni vpliv dušika: $1,23 \times 29.05856=35,741 \mathrm{~m}$

Maksimalni vpliv nekega činitelja je lahko večji od določene zgornje višine, ker ni upoštevan tudi negativni vpliv drugih činiteljev.

Vrednosti matične podlage, ekspozicije, talnih enot in teksture za računanje multiregresije

Matična podlaga
1 dolomit
2 apnenec
3 lapor
4 morena
5 trdna kisla kamenina (granit, amfibolit, keratofir, tonalit)

6 groh
7 škriljasti gnajs
8 blestnik
9 miocenska ilovka

10 miocenski pesek

Ekspozicija

| 1 | S | sever |
| :--- | :--- | :--- |
| 2 | S-SV | sever do severovzhod |
| 3 | SV | severovzhod |
| 4 | V-SV | vzhod do severovzhod |
| 5 | S-SZ | sever do severozahod |
| 6 | SZ | severozahod |
| 7 | V | vzhod |
| 8 | V-JV | vzhod do jugovzhod |
| 9 | J in JJV | jug in jugojugovzhod |
| 10 | J-JV, JV | jug do jugovzhod, jugovzhod |
| 11 | J | jug |
| 12 | ravno | ravno |
| 13 | JZ | jugozahod |
| 14 | Z-JZ | zahod do jugozahod |
| 15 | $Z$ | zahod |
| 16 | J-JZ | jug do jugozahod |

Talne enote
1 moderrendzina
2 plitva rjava tla
3 ranker
4 črnica
5 slabo humozna mulrendzina
6 podzol
7 železni humozni podzol
8 humozni podzol
9 globoka zaglejena tla
10 globoka zaglejena koluvialna tla
11 psevdoglej
12 skeletoidna lesivirana rjava tla
13 lesivirana rjava tla
14 zaglejena podzoljena rjava tla
15 antropogeni stagnoglej
16 podzoljena kisla rjave tla
17 izprana terra fusca
18 podzoljena rjava ..... tla
19 slabo podzoljena rjava tla
20 rjava ..... tla
21 koluvij terae fuscae
22 mulrendzina s površinskim slojem humusa oblike moder
23 mulrendzina
24 koluvij rendzin
25 kisla rjava tla
26 slabo podzoljena kisla koluvialna rjava tla
27 koluvialna rjava tla
Tekstura
1 težka glina
2 lahka glina
3 meljasta glina
4 peščena glina
5 ilovnat pesek
6 ilovnat droben pesek
7 peščens ilovka
8 drobno peščena ilovka
9 ilovka
10 meljasta ilovka
11 meljasto glinasta ilovka
12 glinasta ilovka
13 pescceno glinasta ilovka

Klimatiçne značilnosti skupin raziskovalnih ploskev - sestavljenih po prvi obdelavi rezultatov računanja multiregresije

Skupina: smreka A

```
sušnost : 20.2-22.5
padavine : 600-610 mm
n. m. v. : 1070 - 1350 m
```

Skupina: smreka B
klimatično različne ploskve

Skupina: jelka A

$$
\begin{aligned}
& \text { sušnost }: 20.2-22.5 \\
& \text { n. m. v. }: 700-1000 \mathrm{~m} \\
& \text { pedavine }: 425-450 \mathrm{~mm}
\end{aligned}
$$

Skupina: jelke B

> sušnost $: 27.0-30.2$
> n. m. v. $: 700-1000 \mathrm{~m}$
> padavine $: 410-510 \mathrm{~mm}$

Skupina: jelka C
klimatično različne ploskve

Skupina: bukva A

> sušhost $: 20.0-23.5$
> n. m. v. $: 900-1200 \mathrm{~m}$
> padavine $: 425-610 \mathrm{~mm}$

Skupina: bukva B

$$
\text { sušnost : } 22.5-27.0
$$

```
n.m.v. : 400 - 700 m
padavine: 410 - 450 mm
```

Skupina: bukva C

> klimatično različne skupine

## Podatki o klimi raziskovalnih ploskev za

 računanje multi-regresije z elektronskim računalnikomSkupina : smreka A

| Tek. št. | Kraj - št. ploskve | Padavine <br> v veget. <br> (mm) | Poletna sušnost (dnevi) | $\begin{aligned} & \text { Ekspo- } \\ & \text { zicija } \end{aligned}$ | $\begin{aligned} & \text { Nadmor- } \\ & \text { ska vi- } \\ & \text { sina (m) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |


| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

1 Pokljuka, Rudno polje odd. 48G, pl. 37

610
20.2

SZ
1340
2 Pokljuka, Rudno polje odd. 49b, pl. 38

610
20.2 J

1300

3 Pokljuka, Rudno polje odd. 49b, spodnji del pl. 39

610
20.2 S

1310
4 Pokljuka, Rudno polje $\begin{array}{lllll}\text { odd. } 49 \mathrm{~b}, \text { zgornji del pl. } 39 & 610 & 20.2 & \mathrm{~S} & 1310\end{array}$

5 Pokljuka, Rudno polje
odd. $87 \mathrm{a}, \mathrm{pl} 40$
610
20.2 J

1350
6 Pokljuka, Rudno polje odd. $70 \mathrm{c}, \mathrm{pl} .47$, zahodni del

610
20.2 J

1320

7 Pokljuka, Mrzli studenec pl. 42

610
20.2

SZ
1230
8 Pokljuka, Mrzzli studenec odd. 54 f, pl. 43

610
20.2

V
1230

9 Pokljuka, Mrzli studenec
odd. $54 \mathrm{e}, \mathrm{pl} .44$
610
20.2 vse lege 1230

10 Pokljuka, Mrzli studenec odd. 54 c, d, pl. 50

610
20.2 Z

1240

11 Pokljuka, Mrzli studenec odd. 38a, pl. 51
20.2

J-JZ
1290

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Pokljuka, Rudno polje p1. 45 | 610 | 20.2 | vse lege | 1310 |
| 13 | Pokljuka, Mrzli studenec odd. 39e, pl. 46 | 610 | 20.2 | SZ | 1310 |
| 14 | Pokljuka, Mrzli studenec odd. 39e, pl. 48 | 610 | 20.2 | SZ | 1350 |
| 15 | Pokljuka, Mrzli studenec p1. 49 | 610 | 20.2 | V | 1240 |
| 16 | Pokljuka, Mrzli studenec odd. 70c, pl. 47, vzhodni del | 610 | 20.2 | J | 1320 |
| 17 | Jelovica, Rovtarica odd. 19a, pl. 10 | 600 | 22.5 | J-JZ | 1070 |
| 18 | Jelovica, Rovtarica odd. 23 d,pl. 11 | 600 | 22.5 | SZ | 1100 |
| 19 | Jelovica, Rovtarica odd. 25 ef, pl. 12 | 600 | 22.5 | vse lege | 1080 |
| 20 | Jelovica, Rovtarica, odd. 32, pl. 14 | 600 | 22.5 | SV | 1150 |
| 21 | Jelovica, Martinček odd. 14a, pl. 17 | 600 | 22.5 | JZ | 1170 |
| 22 | Jelovica, Martinček p1. 18 | 600 | 22.5 | Z | 1320 |
| 23 | Jelovica, Martinček odd. 18a, pl. 19 | 600 | 22.5 | Z | 1300 |
| 24 | Jelovica, Martinček odd. 12c, pl. 22 | 600 | 22.5 | S | 1200 |
| 25 | Jelovica, Martinček odd. 12c, pl. 23 | 600 | 22.5 | V | 1190 |
| 26 | Jelovica, Martinček odd. 146, pl. 24 | 600 | 22.5 | V | 1170 |


| 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Skupina : smreka B

1 Pohorje, Lehen pl. 186

425
20.0

SZ
700
2 Pohorje, Smolnik pl. 187

425
20.0

V-JV
950
3 Pohorje, Skomarje odd. pl. 68

425
20.0 S

830
4 Pohorje, Rakovec
425
20.0

SZ 1200
0dd. 6a, pl. 27
5 Pohorje, Rakovec odd. 5c, pl. 28

425
20.0

SZ
1250
6 Pohorje, Rakovec odd. 5c, pl. 29

425
20.0

SZ
1200
7 Pohorje, Rakovec odd. 8, pl. 30

425
20.0

JZ
1300
8 Pohorje, Rakovec p1. 31

425
20.0

JZ
1300
9 Gorski kras, Mašun, $\begin{array}{lllll}\text { Škornje, odd. } 10 \mathrm{~h}, \mathrm{pl} .96 & 450 & 26.0 & \text { SV } & 1000\end{array}$

10 Predalpsko hribovje, Golnik, pl. 202500
22.5 JV

520
11 Predalpsko hribovje, Kovor, pl. 203

500
22.5 vse lege

550

Skupina : jelka A

1 Pohorje, Lehen
p1. 184425
20.0

700
2 Pohorje, Lehen pl. 185

425
20.0

Z
700

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Pohorje, Lehen pl. 186 | 425 | 20.0 | SZ | 700 |
| 4 | Pohorje, Smolnik p1. 187 | 425 | 20.0 | V-JV | 950 |
| 5 | Pohorje, Smolnik pl. 188 | 425 | 20.0 | V-JV | 950 |
| 6 | Pohorje, Skomarje <br> p1. 68 | 425 | 20.0 | S | 830 |
| 7 | Gorski kras,Strmec a, Grčarice | 450 | 22.5 | vse lege | 870 |
| 8 | Gorski kras,Strmec b, Grčarice | 450 | 22.5 | JZ | 870 |
| 9 | Gorski kras, Stojna pl. 3 a | 450 | 22.5 | J-JZ | 920 |
| 10 | Gorski kras, Stojna pl. 3 b | 450 | 22.5 | vse lege | 920 |
| 11 | Gorski kras, Stojna pl. 3 c | 450 | 22.5 | vse lege | 920 |
| 12 | Gorski kras, Stojna Fridrihštajn | 450 | 22.5 | Z-JZ | 950 |
| 13 | Gorski kras, Kočevski rog, Žaga a | 425 | 22.5 | J-JZ | 870 |
| 14 | Gorski kras, Kočevski rog, Žaga b | 425 | 22.5 | J-JZ | 870 |
| Skupina : jelka B |  |  |  |  |  |
| 1 | Gorski kras, Srednja vas a | 425 | 28.0 | vse lege | 870 |
| 2 | Gorski kras, Srednja vas b | $425$ | 28,0 | vse lege | 870 |
| 3 | Gorski kras, Babno polje a | 410 | 28.0 | Z | 915 |


| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | Gorski kras, Babno polje b | 410 | 28.0 | vse lege | 915 |
| 5 | Gorski kras, zah. Hrušica, Medvejšek | 510 | 28.0 | $J$ in JJV | 830 |
| 6 | Gorski kras, osr. Hrušica, Stranski vrh | 510 | 28.0 | Z | 910 |
| 7 | Gorski kras, Ribniška mala gora, severna pl. | 450 | 30.2 | J | 850 |
| 8 | Gorski kras, Ribniška mala gora, južna pl. b | 450 | 30.2 | J | 850 |
| 9 | Go_rski kras, Travna gora | 450 | 30.2 | JZ | 920 |
| 10 | Gorski kras, Lazec, Parg | 425 | 28.0 | JZ | 930 |
| 11 | Gorski kras, Glažuta, severna pl. a | 450 | 30.2 | JZ | 870 |
| 12 | Gorski kras, Glažuta, severna pl. b | 450 | 30.2 | JZ | 870 |
| 13 | Gorski kras, Glažuta, južna pl. | 450 | 30.2 | J | 835 |
| 14 | Gorski kras, Mokrc, severna pl. | 510 | 27.0 | Z | 935 |
| 15 | Gorski kras, Mokrc, južna pl. | 510 | 27.0 | J | 910 |
| 16 | Gorski kras, Mačkovec a | 510 | 30.0 | J-JZ | 820 |
| 17 | Gorski kras, Mačkovec b | 510 | 30.0 | J-JZ | 820 |
| 18 | Gorski kras, Mačkovec c | 510 | 30.0 | J-JZ | 820 |



| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | Gorski kras, Krim, južna pl. | 510 | 25.0 | J | 910 |
| 17 | Gorski kras, Vinji vrh | 510 | 25.0 | Z-JZ | 880 |
| 18 | Gorski kras, Strmec, Grčarice, pl. 1 | 450 | 22.5 | Z | 650 |
| 19 | Gorski kras, Strmec, Grčarice, spod. del pl. 2 | 450 | 22.5 | Z | 650 |
| 20 | Gorski kras, Strmec, Grčarice, zgor. del pl. 2 | 450 | 22.5 | Z | 650 |
| 21 | Predalpsko hribovje, Golnik, pl. 202 | 500 | 22.5 | J-JZ | 870 |
| 22 | Predalpsko hribovje, Kovor, pl. 203 | 500 | 20.0 | vse lege | 550 |
| 23 | Predalpsko hribovje, Konjiška gora, pl. 205 | 400 | 23.5 | S-SZ | 500 |
| 24 | Predalpsko hribovje, Hom pri Bočni,pl. 206 | 425 | 22.5 | S | 530 |
|  | Skupina : | bukev |  |  |  |
| 1 | Jelovica, Rovtarica, odd. 32, pl. 14 | 600 | 22.5 | SV | 1150 |
| 2 | Jelovica, Rovtarica, odd. 27, pl. 15 | 600 | 22.5 | SZ | 1140 |
| 3 | Jelovica, Martinček, odd. 146, pl. 24 | 600 | 22.5 | V | 1170 |
| 4 | Kamniška Bistrica, Prajzovka, pl. 143 | 500 | 22.5 | JV | 950 |
| 5 | Kamniška Bistrica, <br> Žiberna ravan, pl. 144 | 500 | 22.5 | S | 980 |


| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Kamniška Bistrica, Klin, pl. 162 | 500 | 22.5 | J | 1100 |
| 7 | Pohorje, Hudit kot, odd. 48, pl. 167 | 425 | 20.0 | SV | 1160 |
| 8 | Pohorje, Lobnica, pl. 168 | 425 | 20.0 | S | 1175 |
| 9 | Pohorje, Smolnik, pl. 187 | 425 | 20.0 | V-JV | 950 |
| 10 | Pohorje, Smolnik, pl. 188 | 425 | 20.0 | V-JV | 950 |
| 11 | Gorski kras, Idrija, Mrzla rupa, pl. 161 | 610 | 23.5 | SV | 930 |
| 12 | Predalpsko hribovje, Blegaš, pl. 178 | 500 | 23.5 | JV | 1130 |
| 13 | Predalpsko hribovje, Menina, pl. 179 | 500 | 22.5 | S-SV: | 1110 |

Skupina : bukev B

1 . Gorski kras, Strmec, Grčarice, spodnji del pl. 2450
22.5

Z
650
2 Gorski kras, Kočevski rog, Travnik, pl. 141

425
22.5

Z
860
3 Gorski kras,Kočevski rog, Travnik, pl. 142 425
22.5

V
870
4 Gorski kras, Kočevski rog, Trnovec, pl. 163 425
22.5

SZ
540
5 Gorski kras, Kočevski rog, Trnovec, pl. 164

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Gorski kras, Kočevski rog, \$v. Peter, pl. 137 | 410 | 26.0 | SV | 520 |
| 7 | Gorski kras, Kočevski rog, Sv. Peter, pl. 140 | 410 | 26.0 | SV | 550 |
| 8 | Gorski kras, Kočevski rog, Knežja roka, pl. 139 | 425 | 22.5 | SV | 500 |
| 9 | Gorski kras, Kočevski rog, nad Sotesko, pl. 138 | 410 | 26.0 | S | 400 |
| 10 | Predalpsko hribovje , Konjiška gora, pl. 169 | 400 | 23.5 | JZ | 625 |
| 11 | Predalpsko hribovje, Polšnik, pl. 145 | 425 | 25.0 | SZ | 680 |
| 12 | Predalpsko hribovje, Bohor, p1. 166 | 440 | 27.0 | S | 700 |

