
On Orientation Control of Functional Redundant Robots

Leon Žlajpah

Abstract— There are tasks that do not require a controlled
motion in all spatial directions. These unused degrees-of-
freedom (DOF) make the robot functionally redundant. Tra-
ditional methods for redundancy resolution developed for in-
trinsic redundant robots cannot be used directly for resolving
functional redundancy. The functional redundancy is in general
not reflected as rows in the Jacobian matrix and therefore, the
unused DOFs cannot be mapped into the null-space. In the
paper we present a novel approach for the orientation related
functional redundancy resolution based on the task space
rotation. We define a time-variant task space frame so that
one or more frame axes are aligned with the unused directions.
This allows that the rows of Jacobian matrix corresponding
to functional redundant DOFs are excluded. As the standard
quaternion control is not appropriate to control orientation
of such functional redundant robots, we propose two control
algorithms to control one or two orientation directions. Two
examples then show how the proposed control algorithms can
be implemented and finally, we present the application of the
algorithm on a two-arm robot system.

I. INTRODUCTION

To define the pose of an object in the Cartesian space we
need three DOFs for the position and three DOFs for the
orientation. Most of today’s industrial robots are nonredun-
dant and have six degrees-of-freedom (DOF), which allow
them to position and orient their end-effector to any pose
in the Cartesian space. However, the six DOFs nonredun-
dant kinematic structure reveals in practice very soon its
weakness. Limited joint ranges and kinematic singularities
of these robots prevent such robots to reach an arbitrary
end-effector pose in the whole workspace. Actually, the
workspace, where an arbitrary pose can be reached, is
rather limited. Therefore, it is reasonable to augment the
robot structure with additional DOFs to overcome the men-
tioned limitations. Redundant DOFs significantly enhance
the capabilities of robots by offering better flexibility and
versatility. However, we should be aware that the redundancy
is inevitably related to the task in the sense that the robot can
be considered redundant if it has more DOFs than needed to
accomplish the task.

Tasks are usually defined as a motion of the robot end-
effector or of some other point on the robot body. The im-
portance of controlling the motion in the task space directly
was recognized very early [1], [2] and since then many
control schemes for task-space control have been proposed
[3], [4], [5], [6], [7]. When the robot is redundant, then there
are infinite joint configurations which result in the desired

This work was supported by EU Horizon 2020 Programme grant 680431,
ReconCell, and Slovenian Research Agency grant J2-7360.

Leon Žlajpah is with Dept. of Automation, Biocybernetics and Robotics,
Jozef Stefan Institute, Ljubljana, Slovenia, leon.zlajpah@ijs.si

task-space pose of the end-effector. Therefore, a criterion to
select one of the possible solutions is required. The simplest
approach to solve the kinematic redundancy is to resolve it
on the velocity level [1], where the differential kinematic
equation is solved by using a kind of generalized inverse,
and the projection of an arbitrary vector onto the null-space
of the Jacobian is used to exploit the self-motion of the robot.
To find the best solution, different local optimization criteria
have been used.

Most of the proposed control schemes for tasks requir-
ing/allowing directional dependent behavior of the robot rely
on approach, where the task requirements are transformed
into the task space, where the robot kinematics and dynamics
are defined [2]. However, such an approach is not suitable
when the task does not require a controlled motion in all spa-
tial directions. For example, there are tasks like arc welding
or spray painting, where not all six Cartesian dimensions are
important to accomplish the task. These unused DOFs can
then contribute to the degree-of-redundancy (DOR) of the
robot and they can be exploited for the self motion. This
type of redundancy has been recognized as the functional
redundancy [8], [9], [10]. To control robots with functional
redundancy, Baron [9] proposed to add a virtual joint to
the robot and used the usual redundancy resolution with the
extended Jacobian. Later Huo and Baron [10] proposed the
orthogonal decomposition of the task-space without consid-
ering the null-space of the Jacobian matrix. In [11] the use
of the extended Jacobian is proposed for tasks where axis-
symmetric tools are used (like spray-painting gun) and the
orientation of the tool along one axis is not important. For
5 DOF tasks a redundancy resolution algorithm based on
sequential quadratic programming is proposed in [12] and
based on convex optimization in [13] .

