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Objective: Regenerative endodontic treatments are being developed in
veterinary dentistry. The aim of this study was to evaluate the biocompatibility
and odontogenic potential of three biomaterials, ProRoot® MTA (MTA), RS + ™
(RS+), and CellFoam™ (CF), on canine dental pulp stem cells (cDPSCs) under
conditions simulating early and clinically relevant exposures.

Methods: cDPSCs were isolated from three healthy dog teeth extracted for
clinical reasons and characterized by flow cytometry (CD44*/CD90*/CD29*/
CD347) and multilineage differentiation. Cells were cultured with material
suspensions (acute cytotoxic effect) or conditioned medium (physiologically
relevant effect). Metabolic activity and cell viability were assessed by MTT and
live/dead assays. Osteogenic/odontogenic differentiation was evaluated by
Alizarin Red S staining and RT—gPCR for RUNX2, ALPL, and MMP13 expression.
Results: In suspension cultures, compared with MTA and RS+, CF maintained
significantly higher metabolic activity and cell viability across several dilutions,
indicating lower acute cytotoxicity. Under conditioned exposure, no significant
differences among materials were observed, reflecting the dilution and buffering
effects that mitigate early reactivity. All the materials supported Alizarin Red
S-positive mineral deposition, with a significant difference at D3, when ARS
staining of cDPSCs was greater in cells conditioned with MTA than in those
conditioned with CF. Gene expression analysis revealed lower RUNX2 and ALPL
expression in MTA-conditioned cells, suggesting, together with ARS staining,
progression toward a more advanced osteogenic or odontogenic differentiation
stage. MMP13 expression remained comparable across materials.

Conclusion: MTA, RS+, and CF demonstrated overall biocompatibility with
cDPSCs and supported odontogenic differentiation under clinically relevant
conditions. CF exhibited the lowest acute cytotoxicity, indicating its potential as
a carrier for DPSC-based regenerative endodontic applications. These findings
support the translational importance of in vitro cDPSC models for evaluating
biomaterial performance in veterinary regenerative endodontics.
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1 Introduction

Traumatic dentoalveolar injuries (TDIs) are common in veterinary
dental practice, affecting an estimated 26.2% of patients (92.7% in
dogs and 7.3% in cats), with complicated crown fractures (CCFs)
representing the most frequent entity (1). Following pulp exposure,
superficial inflammation is evident histologically within 48 h;
infection typically spreads throughout the pulp, leading to necrosis by
approximately 65 days, and apical periodontitis can be observed in
dogs within 20 days of exposure (2, 3).

Endodontically compromised teeth require intervention to
eradicate infection and alleviate pain. Management options include
extraction or endodontic therapy aimed at eliminating the
intraradicular microbial ecosystem (4-8). When endodontic
treatment is selected for a vital tooth, amputation of approximately
5 mm of the coronal-most dental pulp within (ideally) the first 48 h in
mature permanent teeth suffices to remove infected and inflamed
pulp, followed by appropriate medication placement and restoration
(i.e., vital pulpectomy, VP). Vital pulpectomy is recommended
whenever feasible for immature permanent teeth with open apices
(8-12). When the tooth becomes irreversibly inflamed or nonvital,
root canal treatment (RCT) remains an endodontic treatment option
for mature teeth. Endodontic treatment of nonvital immature
permanent teeth remains challenging, but regenerative endodontic
treatments are also being developed in veterinary dentistry (13, 14).

The success of such treatments depends on materials that are not
only bioactive and capable of forming a mineralized barrier but also
biocompatible with dental pulp stem cells (DPSCs) and supportive of
their differentiation potential (15, 16). Historically, calcium hydroxide
was used as a pulp dressing for VP; however, mineral trioxide
aggregate (MTA) has demonstrated superior outcomes in dogs and is
now widely considered the standard material in this context (12, 17,
18). Nevertheless, classic MTA is a Portland cement-based endodontic
material containing several oxides and radiopaque, brownish-colored
bismuth oxide (Bi,03), associated with a relatively long setting time
(3-4h), higher cost, and handling challenges; newer, bioceramic
MTA-like hydraulic calcium trisilicate cements have been developed
via purer, synthetic routes to mitigate these drawbacks, where Bi,O; is
usually replaced with biocompatible zirconia (19-22). Across these
modalities, the ability of materials to promote a durable protective
barrier while preserving vital pulp or enabling pulp regeneration is
central to clinical success (17, 23), underscoring the need to evaluate
the biocompatibility and bioactivity toward the cellular components
of dental pulp (17, 24, 25).