Skupina : bukev C

1 Log pod Mangartom, Petričevec, pl. 176

690
20.2

JZ
1080
2 Kneža, Na prodeh, pl. 177

810
23.0 JV

1190
3 Gorski kras, Javornik, Debeli kamen, pl. 171
$450 \quad 270$ J 1040
4 Gorski kras, Leskova dolina, odd. 36 b, pl. $98 \quad 410 \quad 28.0 \quad 1100$

5 Gorski kras, Mašun, nad Šofitom, pl. 172

450
25.0 JV

1400
6 Gorski kras, Mašun, Park, pl. 95 450
26.0

S-SV
1010

| 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | Gorski kras, Mašun, Škornje, odd. $10 \mathrm{~h}, \mathrm{pl} .96$ | 450 | 26.0 | SV | 1000 |
| 8 | Gorski kras, Jelenov žleb, pl. 165 | 450 | 30.2 | JZ | 990 |
| 9 | Gorski kras, Trnovski gozd, pl. 159 | 590 | 23.5 | vse lege | 810 |
| 10 | Predalpsko hribovje, Gorjanci, pl. 135 | 425 | 29.0 | SZ | 730 |
| 11 | Predalpsko hribovje, Sromlje, odd. 28 d, pl. 152 | 350 | 30.0 | J | 480 |
| 12 | Predalpsko hribovje, Podsreda, Močnik, odd. 47 c , pl. 153 | 350 | 30.0 | SZ | 510 |
| 13 | Predalpsko hribovje, Vurberg, pl. 175 | 325 | 24.0 | SZ | 257 |
| 14 | Predalpsko hribovje, Macelj, Log, odd. 11 b, p1. 158 | 350 | 30.0 | SV | 380 |

## Skupina : smreka A

## Tek. Kraj - š̌t. ploskve št.

| ho- | glo- | $\mathrm{pH} \mathrm{v}$ | \% |  | $\mathrm{C} \cdot \mathrm{N}$ | Celokupna količina $\mathrm{v} \%$ |  |  | Fiziološko aktivna$\mathrm{mg} / 100 \mathrm{~g}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{K}_{2} \mathrm{O}$ | CaO | $\mathrm{P}_{2} \mathrm{O}_{5}$ | $\mathrm{K}_{2} \mathrm{O}$ |


| 1 | 2 | $\vdots$ | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. Pokljuka, Rudno polje odd. 48 G , pl. 37
2. Pokljuka, Rudno polje odd. $49 \mathrm{~b}, \mathrm{pl} .38$
3. Pokljuka, Rudno polje odd. 49 b, spod. del pl. 39
4. Pokljuka, Rudno polje odd. 49 b, zgor. del pl. 39
5. Pokljuka, Rudno polje odd. 87 a, pl. 40
6. Pokljuka, Rudno polje odd. $70 \mathrm{c}, \mathrm{pl} .47$, zah. del
7. Pokljuka, Mrzli studenec pl. 42
8. Pokljuka, Mrzli studenec pl. 43, odd. 54 f
9. Pokljuka, Mrzli studenec odd. 54 e, pl. 44
10. Pokljuka, Mrzli studenec odd. 54 ex d, pl. 50
11. Pokljuka, Mrzli studenec 0dd. 38 a, pl. 51
12. Pokljuka, Rudno polje pl. 45
13. Pokljuka, Mrzli studenec odd. 39 e, 'pl. 46
14. Pokljuka, Mrzli studenec odd. 39 e, pl. 48
15. Pokljuka, Mrzli studenec pl. 49
16. Pokljuka, Mrzli studenec odd. $70 \mathrm{c}, \mathrm{pl} .47$, vzh. del

| hum. | $0-20$ | 5.00 | 36.90 | 0.92 | 23.26 | 0.108 | 0.072 | 0.131 | 1.95 | 10.65 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-20$ | 6.33 | 25.87 | 0.54 | 16.99 | 0.114 | 0.063 | 0.212 | 1.59 | 7.72 |
| min. | $20-30$ | 6.30 | 10.57 | 0.40 | 15.33 | 0.082 | 0.073 | 0.212 | 0.57 | 1.30 |
| hum. | $0-20$ | 4.15 | 38.05 | 1.23 | 17.94 | 0.124 | 0.078 | 0.075 | 3.26 | 16.20 |
| min. | $20-30$ | 6.60 | 8.12 | 0.27 | 17.44 | 0.054 | 0.066 | 0.137 | 0.57 | 0.80 |
| hum. | $0-25$ | 4.95 | 33.75 | 0.97 | 19.99 | 0.100 | 0.066 | 0.159 | 5.08 | 17.48 |
| min. | $25-45$ | 5.40 | 10.36 | 0.35 | 17.17 | 0.061 | 0.056 | 0.137 | 0.63 | 2.16 |
| hum. | $0-17$ | 5.30 | 39.30 | 0.99 | 23.02 | 0.093 | 0.082 | 0.175 | 5.12 | 17.90 |
| min. | $17-25$ | 6.40 | 7.70 | 0.24 | 18.63 | 0.061 | 0.078 | 0.387 | 0.37 | 1.50 |
| hum. | $0-10$ | 6.30 | 37.08 | 0.90 | 23.90 | 0.093 | 0.078 | 1.10 | 3.33 | 7.41 |


| hum. | $0-25$ | 3.95 | 25.35 | 0.70 | 21.00 | 0.100 | 0.071 | 0.037 | 1.95 | 14.44 |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | ---: |
| min. | $25-50$ | 5.45 | 4.49 | 0.16 | 18.57 | 0.056 | 0.087 | 0.087 | 0.70 | 1.15 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-15$ | 3.80 | 21.32 | 0.66 | 18.72 | 0.075 | 0.093 | 0.050 | 3.00 | 13.50 |
| min. | $15-60$ | 5.30 | 3.98 | 0.17 | 13.23 | 0.069 | 0.087 | 0.087 | 2.95 | 1.45 |
| hum. | $0-8$ | 4.85 | 14.20 | 0.53 | 15.10 | 0.017 | 0.080 | 0.075 | 3.75 | 3.25 |
| min. | $8-35$ | 5.55 | 6.11 | 0.23 | 15.40 | 0.067 | 0.070 | 0.087 | 2.25 | 0.50 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-15$ | 3.75 | 15.68 | 0.36 | 25.25 | 0.056 | 0.064 | 0.025 | 1.88 | 9.05 |
| min. | $15-45$ | 4.25 | 5.20 | 0.08 | 36.34 | 0.058 | 0.060 | 0.075 | 3.25 | 2.50 |
| hum. | $0-45$ | 3.80 | 8.38 | 0.25 | 19.44 | 0.066 | 0.070 | 0.025 | 0.09 | 14.45 |
| min. | $45-90$ | 4.55 | 2.69 | 0.08 | 19.50 | 0.055 | 0.065 | 0.050 | 0.63 | 2.10 |
| hum. | $0-30$ | 5.60 | 15.77 | 0.48 | 19.06 | 0.023 | 0.017 | 0.125 | 1.65 | 8.00 |

hum. |  | $0-13$ | 5.50 | 13.69 | 0.23 | 34.53 | 0.018 | 0.086 | 0.039 | 2.25 | 2.75 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

hum. |  | $0-15$ | 4.90 | 15.55 | 0.60 | 14.91 | 0.022 | 0.035 | 0.050 | 2.25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 6.0$

| hum. | $0-5$ | 3.45 | 10.20 | 0.39 | 15.05 | 0.018 | 0.050 | 0.025 | 2.15 | 3.50 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| min. | 5.28 | 4.30 | 3.28 | 0.29 | 9.38 | 0.016 | 0.016 | 0.050 | 2.94 | 3.50 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-20$ | 4.15 | 20.05 | 0.53 | 22.43 | 0.124 | 0.078 | 0.075 | 3.26 | 16.20 |
| min. | $20-30$ | 5.60 | 8.12 | 0.27 | 17.44 | 0.054 | 0.066 | 0.137 | 0.57 | 0.80 |


| $\begin{aligned} & \text { Tek. } \\ & \text { St. } \end{aligned}$ | Tekstura | Skelet | Vlaga | Poroznost | Matična podlaga |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 9 |
| 1 | ilovka | 36,5 | 35 | 45 | apnenec | mulrendzina |
| 2 | ilovka | 66.3 | 30 | 35 | morena | mulrendzina $60 \%$ <br> plitva rjava tla $40 \%$ |
|  | ilovka | 53.0 | 20 | 30 |  |  |
| 3 | ilovka | 57.1 | 30 | 40 | morena | plitva rjava tla |
|  | glinasta ilovka | 38.8 | 25 |  |  |  |
| 4 | ilovka | 49.0 | 30 | 40 | morena | mulrendzina $68 \%$ antropogeni stagnoglej $32 \%$ |
|  | glinasta ilovka | 55.8 | 15 | 20 |  |  |
| 5 | ilovka | 43.0 | 35 | $40$ | morena | plitva rjava tla |
|  | glinasta ilovka | 31.0 | 15 | $20$ |  |  |
| 6 | ilovka | 65.4 | 30 | 80 | morena | mulrendzina s površinskim slojem humusa oblike moder |
| 7 | drobno peščena ilovka | 17.0 | 20 | 25 | morena | antropogeni stag noglej |
|  | drobno peščena ilovka | 40.6 | 25 | 30 |  |  |
| 8 | peščena ilovka | 15.3 | 30 | 35 | morena | antropogeni stagnoglej |
|  | peščeno glinasta ilovka | 17.5 | 25 | 30 |  |  |
| 9 | meljasta ilovka | 30.0 | 80 | 50 | morena | slabo podzoljena rjava tla |
|  | meljasta ilovka | 32.5 | 30 | 40 |  |  |
| 10 | drobno peščena ilovka | 16.9 | 25 | 35 | morena | antropogeni stagnoglej |
|  | peščeno glinasta ilovka | 23.9 | 20 | 25 |  |  |
| 11 | peščena ilovka | 43.8 | 25 | 30 | nanos roženca na apnenec | podzol |
|  | peščeno glinasta ilovka | 51.3 | 25 | 25 |  |  |
| 12 | ilovka | 35.4 | 30 | 40 | morena | mulrendzina |
| 13 | drobno peščena ilovka | 31.0 | 30 | 45 | apnenec | mulrendzina s površinskim slojem humusa oblike moder |
| 14 | peščena ilovka | 28.0 | 30 | 40 | apnenec | mulrendzina |
| 15 | peščena ilovka | 15.5 | 15 | 20 | morena | antropogeni stagnoglej |
|  |  | 32.5 | 30 | 45 |  |  |
| 16 | ilovka | 40.1 | 30 | 40 | morena | plitva rjava tla |
|  | glinasta ilovka | 45.0 | 25 | 35 |  |  |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Jelovica, Rovtarica | hum. | 0-10 | 4.38 | 26.71 | 0.84 | 18.44 | 0.095 | 0.113 | 0.125 | 3.96 | 15.78 |
|  | odd. $19 \mathrm{a}, \mathrm{pl} 10$ | min. | 10-50 | 5.45 | 6.60 | 0.16 | 23.87 | 0.050 | 0.083 | 0.125 | 0.72 | 2.30 |
|  | Jelovica, Rovtarica | hum. | 0-8 | 5.05 | 33.46 | 0.88 | 22.04 | 0.107 | 0.075 | 0.162 | 4.04 | 14.15 |
|  | odd. 23 d , pl. 11 | min. | 8-48 | 5.12 | 9.68 | 0.25 | 22.23 | 0.083 | 0.068 | 0.125 | 0.62 | 2.02 |
|  | Jelovica, Rovtarica odd. 25 ef, pl. 12 | hum. | 0-20 | 5.31 | 13.38 | 0.46 | 16.86 | 0.083 | 0.083 | 0.125 | 0.62 | 4. 33 |
|  | Jelovica, Rovtarica odd. 32, pl. 14 | hum. | 0-35 | 4.76 | 23.94 | 0.51 | 27.21 | 0.075 | 0.060 | 0.100 | 1.30 | 7.25 |
|  | Jelovica, Martinček | hum. | 0-10 | 3.45 | 23.84 | 0.74 | 18.67 | 0.083 | 0.095 | 0.075 | 2.64 | 13.29 |
|  | odd. $14 \mathrm{a}, \mathrm{pl} 17$ | min. | 10-60 | 3.87 | 4.09 | 0.13 | 18.23 | 0.033 | 0.088 | 0.075 | 2.00 | 2.97 |
|  | Jelovica, Martinček | hum. | 0-22, 5 | 3.50 | 27.91 | 0.98 | 16.52 | 0.099 | 0.064 | 0.075 | 5.00 | 11.26 |
|  | pl. 18 | min. | 22.5-52,5 | 3.90 | 8.64 | 0.26 | 19.28 | 0.083 | 0.085 | 0.087 | 1.37 | 2, 25 |
|  | Jelovica, Martinček odd. 18a, pl. 19 | hum. | 0-17. 5 | 6.37 | 18.00 | 0.46 | 22.69 | 0.075 | 0.055 | 1.400 | 1.25 | 1.73 |
|  | Jelovica, Martinček odd. $12 \mathrm{c}, \mathrm{pl} .22$ | hum. | 0.35 | 4.90 | 26.31 | 0.74 | 20.62 | 0.085 | 0.063 | 0.175 | 2.87 | 8. 35 |
|  | Jelovica, Martinček odd. $12 \mathrm{c}, \mathrm{pl} .23$ | hum. | 0-30 | 6.05 | 13.38 | 0.43 | 19.47 | 0.069 | 0.056 | 0. 540 | 1.53 | 2.89 |
|  | Jelovica, Martinček | hum. | 0-15 | 5.04 | 21.74 | 0.74 | 17.04 | 0.107 | 0.071 | 0.112 | 1.95 | 7.73 |
|  | odd. 146,pl. 24 | min. | 15-35 | 5.00 | 7.36 | 0.29 | 14.68 | 0.063 | 0.042 | 0.093 | 0.68 | 1.26 |