Common to most of the above control resolution schemes
is that they deal only with functional redundancy. This paper
aims at contributing to this field by presenting efficient orien-
tation control strategies for functional redundant robots. The
main purpose is to improve the capabilities of robots using
intrinsic and functional redundancy in the same framework.
For that we propose to define a time-variant task frame where
the functional redundancy is represented as one or more rows
of Jacobian matrix. So, it is possible to exclude the rows
related to the functional redundancy from the Jacobian matrix
and enlarge the dimensionality of the null-space.

II. MODELLING

In robotics the task is usually related to the motion of one
or more operational points, which can be anywhere on the



Fig. 1. Representation of task space, world space and corresponding frames

robot structure. Typically they are assigned to the robot end-
effectors [2], [5], [6]. Depending on the task, these points
are required to move along a specified path, or the robot
has to exert a certain force at that point. Without loss of
generality we assume in the following that only motion of
one operational point has to be controlled.

First we define three spaces:
• the configuration space C is the space where the joint

variables q are defined;
• the operational space O is the 6-dimensional Cartesian

space, where the positions/orientations of the robot end-
effector are defined; and

• the task space T — a Cartesian subspace, where the
task is defined, T ⊆ O.

The pose of the operational point is completely defined by
its position and orientation. Let Se represents a coordinate
frame with the origin Oe attached to the end-effector and
aligned with the orientation of the end-effector, and Sb be a
fixed base (or world) coordinate frame with the origin Ob in
the base of the robot (see Fig. 1). Then, the location of the
frame Se in frame Sb can be represented by a homogeneous
matrix

Te =

[
R p
0 1

]
, (1)

where p and R are a 3-dimensional position vector, p =
[px, py, pz]T , and a 3 × 3 rotation matrix, R = [n, s,a],
respectively1. Note that {p,R} ∈ O.

We deal with robot manipulators, which can be represented
by a serial kinematic chain. Let the configuration of the robot
manipulator be represented by the n-dimensional vector q of
joint positions, q ∈ C. Then, the robot end-effector position
p and orientation R can be expressed as a function of joint
coordinates using the direct kinematic equations

p = p(q) (2)
R = R(q) . (3)

In general, the spatial end-effector velocity is expressed as a
6-dimensional vector v

v = [ṗTωT ]T , (4)

where ṗ and ω are the linear and angular velocity of the end-
effector, respectively. They are obtained by differentiating

1Columns n, s and a are representing x, y and z axis of the frame Se

Eqs. (2) and (3). Note that the angular velocity is related to
the derivative of R by the relation [4]

Ṙ = S(ω)R , (5)

where S(·) is a skew-symmetric operator

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (6)

The relation between joint velocities q̇ and end-effector ve-
locity v is represented by the differential forward kinematics
in the form

v =

[
ṗ
ω

]
= JG(q)q̇ . (7)

where JG(q) is 6× n geometric Jacobian matrix [4].
The orientation representation with rotation matrix R is

redundant due to the orthonormality constraints. Using a set
of Euler angles Φ = [α, β, γ]T we can obtain a minimal
representation of the orientation. Combining elementary ro-
tations about coordinate axes of successive frames Ra, Rb

and Rc, where a, b and c denote one of the 12 possible axis
combinations, the orientation matrix R can be expressed as

R(Φ) = Ra(α)Rb(β)Rc(γ) . (8)

Now, the end-effector position and orinetation can be repre-
sented by the vector

xA = [px, py, pz, α, β, γ]T (9)

and the direct kinematics can be given in the form

xA = xA(q) (10)
ẋA = JA(q)q̇ (11)

where JA, is the analytical Jacobian matrix

JA(q) =
∂xA(q)

∂q
. (12)

In general angular velocities ω and Φ̇ are not equal. Assum-
ing that ẋA is 6-dimensional vector The relation between v
and ẋA is given in the form [4]

v =

[
I3 0
0 A(Φ)

]
ẋA , (13)

where A(Φ) is 3 × 3 matrix depending on the selection of
Euler angles. Matrix A(Φ) can be obtained from the time
derivative of the rotation matrix R(Φ) in Eq. (8).