Recent advances in regenerative dental medicine have introduced
the concept of combining bioactive materials with stem cell-based
approaches to achieve true pulp regeneration rather than mere repair
(26-28). DPSCs represent a promising cell source and are particularly
relevant for modeling vital pulp therapy and regenerative endodontic
procedures in veterinary patients, as they are resident within dental
soft tissues and contribute to dentin-pulp complex repair and
regeneration (29). Using DPSCs, we can evaluate how biomaterials
interact with resident DPSCs under clinically relevant in vitro
conditions while also assessing how different materials influence stem
cell behavior for potential combined cell-material applications.
Emerging therapies that combine the reparative potential of DPSCs
with biocompatible scaffolds or cements offer promise for treating
pulp injuries (15).
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The aim of our study was to investigate the in vitro effects of three
biomaterials—ProRoot® MTA (MTA), RS + ™ (RS+) and CellFoam™
(CF)—on cDPSCs to clarify the influence of these materials on
cDPSCs from two different but complementary aspects:

(1) Acute cytotoxic effect—the initial acute effect of particle-
associated cytotoxicity that may occur immediately after
material placement, simulating the initial contact between
freshly mixed material and the surrounding pulp cells.

(2) Physiologically relevant effect—a longer-term effect of soluble
leachates, simulating more physiological, diffusion-controlled
conditions, representing the environment that cells experience
within the tissue or when the material is combined with stem
cell-laden scaffolds in regenerative applications.

In this study, we investigated how selected biomaterials (with
MTA as the clinical benchmark reference material in veterinary
endodontics) affect cDPSCs with respect to viability, metabolic
activity, and odontogenic/osteogenic differentiation potential in vitro
to inform their prospective therapeutic use in veterinary endodontics.

We hypothesized that the biomaterials RS + ™ and CellFoam™
exhibit in vitro biocompatibility comparable to that of ProRoot® MTA
when applied to canine dental pulp stem cells with respect to cell
viability, =~ metabolic

activity, and odontogenic/osteogenic

differentiation potential.

2 Materials and methods
2.1 Dental pulp tissue collection

Dental pulp tissue was collected at the Small Animal Clinic,
Veterinary Faculty, University of Ljubljana, from the teeth of two
client-owned dogs undergoing clinically indicated mandibular canine
tooth extraction of endodontally and periodontally healthy teeth (to
treat traumatic malocclusion from linguoversion) under general
anesthesia. Dogs (a 4-year-old male Poodle and a 7-month-old male
Labrador Retriever) were treated by a board-certified veterinary
dentist in accordance with the current state-of-the-art guidelines; no
changes to the treatment protocols were made for the purpose of the
study. Owners provided written informed consent for the procedures.
Immediately after surgical extraction (30), all three teeth were
disinfected externally (i.e., briefly rinsed in 2% chlorhexidine), the
crowns were sectioned under aseptic conditions to expose the pulp
chamber, and pulp tissue was retrieved with a sterile barbed broach
and transferred into cold Dulbecco’s phosphate-buffered saline (DPBS;
Gibco, Grand Island, NY, USA).

2.2 Isolation and expansion of canine
dental pulp stem cells (cDPSCs)

The three isolated dental pulp tissue samples were subsequently
washed with DPBS (Gibco, Grand Island, NY, USA), cut into small pieces
with a scalpel and incubated overnight at 37 °C in Dulbeccos modified
Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) supplemented
with 0.1% collagenase type II (Sigma-Aldrich, Taufkirchen, Germany).
The digested tissue was centrifuged at 240 x g for 4 min, after which the
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supernatant was discarded. The cell pellet was resuspended in cell culture
medium supplemented with DMEM, 10% fetal bovine serum (FBS;
Gibco, Grand Island, NY, USA) and 1% antibiotic (Penicillin:
Streptomycin solution 100X, VWR International, Vienna, Austria). The
cell suspension was plated into 6-well plates (TPP, Trasadingen,
Switzerland) at passage 0 and cultured at 37 °C in a 5% CO, incubator.
The cell culture medium was changed every 2-3 days. After reaching
70-90% confluence, the cells were trypsinized and multiplied by seeding
into alarger (T75) cell culture flask at passage 1. After a sufficient number
of cells were obtained, the cells from passage 1 were frozen at —80 °C in
cell freezing medium containing 10% dimethylsulfoxide (Sigma-Aldrich,
Taufkirchen, Germany). Thawed cells were seeded at passage 2, multiplied
and further processed for the expression of surface markers, differentiation
potential, and experimental cell cultures (Table 1). Suspension media
cultures were used for MTT and live/dead assays, and conditioned media
cultures were used for MTT and live/dead assays, Alizarin Red S staining
and gene expression analysis.