Skupina : smreka B

1. Pohorje, Lehen p1. 186
2. Pohorje, 'Smolnik pl. 187
3. Pohorje, Skomarje p1. 68
4. Pohorje, Rakovec odd. 6a, pl. 27
5. Pohorje, Rakovec odd. 5 c, pl. 28
6. Pohorje, Rakovec odd. 5c, pl. 29
7. Pohorje, Rakovec odd. 8, p1. 30
8. Pohorje, Rakovec p1. 31
9. Gorski kras, Mašun Škornje, pl. 96, odd. 10 h
10. Predalpsko hribovje Golnik pl. 202

|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| hum. | $0-5$ | 3,87 | 26.61 | 0.85 | 18.10 | 0.125 | 0.047 | 0.075 | 1.23 | 12.10 |
| min. | $5-95$ | 4.85 | 4.83 | 0.21 | 13.21 | 0.075 | 0.075 | 0.087 | 1.10 | 2.30 |
| hum. | $0-20$ | 4.52 | 15.00 | 0.76 | 12.43 | 0.123 | 0.028 | 0.187 | 1.23 | 10.76 |
| min. | $20-60$ | 5.00 | 7.78 | 0.32 | 14.32 | 0.061 | 0.014 | 0.150 | 0.57 | 3.05 |
| hum. | $0-7$ | 4.10 | 15.00 | 0.74 | 11.82 | 0.133 | 0.125 | 0.125 | 1.18 | 13,33 |
| min. | 7.35 | 4.65 | 8.81 | 0.41 | 12.40 | 0.096 | 0.220 | 0.150 | 0.63 | 4.80 |
| hum. | $0-16$ | 4.05 | 25.30 | 0.80 | 18.29 | 0.114 | 0.088 | 0.062 | 2.15 | 17.60 |
| min. | 16.40 | 4.80 | 5.79 | 0.35 | 10.03 | 0.046 | 0.137 | 0.100 | 1.30 | 3.60 |
| hum. | $0-30$ | 4.00 | 19.00 | 1.06 | 10.39 | 0.137 | 0.064 | 0.112 | 2.48 | 16.60 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-27$ | 3.95 | 27.07 | 0.75 | 20.93 | 0.155 | 0.060 | 0.100 | 0.15 | 14.35 |
| min. | $27-80$ | 4.30 | 6.60 | 0.24 | 16.03 | 0.100 | 0.071 | 0.125 | 1.16 | 2.76 |
| hum. | $0-10$ | 3.65 | 41.95 | 0.99 | 24.36 | 0.142 | 0.053 | 0.062 | 2.61 | -19.90 |
| min. | $10-60$ | 4.05 | 7.23 | 0.21 | 20.64 | 0.093 | 0.045 | 0.137 | 0.63 | 3.05 |
| hum. | $0-5$ | 3.60 | 28.56 | 0.80 | 20.74 | 0.127 | 0.064 | 0.087 | 2.01 | 16.60 |
| min. | $5-35$ | 4.40 | 7.63 | 0.21 | 20.64 | 0.093 | 0.045 | 0.137 | 0.63 | 3.05 |
| hum. | $0-15$ | 5.60 | 26.61 | 0.94 | 16.37 | 0.096 | 0.108 | 0.150 | 3.25 | 7.50 |
| hum. |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-15$ | 4.18 | 14.32 | 0.60 | 13.85 | 0.078 | 0.056 | 0.075 | 0.63 | 7.90 |
| min. | $15-85$ | 4.95 | 2.69 | 0.09 | 17.33 | 0.038 | 0.050 | 0.075 | 0.16 | 3.05 |


| 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | ilovka | 15.0 | 30 | 40 | morena | podzoljena rjava tla |
|  | ilovka | 8.5 | 30 | 35 |  |  |
|  |  |  |  |  |  | mulrendzina $20 \%$, plitva rjava |
| 18 | ilovka | 32.6 | 30 | 40 | morena | tla $40 \%$, slabo podzoljena rjava rla $40 \%$ |
|  | ilovka | 5.4 | 30 | 35 |  |  |
| 19 | drobno peščena ilovka | 45.0 | 30 | 45 | morena | mulrendzina |
| 20 | ilovka | 5.0 | 30 | 45 | apnenec | mulrendzina s povrsinskim slojem humusa oblike moder |
| 21 | meljasta ilovka | 2.6 | 40 | 45 | tuf | podzoljena kisla rjava tla |
|  | rahla glina | 23.0 | 2.0 | 25 |  |  |
| 22 | ilovka | 19.2 | 30 | 50 | keratofir | podzoljena kisla rjava tla |
|  | peščena ilovka | 38.0 | 30 | 40 |  |  |
| 23 | drobno peščena ilovka | 11.3 | 35 | 40 | apnenec | mulrendzina |
| 24 | drobno peščena ilovka | 2.5 | 30 | 45 | apnenec | mulrendzina s površinskim slojem humusa oblike moder |
| 25 | ilovka | 6.9 | 30 | 45 | apnenec | mulrendzina |
| 26 | ilovka | 0.0 | 30 | 45 | apnenec | mulrendzina 75 \% <br> plitva rjava tla $25 \%$ |
|  | ilovka | 0.0 | 25 | 35 |  |  |
|  |  | Skupina : smreka |  | B |  |  |
| 1 | drobno peščena ilovka | 4.2 | 30 | 50 | tonalit | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 29.1 | 30 | 40 |  |  |
| 2 | drobno peščena ilovka | 45.0 | 30 | 55 | blestnik | slabo podzoljena rjava tla |
|  | drobno peščena ilovka | 52.0 | 30 | 45 |  |  |
| 3 | drobno peščena ilovka | 15.1 | 40 | 60 | amfibolit | slabo podzoljena koluvialna rjava tla |
|  | drobno peščena ilovka | 26.5 | 30 | 40 | in gnajs |  |
| 4 | drobno peščena ilovka | 16.3 | 40 | 60 | škriljasti gnajs | slabo podzoljena kisla koluvialna rjava tla |
|  | drobno peščena ilovka | 23.5 | 30 | 40 |  |  |
| 5 | drobno peščena ilovka | 34.2 | 40 | 60 | blestnik | ranker |
| 6 | drobno peščena ilovka | 8.9 | 40 | 60 | škriljasti gnajs | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 31.4 | 30 | 40 |  |  |
| 7 | drobno peščena ilovka | 9.6 | 40 | 60 | škriljasti gnajs | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 48.6 | 30 | 40 |  |  |
| 8 | drobno peščena ilovka | 9.5 | 40 | 60 | škriljasti gnajs | podzoljena kisla rjava tla $\stackrel{\text { O }}{ }$ |
|  | drobno peščena ilovka | 37.2 | 30 | 40 |  |  |
| 9 | ilovnat droben pesek | 6.2 | 35 | 45 | apnenec | mulrendzina |
| 10 | drobno peščena ilovka | 0.0 | 30 | 40 | miocenski pesek | psevdoglej |
|  | lahka glina | 0.0 | 15 | 20 |  |  |


| 1 |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | Predalpsko hribovje, | hum. | $0-2$ | 4.28 | 14.68 | 0.53 | 16.08 | 0.079 | 0.059 | 0.100 | 1.23 | 13.00 |  |
|  | Kovor, pl. 203 | min. | $2-70$ | 4.70 | 2.06 | 0.08 | 15.50 | 0.038 | 0.045 | $0.100 \ldots \ldots$ | 0.11 | 3.03 |  |

Skupina : jelka A

1 Pohorje, Lehen pl. 184

2 Pohorje, Lehen pl. 185

3 Pohorje, Lehen p1. 186

4 Pohorje, Smolnik p1. 187

5 Pohorje, Smolnik pl. 188

6 Pohorje, Skomarje pl. 68

7 Gorski kras,Strmec a, Grčarice

8 Gorski kras,Strmec b, Grčarice

9 Gorski kras, Stojna pl. 3 a

10 Gorski kras, Stojna pl. 3 b

11 Gorski kras, Stojna pl. 3 c

12 Gorski kras, Stojna Fridrihštajn

13 Gorski kras, Kočevski rog, Žaga a

14 Gorski kras, Kočevski rog, Žaga b

| hum. | $0-25$ | 4.78 | 10.0 | 0.30 | 19.33 | 0.073 | 0.045 | 0.10 | 0.63 | 2.6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| min. | $25-99$ | 4.98 | 1.96 | 0.12 | 9.27 | 0.077 | 0.050 | 0.10 | 0.05 | 4.18 |
| hum. | $0-25$ | 4.10 | 15.0 | 0.44 | 19.55 | 0.103 | 0.042 | 0.10 | 1.36 | 9.64 |
| min | $25-80$ | 4.85 | 2.75 | 0.23 | 6.77 | 0.061 | 0.042 | 0.10 | 0.37 | 2.95 |
| hum. | $0-5$ | 3.87 | 26.61 | 0.85 | 18.10 | 0.125 | 0.047 | 0.075 | 1.23 | 12.10 |
| min. | $5-95$ | 4.85 | 4.89 | 0.21 | 13.21 | 0.075 | 0.075 | 0.087 | 1.10 | 2.30 |
| hum. | $0-20$ | 4.52 | 15.00 | 0.76 | 12.43 | 0.123 | 0.028 | 0.187 | 1.23 | 10.76 |
| min. | $20-60$ | 5.00 | 7.78 | 0.315 | 14.32 | 0.061 | 0.014 | 0.150 | 0.57 | 3.05 |
| hum. | $0-40$ | 4.55 | 25.00 | 0.94 | 15.49 | 0.084 | 0.028 | 0.10 | 0.83 | 19.28 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-7$ | 4.10 | 15.00 | 0.74 | 11.82 | 0.133 | 0.125 | 0.125 | 1.16 | 13.33 |
| min. | $7-35$ | 4.65 | 8.81 | 0.41 | 12.40 | 0.096 | 0.22 | 0.15 | 0.63 | 4.80 |
| hum. | $0-20$ | 5.45 | 20.01 | 0.73 | 15.90 | 0.081 | 0.079 | 0.150 | 1.88 | 10.05 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-12$ | 4.72 | 10.00 | 0.55 | 10.55 | 0.062 | 0.068 | 0.112 | 0.63 | 6.86 |
| min. | $12-42$ | 4.60 | 3.87 | 0.16 | 14.00 | 0.040 | 0.045 | 0.125 | 0.50 | 3.11 |
| hum. | $0-15$ | 4.97 | 30.00 | 0.89 | 19.55 | 0.074 | 0.073 | 0.175 | 4.52 | 10.75 |
| hum |  |  |  |  |  |  |  |  |  |  |

Skupina : jelka B vas a

2 Gorski kras, Srednja vas b

3 Gorski kras, Babno polje a

| hum. | 0.15 | 5.55 | 20.0 | 0.81 | 14.32 | 0.09 | 0.088 | 0.175 | 1.95 | 13.33 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-10$ | 5.22 | 11.54 | 0.42 | 15.32 | 0.052 | 0.065 | 0.112 | 1.36 | 10.55 |
| min. | $10-30$ | 5.88 | 4.7 | 0.22 | 12.41 | 0.042 | 0.050 | 0.125 | 0.53 | 2.90 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-10$ | 4.65 | 16.29 | 0.40 | 23.22 | 0.048 | 0.065 | 0.125 | 1.30 | 9.33 |
| min. | $10-25$ | 4.7 | 4.2 | 0.10 | 23.24 | 0.033 | 0.053 | 0.1 | 1.3 | 4.8 |


| 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | ilovka lahka glina | $\begin{aligned} & 0.0 \\ & 15.8 \end{aligned}$ | 30 15 | $\begin{aligned} & 40 \\ & 20 \end{aligned}$ | morena | podzoljena rjava tla |
|  |  | Skupina : jelka A |  |  |  |  |
| 1 | drobno peščena ilovka | 17.0 | 30 | 45 | škriljasti | kisla rjava tla |
|  | drobno peščena ilovka | 31.1 | 25 |  |  |  |
| 2 | drobno peščena ilovka | 19.6 | 40 | 60 | tonalit | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 24.4 | 30 | 40 |  |  |
| 3 | drobno peščena ilovka | 4.2 | 30 | 50 | tonalit | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 29.1 | 30 |  |  |  |
| 4 | drobno peščena ilovka | 45.0 | 30 | 55 | blestnik | slabo podzoljena rjava tla |
|  | drobno peščena ilovka | 52.1 | 30 | 45 |  |  |
| 5 | peščena ilovka | 62.8 | 25 | 55 | amfibolit | ranker |
| 6 | drobno peščena ilovka | 15.1 | 40 | 60 | amfibolit | slabo podzoljena kisla koluvialna rjava tla |
|  | drobno peščena ilovka | 26.5 | 30 | 40 | in gnajs |  |
| 7 | meljasta ilovka | 10.6 | 30 | 60 | apnenec | moderrendzina $54 \%$ mulrendzina $46 \%$ |
| 8 | ilovka | 0.0 | 30 | 50 | apnenec | plitva rjava tla $56 \%$ mulrendzina $44 \%$ |
|  | glinasta ilovka | 0.0 | 15 | 25 |  |  |
| 9 | ilovka | 26.3 | 30 | 45 | apnenec | moderrendzina |
| 10 | ilovka | 7.0 | 30 | 45 | apnenec | izprana terra fusca |
|  | glinasta ilovka | 5.0 | 20 | 25 |  |  |
| 11 | ilovka | 49.4 | 30 | 40 | apnenec | mulrendzina |
| 12 | ilovka | 6.4 | 30 | 40 | apnenec | mulrendzina |
| 13 | drobno peščena ilovka | 20.5 | 30 | 50 | apnenec | mulrendzina |
| 14 | drobno peščena ilovka | 15.5 | 30 | 45 | apnenec | mulrendzina $40 \%$ rjava tla $60 \%$ |
|  | glinasta ilovka | 10.0 | 15 | 20 |  |  |

[^0]1 meljasta ilovka

2 meljasta ilovka

| 2.0 | 30 | 45 |
| :---: | :---: | :---: |
|  |  |  |
| 0.0 | 30 | 45 |
| 5.4 | 15 | 20 |
|  |  |  |
| 9.1 | 25 | 40 |
| 0.0 | 15 | 20 |


| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4 Gorski kras, Babno polje b

5 Gorski kras, zah. Hrušica, Medvejšek

6 Gorski kras, osr. Hrušica, Stranski vrh

7 Gorski kras, Ribniška mala gora, severna pl.

8 Gorski kras, Ribniška mala gora, južna p1. b

9 Gorski kras, Travna gora
10. Gorski kras, Lazec, Parg

11 Gorski kras, Glažuta severna pl. a

12 Gorski kras, Glažuta, severna pl. b

13 Gorski kras, Glažuta, južna pl.

14 Gorski kras, Mokrc severna pl.

15 Gorski kras, Mokre južna pl.

16 Gorski kras, Mačkovec a

17 Gorski kras, Mačkovec b

18 Gorski kras, Mačkovec c
hum. $\begin{array}{llllllllll}0-15 & 5.82 & 15.0 & 0.58 & 14.97 & 0.065 & 0.078 & 0.150 & 1.95 & 11.25\end{array}$
$\begin{array}{lllllllllll}\text { hum. } & 0-15 & 5.35 & 16.69 & 0.46 & 21.04 & 0.057 & 0.077 & 0.112 & 1.13 & 5.25\end{array}$

| hum. | $0-15$ | 6.0 | 19.25 | 0.71 | 15.73 | 0.071 | 0.135 | 0.325 | 3.25 | 5.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-20$ | 6.53 | 17.14 | 0.54 | 18.41 | 0.065 | 0.075 | 0.987 | 0.57 | 5.12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-20$ | 6.52 | 19.68 | 0.58 | 19.39 | 0.063 | 0.073 | 2.072 | 0.77 | 2.15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-30$ | 6.6 | 19.5 | 0.63 | 17.95 | 0.050 | 0.095 | 0.972 | 0.57 | 2.83 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-30$ | 5.10 | 18.94 | 0.81 | 13.57 | 0.067 | 0.068 | 0.143 | 2.75 | 10.25 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-20$ | 6.00 | 11.54 | 0.42 | 15.93 | 0.057 | 0.071 | 0.137 | 0.50 | 6.77 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| hum. | $0-20$ | 6.20 | 16.0 | 0.72 | 13.0 | 0.078 | 0.075 | 0.375 | 1.62 | 11.47 |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| min. | $20-40$ | 5.6 | 3.45 | 0.14 | 14.28 | 0.034 | 0.045 | 0.162 | 0.50 | 2.39 |
| hum. | $0-20$ | 6.2 | 13.33 | 0.57 | 13.56 | 0.061 | 0.075 | 0.206 | 0.5 | 1.75 |
| min. |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-25$ | 6.62 | 17.16 | 0.52 | 19.13 | 0.05 | 0.088 | 0.875 | 2.75 | 3.25 |
|  |  |  |  |  |  |  |  |  | $\ddots$ |  |
| hum. | $0-10$ | 6.4 | 15.41 | 0.48 | 18.63 | 0.061 | 0.068 | 1.65 | 1.3 | 2.6 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-10$ | 6.35 | 17.49 | 0.43 | 23.6 | 0.06 | 0.056 | 0.237 | 0.5 | 4.95 |
| min. | $10-22$ | 6.4 | 4.65 | 0.15 | 17.98 | 0.037 | 0.056 | 0.2 | 0.63 | 2.3 |
| hum. | $0-20$ | 5.31 | 16.04 | 0.5 | 18.6 | 0.043 | 0.042 | 0.125 | 0.63 | 5.62 |
| min. | $20-99$ | 5.9 | 4.2 | 0.08 | 30.5 | 0.031 | 0.037 | 0.112 | 1.23 | 2.16 |