The main drawback of Euler angles representation are
representation singularities, which occur for some angles
(depending on the Euler angles selection). To avoid these
singularities the orientation can be represented using Euler
parameters (unit quaternions) Q = {η, ε}. The scalar part of
Q is defined as

η = cos(ϕ/2) (14)

and the vector part as

ε = sin(ϕ/2)r , (15)



where ϕ and r are the angle and the vector of the equivalent
angle/axis description of the rotation matrix R. The relation
between the quaternion time derivative Q̇ and the rotational
velocity ω can be obtained by the quaternion propagation
[4]

Q̇ = {η̇, ε̇} = {−1

2
εTω,−1

2
E(η, ε)ω} , (16)

where
E(η, ε) = ηI− S(ε) . (17)

III. TASK SPACE SELECTION

In many cases, it is convenient to describe the location of
the end-effector Te in a suitably defined task frame, possibly
also moving. Fig. 1 shows a general situation where Sb is
the base (world) frame with the origin in Ob and St is the
selected task frame with the origin in Ot. The location of
frame St in frame Sb is defined by the translation vector pt
connecting the origins Ob and Ot, and the rotation matrix Rt

representing the rotation between Ob and Ot, which yields
the following expression for the end-effector location tT in
St

tT =

[
tR tp
0 1

]
=

[
RT

t −RT
t pt

0 1

] [
R p
0 1

]
=

[
RT

t R RT
t (p− pt)

0 1

]
,

(18)

where tp and tR are the end-effector position vector and
the orientation matrix in the task frame St, respectively.
Hereafter, we use the notation t(·) to denote that a quantity
is expressed with respect to the frame St. Otherwise the
quantity is expressed with respect to the base frame Sb.

How the task frame St is selected depends on the task
the robot should perform. Typically, the frame T is selected
to coincide with the base frame Sb (pt = [0 0 0]T and
Rt = I). When the end-effector motion is constrained and
the constraints restrict the motion in some spatial directions,
it is convenient to align the task space with the constraints
[2], [14], or when the task requires different behavior in
spatial directions. These spatial directions can depend on
the task space motion or as shown later on the null-space
motion. Therefore, we assume hereafter that the task frame
is time-variant, pt = pt(t) and Rt = Rt(t).

The differential kinematics in task frame St can be ob-
tained by differentiating Eq. (18). Let vt = [ṗTt ωT

t ]T be
the velocity of the task frame origin Ot with respect to Sb,
and tv = [tṗT tωT ]T be the operational point velocity with
respect to St. Then, differentiating Eq. (18) yields

tv = R̃T
t v − R̃T

t Jtvt , (19)

where R̃t is a 6× 6 matrix

R̃t =

[
Rt 03×3
03×3 Rt

]
(20)

and Jt is a 6× 6 matrix defined as

Jt =

[
I3×3 −S(p− pt)
03×3 I3×3

]
. (21)

IV. KINEMATIC CONTROL

Since the beginning of robotics many different approaches
to the control of robots have been proposed. As robot
manipulators are highly nonlinear dynamical systems, most
of the proposed control strategies use some kind of inner-
loop inverse dynamic control like computed torque tech-
nique [15] or operational space control [2] to compensate
nonlinearities. Then, a kinematic controller in the outer-loop
provides necessary control signals for the inner-loop from the
desired task-space velocities and accelerations, and exploits
the redundancy of the system in order to optimize the motion
considering some performance criteria [3]. Here, we focus
on the redundancy resolution at the velocity level and we
assume that the inner-loop controller already compensates
the nonlinear dynamics of the robot.

The main idea of the redundancy resolution at the velocity
level is to compute the necessary outer-loop control velocity
q̇c by inverting Eq. (7) or (11) [16]

q̇c = J#(q)ẋc +
(
I− J#(q)J(q)

)
q̇n , (22)

where ẋc represents the desired task-space control velocity,
and q̇n is an arbitrary joint velocity, which is projected
into the null-space of J and can be used to perform some
additional lower priority subtasks. Note that ẋc can represent
the velocity in any task space as long as the Jacobian matrix
J relates the robot configuration space and the selected task
space.