2.3 Flow cytometry for cell-surface
markers

Flow cytometry was performed on the untreated cells to evaluate
the expression of cell surface markers. Antibodies against the MSC
markers CD44, CD90, CD29, and CD34 were applied as previously
reported for cDPSCs (CD44*/CD907/CD297/CD347) (31, 32). A total
of 1 x10° cells were used. Cells frozen at passage 1 were thawed,
seeded at passage 2, multiplied, reseeded and analyzed at passage 3.
Following trypsinization, the cells were counted, centrifuged (240 x g
for 4 min), and washed twice with DPBS. Cells were stained with the
following antibodies for canine adipose-derived mesenchymal stem

10.3389/fvets.2026.1758525

cells (ADMSCs): allophycocyanin (APC) conjugated against CD44
(antibody clone IM7, 103,012, BioLegend, San Diego, CA, USA),
phycoerythrin (PE) conjugated against CD90 (antibody clone
YKIX337.217, 12-5,900-42, eBioscience, San Diego, CA, USA),
fluorescein isothiocyanate (FITC) conjugated against CD29 (antibody
clone MEM-101A, MA1-19566, Thermo Fisher Scientific, Waltham,
MA, USA), and CD34 (antibody clone 581, 60013FI, Stemcell
Technologies, Cambridge, MA, USA). For antibody titration, 1, 2, 3,
4,5,and 10 pL of each antiserum per 100 pL of 1 x 10° cells was used.
Appropriate dilutions of the antibodies used for staining are shown in
Table 2. The cells were then vortexed, incubated at room temperature
in the dark for 10 min, washed twice with DPBS, vortexed, and
centrifuged again (240 x g for 5min). The supernatant was
subsequently decanted. Finally, the cells were resuspended in 100 pL
of DPBS for FACS analysis. The exclusion of nonviable cells was
performed by staining cells with propidium iodide solution (Molecular
Probes, Eugene, OR, USA). Experimental settings were set up using
unstained cells and single-color staining. A minimum of 20,000 events
was recorded. The cells were analyzed with a BD FACSAria III flow
cytometer (BD Bioscience, Franklin Lakes, NJ, USA). FACSDiva 9.4
software (BD Bioscience) was used for FACS data analysis.

2.4 Differentiation potential

For the determination of differentiation potential, untreated cells
were used. Differentiation potential was assessed by inducing cell
differentiation into osteocytes and chondrocytes. Cells frozen at passage
1 were thawed, seeded at passage 2, multiplied and reseeded at passage
3 for the differentiation assay. For osteogenic differentiation, 4 x 10* cells
were seeded in 12-well plates. After 90-100% confluence was reached,

TABLE 1 Experimental groups, media, and culture conditions used in the study (applies to MTA, RS+, and CF media conditions).

Dilutions (D) of
experimental medium

Experimental medium Control of the culture Analysis (Method)

(24 h-cell pretreatment)

Suspension MTA/RS+/CF medium Negative control (nontreated cells) D1-D8 - Viability (live/dead assay)
- Metabolic activity (MTT)
Conditioned MTA/RS+/CF medium Negative control (non-treated cells) for D1-D4 - Viability (live/dead assay)

non-differentiated cells and Positive - Metabolic activity (MTT)

control (non-treated differentiated cells) - Mineralization (Alizarin Red S)

for differentiated cells - Gene expression analysis (QPCR)

D1 = 5%, followed by twofold serial dilutions.

TABLE 2 Antibodies and dilutions used for flow cytometry.

Surface Conjugation Antibody Isotype Target Catalog no. Source Antibody
marker clone species dilution per
1 x 10° cells
CD44 APC M7 Rat IgG2b Mouse, Human 103,012 BioLegend (USA) 1:67
CD90 PE YKIX337.217 Mouse IgG1 Dog 12-5,900-42 eBioscience (USA) 1:20
CD29 FITC MEM-101A Mouse IgG1 Dog/Human/ MA1-19566 ThermoFisher 1:5
Pig Scientific (USA)

CD34 FITC 581 Mouse IgG1 Human 60013FI STEMCELL 1:20

Technologies

(Canada)