1 Pokljuka, Mrzli studenec odd. 39 e, pl. 48

2 Pokljuka, Mrzli studenec odd. 38 a, pl. 51

3 Jelovica, Rovtarica odd. 32, pl. 14

4 Jelovica, Martinček odd. 14 a, 'pl. 17

5 Jelovica, Mą̣tinček pl. 18
$\begin{array}{lllllllllll}\text { hum. } & 0.15 & 4.90 & 15.55 & 0.60 & 14.91 & 0.022 & 0.035 & 0.050 & 2.25 & 6.0\end{array}$
0.0250 .76
0.065
0.050
0.63
0.060
0.100
1.30
7.25

| hum. | $0-10$ | 3.45 | 23.84 | 0.74 | 18.67 | 0.083 | 0.095 | 0.075 | 2.64 | 13.29 |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | ---: | ---: |
| min. | $10-60$ | 3.87 | 4.09 | 0.13 | 18.23 | 0.033 | 0.088 | 0.075 | 2.00 | 2.97 |
|  |  |  |  |  |  |  |  |  |  |  |
| hum. | $0-22.5$ | 3.50 | 27.91 | 0.98 | 16.52 | 0.099 | 0.064 | 0.075 | 5.00 | 11.26 |
| min. | $22.5-52.5$ | 3.90 | 8.64 | 0.26 | 19.28 | 0.083 | 0.085 | 0.087 | 1.37 | 2.25 |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | Jelovica, Martinček | hum. | 0-15 | 5.04 | 21.74 | 0.74 | 17.04 | 0.107 | 0.071 | 0.112 | 1.95 | 7.73 |
|  | odd. 146, pl. 24 | mim. | 15-35 | 5.00 | 7.36 | 0.29 | 14.68 | 0.063 | 0.042 | 0.093 | 0.68 | 1.26 |
| 7 | Pohorje, Rakovec | hum. | 0-16 | 4.05 | 25.30 | 0.80 | 18.29 | 0.114 | 0.088 | 0.062 | 2.15 | 17.60 |
|  | odd. 6a, pl. 27 | min. | 16-40 | 4.80 | 5.79 | 0.35 | 10.03 | 0.064 | 0.137 | 0.100 | 1.30 | 3.60 |
| 8 | Pohorje, Resnik | hum. | 0-15 | 3.95 | 20.66 | 0.55 | 21.82 | 0.162 | 0.088 | 0.112 | 3.20 | 11.06 |
|  | p1. 207 | min. | 15-85 | 4.90 | 3.97 | 0.15 | 14.93 | 0.138 | 0.172 | 0.125 | 1. 30 | 3.05 |
| 9 | Gorski kras, Javornik | hum. | 0-15 | 5.53 | 20.60 | 0.80 | 14.94 | 0.076 | 0.078 | 0.120 | 1.30 | 13.33 |
|  | odd. 29 d, pl. 100 | min. | 15-35 | 5.40 | 5.87 | 0.22 | 15.45 | 0.040 | 0.060 | 0.125 | 0.45 | 2.25 |
| 10 | Gorski kras, Leskova | hum. | 0-5 | 4.99 | 18.81 | 0.52 | 20.82 | 0.055 | 0.070 | 0.112 | 0.63 | 9.84 |
|  | dolina, odd. $36 \mathrm{~b}, \mathrm{pl} .98$ | min. | 5-20 | 5.70 | 5.25 | 0.19 | 16.05 | 0.080 | 0.044 | 0.112 | 0.70 | 2.31 |
| 11 | Gorski kras, Mašun | hum. | 0-20 | 6.42 | 23.98 | 0.84 | 15.74 | 0.099 | 0.113 | 0.450 | 2.18 | 6.00 |
| 12 | Gorski kras, Mašun <br> Škornje, odd. $10 \mathrm{~h}, \mathrm{pl} .96$ | hum. | 0-15 | 5.60 | 26.61 | 0.94 | 16.37 | 0.096 | 0.108 | 0.150 | 3.25 | 7.50 |
| 13 | Gorski kras, Jelenov žleb a | hum. min. | 0-10 | 4.45 | 36.88 | 1.08 | 19.31 | 0.074 | 0.037 | 0.175 | 4.88 | 17.00 |
| 14 | Gorski kras, Jelenov žleb b | hum. | 0-20 | 6.05 | 11.90 | 0.30 | 23.00 | 0.062 | 0.071 | 0.175 | 0.57 | 4.50 |
| 15 | Gorski kras, Krim, severna pl. | hum. | 0-20 | 7.30 | 20.98 | 0.82 | 14.78 | 0.081 | 0.102 | 1.20 | 0.70 | 1.60 |
| 16 | Gorski kras, Krim, južna ploskev | hum. | 0-20 | 6.24 | 12.42 | 0.46 | 15.65 | 0.054 | 0.075 | 0.70 | 0.94 | 4.65 |
| 17 | Gorski kras, Vinji vrh | hum. | 0-15 | 6.90 | 15.15 | 0.48 | 18.31 | 0.062 | 0.068 | 0.287 | 0.63 | 2.25 |
| 18 | Gorski kras, Strmek, | hum. | 0-10 | 5.18 | 16. 04 | 0.45 | 18.78 | 0.057 | 0.063 | 0.112 | 0.83 | 2.38 |
|  | Grčarice, pl. 1 | min. | 10-35 | 4.68 | 3.18 | 0.12 | 15.33 | 0.040 | 0.038 | 0.100 | 0.83 | 2.39 |
| 19 | Gorski kras, Strmec, | hum. | 0-8 | 4.71 | 19.59 | 0.55 | 20.60 | 0.055 | 0.088 | 0.100 | 1.35 | 11.27 |
|  | Grcarice, spod. del pl. 2 | min. | 8-35 | 5.50 | 4.19 | 0.19 | 12.80 | 0.036 | 0.068 | 0.110 | 1. 30 | 2.16 |
| 20 | Gorski kras, Strmec, Grčarice, zgor. del pl. 2 | hum. | 0-15 | 5.90 | 18.00 | 0.49 | 21.31 | 0.058 | 0.080 | 0.125 | 0.63 | 4.25 |
| 21 | Predalpsko hribovje, | hum. | -15 | 4.18 | 14.32 | 0.60 | 13.85 | 0. 078 | 0.056 | 0.075 | 0.63 | 7.90 |
|  | Golnik, pl. 202 | min. | 15-85 | 4.95 | 2.69 | 0.09 | 17. 33 | 0.038 | 0.050 | 0.075 | 0.16 | 3.05 |
| 22 | Predalpsko hribovje, | hum. | 0-2 | 4.28 | 14.68 | 0.53 | 16.08 | 0.072 | 0.059 | 0.100 | 1.23 | 13.00 |
|  | Kovor, pl. 203 | min. | 2-70 | 4.70 | 2.06 | 0.08 | 15.15 | 0.038 | 0.045 | 0.100 | 0.11 | 3.05 |
| 23 | Predalpsko hribovje; Konjiška gora, pl. 205 | hum. | 0-40 | 6.95 | 18.52 | 0.51 | 21.31 | 0.069 | 0.078 | 0.550 | 1.43 | 4.45 |
| 24 | Predalpsko hribovje, | hum. | 0-4 | 4.75 | 13.90 | 0.46 | 17.61 | 0,080 | 0.050 | 0.100 | 1.23 | 15.88 |
|  | Hom pri Bočni, pl. 206 | min. | 4-80 | 4.95 | 3.08 | 0.12 | 15.56 | 0.431 | 0.035 | 0.100 | 0.45 | 5.45 |

Skupina : bukev A

| 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | ilovka | 0.0 | 30 | 45 | apnenec | mulrendzina 75 \% |
|  | ilovka | 0.0 | 25 | 35 |  | plitva rjava tla $25 \%$ |
| 7 | drobno peščena ilovka | 16.0 | 40 | 60 | škriljasti gnajs | slabo podzoljena kisla |
|  | drobno peščena ilovka | 23.5 | 30 | 40 |  | koluvialna rja-va tla |
| 8 | drobno peščena ilovka | 30.0 | 30 | 50 | škriljasti gnajs | podzoljena kisla |
|  | drobno peščena ilovka | 28.2 | 25 | 40 |  | rjava tla |
| 9 | ilovka | 10.0 | 40 | 50 | apnenec | izprana terra fuscas |
|  | glinasta ilovka | 5.5 | 30 | 40 |  |  |
| 10 | ilovka | 2.5 | 50 | 55 | apnenec | izprana terra fuscar |
|  | glinasta ilovka | 2.0 | 40 | 45 |  |  |
| 11 | drobno peščena ilovka | 12.5 | 30 | 50 | apnenec | mulrendzina |
| 12 | droben ilovnat pesek | 6.2 | 35 | 45 | apnenec | mulrendzina |
| 13 | peščena ilovka | 30.0 | 25 | 60 | apnenec | moderrendzina |
| 14 | ilovka | 0.0 | 30 | 40 | apnenec | mulrendzina |
| 15 | meljasta ilovka | 33.0 | 30 | 55 | dolomit | mulrendzina |
| 16 | meljasta ilovka | 10.3 | 30 | 55 | dolomit | mulrendzina |
| 17 | ilovka | 43.2 | 25 | 35 | dolomit | mulrendzina |
| 18 | meljasta ilovka | 2.1 | 30 | 60 | apnenec | plitva rjava tla $28 \%$, mulrendzina |
|  | glinasta ilovka | 0.0 | 15 | 25 |  | $44 \%$, moderrendzina $20 \%$, lesivirana rjava tla $8 \%$ |
| 19 | ilovka | 21.6 | 30 | 40 | apnenec | izprana terra fusca: |
|  | glinasta ilovka | 8.7 | 15 | 25 |  |  |
| 20 | meljasta ilovka | 12.3 | 30 | 60 | apnenec | mulrendzina |
| 21 | drobno peščena ilovka | 0.0 | 30 | 40 | miocenski | psevdoglej |
|  | lahka glina | 0.0 | 15 | 20 | pesek |  |
| 22 | ilovka | 0.0 | 30 | 40 | morena | podzoljena rjava tla |
|  | lahka glina | 15.8 | 15 | 20 |  |  |
| 23 | ilovka | 45.0 | 30 | 45 | dolomit | koluvialna mulrendzina |
| 24 | drobno peščena ilovka | 0.0 | 30 | 45 | miocenska | psevdoglej |
|  | peščena glina | 0.0 | 15 | 20 | ilovka |  |

Skupina : bukev A
1 ilovka

2 ilovka
$5.0 \quad 30$
6.230

45

45
apnenec
apnenec
mulrendzina s površinskim slojem humusa oblike moder
mulrendzina s površinskim slojem humusa oblike moder

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | Jelovica, Martinček | hum. | 0-15 | 5.04 | 21.74 | 0.74 | 17.04 | 0.107 | 0.071 | 0.012 | 1.95 | 7.73 |
|  | odd. 146, pl. 24 | min. | 15-35 | 5.00 | 7.36 | 0.29 | 14.68 | 0.063 | 0.042 | 0.093 | 0.68 | 1.26 |
| 4 | Kamniška Bistrica, | hum. | 0-15 | 7.35 | 21.76 | 0.88 | 14.34 | 0.088 | 0.102 | 2.012 | 1.43 | 2.9 |
|  | Prajzovka, pl. 143 | min. | 15-40 | 7.42 | 12.33 | 0.36 | 19.86 | 0.067 | 0.102 | 0.943 | 0.77 | 2.16 |
| 5 | Kamniška Bistrica, | hum. | 0-15 | 7.55 | 14.01 | 0.57 | 14.19 | 0.088 | 0.078 | 0.2 | 0.30 | 5.45 |
|  | Žiberna ravan, pl. 144 | min. | 15-60 | 7.70 | 7.05 | 0. 25 | 16.36 | 0.050 | 00053 | 0.30 | 0.25 | 1.22 |
| 6 | Kamniška Bistrica, Klin, pl. 162 | hum. | 0-20 | 6.10 | 25.0 | 1.02 | 18.53 | 0.113 | 0.075 | 0.637 | 1.82 | 7.61 |
| 7 | Pohorje, Hudi kot, | hum. | 0-15 | 4.30 | 18.0 | 0.87 | 11.95 | 0.78 | 0.042 | 0.062 | 0.50 | 10.45 |
|  | odd. 48, pl. 167 | min. | 15-80 | 4.85 | 11.44 | 0.30 | 21.91 | 0.069 | 0.043 | 0.062 | 0.50 | 2.02 |
| 8 | Pohorje, Lobnica, | hum. | 0-5 | 4.10 | 26.06 | 0.99 | 15.21 | 0.116 | 0.067 | 0.100 | 3.28 | 19.3 |
|  | p1. 168 | min. | 5-80 | 4.5 | 13.25 | 0.26 | 28.69 | 0.100 | 0.057 | 0.112 | 0.96 | 3.75 |
| 9 | Pohorje, Smolnik, | hum. | 0-20 | 4.52 | 15.0 | 0.76 | 12.43 | 0.123 | 0.028 | 0.187 | 1.23 | 10.76 |
|  | pl. 187 | min. | 20-60 | 5.0 | 7.78 | 0.31 | 14.32 | 0.061 | 0.014 | 0.15 | 0.57 | 3.05 |
| 10 | Pohorje, Smolnik, pl. 188 | hum. | 0-40 | 4.55 | 25.0 | 0.93 | 15.49 | 0.084 | 0.028 | 0.10 | 0.83 | 19.28 |
| 11 | Gorski kras, Idrija, | hum. | 0-3 | 5.50 | 17.55 | 0.55 | 18.51 | 0.084 | 0.225 | 0.100 | 1.08 | 5.02 |
|  | Mrzla rupa, pl. 161 | min. | 3-27 | 5.8 | 3.04 | 0.17 | 10.23 | 0.031 | 0.250 | 0.160 | 0.50 | 1.01 |
| 12 | Predalpsko hribovje, Blegoš, pl. 178 | hum. | 0-15 | 7.28 | 15.11 | 0.96 | 9.08 | 0.084 | 0.088 | 4.375 | 0.83 | 2.25 |
| 13 | Predalpsko hribovje, Menina pl. 179 | hum. | 0-20 | 6.35 | 22,27 | 0.5 | 25.8 | 0.122 | 0.071 | 0.237 | 1.55 | 4.03 |
|  |  |  |  | Skupina : bukev B |  |  |  |  |  |  |  |  |
| 1 | Gorski kras, Strmec, | hum. | 0-8 | 4.71 | 19.59 | 0.55 | 20.60 | 0.055 | 0.088 | 0.100 | 1.35 | 11.27 |
|  | Grčarice, spod.del pl. 2 | min. | 8-45 | 5.50 | 4.19 | 0.19 | 12.80 | 0.036 | 0.036 | 0.110 | 1.30 | 2.16 |
| 2 | Gorski kras, Kočevski | hum. | 0-12 | 6.52 | 21.54 | 0.64 | 19.58 | 0.071 | 0.073 | 1.95 | 0.96 | 5.45 |
|  | rog, Tr-avnik, pl. 141 | min. | 12-47 | 7.40 | 6.80 | 0.22 | 17.51 | 0.046 | 0.089 | 0.675 | 0.63 | 2.75 |
| 3 | Gorski kras, Kočevski rog, Travnik, pl. 142 | hum. | 0-30 | 7.10 | 17.46 | 0.68 | 14.90 | 0.069 | 0.680 | 6.66 | 1.00 | 5.29 |
| 4 | Gorski kras, Kočevski | hum. | 0-11 | 5.65 | 19.44 | 0.66 | 17.09 | 0.073 | 0.063 | 0.112 | 1.16 | 10.55 |
|  | rog, Trnovec, pl. 163 | min. | 11-44 | 5.3 | 4.15 | 0.12 | 20.08 | 0.036 | 0.045 | 0.087 | 0.70 | 3.1 |
| 5 | Gorski kras, Kočevski | hum. | 0-5 | 5.10 | 21.42 | 0.58 | 21.41 | 0.061 | 0.065 | 0.137 | 1.35 | 11.48 |
|  | rog, Trnovec, pl. 164 | min. | 5-50 | 4.65 | 3.35 | 0.18 | 10.78 | 0.061 | 0.05 | 0.1 | 0.63 | 3.75 |
| 6 | Gorski kras, Kočevski | hum. | 0-8 | 5.95 | 21.42 | 0.59 | 20.88 | 0.065 | 0.050 | 0.112 | 1.55 | 7.04 ¢ |
|  | rog, Sv. Peter, pl. 137 | min. | 8-44 | 6.0 | 3.73 | 0.22 | g. 82 | 0.037 | 0.050 | 0.125 | 1.03 | 2.60 |
| 7 | Gorski kras, Kočevski | hum. | 0-2 | 5.45 | 19.53 | 0.51 | 22.21 | 0.061 | 0.056 | 0.100 | 1.75 | 11.26 |
|  | rog, Sv.Peter, pl. 140 | min. | 2-52 | 5.3 | 2.96 | 0.09 | 19.11 | 0.033 | 0.047 | 0.100 | 1.3 | 2.75 |
| 8 | Gorski kras, Kočevski | hum. | 0-5 | 5. 75 | 14.95 | 0.41 | 20.44 | 0.053 | 0.050 | 0.100 | 0.63 | 5.29 |
|  | rog, Knežja roka; pl, 139 | min. | 5-51 | 5.5 | 3.07 | 0.12 | 14.83 | 0.029 | 0.040 | 0.100 | 0.37 | 2.60 |
| 9 | Gorski kras, Kečevski | hum. | $0-4$ | 5.50 | 21.11 | 0.48 | 25.02 | 0.051 | 0.053 | 0.100 | 1.34 | 8.02 |
|  | rog, nad Sotesko, pl. 138 | min. | 4-45 | 5.75 | 3.07 | 0.13 | 13.61 | 0.031 | 0.045 | 0.101 | 0.058 | 2.74 |



| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | Predalpsko hribovje | hum. | 0-5 | 6.0 | 21.52 | 0.56 | 22.21 | 0.070 | 0.106 | 0.137 | 2.01 | 19.89 |
|  | Konjiška gora, p1. 169 | min. | 5-28 | 5.63 | 2.10 | 0.08 | 18.14 | 0.05 | 0.097 | 0.2 | 0.63 | 3, 32 |
| 11 | Predalpsko ḣribovje, |  |  |  |  |  |  |  |  |  |  |  |
|  | Polšnik, pl. 145 | min. | 0-99 | 4.52 | 5.18 | 0.12 | 25.0 | 0.001 | 0.176 | 0.050 | 0.50 | 3.0 |
| 12 | Predalpsko hriborje, | hum. | 0-10 | 5.8 | 21.21 | 0.6 | 20.5 | 0.11 | 0.15 | 0.137 | 2.75 | 15.2 |
|  | Bohor, pl. 166 | min. | 10-35 | 5.45 | 3.89 | 0.2 | 11.3 | 0.061 | 0.111 | 0.100 | 0.45 | 5.8 |

Skupina : bukev C

Log pod Mangartom, Petričevec, pl. 176

Kneža, Na prodeh, p1. 177

Gorski kras, Javornik
Debeli kamen, pl. 171
Gorski kras, Leskova dolina, odd. 36 b, pl. 98

Gorski kras, Mašun nad Šofitom, pl. 172

Gorski kras, Mašun Park, pl. 95

Gorski kras, Mašun Škornje, odd. $10 \mathrm{~h}, \mathrm{pl} .96$

Gorski kras, Jelenov žleb, pl. 165

Gorski kras, Trnovski gozd, pl. 159

10 Predalpsko hribovje, Gorjanci, p1. 135

| 1 | 2 | 3 | 4 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | ilovka | 10.0 | 30 | 45 | apnenec | plitva rjava tia |
|  | ilovka | 55.0 | 20 | 25 |  |  |
| 11 | drobno peščena ilovka | 42.5 | 25 | 50 | karbonski | podzoljena kisla rjava tla |
|  |  |  |  |  | kremenčev peščenjak |  |
| 12 | drobno peščena ilovka ilovka | $51.2$ | 30 | $45$ | apnenec | plitva rjava tla |
|  |  | $41.2$ | 20 | $30$ |  |  |
|  |  | Skupina : bukev C |  |  |  |  |
| 1 | ilovnat pesek | 55.0 | 25 | 60 | apnenec | črnica |
| 2 | meljasta ilovka | 53.0 | 20 | 55 | apnenec | črnica |
| 3 | drobno peščena ilovka | 9,9 | 30 | 40 | apnenec | lesivirana rjava tla |
|  | drobno peščena ilovka | 24.0 | 25 | 30 |  |  |
| 4 | ilovka | 2.5 | 30 | 40 | apnenec | izprana terra fusca |
|  | glinasta ilovka | 3.0 | 15 | 20 |  |  |
| 5 | glinasta ilovka | 50.8 | 20 | 30 | dolomit | mulrendzina s povřšinskim slojem humusa oblike moder |
| 6 | drobno peščena ilovka | 12.5 | 30 | 50 | apnenec | mulrendzina |
| 7 | ilovnat droben pesek | 6.2 | 35 | 45 | apnenec | mulrendzina |
| 8 | ilovka | 0.0 | 25 | 35 | apnenec | lesivirana rjava tla |
|  | ilovka | 0.0 | 20 | 25 |  |  |
| 9 | meljasta ilovka | 15.0 | 20 | 45 | dolomit | mulrendzina s površinskim slojem humusa oblike moder |
| 1 | ilovka | 0.0 | 25 | 45 | apnenec | lesivirana rjava tla |
|  | glinasta ilovka | 0.0 | 10 | 15 |  |  |
| 11 | ilovka | 9.8 | 30 | 40 | velikotrnski | lesivirana rjava tla |
|  | glinasta ilovka | 53.9 | 20 | 25 | skladi |  |
| 12 | ilovka | 20.5 | 30 | 40 | velikotrnski | lesivirana rjava tla |
|  | glinasta ilovka | 16.2 | 20 | 25 | skladi |  |
| 13 | drobno peščena ilovka meljasta ilovka | 0.0 | 25 | 60 | miocenski | psevdoglej |
|  |  | 0.0 | 20 | 25 | pesek |  |
| 14 | ilovka | 12.5 | 30 | 40 | miocenski | podzoljena kisla rjava tla |
|  | drobno peščena ilovka | 42.1 | 20 | 35 | peščenjak |  |

## Mejne vrednosti rezultatov analiz klimatično izenačenih skupin



[^1]

Aritmetična sredina rezultatov analiz klimatično izenačenih skupin

| Obravnavani p | podatk | smreka | A | jelka A | jelka B | bukev A | bukev B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| zgornja višina (m) |  | 31.704 |  | 27.714 | 25.700 | 28.781 | 31.017 |
| matična kamenina |  | 3.538 |  | 3.643 | 1.611 | 3.308 | 1.917 |
| talni tip |  | 16.231 |  | 16.786 | 19.167 | 19.769 | 13.500 |
| globina (cm) | I | 19.461 |  | 17.143 | 17.389 | 16.385 | 9.091 |
| tekstura | I | 8.538 |  | 8.428 | 8.889 | 8.385 | 8.818 |
| vlega (\%) | I | 29.615 |  | 29.143 | 27.500 | 29.231 | 30.000 |
| poroznost (\%) | I | 41.731 |  | 50.000 | 43.333 | 47.308 | 41.818 |
| $\mathrm{pH} \mathrm{v} \mathrm{H}_{2} \mathrm{O}$ | I | 4.792 |  | 4.960 | 5.907 | 5.611 | 5.775 |
| \% humusa | I | 23.069 |  | 18.458 | 16.620 | 19.720 | 19.818 |
| \% N | I | 0.656 |  | 0.634 | 0.563 | 0.765 | 0.569 |
| $\mathrm{C}: \mathrm{N}$ | I | 20.390 |  | 17.363 | 17.569 | 16.034 | 20.440 |
| $\% \mathrm{P}_{2} \mathrm{O}_{5}$ | I | 0.078 |  | 0.087 | 0.061 | 0.095 | 0.067 |
| $\% \mathrm{~K}_{2} \mathrm{O}$ | I | 0.070 |  | 0.064 | 0.076 | 0.077 | 0.130 |
| $\% \mathrm{CaO}$ | I | 0.203 |  | 0.171 | 0.497 | 0.645 | 0.877 |
| $\mathrm{mg} \mathrm{P}_{2} \mathrm{O}_{5}$ | I | 2.604 |  | 1.325 | 1.364 | 1.311 | 1.441 |
| mg K 2 | I | 9.815 |  | 9.317 | 6.553 | 8.067 | 10.067 |
| tekstura | II | 9.687 |  |  |  | 8.143 | 10.091 |
| vlage (\%) | II | 25.625 |  |  |  | 25.000 | 19.091 |
| poroznost (\%) | II | 32.812 |  |  |  | 35.000 | 27.727 |
| $\mathrm{pH} v \mathrm{H}_{2} \mathrm{O}$ | II | 5.127 |  |  |  | 5.753 | 5.545 |
| \% humusa | II | 6.706 |  | ni podana | zaradi | 8.893 | 3.863 |
| $\% \mathrm{~N}$ | II | 0.222 |  | majhnega | števila | 0.280 | 0.152 |
| $\mathrm{C}: \mathrm{N}$ | II | 18.545 |  | mineralni | horizon- | 18.007 | 15.725 |
| $\% \mathrm{P}_{2} \mathrm{O}_{5}$ | II | 0.059 |  | tov |  | 0.063 | 0.038 |
| \% $\mathrm{K}_{2} \mathrm{O}$ | II | 0.067 |  |  |  | 0.080 | 0.074 |
| \% CaO | II | 0.122 |  |  |  | 0.260 | 0.159 |
| $\mathrm{mg} \mathrm{P}_{2} \mathrm{O}_{5}$ | II | 1.301 |  |  |  | 0.604 | 0.691 |
| $\mathrm{mg} \mathrm{K} \mathrm{K}^{\mathrm{O}}$ | II | 1.785 |  |  |  | 2.067 | 3.143 |
| globina (cm) | $I+$ | 36.115 |  | 44.928 | 26.055 | 39.231 | 47.500 |


|  |  |  |  |  |  |  |  |  | 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 3 |  |  |  |  | \％ | 鹵成 | 83 | － |  |  |
|  |  | $\pm$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | \％ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

（\％zanesljivosti pozitivnega ali negativnega vpliva）
Skupina ：jelka A
Kemične lastnosti humoznega horizonta

|  |  | 玺 | 砤； | 亿 | $\begin{aligned} & \text { 九 } \\ & \ddot{u} \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & n_{1}^{0} \\ & 0^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & x^{\prime} \\ & s^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { U } \\ & \text { ঠo } \end{aligned}$ | $\begin{aligned} & 0^{\circ 0} \\ & R_{1}^{\circ} \\ & \varepsilon_{i}^{\infty} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { J-A-K1 } \\ & \text { J-B-K1 } \\ & \text { J-D-K1 } \end{aligned}$ | 1 | ＋90 | ＋80 | －80 | －80 | ＋60 | ＊ | －60 | O | O | $\begin{aligned} & F<F o \\ & F<F o \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 2 | $\begin{aligned} & +60 \\ & +60 \\ & +95 \end{aligned}$ | $\begin{aligned} & * \\ & * \\ & +80 \end{aligned}$ | $\begin{gathered} * \\ * \\ -90 \end{gathered}$ | $\begin{gathered} * \\ * \\ -90 \end{gathered}$ | $\begin{gathered} * \\ * \\ +60 \end{gathered}$ | ＊ | $\begin{gathered} \mathrm{O} \\ \mathrm{O} \\ -60 \end{gathered}$ |  |  | $\begin{aligned} & 75 \\ & 75 \\ & 90 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 4. |  |  |  |  | $\begin{aligned} & -99 \\ & -99 \\ & -95 \end{aligned}$ | $\begin{aligned} & +60 \\ & +60 \\ & +90 \end{aligned}$ |  |  |  | $\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 3 |  |  |  |  |  |  |  | ＂ | 11 | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 6 |  |  |  |  | $\begin{aligned} & -95 \\ & -95 \end{aligned}$ | $\begin{aligned} & +60 \\ & +60 \end{aligned}$ |  | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & -80 \\ & -80 \end{aligned}$ | $\begin{aligned} & 90 \\ & 90 \\ & \mathrm{~F} \text { Fo } \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{K} 1 \end{aligned}\right.$ | 5 |  | ＂ | ＂ | ＂ |  |  |  |  | ： | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F O \end{aligned}$ |

(\% z anseljivosti pozitivnega ali negativnega vpliva
Skjpina : jelka A
Fizikalne lastnosti humoznega in mineralnega horizonta

|  |  |  |  | $\begin{aligned} & \text { H } \\ & \text { 品 } \\ & \stackrel{0}{0} \\ & \text { OD } \end{aligned}$ |  |  | H 苟 0 N 0 0 0 0 0 |  |  | $\begin{aligned} & \text { G } \\ & \stackrel{\rightharpoonup}{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & J-A-F 1 \\ & J-B-F 1 \\ & J-D-F 1 \end{aligned}$ | 1 | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & -90 \end{aligned}$ | $\begin{aligned} & +60 \\ & +60 \\ & +80 \end{aligned}$ | $\begin{gathered} \hline \hline+60 \\ O \\ +97.5 \end{gathered}$ | $\begin{gathered} +95 \\ * \\ +60 \end{gathered}$ | $\begin{aligned} & \text { * } \\ & * \\ & \text { - } \\ & -90 \end{aligned}$ | $\begin{gathered} -90 \\ * \\ 0 \end{gathered}$ | $\begin{gathered} +90 \\ * \\ +99 \end{gathered}$ | $\begin{gathered} +60 \\ * \\ +95 \end{gathered}$ | $\begin{gathered} \hline-80 \\ * \\ -80 \end{gathered}$ | $\begin{aligned} & -80 \\ & O \\ & -97.5 \end{aligned}$ | $\begin{aligned} & 99.5 \\ & 90 \\ & 99.5 \end{aligned}$ |
| $\begin{aligned} & J-A-F 1 \\ & J-B-F 1 \\ & J-D-F 1 \end{aligned}$ | 4 |  |  | $\begin{aligned} & +90 \\ & +80 \\ & +95 \end{aligned}$ | $\begin{aligned} & +97.5 \\ & * \\ & +60 \end{aligned}$ | $\begin{gathered} * \\ * \\ -60 \end{gathered}$ | $\begin{aligned} & -90 \\ & * \\ & -60 \end{aligned}$ | $\begin{aligned} & +90 \\ & +60 \\ & +99 \end{aligned}$ | $\begin{gathered} +90 \\ * \\ +90 \end{gathered}$ | $\begin{aligned} & -90 \\ & * \\ & -60 \end{aligned}$ | $\begin{aligned} & -95 \\ & -60 \\ & -97.5 \end{aligned}$ | $\begin{aligned} & 99.5 \\ & 97.5 \\ & 99.5 \end{aligned}$ |
| $\begin{aligned} & J-A-F 1 \\ & J-B-F 1 \\ & J-D-F 1 \end{aligned}$ | 2 |  |  | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & +97.5 \\ & +95 \\ & +95 \end{aligned}$ | $\begin{gathered} -60 \\ * \\ \mathrm{O} \end{gathered}$ | $\begin{aligned} & -95 \\ & -97.5 \\ & -95 \end{aligned}$ |  |  |  |  | $\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 5 |  |  |  | $\begin{aligned} & +97.5 \\ & +95 \\ & +99.5 \end{aligned}$ | $\begin{gathered} -60 \\ * \\ 0 \end{gathered}$ | $\begin{aligned} & -97.5 \\ & -97.5 \\ & -99 \end{aligned}$ |  |  |  |  | $\begin{aligned} & 90 \\ & 90 \\ & 90 \end{aligned}$ |
| $\begin{aligned} & J-A-F 1 \\ & J-B-F 1 \\ & J-D-F 1 \end{aligned}$ | 3 |  |  |  |  |  | - | $\begin{aligned} & +9.7 .5 \\ & +97.5 \\ & +95 \end{aligned}$ | $\begin{gathered} \mathrm{O} \\ +60 \\ +60 \end{gathered}$ | $\begin{aligned} & -60 \\ & -60 \\ & -95 \end{aligned}$ |  | $\begin{aligned} & 75 \\ & 90 \\ & 90 \end{aligned}$ |
| $\begin{aligned} & J-A-F 1 \\ & J-B-F 1 \\ & J-D-F 1 \end{aligned}$ | 6 | $\begin{aligned} & -97.5 \\ & -97.5 \\ & -97.5 \end{aligned}$ | $\begin{aligned} & +80 \\ & +80 \\ & +80 \end{aligned}$ |  |  |  |  |  |  |  | : | $\begin{aligned} & 75 \\ & 75 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 7 |  |  | 1 |  |  |  |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F O \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 8 |  |  |  |  |  |  |  |  | " |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |

T-test
(\% zanesljivosti pozitivnega ali negativnega vpliva)
Skupina: jelka B
Kemične lastnosti mineralnega horizonta


T－test
（\％zanesljivosti pozitivnega ali negativnega vpliva）
Skupina ：jelka B
Kemične lastnosti mineralnega horizonta

|  |  | 空 | $\begin{aligned} & \stackrel{y}{\overrightarrow{2}} \\ & \stackrel{y}{2} \\ & \vec{y} \end{aligned}$ | \％ | $\begin{gathered} z \\ \cdot \\ u \end{gathered}$ | $\begin{aligned} & 0^{60} \\ & R_{1}^{N} \\ & \Delta^{0} \end{aligned}$ | $\begin{aligned} & 0^{N} \\ & w^{N} \\ & s^{\circ} \end{aligned}$ | $\begin{aligned} & \text { O } \\ & \text { ご } \\ & \text { हొ } \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & م^{N} \\ & 0^{\infty} \\ & g \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J－A－S2 <br> J－B－S2 <br> J－D－S2 | 1 | ＋80 | －90 | ＊ | －95 | 0 | O | －90 | ＋60 | O | $\begin{aligned} & \text { F } / \mathrm{FFo}^{2} \\ & 75 \end{aligned}$ |
| J－A－S2 J－B－S2 J－D－S2 | 2 | ＋80 | －90 | ＊ | －97． 5 | 0 | O | －95 |  |  | $\begin{aligned} & \quad{ }_{F}^{\prime} \text { Fo } \\ & 90 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 4 |  |  |  |  | 11 | 11 |  |  |  | $\begin{gathered} \quad / \\ F<F o \\ F<F O \end{gathered}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 3 |  |  |  |  |  |  |  | ＂ | 11 | $\begin{aligned} & \quad / \\ & F<F o \\ & F<F o \end{aligned}$ |
| J－A－S2 J－B－S2 J－D－S2 | 6 |  |  |  |  | ＂ | ＂ |  | ＂ | 11 | $\begin{gathered} \quad / \\ F<F o \\ F<F O \end{gathered}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 5 |  | 1 | ＂ | ＂ |  |  |  |  | ： | $\begin{aligned} & \mathrm{F}<\mathrm{Fo}_{0} \\ & \mathrm{~F}<\mathrm{Fo} \end{aligned}$ |

（\％zanesljivosti pozitivnega ali negativnega vpliva）
Skupina ：jelka B
Fizikalne lastnosti humoznega in mineralnega horizonta

|  |  |  | $\begin{aligned} & \text { a } \\ & \text { •ت } \\ & \text { تन } \\ & \text { تر } \end{aligned}$ | $\begin{aligned} & \text { H } \\ & \text { 品 } \\ & \stackrel{0}{0} \\ & 0,0 \end{aligned}$ |  | $$ | $H$ + N H N 0 0 0 0 |  |  | $A$ $H$ 0 0 0 0 0 0 0 | $\begin{aligned} & \text { H } \\ & \text { 岕 } \\ & \text { 品 } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 1 | $\begin{aligned} & * \\ & * \end{aligned}$ | ＊ | $\begin{aligned} & +80 \\ & +95 \end{aligned}$ | $\begin{aligned} & +60 \\ & +60 \end{aligned}$ | $\begin{gathered} -60 \\ * \end{gathered}$ | $+60$ | O $*$ | O | O | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & 75 \\ & 75 \\ & \mathrm{~F}<\mathrm{Fo} \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 4 |  |  | $\begin{gathered} +95 \\ +95 \\ * \end{gathered}$ | $\begin{aligned} & +60 \\ & +80 \\ & +80 \end{aligned}$ | * | $\begin{gathered} +80 \\ * \\ * \end{gathered}$ | $\begin{gathered} -60 \\ -60 \\ 0 \end{gathered}$ | $\begin{aligned} & \mathrm{O} \\ & \text { * } \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & * \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & 75 \\ & 90 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 2 |  |  | $\begin{aligned} & +95 \\ & +95 \\ & -60 \end{aligned}$ | $\begin{aligned} & +95 \\ & +80 \\ & +60 \end{aligned}$ | $\begin{aligned} & * \\ & * \\ & * \end{aligned}$ | $\begin{gathered} +95 \\ +60 \\ * \end{gathered}$ |  |  |  |  | $\begin{aligned} & 75 \\ & 90 \\ & 75 \\ & \hline \end{aligned}$ |
| $\begin{gathered} \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{gathered}$ | 5 |  |  |  | ＊ | ＊ | ＊ |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & 75 \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 3 |  |  |  |  |  |  | ＂ | ＂ | ＂ |  | $\begin{aligned} & F<F o \\ & F<F O \\ & F<F O \end{aligned}$ |
| $\begin{gathered} \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{gathered}$ | $\stackrel{\square}{6}$ | ＂ | 11 |  |  | ． |  |  |  |  |  | $\begin{aligned} & F<F O \\ & F<F O \\ & F<F O \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 7 |  |  | $\begin{aligned} & +99.5 \\ & +99.5 \end{aligned}$ |  |  |  |  |  |  |  | $\begin{aligned} & \text { F Fo } \\ & 75 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{J}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~J}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 8 |  |  |  |  |  |  |  |  |  | ＂ | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |

（\％zanesljivosti pozitivnega ali negativnega vpliva）
Skupina ：bukev A
Kemične lastnosti humoznega horizonta

|  |  | 出 | 告 | 亿 | $\begin{aligned} & z \\ & \ddot{u} \\ & u \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & n_{1} \\ & 8^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & x^{n} \\ & s^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { O } \\ & \text { Bo } \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & p_{1}^{N} \\ & \infty^{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \imath^{N} \\ & \operatorname{in}_{a} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 1 | ＊ | ＊ | ＋60 | ＊ | ＊ | ＋60 | －90 | －60 | －60 | $\begin{aligned} & F<F o \\ & F<F o \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{D} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 2 | ＋80 | －80 | ＋60 | ＊ | －60 | ＋60 | －95 |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 4 |  |  |  |  | ＂ | ＂ |  |  |  | $\begin{aligned} & F<F O \\ & F<F o \\ & F<F O \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 3 |  |  |  |  |  |  |  | 11 | ＂ | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}$ | 6 |  |  |  |  | 11 | ＂ |  | ＂ | ＂ | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 1 \end{aligned}\right.$ | 5 |  | 11 | ＂ | 11 |  |  |  |  |  | $\begin{aligned} & \mathrm{F}<\mathrm{Fo} \\ & \mathrm{~F}<\mathrm{Fo} \\ & \mathrm{~F}<\mathrm{Fo} \end{aligned}$ |

（\％zanesljivosti pozitivnega ali negativnega vpliva）
Skupina：bukev A
Kemične lastnosti mineralnega horizonta

|  |  | 㟔。 |  | z | $\begin{aligned} & \text { 九 } \\ & \ddot{u} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & 0^{N} \\ & 8^{0} \end{aligned}$ | $\begin{aligned} & 0^{\prime} \\ & x_{1} \\ & s^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & \sim_{1}^{N} \\ & 0^{\infty} \\ & g_{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & \hat{u}^{\prime} \\ & \text { an } \\ & \text { an } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 1 | $\begin{aligned} & +95 \\ & +95 \end{aligned}$ | $\begin{gathered} -90 \\ 0 \end{gathered}$ | $\begin{gathered} +80 \\ 0 \end{gathered}$ | $\begin{aligned} & +80 \\ & -60 \end{aligned}$ | $\begin{aligned} & +60 \\ & +60 \end{aligned}$ | $\begin{gathered} +60 \\ \ominus \end{gathered}$ | $\begin{aligned} & -95 \\ & -60 \end{aligned}$ | $\begin{gathered} -90 \\ 0 \end{gathered}$ | $\begin{aligned} & -60 \\ & -80 \end{aligned}$ | $\begin{aligned} & 1 \\ & 97,5 \\ & 90 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 2 | $\begin{aligned} & +97.5 \\ & +97.5 \end{aligned}$ | $\begin{aligned} & -80 \\ & -60 \end{aligned}$ | $\begin{gathered} +60 \\ 0 \end{gathered}$ | $\begin{gathered} +80 \\ 0 \end{gathered}$ | $\begin{gathered} * \\ +60 \end{gathered}$ | $\begin{gathered} \mathrm{O} \\ -80 \end{gathered}$ | $\begin{aligned} & -90 \\ & -60 \end{aligned}$ |  |  | $\begin{array}{r} 1 \\ 75 \\ 90 \end{array}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 4 |  |  |  |  | ＂ | ＂ |  |  |  | $\begin{aligned} & l \\ & F<F o \\ & F P o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 3 |  |  |  |  |  |  |  | ＂ | 1 | $\begin{aligned} & \quad / \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 6 |  |  |  |  | ＂ | ＂ |  | 1 | ＂ | $\begin{aligned} & l \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 1 \end{aligned}$ | 5 |  | 11 | 11 | ＂ |  |  |  |  |  | $\begin{aligned} & l \\ & F<F o \\ & F<F O \end{aligned}$ |

T-test
( \% zanesljivosti pozitivnega ali! negativnega vpliva)
Skupina : bukev A
Fizikalne lastnosti humoznega in mineralnega horizonta

|  |  |  |  | $\begin{aligned} & \text { W } \\ & \text { 告 } \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & \text { H } \\ & \text { m } \\ & \text { no } \\ & \stackrel{\pi}{8} \end{aligned}$ | $\begin{aligned} & \text { H } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { 品 } \\ & \stackrel{\rightharpoonup}{2} \\ & 0 \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 1 | $\begin{gathered} \mathrm{O} \\ +60 \end{gathered}$ | $\begin{aligned} & +80 \\ & +60 \end{aligned}$ | $\begin{aligned} & * \\ & * \end{aligned}$ | $\begin{aligned} & * \\ & +80 \end{aligned}$ | $\begin{aligned} & +60 \\ & -60 \end{aligned}$ | $\begin{gathered} -80 \\ 0 \end{gathered}$ | $\begin{aligned} & * \\ & -60 \end{aligned}$ | $\begin{gathered} -60 \\ \mathrm{O} \end{gathered}$ | $\begin{aligned} & +80 \\ & -60 \end{aligned}$ | $\begin{aligned} & +80 \\ & +80 \end{aligned}$ | $\begin{array}{r} 1 \\ 90 \\ 75 \end{array}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 4 |  |  | $\begin{aligned} & * \\ & * \end{aligned}$ | $\begin{aligned} & * \\ & 0 \end{aligned}$ | $\begin{gathered} +60 \\ 0 \end{gathered}$ | $\begin{gathered} -60 \\ 0 \end{gathered}$ | $\begin{gathered} * \\ -60 \end{gathered}$ | $\begin{gathered} -60 \\ \mathrm{O} \end{gathered}$ | $\begin{gathered} +60 \\ 0 \end{gathered}$ | $\begin{aligned} & +60 \\ & +60 \end{aligned}$ | $\begin{array}{r} 1 \\ 75 \\ 75 \end{array}$ |
| $\begin{aligned} & B-A-F 1 \\ & B-B-F 1 \\ & B-D-F 1 \end{aligned}$ | 2 |  |  | 11 | 1 | 11 | " |  |  |  |  | $\begin{aligned} & / \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 5 |  |  |  | " | 11 | 1 |  |  |  |  | $\begin{aligned} & l! \\ & \mathrm{F}<\mathrm{Fo} \\ & \mathrm{~F}<\mathrm{Fo} \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 1 \end{aligned}$ | 3 |  |  |  |  |  |  | -90 | * | -97. 5 |  | $\begin{aligned} & \text { / } \\ & 75 \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & B-A-F 1 \\ & B-B-F 1 \\ & B-D-F 1 \end{aligned}$ | 6 | " | 11 |  |  |  |  |  |  |  |  | $\begin{aligned} & \quad / \\ & F<F o \\ & F<F O \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & B-A-F 1 \\ & B-B-F 1 \\ & B-D-F 1 \end{aligned}\right.$ | 7 |  |  | " |  |  |  |  |  |  |  | $\begin{aligned} & / \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 1 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 1 \end{aligned}\right.$ | 8 |  |  | 1 |  |  |  |  |  |  | 1 | $\begin{aligned} & \quad / \\ & F<F o \\ & F<F o \end{aligned}$ |

T-test
(\% zanesljivosti pozitivnega ali negativnega vpliva)
Skupina : bukev B
Kemične lastnosti humoznega horizonta

|  |  | 吕 |  | 亿 | $\begin{aligned} & Z \\ & \ddot{u} \\ & \ddot{U} \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & n_{1}^{N} \\ & B^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \mathrm{w}^{\prime} \\ & \mathrm{s}^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { Ü } \\ & \text { Bo } \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & م_{1}^{N} \\ & \infty_{\sharp}^{\infty} \\ & \end{aligned}$ | $\begin{aligned} & 0_{\hat{N}} \\ & \mathfrak{n}^{\infty} \\ & \underset{a}{n} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 1 | $\begin{gathered} +90 \\ +97.5 \\ +80 \end{gathered}$ | $\begin{gathered} +80 \\ * \\ +60 \end{gathered}$ | $\begin{gathered} -90 \\ * \\ -80 \end{gathered}$ | $\begin{array}{r} -90 \\ +80 \\ -80 \end{array}$ | $\begin{aligned} & * \\ & +80 \\ & 0 \end{aligned}$ | $\begin{aligned} & +80 \\ & +95 \\ & +60 \end{aligned}$ | $\begin{aligned} & -80 \\ & -95 \\ & -80 \end{aligned}$ | $\begin{aligned} & -60 \\ & -80 \\ & -60 \end{aligned}$ | $\begin{gathered} -60 \\ -90 \\ 0 \end{gathered}$ | $\begin{aligned} & 90 \\ & 99,5 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 2 | +90 | * | * | * | * | 0 | -60 |  |  | $\begin{aligned} & F<F o \\ & 75 \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 4 |  |  |  |  | 11 | 1 |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 3 |  |  |  | - |  |  |  | 11 | H | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 6 |  |  |  |  | " | " |  | " | " | $\begin{aligned} & F<F O \\ & F<F o \\ & F<F O \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{K} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{K} 2 \end{aligned}$ | 5 |  | " | " | 11 |  |  |  |  |  | $\begin{aligned} & F<F O \\ & F<F o \\ & F<F o \end{aligned}$ |