It is common to select the task-space control velocity ẋc

in (22) as
ẋc = vd + Kpe , (23)

where vd and e, e = [ep
T eo

T ]T , are the desired end-
effector position/rotation velocity and the end-effector po-
sition/orientation error expressed in the base frame Sb,
respectively. Matrix Kp represents the gains, which define
the close-loop behavior.

A. Task space pose error

Let xd = {pd,Rd} be the desired pose and xe =
{pe,Re} the actual pose of the robot end-effector. Then,
the position error in Eq. (23) can be defined as

ep = pd − pe . (24)

The definition of the orientation error is not so easy as
it depends on the particular orientation representation used
[17], [18], [19], [20]. Although, using rotation matrix R
in control as proposed in [17] is not very convenient, it is
worth mentioning that the orientation error is related to the
mutual orientation Rde between the desired orientation Rd

and actual orientation Re, which can be expressed as [18]

Rde = RdR
T
e . (25)

Note that Rde is expressed in the base frame Sb. The control
objective is that the pose errors converge to 0, i.e.

lim
t→∞

ep = 0 and lim
t→∞

Rde = I . (26)



The simplest way and analogous to Eq. (24) is to define the
orientation error using Euler angles

eo = ∆φ = Φd −Φe (27)

where Φd and Φe are the desired and actual Euler angles,
respectively. To overcome some representation singularity
problems, the orientation error can be defined as the Euler
angles of the rotation matrix Rde [19]. However, it is
necessary to select such Euler angles combination that the
corresponding representation singularity is not at Φ = 0.

For singularity-free control it is more convenient to define
the orientation error using Euler parameters. As before, we
can define the error using Euler parameters of the desired
and actual orientation, Qd and Qe, resulting in [8]

∆Q = {∆η,∆ε} = Qd ∗ Q−1e (28)

or directly using the mutual orientation matrix

∆Q = Q(Rde) . (29)

It can be easily seen that (26) implies

lim
t→∞

∆Q = {1,0} (30)

and it is a common practice to use in the control algorithm
only the vector part of ∆Q [18]

eo = ∆ε . (31)

B. Functional redundancy

A redundant robot has more DOFs than it is necessary to
perform a task. This implies that the redundancy is not only
a feature of the robot structure but depends also on the task
— there are tasks for which the robot becomes redundant.
Executing a typical robot task, which requires that the end-
effector follows a trajectory in the 6-dimensional operational
space, a robot with more than six joints in a reasonable
configuration is intrinsic redundant, dim(O) < dim(C). For
intrinsic redundant robots the redundancy resolution is based
on some kind of generalized inverse the Jacobian matrix
JG(q), which is typically a 6 × n matrix with n > 6,
assuming that the position and orientation are considered.

However, there are task that do not require that all 6 spatial
DOFs are controlled. This means that task space T is a
subspace of the operational space O, dim(T ) < dim(O),
and the robot becomes functional redundant. We assume that
functionally redundant robots are able to perform a motion
in all 6 spatial DOFs, but the task requires less than 6 DOFs.
Further, we assume here also that the functional redundancy
is related only to the orientation. To exploit the available
functional redundancy it is necessary to find a task frame,
where the redundant DOFs are rows of the Jacobian matrix.
In most cases, even for 5 DOFs tasks, it is impossible to
find such a frame which would be time-invariant and would
assure that the redundant DOFs are rows of the Jacobian
matrix [21]. Therefore, we propose to define a time-variant
task frame in which the functional redundancy are rows of
the Jacobian matrix all the time.

First, knowing the redundant spatial directions in frame
Sb, we define the task frame St so that one or two of its
axes are aligned with the redundant spatial directions. When
all three orientation directions are redundant, this is a trivial
case and is not considered here.

Next, we map the control given by Eq. (22) into the
task space St using Eq. (19). As only orientation DOFs are
included in the functional redundancy it is enough to rotate
the task space and use pt = p. This simplifies the mapping;
the task space rotation can be applied only to the orientation
part of the control (22), which yields

R̃t =

[
I 03×3

03×3 Rt

]
(32)

and Jt = I. Using this in Eq. (18), the position/orientation
error in frame St becomes

te = R̃T
t e . (33)

and from Eq. (19) we get
tvd = R̃T

t vd − R̃T
t Jtvt . (34)

Substituting Eqs. (33) and (34) into Eqs. (22) and (23), and
rearranging them, we obtain the kinematic velocity controller
in the form

q̇c = (R̃T
t J)# tẋc + (I− (R̃T

t J)#R̃T
t J)q̇n , (35)

where
tẋc = R̃T

t vd + Kp,tR̃
T
t e . (36)

Here, the term R̃TJ can be denoted as the task frame
Jacobian. Comparing Eqs. (22) and (35) we can see that
both controllers are similar. The only difference is that in
the controller (35) the Jacobian matrix and task velocities
are mapped using matrix R̃t.