CD; cluster of differentiation; FITC, fluorescein isothiocyanate; APC, allophycocyanin; PE, phycoerythrin.
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the cell culture medium was removed. Osteogenic medium (StemPro
Osteogenesis Differentiation Kit, Gibco, Grand Island, NY, USA) was
added, and the medium was changed every 2-3 days. The cell culture
medium was added to the wells, which served as a negative control.
Osteogenic differentiation was analyzed after 14 days of cultivation
using Alizarin Red S staining (Sigma Aldrich, Taufkirchen, Germany)
according to the standard procedure. For chondrogenic differentiation,
micromass cultures were generated by seeding 5 pL droplets containing
4 x 10* cells into the middle wells of a 12-well plate. After the micromass
cultures were cultured for 6 h under high humidity, chondrogenic
medium (StemPro Chondrogenesis Differentiation Kit, Gibco, Grand
Island, NY, USA) was added to the culture vessels. The cell culture
medium was added to the wells, which served as a negative control. The
micromass cultures were incubated at 37 °C in an incubator with 5%
CO, and a humid atmosphere. The medium was changed every
2-3 days. Chondrogenic differentiation was analyzed after 14 days of
cultivation using Alcian blue staining (Sigma Aldrich, Taufkirchen,
Germany) according to a standard procedure. The differentiated cells
were visualized under a light microscope.

2.5 Biomaterials and media preparation

Three materials were tested on polystyrene-grown cDPSCs: (1)
ProRoot® MTA (Dentsply Sirona, Johnson City, TN, USA) (MTA), a
calcium-silicate endodontic cement commonly used for pulp capping
and root-end filling; (2) RS + ™ (GenTech - Genuine Technologies
d.o.o0., a spin-out of Jozef Stefan Institute, Ljubljana, Slovenia) (RS+), a
synthetic bioceramic, calcium trisilicate-based powder with small
additions of biocompatible phyllosilicate clay (bentonite) and bioactive
amorphous calcium silicate for an enhanced handling, setting, and
remineralization response, indicated for root canal repair and sealing;
and (3) CellFoam™ (BioChange Ltd., Yokneam, Israel) (CF), a
commercially available porous, cell-culture-grade biodegradable
scaffold.

We prepared two different media, containing experimental
materials, as exposure models:

(i) Suspension medium (to simulate acute cytotoxic conditions)

Each biomaterial was suspended in cell culture medium at an
initial concentration of 50 mg/mL (defined as the first dilution, D1).
Seven additional twofold serial dilutions were prepared (D1-D8). This
powder-in-medium setup simulated the immediate, high-exposure
environment that may occur after material placement, which is
particularly relevant for calcium silicate-based cements (MTA and
RS+), which can transiently release Ca(OH),, increase the pH, and
directly contact surrounding cells with particulate matter.

(ii) Conditioned medium (to simulate physiologically relevant
conditions)

Each biomaterial was first suspended in culture medium at 50 mg/
mL, shaken overnight at room temperature, and centrifuged the
following day at 500 x g for 10 min. After the supernatant was
collected, we adjusted its pH to 7.5 to isolate material-specific effects
from pH-mediated cytotoxicity. To adjust the pH, we used 1 N HCI,
as the buffering components of the culture medium were insufficient
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to counteract the high alkalinity resulting from Ca(OH), release. The
supernatant was then filtered through 0.22 pm syringe filters. The
resulting conditioned medium was used for experimental cell culture
at four twofold serial dilutions (D1-D4).

2.6 MTT assay (metabolic activity)

An MTT assay was employed for the suspension and conditioned
media cultures. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide was used to measure cellular metabolic activity as an indicator
of the cytotoxicity of the biomaterials. It is based on the reduction of a
yellow tetrazolium salt (MTT) to purple formazan crystals by
metabolically active cells. Cells frozen at passage 1 were thawed, seeded
at passage 2, multiplied and reseeded at passage 3 for the MTT assay.
Cells were seeded in quadruplicate into clear 96-well microtiter plates
at a cell density of 10* cells/cm” in a final volume of 100 pL of culture
medium. Cells were cultured at 37 °C in a 5% CO, incubator for 48 h
until they reached 70% confluency. After the incubation period, the cell
culture medium was removed, and experimental medium was added.
The cells were cultured overnight. The experimental medium was
removed, and 10 pL of MTT labeling reagent (at a final concentration
of 0.5 mg/mL) was added to 100 pL of DMEM without phenol red
(Gibco, Grand Island, NY, USA) in each well. Following 4h of
incubation at 37 °C, in a 5% CO, incubator, 100 pL of solubilization
buffer was added to each well and incubated overnight at 37 °Cin a 5%
CO, incubator. The next day, the total solubilization of the purple
formazan crystals was measured with a Byonoy absorbance reader
(Byonoy, Hamburg, Germany). The sample wavelength was set at
562 nm, and the reference wavelength was 650 nm.