T-test
(\% zanesljivosti pozitivnega ali negativnega vpliva)
Skupina: bukev B
Kemične lastnosti mineralnega horizonta

|  |  | 宫 |  | z | $\begin{aligned} & \text { Z } \\ & \ddot{U} \end{aligned}$ | $\begin{aligned} & 0^{10} \\ & 0_{1}^{N} \\ & 0^{0} \end{aligned}$ | $\begin{aligned} & 0 \\ & x^{N} \\ & 8^{\circ} \end{aligned}$ | $\begin{aligned} & 0 \\ & \text { © } \\ & \text { 89 } \end{aligned}$ | $\begin{aligned} & 0^{\infty} \\ & p_{1}^{\infty} \\ & \varepsilon_{c}^{\infty} \\ & \end{aligned}$ | $\begin{aligned} & 0_{N} \\ & a^{\prime} \\ & B_{a}^{\infty} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 1 | $\begin{aligned} & * \\ & +90 \\ & * \end{aligned}$ | $\begin{gathered} -80 \\ -90 \\ * \end{gathered}$ | $\begin{gathered} +60 \\ +80 \\ * \end{gathered}$ | $\begin{gathered} +60 \\ +80 \\ * \end{gathered}$ | $\begin{aligned} & -90 \\ & -95 \\ & -60 \end{aligned}$ | $\begin{gathered} -60 \\ -60 \\ 0 \end{gathered}$ | $\begin{aligned} & +60 \\ & +80 \\ & +60 \end{aligned}$ | $\begin{aligned} & -80 \\ & -90 \\ & -60 \end{aligned}$ | $\begin{gathered} +80 \\ +80 \\ * \end{gathered}$ | $\begin{aligned} & 90 \\ & 97,5 \\ & 75 \\ & \hline \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 2 | 1 | " | " | " | " | " | " |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 4 |  |  |  |  | " | " |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 3 |  |  |  |  | $\vdots$ |  |  | $\begin{aligned} & -97,5 \\ & -95 \end{aligned}$ | * | $\begin{aligned} & F<F o \\ & 75 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 6 |  |  |  |  | $\begin{aligned} & -60 \\ & -90 \end{aligned}$ | $\begin{gathered} \mathrm{O} \\ -80 \end{gathered}$ |  | $\begin{aligned} & -90 \\ & -90 \end{aligned}$ | * | $\begin{aligned} & F<F o \\ & 75 \\ & 75 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{S} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{S} 2 \end{aligned}$ | 5 |  | $\begin{aligned} & ! \\ & 11 \end{aligned}$ | " | " |  |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |

T-test
(\% zanesljivosti pozitivnega ali negativnega vpliva)
Skupina : bukev B
Fizikalne lastnosti mineralnega in humoznega horizonta

|  |  |  |  |  | $$ |  | H + 0 N 0 0 0 0 0 |  | $\begin{aligned} & \text { H } \\ & \text { 監 } \\ & \stackrel{\pi}{\mid} \end{aligned}$ | $\begin{aligned} & \text { G } \\ & { }_{2}^{2} \\ & 0 \\ & 0 \\ & \tilde{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 . \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 1 | $\begin{aligned} & -90 \\ & -97.5 \\ & -97.5 \end{aligned}$ | $\begin{aligned} & -80 \\ & -95 \end{aligned}$ | $\begin{aligned} & 0 \\ & -90 \\ & -95 \end{aligned}$ | $\begin{aligned} & * \\ & -80 \\ & 0 \end{aligned}$ | $\begin{array}{r} -60 \\ -95 \\ +90 \end{array}$ | $\begin{aligned} & +80 \\ & +95 \\ & +97.5 \end{aligned}$ | $\begin{aligned} & -60 \\ & +60 \\ & +60 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & -80 \\ & -80 \end{aligned}$ | $\begin{aligned} & \mathrm{O} \\ & +80 \\ & +80 \end{aligned}$ | $\begin{array}{r} +90 \\ -60 \end{array}$ | $\begin{aligned} & 97.5 \\ & 99,5 \\ & 99.5 \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 4 |  |  | " | " | " | " | 11 | " | 1 | 11 | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 2 |  |  | " | " | 11 | 11 |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F O \\ & F<F O \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 5 |  |  |  | " | " | " |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 3 |  |  |  |  |  |  | " | 11 | 11 |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 6 | 1 | " |  |  |  |  |  |  |  | $:$ | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 7 |  |  | " |  |  |  |  |  |  |  | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |
| $\begin{aligned} & \mathrm{B}-\mathrm{A}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{B}-\mathrm{F} 2 \\ & \mathrm{~B}-\mathrm{D}-\mathrm{F} 2 \end{aligned}$ | 8 |  |  |  |  |  |  |  |  |  | 11 | $\begin{aligned} & F<F o \\ & F<F o \\ & F<F o \end{aligned}$ |

Zakl jučki

Vpliv raziskonih rezultatov na rast smreke, jelke in bukve bomo obravnavali po klimatično enotnih skupineh, ki smo jih sestavili po prvi obdelavi računanju multiregresije.

Skupina: smreka A

Za proučevanje vpliva matične kamenine na rest smo imeli relativno majhen razpon vrednosti šifer za kamenino (2-6). Z velikim odstotkom zanesljivosti smo ugotovili, da je optimum prijspodnji meji, a to je vnešem primeru apnenec.

Fri velikem razponu talnih enot (2-23) smo ugotovili negativen vpliv; najboljša ract je torej v našem primeru na plitvih humoznih tleh. To je pripisovati dovoljni količini padavin in majhni sušnosti, ki omogoča kljub rahlosti tal dovoljno oskrbo z vlago (v tej skupini so zajeti visokogorkki gozdovi smreke).

V selekcijah, ki zajemajo vse lastnosti se kaže negativen vpliv globine humoznega horizonta. To pomeni, da se rest ne veča z večjo globino humoznega horizonts, kar je očitno posledica nepovoljnega značaja humusa (surovi hu-
mus, visok $C: N$ ). Optimum humoznega horizonta se $v$ tem sluçaju približuje 45 cm .

Ker je v mineralnem horizontu značaj humusa boljši, nam celotna globina tal $v$ selekcijah, ki zajemajo vse lastnosti in v selekcijah, ki zajemajo samo fizikalne lastnosti, odločno nakazuje pomemben vpliv na rast. Najboljša rast je $v$ našem primeru ugotovljena kadar se globina približuje 90 cm .
$V$ humoznem horizontu smo dobili slabo zanesljivost rezultatov za teksturo in sicer zaradi majhnega razpona. Optimum se je pokazal med peščeno ilovko in meljasto ilovko.

Optimum teksture v mineralnem horizontu se približuje drobno pescceni ilovki po presoji zastopanosti teksture na posameznih raziskovalnih ploskvah.

Kopaciteta za vlago humoznega horizonta v varianti A, kjer ni upoštevana globina zaradi-izenačenih vzorcev, ni pokazala pomemb́bnega vpliva, medtem ko je v variantah, kjer je upoštevana globina in to $v$ selekcijí, ki vsebuje vse činitelje in v selekciji, ki vsebuje samo fizikalne lastnosti pokazala pozitiven vpliv - optimum kapacitete za vlago humoznega horizonta je od 30-40\%. Z veliko zanesljivostjo se je v vseh variantah in $v$ vseh selekcijah pokazal negativen vpliv velike količine vlage v mineralnem horizontu, kar vsekakor lahko povezujemo z slabo zračnostjo tal in stagnacijo vlage $v$ teh primerih.

Poroznost $v$ humoznem horizontu $z$ veliko zanesljivostjo kaže pozitiven vpliv - optimum poroznosti je okoli $50 \%$. Tudi v mineralnem horizontu ima poroznost v vseh selekcijah in v vseh variantah pozitiven vpliv. - optimum v tem sloju je okoli 35\%.

Zaradi spremembe predznakov in dobre zanesljivosti statističnih veličin，smo prišli do zaključka，da je op－ timum za pH v humoznem horizontu blizu aritmetične sre－ dine rezultatov vzorcev．$V$ obeh horizontih je optimum enak in znaša pH okoli 5.

Količina humusa v humoznem horizontu kaže z veliko zanesljivostjo negativen vpliv in sicer zaradi tega，ker je na onih raziskovalnih ploskvah，ki vsebujejo veliko količino humusa（nad 30\％）surovi humus．Optimum za rast je po naših izračunih okoli $20 \%$ humusa $v$ humoznem hori－ zontu．V posebnih selekcijah smo skušali najti vzročnost med humusom dušikom，in $C$ ：$N$ v humoznem in mineralnem horizontu，vendar je pri danih rezultatih vzročnost med navedenimi lastnostmi bila nezanesljiva．

Vpliv dušika v humoznem horizontu je pozitiven．Naj－ večja rast se je pokazala pri okoli l\％dušika v tleh．Op－ timalen $C: N$ v humoznem horizontu je nekaj nad 20\％．Hu－ mus $v$ mineralnem horizontu kaže pozitiven vpliv，to pome－ ni，da se optimalna količina približuje 10\％humusa．Zani－ miva je ugotovitev，da v našem primeru v mineralnem ho－ rizontu količina dušika ne vpliva pozitivno na rast．V se－ lekciji，ki obravnava samo kemične činitelje，pa smo do－ bili dokaj zanesljiv pozitiven vpliv dušika．Ker pa so tiste multiregresije，ki obsegajo čim več različnih veli－ とin，veliko bolj zanesljive od onih，ki jih obravnavajo le parcialno，zato pozitivnega vpliva dušika v kemični selekciji ne moremo upostevati．V mineralnem horizontu je za C ：N očiten negativen vpliv in se optimum približuje vrednosti 18.

Celokupna količina fosforja kaže v vseh selekcijah in v vseh yariantah pozitiven vpliv iz česar lahko sklepamo， da se optimum približuje gornji vrednosti，to je $0,1 \% \mathrm{P}_{2} \mathrm{O}_{5}$ 。
v humoznem horizontu. Tudi v mineralnem horizontu je slika enaka in bi po naših analizah bil optimum za rast okoli $0,08 \% \mathrm{P}_{2} \mathrm{O}_{5}$. Ta zaključek pa seveda ne izključuje možnosti, da bi še večja količina $\mathrm{P}_{2} \mathrm{O}_{5}$ povečala rast smreke.

Vpliv celokupne količine kalija v humoznem in mineralnem horizontu je negativen. Pri podatkih, ki smo jih obravnovali $v$ tej skupini se torej zmanjšuje rast, če v humoznem horizontu celokupna količina $\mathrm{K}_{2} \mathrm{O}$ narasča od 0,017 do $0,0113 \%$. V humoznem horizontu to lahko pripisujemo dejstvu, da so večje količine kalija večinoma $v$ surovem humusu in v prhnini (humus oblike moder). Vendar je opaziti negotiven vpliv povečanja celotkupne količine kalija na rast tudi $v$ mineralnem horizontu. (pri naših podatkih pri naraščanju od 0,016 do 0,088\%).

Pri naših rezultatih laboratorijskih analiz za skupino smreka A, kjer so celokupne količine kalcija nizke (samo $v$ enem primeru doseže najvisja količina $v$ humoznem horizontu l, $4 \% \mathrm{CaO}$ ), se kaže pozitiven vpliv povečanja kalcija na rast. Pri srednjih vrednostih kalcija v humoznem horizontu $0,2 \% \mathrm{CaO} v$ humoznem in mineralnem horizontu ta količina kalcija še ne poveča pH v toliki meri, da bi leta zmanjšal rast smreke.

Najpomembnejša statistično dokazano ugotovitev vpliva tal na rast smreke $v$ naših visokogorskih gozdovih je pomanjkanje dušika in fosforja $v$ humoznem horizontu, pozitiven vpliv poroznosti in manjša rast pri preveliki vlažnosti mineralnega horizonta.

## Jelka

Raziskovalne ploskve jelke smo razdelili v dve klimatični skupini, ki se med seboj predvsem razlikujeta $v$ tem,
da skupinał. A manj sušna in ima nekoliko manj padavin $v$ vegetaciji kakor $B$ skupina. Poleg tega je značilno za A skupino, da širše zajema tla v tipološkem pogledu, to je od rendzin na Krasu do podzoljenih kislih rjavih tal na tonalitu na Pohorju. (Kamenina : 2-8, tla 1-26), medtem ko so tla in kamenina $v$ B skupini prikazana $v$ ožjem intervalu (kamenina : l-2, tla 8-23).

V A skupini je očiten negativen vpliv v okviru našega sistema šifriranja kamenine. Najboljša rast je ugotovljena na apnencu in dolomitu. Za B slkupino tega ne moremo statistično dokazati, ker so vzorci preveč izenačeni (nastopata samo apnenec in dolomit).

V A skupini je pozitiven vpliv talnega tipa po našem ključu in se kaže dobra rast na globljih svežih, humoznih tleh ( n . pr. podzoljena kisla koluvialna rjava tla). Pomembnost vpliva talnega tipa $v$ B skupini ni prišla do izraza, ker tla na teh raziskovalnih ploskvah nastopajo večinoma $v$ drobnomozaičnih talnih kompleksih in eno drevo lahko črpa potrebne snovi iz večih talnih enot hkrati. Domnevamo lahko tudi da je'vpliv globine tal v B skupini nekoliko manjši zaradi večje količine padavin $\nabla$ vegetacijski dobi.

Fizikalne lastnosti v A in B skupini

Vpliv globine humoznega horizonta ima pozitivno tendenco - čim globlji je horizont - tem boljša je rast jelke. Optimum se približuje globini 40 cm za A skupino in 30 cm za B skupino. Po naših kompleksnih analiznih podatkih nismo mogli ugotoviti najboljše rasti pri največjih celotni globini (humozni + mineralni horizont) saj je razumljivo, da na rast vplivajo vsi činitelji hkrati in ne samo globina. Optimum celotne globine je okoli• 45 cm .

Tekstura kaže v vseh selekcijah in vseh variantah
pozitiven vpliv z veliko zanesljivostjo v humoznem in mineralnem horizontu $v$ A skupini a $v B$ skupini $v$ humoznem horizontu. Optimalna tekstura je meljasta ilovka v humoznem horizontu za A in $B$ skupino in glinasta ilovka v mineralnem horizontu A skupine. V B skupini od 18 raziskovalnih ploskev jih 15 ni imelo mineralnega horizonta in zaradi tega statistična določitev optimalne teksture tu ni bila mogoča. Prav tako velja to tudi za ostale fizikalne in kemične lastnosti.

Analize kapacitete za vlago v A in B skupini so zelo izenačene in sicer v humoznem horizontu v skupini jelka A v razponu od $25-40 \%$ v skupini jelka B od $20-35 \%$. V humoznem horizontu se pomembnost kapacitete za vlago v sklopu delovanja vseh činiteljev ni pokazala izrazita, medtem ko je vpliv kapacitete za vlago v mineralnem horizontu A skupine pozitiven - optimum se približuje $30 \%$. Poroznost humoznega in mineralnega horizonta $v$ A skupini kaže izrazito negativen vpliv. Optimum je v humoznem horizontu proti $40 \%$, a v mineralnem horizontu $20 \%$ poroznosti. V B skupini so bili vzorci dokaj izenačeni in je optimum poroznosti nekaj nad aritmetično sredino - 43\%. Pri obrazložitvi vpliva teksture vlage in poroznosti moramo povdariti, da smo v podatek odstotka poroznosti vključili zračne (makro) in kapilarne (mikro) pore. Že obdelava podatkov teksture dokazuje, da je pomembnejši vpliv kapilarnih por, ki vlago dalj časa zadržujejo (optimalna tekstura $v$ humoznem horizontu je meljasta ilovka a v mineralnem horizontu celo glinasta ilovka). Iz tega zaključujemo da daje jelka prednost svežim nekoliko težjim tlem pri primeru naših raziskav vpliva fizikalnih lastnosti na rast jelke. To ugotovitev lahko povežemo tudi na že navedeno relativno majhno globino tal, ki kljub temu zadošča za dovoljno oskrbo z vlago zaradi omenjenih lastnosti. V meljasti ilovki in glinasti ilovki pa je tudi dovolj koloidnih delcev, ki ugodno vplivajo na oskrbo s hranili tudi v relativno plitvih tleh.