To consider the functional redundancy in the control (35)
we exclude some rows from the Jacobian matrix and also the
corresponding components of the desired velocity vd and the
error e. It is convenient to do this by replacing the matrix
R̃t in Eqs. (35) and (36) with a modified matrix R̂t where
rows corresponding to redundant DOFs are excluded. For
example, if the orientation around the task frame vector a
(z-axis) should not be part of the task controller, then we
use

R̂t = [I5×5 05×1] R̃t . (37)

The kinematic velocity controller in the form

q̇c = (R̂T
t J)# tẋc + (I− (R̂T

t J)#R̂T
t J)q̇n , (38)

and
tẋc = R̂T

t vd + Kp,tR̂
T
t e . (39)

The basic characteristics of the redundancy resolution
control algorithms is that the null-space motion should not
influence the task-space motion. If the orientation error used
in Eq. (37) is based on the quaternions (Eq. (31)) and some
of the error components are not part of the control as in our
case, then the term R̂T

t e depends on the rotation of the end-
effector in the null-space. This influence can be compensated



Fig. 2. Desired and actual end-effector frames for tasks with one redundant
orientation DOF. The pointing direction is aligned with the end-effector z-
axis.

if the mutual orientation between the desired and actual
orientation Rde is not calculated using Eq. (25) but using

Rde = Rd (Rf (ϕ)Re)
T , (40)

where Rf (ϕ) is a rotation matrix depending on the orienta-
tion angle around the redundant direction and ϕ the corre-
sponding orientation angle. With Rf (ϕ) we actually cancel
the rotation of the end-effector in the null-space. Here we
assume also that no rotation around the redundant DOF is
present in Rd.

To avoid this additional computations and make the con-
trol faster, we propose another control algorithm for the
orientation control, where not all orientation components are
controlled. The proposed control algorithms depend on how
many orientation components have to be controlled.

When the task requires orientation in two directions, then
this orientation can be represented as a unit vector pointing
in the desired direction td. The available null-space motion
is the motion around this vector. The control algorithm has
to assure that the actual pointing direction t converges to
the desired one (see Fig. 2). In other words, the angle ϕ
between td and t should converge to 0. For that, we define
the orientation error in Eq. (39) as2

eo = ϕ
t× td
‖t× td‖

, (41)

where ϕ = arccos(tT td). This orientation error eo is not
dependent on the motion in the null-space. When the robot
is functionally redundant due to the axis-symmetric tool, the
direction of t is aligned with the tool axis and t has be
selected as the redundant direction instead of td.

When two orientation components are not part of the task
space the situation is complementary to the previous one. The
direction of the pointing vector t depends on the null-space
motion and the rotation φ around t represents the orientation
in the task space. In this case, the task orientation tẋc is a
scalar and the task space controller becomes

tẋc = φ̇d +Kp,t(φd − φ) , (42)

where φd and φ are the desired and actual rotation in the task
space, respectively; φ̇d is the desired task rotation velocity.

2All direction vectors are assumed to be unit vectors.

t
ϕ

td

Fig. 3. KUKA LWR robot with an axis-symmetric tool moving perpen-
dicular on a circular path on a sphere surface.

V. CASE STUDIES

Typical examples of robot tasks with one functional re-
dundant DOF are arc-welding, laser-cutting or spray-painting
applications, where the tool is axis-symmetric. To illustrate
the performance of the proposed control approach we have
selected a task, where a 7DOF robot (KUKA LWR) with
an axis-symmetric tool has to move with a constant velocity
along a circular path on a ball, as it is shown in Fig. 3.
The tool should be always perpendicular to the surface.
Obviously, the tool orientation around the surface normal
is not important for the task. Therefore, the task frame St
has been rotated so that one axis, in our case the tool axis
aSt , has been aligned with the surface normal ns. As the
task frame St depends on the location of the end-effector on
the surface, the orientation of St is changing during the task
execution.