2.7 Live/dead assay (viability)

A live/dead assay was employed for suspension and
conditioned media cultures. Cells frozen at passage 1 were thawed,
seeded at passage 2, multiplied and reseeded at passage 3 for the
live/dead assay. Cells were seeded at a density of 10,000 cells/cm?
into 8-well glass chamber slides (Merck, Darmstadt, Germany) and
cultured for 48 h until they reached 70% confluence. After the
incubation period, the cell culture medium was removed, and
experimental medium was added. The cells were cultured
overnight, after which the experimental medium was removed. A
live/dead cell imaging kit (488/570) (Thermo Fisher Scientific,
Waltham, MA, USA) was added to the cells, which were then
incubated for 15 min. The cells were observed under a fluorescence
microscope (Nikon Eclipse 80i, Nikon) equipped with a Nikon
Digital Sight DS-U2 camera. Images were captured in the
NIS-Elements D3.2 Live quality program at 400 x magnification
and qualitatively analyzed. To calculate the viability from live and
dead cell counts, the total count o f live cells and total count o f
dead cells were added to determine the total cell number. Viability
was calculated using the following formula:

V=% of viablecells X ((total count of test sample)/
(total count of control sample))
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2.8 Alizarin Red S staining (osteogenic
readout)

An Alizarin Red S (ARS) staining assay of cDPSCs differentiated
into osteogenic lineages was performed for conditioned media cultures.
Cells frozen at passage 1 were thawed, seeded at passage 2, multiplied
and reseeded at passage 3 for ARS staining. Cells were first differentiated
into osteogenic lineages. For osteogenic differentiation, 15 x 10 cells/
cm’ were seeded into 6-well plates. At 70% confluency, the cell culture
medium was exchanged with experimental medium. After 24 h, the
experimental medium was removed. Osteogenic medium (StemPro
Osteogenesis Differentiation Kit, Gibco, Grand Island, NY, USA) was
added, and the medium was changed every 2-3 days. Osteogenic
differentiation was analyzed after 14 days of cultivation using Alizarin
Red S staining (Sigma Aldrich, Taufkirchen, Germany) according to the
standard procedure. The cells were observed under a fluorescence
microscope at 400 x magnification and qualitatively analyzed. In each
well, 3 images were taken and processed with the Image] program.

2.9 Image analysis

Images for the live/dead and ARS staining assays were analyzed
with the ImageJ program. Images were captured in the NIS-Elements
D3.2 Live quality program. Images were captured at 40 x magnification.
For the live/dead assay, 3 images of live cells and 3 images of dead cells
were randomly selected from each well and quantitatively analyzed by
measuring the areas of green (live) and dead (red) cells in each well and
processed with the Image] program. In the Image] program, images
were converted to binary types and then segmented using the
DynamicThreshold_1d.class plugin (33), which displayed (max +
min)/2 images. The area of particles larger than 100 pm?* was measured
in each field view, and the total area covered by cells was calculated. For
ARS staining, 3 images were randomly selected from each well and
quantitatively analyzed by measuring the area of red particles (mineral
deposits) in each well, after which the samples were processed with the
Image] program. In the Image] program, the images were processed
with background adjustment, separated with Color Deconvolution2
(34), segmented using the DynamicThreshold_ld.class plugin,
displayed as (max + min)/2 images, and the red area was measured.
Particles larger than 10 pm?” were measured in each field view. The total
area of red particles was calculated.

2.10 RNA isolation

RNA was isolated from experimental and control cDPSCs.
Cells were detached from the wells with a cell scraper. The cell
suspension was removed from the wells and centrifuged at 240 x g
for 4 min. The supernatant was discarded, and the pellet was
flash-frozen in liquid nitrogen. The cell pellet was then
homogenized with a homogenizer (IKA T10 basic, Staufen,
Germany) in 350 pL of RLT lysis buffer (Qiagen, Hilden,
Germany). Total RNA extraction was carried out with an RNeasy
Plus Mini Kit (Qiagen) according to the manufacturer’s protocol.
The amount of extracted total RNA was measured using a UV
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) at 260/280 nm.

Frontiers in Veterinary Science

10.3389/fvets.2026.1758525

2.11 Reverse transcription and real-time
gPCR

Two-step reverse transcription quantitative polymerase chain
reaction (RT-qPCR) for experimental cDPSCs at the third dilution
and positive control cDPSCs was performed. First, 2 pg of total
RNA from each sample was reverse transcribed into cDNA using
a High-Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Thermo Fisher Scientific, Waltham, MA, USA) according
to the manufacturer’s protocol. Negative reverse transcription
controls were included in each PCR run. All reactions were
conducted in a total volume of 20 pL. The conditions for reverse
transcription were as suggested in the manufacturer’s protocol:
25 °C for 10 min, 37 °C for 120 min, and 85 °C for 5 min. In the
second step, relative quantification was performed using TagMan
Universal PCR Master Mix with UNG (Thermo Fisher Scientific,
Waltham, MA, USA) and the TagMan gene expression assays
RunX2 and ALPL. TBP was used as a reference gene (Thermo
Fisher). All the qPCR amplifications were conducted in triplicate
in a total volume of 20 pL. cDNA (20 ng) was used as a template.
Amplification was carried out in 96-well plates with a Light Cycler
96 (Roche Life Science) using the following program: 50 °C for
2 min, 95 °C for 10 min, and 40 cycles at 95 °C for 15 s and 60 °C
for 60 s.