Vpliv kemičnih lastnosti na rast jelke v A in $B$ skupini

Zaradi premajhnega števila podatkov o mineralnem horizontu bom o podali obrazložitev samo za humozni horizont obeh skupin (v A skupini ima od 14 raziskovalnih ploskev samo 8 mineralni horizont, $v$ B skupini ima od 18 raziskovalnih ploskev samo 5 ploskev mineralni horizont.) Iz podatkov globine tal je tudi razvidno, da predstavljajo podatki humoznega horizonta pretežni del talnega profil日。

Zanesljivo lahko trdimo o pozitivnem vplivu pH vrednosti naših rezultatov na rast jelke. - Optimum se približuje slabo-kislemu območju.

Naši izračuni so pokazali, da vpliv humusa na rast jelke ni izrazito pozitiven, zato lahko sklepamo, da je optimum nekaj nad aritmetično sredino - pri okoli $20 \%$. Podobna ugotovitev velja tudi za dušik in za razmerje C : N. Dušik ima optimum okoli $0,5 \%$, razmerje $C$ : N pa okoli 15. Naši podatki za fosfor, kalij in kalcij, ki smo jih racunsko obdelali niso pokazali nobenih bistvenih zanesljivih vplivov. Iz tega lahko zaključimo, da je optimalno področje dokaj široko, oziroma, da so bile naše raziskovalne ploskve na tipičnih jelovih rastiščih. Pri obravnavanih raziskovalhih ploskvah so bile fizikalne lastnosti tal jelke odločilnejše. Kemične lastnosti niso pokazale pomembnega vpliva. Ker pa je nedvoumno, da tudi kemične lastnosti vplivajo na rast, bi bilo za potrditev tega treba postaviti raziskovalne ploskve kjer bi bili ostali vplivi izenačeni.

Bukev

Ker so statistični testi pokazali bistvene razlike
med vplivi faktorjev in njihovo pomembnostjo za obe klimatski skupini jih ločeno obravnavamo. Pri prvi obravnavi vključno s klimatičnimi podatki se je namreč pokazala od klimatičnih činiteljev odločilna nadmorska višina z $90 \%$, padavine $z 60 \%$ in sušnost $z 60 \%$ zanesljivostjo. Pri formiranju skupin smo torej predvsem upoštevali nadmorsko višino, ki nam istočasno nakazuje trajanje vegetacijske dobe in poprečno temperaturo $v$ vegetacijski dobi.

Skupina A

Pomembnost vpliva matične kamenine je slabo izražena in $z$ velikim rizikom pozitivna.

Tudi vpliv talnega tipa je pozitiven, vendar z dokaj večjo zanesljivostjo lahko trdimo, da je optimum rasti bukve na globokih rahlih tleh.

## Fizikalne lastnosti

Vpliv globine humoznega horizonta zaradi izenačenega vzorca nismo mogli dokazati (poprečna globina 16 cm ), medtem ko je pozitiven vpliv celotne globine tal izrazito pozitiven in se optimum globine približuje 80 cm .

Optimalna tekstura za humozni horizont je meljasta ilovka, medtem ko je v mineralnem horizontu predznak vpliva nezanesljiv in predvidevamo, da je optimum blizu aritmetične sredine, to je drobna peščena ilovka.

Za vlago $v$ humoznem in mineralnem horizontu se kaže bodisi majhna pomembnost vpliva ali menjanje predznaka kar nas zopet vodi k zaključkú, da je v tej klimatični skupini kapaciteta za vlago manj pomembna zaradi manjše sušnosti in večje količine padavin.

Poroznost humoznega horizonta kaže negativno tendenco
in je optimalna vrednost okoli $45 \%$. Rezultati vrednotenja vpliva poroznosti v mineralnem horizontu imajo nezanesljiv predznak iz česar lahko zaključimo, da je optimum okoli aritmetične sredine, to je $35 \% \mathrm{v}$ obeh slojih.

Kemične lastnosti

Vpliv pH se kaže v obeh slojih z močno pozitivno zanesljivostjo. Optimum za rast bukve je v slabo kislem območju.

S precejšnjo zanesljivostjo lahko za humus trdimo, da je v obeh slojih njegov vpliv negativen. Optimum količine humusa je v humoznem horizontu okoli $15 \%$ a v mineralnem okoli $5 \%$.

Vpliv dušika v humoznem horizontu ni posebno izrazit in predwidevamo, da se nahaja optimum blizu aritmetične sredine rezultatov vzorcev, to je okoli $0,75 \%$. V mineralnem horizontu je pozitiven vpliv močnejši zato lahko sklepamo, da je optimum blizu vrednosti 0,3\%.

Odnos C : N se je pokazal v humoznem horizontu kot manj pomemben za rast bukve. V mineralnem horizontu pa je ugodno razmerje za C : N približno 20, to je nekaj nad aritmetično sredino.

Za celokupne količine fosfora in kalija bi le ob velikem tveganju $v$ obeh slojih lahko smatrali, da njihovi optimalni vplivi ležijo izven aritmetičnih sredin posameznih činiteljev. Fiziološko aktivna fosfor in kalij pa kažeta nekoliko močnejši negativni vpliv in so optimumi za rast nekaj•pod njihovimi aritmetičnimi sredinami.

Izrazito negativen vpliv količine kalcija v obeh horizontih se je pokazal zaradi izredno velikega \% CaO v
vzorcih nekaterih raziskovalnih ploskev. Zakl jučujemo lahko, da je optimum v humoznem horizontu blizu 0,4\% in v mineralnem horizontu 0,1\% CaO.

Skupina B

Od skupine A se le-ta klimatično razlikuje predvsem po večji sušnosti, manjši nadmorski višini in manjši količini padavin. Raziskovalne ploskve leže na Gorskem krasu in deloma v Predalpskem hribovju.

Vpliv matične kamenine je z veliko zanesljivostjo negativen in pri danih podatkih lahko smatramo kislo kamenino (n. pr. keratofir - tonalit), ki daje pri preperevanju globoka tla a tudi sama kamenina ne dopušča pronicanja vode $v$ matično podlago.

Izrazit je tudi negativen vpliv ş̧ifriranih vrednosti talnih enot in se je pokazala najboljša rast pod aritmetično sredino, a to so globoka tla, ki vlago dobro zadržujejo. To povdarjamo zaradi tega, ker je v skupini A zanesljivost tega vpliva mnogo manjša zaradi manjše sušnosti in večje količine padavin.

## Fizikalne lastnosti

Globina humoznega horizonta ne vpliva pozitivno na rast pri danih podatkih, medtem ko ima celotna globina tal s precejžnjo zanesljivostjo pozitiven vpliv in optimum leži med aritmetično sredino in največjo globino (99), to je 75 cm .

Tekstura $v$ humoznem horizontu kaže negativen vpliv z $80 \%$ zanesljivostjo in je torej pod aritmetično sredino m optimalna za rast je drobno peščena ilovka. V mineralnem
horizontu je predznak vpliva nezanesljiv in predvidevamo, da je optimalns tekstura blizu aritmetične sredine - meljasta ilovka, ki pa je po klasifikaciji mehanske analize tal zelo podobna.

Podatki za kapaciteto za vlago humoznega horizonta so izenačeni in pomembnost ni bila statistično dokazana. V mineralnem horizontu je vpliv vlage negativen in je optimalna vrednost pod aritmetično sredino - okoli 18\%.

Poroznost v humoznem in mineralnem horizontu ima izrazito pozitiven vpliv in je v humoznem horizontu blizu gornje meje - to je $45 \%$, a v mineralnem horizontu nekaj nad aritmetično sredino, to je okoli $30 \%$.

Negativen vpliv večje količine vlažnosti tolmačimo tako, da se pri večji količini vlage zmanjša zračnost tal.

## Kemične lastnosti

V B skupini tako $v$ humoznem kot $v$ mineralnem horizontu imamo očiten pozitiven vpliv pH vrednosti. Optimum je torej tudi v tej skupini blizu zgornje meje naših podatkov, to je slabo kislo območje.

Količina humusa $v$ humoznem horizontu ima pozitiven vpliv z $80 \%$ zanesl jivostjo in optimum smatramo, da je med aritmetično sredino in zgornjo mejo - to je okoli 19\%. V mineralnem horizontu je vpliv negativen in je optimum med aritmetično sredino in spodnjo mejo, to je okoli $3 \%$ humusa.

Dušik ima pri upoštevanih podatkih v humoznem horizontu negativen vpliv in je optimum med aritmetično sredino in spodnjo mejo to je okoli $0,5 \% \mathrm{~N}$.

V mineralnem horizontu je z nekoliko manjšo zeneslji-
vostjo očiten pozitiven vpliv dušika in je optimum približno $0,2 \%$.

C : N ims nezanesljiv predznak v humoznem horizontu in predpostavljamo, de je najboljša rast blizu aritmetične sredine to je 19. V mineralnem horizontu se kaže pozitiven vpliv $z$ menjšo zanesljivostjo in je optimum nad aritmetično sredino - 20.

Celokupni količini fosforja in kalija v humoznem horizontu za obdelane analize, kažejo pozitiven vpliv, medtem ko je vpliv v mineralnem horizontu negativen. Po nasih izračunih je najboljša rast v kompleksu delovanja vseh talnih lastnosti $v$ humoznem horizontu pri $0,08 \% \mathrm{P}_{2} \mathrm{O}_{5}$ in $0,1 \% \mathrm{~K}_{2} \mathrm{O}$. A v mineralnem horizontu pri $0,03 \% \mathrm{P}_{2} \mathrm{O}_{5}$ in pri $0,07 \% \mathrm{~K}_{2} \mathrm{O}$. Fiziološko aktivna fosfor in kalij imasta v humoznem horizontu negativen predznak a $v$ mineralnem horizontu a fosfor ima tudi $v$ mineralnem negativen a kalij pozitiven vpliv. Po naših izračunih je optimum za fiziološko aktivni fosfor $v$ humoznem horizontu okoli $1 \mathrm{mg} \mathrm{P}_{2} \mathrm{O}_{5}$ a $\checkmark$ mineralnem horizontu okoli $0,5 \mathrm{mg} \mathrm{P}_{2} \mathrm{O}_{5}$. Kalij v humoznem horizontu je pokazal najboljšo rast pri okoli 8 mg $\mathrm{K}_{2} \mathrm{O}$ a v mineralnem horizontu $4 \mathrm{mg} \mathrm{K}_{2} \mathrm{O}$.

Kalcij ima $v$ humoznem horizontu pri danih podatkih izrazito negativen vpliv a $v$ mineralnem horizontu nekoliko manj izrazito pozitiven vpliv. Predpostavljamo torej lahko najboljšo rast pri okoli $0,1 \% \mathrm{CaO} v$ humoznem horizontu in $0,2 \%$ celokupne količine CaO v mineralnem horizontu.

Ob zaključku obravnave rezultatov obeh klimatičnih skupin bukve lahko poudarimo še enkrat, da je pomembnost fizikalnih lastnosti $v$ skupini z večjo nadmorsko višino, večjo količino padavin in manjšo sušnostjo statistično dokazano manjša, a v B skupini z manjšo nadmorsko višino, manjšo količino padavin in večjo sušnostjo ta pomembnost
prav izrazita.

Zanimiva je ugotovitev o optimalni rasti glede kemičnih lastnosti. Pri naỉh rezultatih analiz kemiěnih lastnosti tal smo ueotovili za obe skupini zelo sorodne optimume, kljub temu, da so $v$ obeh skupinah zelo različni podatki in da se pomembnost nekaterih lastnosti celo v obratnem pomenu menja. To nam potrjuje pravilnost raziskovalne metode.

## LITERATURA

| Savezni hidrometeorološki zavod | Meteorološki godišnjeci I in II 1952-1961 |
| :---: | :---: |
| Piskernik M. | Gozdno rostlinje slovenskege primorja. Zbornik Ljubljana, 1965 |
| Cirić M. | Pedologija za šumare, Beogred, 1962 |
| Cirić M. | Atlas šumskih zemljišta Jugoslavije, Beograd, 1965 |
| Filipovski Gj. Čirić M. | Zemljišta Jugoslavije, Beograd, 1963 |
| Wilde S. A. | Forest Soil, New York, 1958 |
| Scheffer F. Schachtschabel P. | $\begin{aligned} & \text { Bodenkunde, Stuttgart, } \\ & 1956 \end{aligned}$ |
| Thun R. <br> Herrmann R. <br> Knickmann E. | Die Untersuchung von Böden, Berlin, 1955 |
| Ekorič A. <br> Filipovski Gj. Čiric M. | Klasifikacija tala Jugoslavije, Beograd, 1972 |
| Jugoslovensko društvo za proučavenje zemljišta | Metodika terenskog ispitivanja zeml.jišta i izroda pedoloskih karata, Beogred, 1967 |


| Kubiëna W. L. | Bestimmungsbuch und Systematik der Böden Europas, Stutgart, 1953 |
| :---: | :---: |
| Jugoslovensko društvo <br> za proučevanje zemljišta | Hemijske metode ispitivanja zemljišta |
| Inštitut za gozdno in lesno gospodarstvo Slovenije | Eoniteta gozdnih rastišč na jugovzhodnem Corskem krasu |
| Cokl M. | Stanje in razvoj prebiralnih gozdov v Lehnu (Zbornik št. 5 IGL6 Ljubljana, 1967) |
| Assmann E. | Waldertragskunde, München-Bonn-Wien, 1961 |
| Kramer H. | Die Bonitierungs - masstäbe. <br> Alg. Forstreitschrift, 1964 <br> , |
| Kramer H. | Der Einfluss von Grossklima und Standort auf die Entvicklung von Waldeständen, Frankfurt a/if., 1963 |
| Mitscherlich G. | ```Der Tannen-Fichten-(Buchen) -Plenterwald, Freiburg i/B., 1952``` |
| Prodan M. | Holzmesslehre, Frankfurt a/M., 1965 |
| Wiedemann E. | Ertragskundliche und wald bauliche Grundlagen der Forstwirtschaft, Frankfurt, 1951 |


| W. G. Cochron, G.M.Cox | Eksperimental Designs. J. wiley 1957 |
| :---: | :---: |
| D. Vukelja, V. Šolaja | Utvrdjivanje obredjivosti materiala pomoču temperaturske metode. VII Savj. proizv. maš., Novi Sad 1971 |
| I. Pavlisč | Statistička teorija i primjena. Panorama Zagreb 1965 |
| G. W. Smedekar, W. G. Cochran | Statistički metodi. Vuk Karadžič 1971 |
| B. Rode | Statistična analiza regresije z uporabo elektronskih računalnikov. Železarski zbornik 1968 221-234 |
| IBM Application Program | 1130 Scientfic Subroutine Package. IBM 1968 |



Del aparature za določanje vlage in poroznosti tal po Richards-u (izdelana v okviru te naloge)


[^0]:    Skupina : jelka B

[^1]:    * glej pregled oznak vrednosti za matično kamenino, talni tip in teksturo za računanje multiregresije

    I humozni horizont
    II mineralni horizont