The desired motion has been defined so that the end-
effector is moving with a constant linear velocity along a
circular path on the ball surface. As the rotation around
the tool axis has been excluded from the task control, the
pointing direction td has been selected as td = ns, task
space has been oriented as the tool frame, Rt = Re, and R̂t

was defined as in Eq. (37).
The self motion due to the intrinsic and functional redun-

dancy has not been used for any secondary tasks. Rather we
have defined qd in controller (38) so that intensive motion in
the null-space has been achieved to show the performance of
the proposed task controller. The initial robot configuration
has been selected so that the end-effector was not on the path
and the system had an initial position and orientation error.

We have compared the task controller (39), where the error
eo has been calculated using Eq. 40 and (41) with gains
Kp,t = 5I. The results were identical for both controllers.
Therefore, it is more efficient to use the error as defined in
Eq. (41) in the controller. The simulation results are shown
in the Fig. 4. Additionally, the animation is presented in the
multimedia attachment as Example 1. The top plot in Fig.
4 shows the desired and the actual rotational velocities in
the task space St. We can see that the actual velocities are



Fig. 4. Simulation results: KUKA LWR robot moving along circular path
on a ball and the tool is prependicular to the surface (Kp,t = 5I) - The
desired rotation velocity components in task space tωn,r and tωs,r (dotted
line); the actual rotation velocity components in task space tωn and tωs

(solid line), and the rotation velocity component due to the null-space motion
tωa (dashed line).

converging to the desired one although the null-space motion
was changing significantly the end-effector orientation (see
tωa signal). The bottom figure shows the orientation error in
the task space St. As we can see the orientation error eo is
converging to 0.

As an example of an application where only one orienta-
tion component is important for the task, we have selected
the task where an “L” shaped tool has to touch a wave shaped
conical surface (see Fig. 5). For this task, the rotation around
main cone axis ac and the rotation around the tool axis n are
not important for the task. Only the orientation component
necessary to rotate the tool onto the surface is important
and has to be included in the task controller. Therefore, the
pointing direction was defined as

t =
ac × n
‖ac × n‖

(43)

and the task space motion is represented by the rotation φ
around t with the value corresponding to the angle between
ac and n

φ = arccos(aTc n) (44)

as it is shown on Fig. 5. For this task, the task frame rotation
matrix Rt was selected as

Rt =

[
t× ac
‖t× ac‖

t ac

]
. (45)

In our case, where the surface is wave shaped, the desired
task space orientation φd depends on the location of the tool
on the surface

φd = (− π

24
)(1− cos(6 ∗ ϕ)) +

π

2
. (46)

φφd

ϕ

t

n

nd

ac

Fig. 5. KUKA LWR robot with as “L” shaped tool and the tool has to
touch the surface.

Note that the orientation angle ϕ on the surface depends
only on the null-space motion. We have used the task space
controller (42) with gains Kp,t = 5.

As before, the self motion due to the intrinsic and func-
tional redundancy has not been used for any secondary tasks,
but we have defined qd so that intensive smooth motion in
the null-space has been achieved. In the initial configuration
the tool has been above the surface so that the system had
an initial task position and orientation error.

The simulation results are shown in Fig. 6 and the anima-
tion is presented in the multimedia attachment as Example 2.
The top plot in Fig. 6 shows the desired and actual rotational
velocities in the task space St. We can see that the actual
velocity φ is converging to φd although the null-space motion
was changing significantly the end-effector orientation (see
tωn and tωa signals). Note that the desired task rotation φd
had to follow the changes in ϕ caused by the null-space
motion so that the tool was all the time on the surface. The
bottom figure shows the orientation error teo = φd − φ in
the task space St and we can see that the error is converging
to 0.