2.12 Statistical analysis

Statistical analysis was performed for cells isolated from three
dental pulp tissues and grown on standard polystyrene surfaces
(Table 1). All the statistical analyses were performed with GraphPad
Prism version 9.5.0 for Windows (GraphPad Software, San Diego, CA,
USA, www.graphpad.com, accessed on 15 April 2024).

All the data were log-transformed to normalize the data and
residuals. The normality and lognormality of the residuals were
checked with the Kolmogorov-Smirnov test.

All the data were log-transformed (Y = log(Y)) and normalized to
the control samples to account for differences in the control samples
(formula: value/baseline). For the MTT, live/dead and ARS staining
assays, 2-way ANOVA was performed to analyze the differences
between the experimental cell cultures. For qPCR, conditioned media
cultures from the third dilution (D3) were used. The efficiency-
corrected double delta Ct method was employed to normalize the
gene expression values (35). The expression levels of RUNX2, ALPL
and MMP13 were compared to the expression levels of RUNX2, ALPL
and MMP13 in positive control cDPSCs, and the results were analyzed
by one-way ANOVA.

Statistical significance was defined as p < 0.05.

3 Results

3.1 Isolation and characterization of
cDPSCs

Dental pulp tissue was successfully collected from all three teeth
of the two dogs. Under a light microscope, the cells from passage 3
appeared spindle-shaped with a fibroblast-like morphology (Figure 1).
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3.2 Flow cytometry for surface marker
expression

Flow cytometry was performed at passage 3 with conjugated
primary antibodies against the positive surface markers CD44-APC,
CD90-PE, and CD29-FITC and the negative surface marker CD34-
FITC. The cells were positive for CD44, CD90, and CD29 but negative
for CD34 (Figure 2).

3.3 Multilineage differentiation potential

cDPSCs successfully differentiated into chondrogenic and
osteogenic lineages. Chondrogenesis was indicated by the formation
of chondrogenic nodules, which were stained blue with Alcian blue
(Figure 3A). Mineral deposits in the extracellular matrix stained red
with Alizarin Red S indicate osteogenesis (Figure 3B). The
corresponding negative controls are shown on the right (Figures 3C,D).

FIGURE 1
Morphology of cells grown on a standard plastic surface. cDPSCs
from passage 3 are spindle shaped with a typical fibroblast-like

10.3389/fvets.2026.1758525

3.4 Metabolic activity (MTT)

In suspension culture, the MTT absorbance (a proxy for viable
cell number) was greater with RS + than with MTA at D1 and
greater with CF than with MTA at D1 and D2. CF also yielded
higher values than RS + did at D2 and D3 (Figure 4A). No
significant differences in MTT absorbance were observed among
the groups treated with conditioned media (Figure 4B). In the
MTT with the conditioned media, dilutions 2, 3, and 4 were used;
the first dilution was omitted to avoid introducing possible artifacts
into the analysis because preliminary attempts using this dilution
produced inconsistent absorbance values.

3.5 Viability (live/dead)

In suspension culture, cell viability was greater with CF than with
MTA at dilutions D2-D5 and greater with CF than with RS + at D2;
RS + also exceeded MTA at D4 and D5 (Figure 5A). In the conditioned
media, no statistically significant differences in viability were observed
among the groups (Figure 5B).

3.6 Osteogenic outcome (Alizarin Red S)

In the ARS, dilutions 2, 3, and 4 of conditioned media were used;
the first dilution was omitted to avoid introducing possible artifacts
into the analysis because preliminary attempts using this dilution
produced uneven well-to-well staining. There was a difference in ARS
staining at D3, where the ARS staining of cDPSCs was greater in cells
conditioned with MTA than in cells conditioned with CF (Figure 6).
Representative images of ARS staining and the corresponding images
processed with Image]J are shown in Figure 7.

3.7 Gene expression analysis (RT-qPCR)

(quadrant Q3). Unlabeled cells (red) are appended to quadrant Q3.

Expression of cDPSC surface markers. Blue cells are labeled with antibodies. Red cells are unlabeled cells. On the left dot plot are cells stained with the
positive cell surface markers CD44-APC and CD90-PE (quadrant Q2). Unlabeled cells (red) are appended to quadrant Q3. On the right dot plot are
cells positive for the cell surface marker CD44-APC (quadrant Q1) and CD29-FITC (quadrant Q4) and negative for the cell surface marker CD34-FITC

morphology. As there was a significant difference in ARS staining on D3,
gene expression was evaluated at this dilution. The expression of
DPSC-APPERDED I OPSC-4FPENDED
%
u
o
- a+’ . '
152 1 II""'II L H""ll i |l||l"]s 1
APC-A
FIGURE 2

Frontiers in Veterinary Science

06

frontiersin.org


https://doi.org/10.3389/fvets.2026.1758525
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Marx et al.

10.3389/fvets.2026.1758525

FIGURE 3

Chondrogenic (A; Alcian blue) and osteogenic (B; Alizarin Red S) differentiation of cDPSCs with corresponding negative controls (C,D).
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FIGURE 4

MTT assays in experimental media. In suspension culture (A), log transformation of the data revealed that higher plotted values corresponded to lower
absorbance (lower mitochondrial activity). In suspension culture, the MTT absorbance was greater with RS + than with MTA at D1 and greater with CF
than with MTA at D1 and D2. CF also yielded higher values than RS + did at D2 and D3 (* p < 01, *** p < 0.001). In the conditioned media (B), no
significant differences in MTT absorbance were observed among the groups.
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RUNX2 was lower in cells conditioned with MTA than in cells
conditioned with RS + (* p < 0.1) and lower than that in positive
control cells (** p < 0.01; Figure 8A). ALPL expression was lower
in cells conditioned with MTA than in cells conditioned with
RS + (** p < 0.01) and CF (* p < 0.1; Figure 8B). No differences in
the expression of MMP13 were observed between the groups
(Figure 8C).
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4 Discussion

Stem cell-based regenerative therapies are being increasingly
extended to dentistry and oral tissue regeneration. Dental pulp stem
cells (DPSCs) are central to dentin—pulp repair and regeneration, and
their beneficial effect has already been reported in a vital pulpectomy
setting in dogs (36). In addition, DPSCs provide a relevant in vitro
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FIGURE 5

RELATIVE VIABILITY

Viability in suspension culture across dilutions. In suspension media culture (A), cell viability was greater with CF than with MTA at dilutions D2-D5 and
greater with CF than with RS + at D2; RS + also exceeded MTA at D4 and D5. Exact significance levels are indicated on the plot (* p < 0.05; ** p < 0.01).
In conditioned media culture (B), no statistically significant differences in viability were observed among the groups.
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FIGURE 6

Relative mineralized areas after osteogenic induction of cDPSCs
preexposed to conditioned media (D2-D4). Indicates p < 0.01 at D3
(MTA vs. CF).

model for evaluating biomaterial interactions and their suitability for
combined cell-material applications (29, 37).

To better understand how clinically established or emerging
materials influence pulp-resident stem cells, we investigated the in
vitro effects of three different materials on canine DPSCs (cDPSCs).
The ¢cDPSCs isolated in our study exhibited a typical mesenchymal
phenotype (CD44"/CD90/CD29*/CD34") and multilineage potential,
which is consistent with previous reports on cDPSCs (31, 32). We then
compared the effects of ProRoot® MTA (the clinical reference material
in veterinary endodontics (38)), RS + ™ and CellFoam™ on the
metabolic activity and cell viability of cDPSCs, as well as on their
potential to undergo osteogenic and odontogenic differentiation. Two
exposure paradigms were used to bracket the clinically relevant range
of early material-tissue interactions. First, we modeled the initial,
acute particle-associated cytotoxicity that may have occurred
immediately after placement, simulating direct contact between
freshly mixed material and adjacent pulp cells. Second, we assessed
physiologically relevant, diffusion-controlled exposure using
conditioned media (eluates), which better reflects the environment in
which cells are present within tissue or when materials are combined
with stem cell-laden scaffolds for regenerative applications. Assessing
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acute cytotoxicity is important because early interfacial chemistry
(particularly Ca®* and OH™ release and the resulting increase in pH)
can strongly influence early cell survival, proliferation, and the onset
of repair/regeneration. Materials that are excessively cytotoxic during
this window could jeopardize pulp vitality or delay healing even if
their long-term behavior is favorable once set (39). Although calcium-
silicate cements such as MTA and RS + are typically applied freshly
mixed with an appropriate diluent, such as deionized water or saline
solution, and their interaction with pulp tissue begins immediately
upon placement, unreacted particles with an ongoing topological
transformation due to dissolution/recrystallization and subsequent
ion release can transiently shift the microenvironment (40). Therefore,
this study’s two-condition design aligns with prior in vitro work on
bioceramic, hydraulic calcium-silicate cements, which often appear
more cytotoxic when freshly mixed but become highly biocompatible
after setting or when tested as eluates (41-43). Related animal and
clinical studies similarly report that any transient irritation
immediately after placement subsides as the material hydrates, with
ultimate support for pulp healing, dentin bridge formation, and tissue
integration (44-46).