VI. EXPERIMENTAL RESULTS

The proposed control strategy has been implemented on
two KUKA LWR robot arms operating as a two-arm robot
system as shown in Fig. 7. As the task we have selected the
”buzz wire” task, i.e. to move the ring, which is in our case
attached to the left LWR robot arm, along the wire, which is
held by the right LWR robot arm. For convenience, the wire
has been in a circular form (diameter 0.25m). During the
motion the wire has to be in the middle of the ring (the
ring and the wire should not touch) and the ring should
be perpendicular to the wire (see Fig. 8). Note that the
orientation of the ring around the wire is not important for
the task. Therefore, the ring can be freely rotated around the
wire and this rotation represents the functional redundancy
(see Fig. 9). Our dual-arm experimental system has 14 DOF
and considering the functional redundancy the system has
altogether nine redundant DOF.



Fig. 6. Simulation results: KUKA LWR robot with “L” shaped tool moving
on a surface (Kp,t = 5I) - the desired rotation velocity component in task
space tωs,r (dotted line); the actual rotation velocity component in task
space tωs (solid line), and the rotation velocity components due to the
null-space motion tωn and tωa (dashed line).

StSb

Fig. 7. Two-arm KUKA LWR robot system

To do the task, the motion of both robot arms has to be
coordinated. As for the ”buzz wire” task the relative motion
between robot end-effectors is important, we have modelled
both arms as one kinematic chain starting at the end-effector
of the right arm ending at the end-effector of the left arm as
indicated with an arrow in Fig. 7. So, the right arm end-
effector frame represents the base frame Sb of the robot
system and the desired motion is defined in Sb as

pd = 0.125[cos(ϕ(t)) sin(ϕ(t)) 0]T (47)

and
Rd = Rz(−ϕ(t))Rx(π) , (48)

where ϕ(t) represents the path parameter. Matrices Rz

and Rx are the rotation matrices representing the rotations
around z and x axis of the frame Sb, respectively. For this
task we have used the control strategy as explained in Fig.
2; vector av was in the direction of the path and the task

Fig. 8. “Buzz wire” task Fig. 9. “Buzz wire” self motion

frame St was oriented so that frame verctor s (y-axis) has
been aligned with t (see Fig. 7). We have used the controller
(38) and (39), where the components corresponding to the
rotation around y-axis have been removed from R̃t

R̂t = diag(1 1 1 1 0 1])R̃t (49)

To control two LWR robot arms as one system we have
developed a special MATLAB/Simulink xPC target server
which communicates with Fast Research Interface (FRI)
provided by KUKA [22]. The joint motion generated by the
controller (38) has been then used as the desired joint motion
of each LWR robot using FRI joint position control mode.

The redundant DOFs offered by the system have been
used to perform a lower priority subtasks. For demonstration
we have implemented an algorithm, which allows a human
to reconfigure both arms without disturbing the main task
simply by pushing any link of the robots. The avoiding
motion has been calculated using the information about the
external forces action on the body of the robot

q̇n = −Kn JT
G(q)Fext (50)

Gains Kn are selected to achieve a suitable compliance in the
null-space. As KUKA LWR controller provides internal joint
torque sensors due to external forces, the above controller can
be simplified into

q̇n = −Kn τext(Fext) , (51)

where τext are external joint torques due to the external
forces Fext.

Fig. 10 shows a motion sequence of two LWR robots
performing the ”buzz wire” task while a human is re-
configuring the robot. As it can be seen, the ring is not
touching the wire although the arms are reconfiguring into
the pose to which a human pushes the links. Note that
the rotation of the ring around the wire is also utilized for
the self motion. The experimental video is presented in the
multimedia attachment.

VII. CONCLUSIONS

We have shown how to augment the null-space motion of
redundant robots with additional DOFs offered by functional
redundancy subject to unused end-effector rotational DOFs.
As standard quaternion control is not suitable when one
or two rotations are excluded from the task control, we
have proposed modified orientation control algorithms at
velocity level where the task frame is rotated so that the
non-controlled rotations can be excluded from the task space



Fig. 10. Experimantal results: Dual-arm LWR robots performing the ”ring” task and interacting with a human (Time interval between frames is 1s)

and used for self motion. The proposed control can be easily
extended to the acceleration level.

REFERENCES

[1] D. E. Whitney, “Resolved motion rate control of manipulators and
human protheses,” IEEE Trans. Man-Machine Syst., vol. MMS-10,
pp. 47–53, 1969.

[2] O. Khatib, “A Unified Approach for Motion and Force Control
of Robot Manipulators: The Operational Space Formulation,” IEEE
Journal on Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[3] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Operational
Space Control: A Theoretical and Empirical Comparison,” The Inter-
national Journal of Robotics Research, vol. 27, no. 6, pp. 737–757,
jun 2008.

[4] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics -
Modelling, Planning and Control. Springer-Verlag London, 2009.

[5] J. Russakow, O. Khatib, and S. Rock, “Extended operational space
formulation for serial-to-parallel chain (branching) manipulators,” in
Proceedings of 1995 IEEE International Conference on Robotics and
Automation, vol. 1. IEEE, 1995, pp. 1056–1061.

[6] O. Brock, J. Kuffner, and J. Xiao, “Motion for Manipulation Tasks,”
in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer Berlin Heidelberg, 2008, ch. 26, pp. 615–645.

[7] F. Caccavale and M. Uchiyama, “Cooperative Manipulators,” in
Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, ch. 29, pp. 701–
718.

[8] L. Sciavicco and B. Siciliano, Modelling and Control of Robot
Manipulators, 2nd ed., ser. Advanced textbooks in control and signal
processing. Springer, London, 2000.

[9] L. Baron, “A Joint-Limits Avoidance Strategy for Arc-Welding
Robots,” in Int. Conf. on Integrated Design and Manufacturing in
Mech. Eng., Montreal, Canada, 2000.

[10] L. Huo and L. Baron, “Kinematic inversion of functionally-redundant
serial manipulators: Application to arc-welding,” Transactions of the
Canadian Society for Mechanical Engineering, vol. 29, no. 4, pp. 679–
690, 2005.

[11] A. M. Zanchettin and P. Rocco, “On the use of functional redundancy
in industrial robotic manipulators for optimal spray painting,” in IFAC
Proceedings Volumes (IFAC-PapersOnline), vol. 18, no. PART 1, 2011,
pp. 11 495–11 500.

[12] J. Leger and J. Angeles, “A Redundancy-resolution Algorithm for
Five-degree-of-freedom Tasks via Sequential Quadratic Program-
ming,” in TrC-IFToMM Symposium on Theory of Machines and
Mechanisms,, Izmir, 2015.

[13] P. J. From and J. T. Gravdahl, “A real-time algorithm for determining
the optimal paint gun orientation in spray paint applications,” IEEE
Transactions on Automation Science and Engineering, vol. 7, no. 4,
pp. 803–816, 2010.

[14] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576–584, 2010.

[15] P. Hsu, J. Hauser, and S. Sastry, “Dynamic Control of Redundant
Manipulators,” J. of Robotic Systems, vol. 6, no. 2, pp. 133–148, 1989.

[16] L. Žlajpah and T. Petrič, Serial and parallel robot manipulators -
kinematics, dynamics, control and optimization. Rijeka: InTech, 2012,
ch. Obstacle avoidance for redundant manipulators as control problem,
pp. 203 – 230.

[17] J. Luh, M. Walker, and R. Paul, “Resolved-Acceleration Control of
Mechanical Manipulators,” IEEE Transactions on Automatic Control,
vol. 25, no. 3, pp. 468–474, 1980.

[18] J. S. C. Yuan, “Closed-Loop Manipulator Control Using Quaternion
Feedback.” IEEE journal of robotics and automation, vol. 4, no. 4,
pp. 434–440, 1988.

[19] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Resolved-
acceleration control of robot manipulators : A critical review with
experiments,” Robotica, vol. 16, no. September 2000, pp. 565–573,
1998.

[20] R. Campa and H. D. Torre, “Pose Control of Robot Manipulators
Using Dierent Orientation Representations: A Comparative Review,”
in Proceedings of the 45th IEEE Conference on Decision and Control,
no. 1, 2009, pp. 2855–2860.

[21] L. Huo and L. Baron, “The joint-limits and singularity avoidance in
robotic welding,” Industrial Robot, vol. 35, no. 5, pp. 456–464, 2008.

[22] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research
interface for the kuka lightweight robot,” in IEEE Workshop on
Innovative Robot Control Architectures for Demanding (Research)
Applications(ICRA 2010), 2010, pp. 15–21.