We used an MTT assay to measure cellular metabolic activity as
an indicator of the cytotoxicity of the biomaterials. In conditioned
medium culture, compared with the cells grown in MTA medium,
the cells grown in RS + and CF media showed higher mitochondrial
activity in the early stages, particularly at D1, suggesting higher
initial metabolic activity. The higher metabolic activity of cells
grown in the CF medium than in the RS + medium at D2 and D3
further indicates that metabolic activity is more prolonged when the
cells are cultured with CE This pattern aligns with the early alkalinity
and ion release of hydraulic calcium-silicate cements, which can
transiently depress metabolism at higher effective concentrations
(41-43). Under conditioned exposure, intermaterial differences
diminished or disappeared, indicating that dilution, buffering, and
partial setting modulate chemistry to levels compatible with those
of pulp cells (44-46). From a clinical perspective, these dynamics are
expected. In vivo, dentin and tissue fluids buffer the strong alkalinity
of freshly mixed cement while the material hydrates and sets.
Dentin’s hydroxyapatite (phosphate- and carbonate-substituted)
mineral phases and organic matrix adsorb ions and favor
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Representative images of ARS staining (upper row) and the corresponding images processed with Imaged (lower row).
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Gene expression in cDPSCs after conditioned media exposure followed by osteogenic induction. The expression of RUNX2 (A) was lower in cells
conditioned with MTA than in cells conditioned with RS + (* p < 01) and lower than that in positive control cells (** p < 0.01). ALPL expression (B) was
lower in cells conditioned with MTA than in cells conditioned with RS + (** p < 001) and CF (* p < 0.1). No differences in the expression of MMP13

(C) were observed between the groups.

calcium-phosphate precipitation, lowering effective hydroxyl and
calcium ion activity at the interface (47-49). Tubular diffusion and
pulpal fluid flow disperse ions further, and progressive hydration
reduces reactivity over time (50-52). These mechanisms explain why
freshly mixed MTA may appear to be cytotoxic in vitro but is well
tolerated clinically.

The results of the live/dead assay were similar to those of the MTT
analysis. Under acute suspension exposure, compared with MTA
(dilutions D2-D5) and RS + (D2), CF consistently increased cell
viability, whereas compared with MTA, RS + promoted greater cell
viability at dilutions D4-D5. These findings confirm the low acute
cytotoxicity of CF and its favorable interaction with cDPSCs. The
reduced viability observed with suspended MTA likely reflects its
transiently high alkalinity and rapid Ca(OH), release, which can
exceed physiological tolerance and compromise cell membrane
integrity during early exposure (39, 52). In contrast, under conditioned
medium exposure, the differences in viability among the materials
were no longer significant, indicating that dilution and buffering
during conditioning effectively mitigated the initial cytotoxic effects.

Frontiers in Veterinary Science

Taken together, the results of the MTT and live/dead assays
support the concept that set or preconditioned calcium-silicate
materials become highly biocompatible once the early reactive phase
subsides, which is consistent with clinical observations of pulp healing
following transient initial irritation (45, 46). Compared with MTA and
RS + cells, cells cultured in CF maintained higher metabolic activity
and viability in suspension cultures across multiple dilutions. These
results indicate that CF has lower cytotoxicity and could therefore
function as an immediate delivery vehicle for cDPSCs at the time of
pulp capping or regenerative endodontic therapy. Specifically, in
veterinary regenerative endodontics, 3D scaffolds (e.g., silk fibroin)
are being increasingly explored as adjuncts that host cells, enable
nutrient diffusion, and stabilize the microenvironment, whereas
hydraulic cements provide the seal (53-55). In practice, such
combinations may enhance tissue healing and bridge formation. The
feasibility of stem cell-mediated pulp regeneration using cell-seeded
scaffolds has been demonstrated in several in vivo studies in animal
models. In a canine model, Bio-Oss scaffolds loaded with autologous
DPSC:s successfully supported the regeneration of periodontal and

frontiersin.org


https://doi.org/10.3389/fvets.2026.1758525
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org

Marx et al.

pulp-like tissues within experimental defects (56). Similarly, (76)
reported that the delivery of DPSCs within scaffolds and their
implantation into the root canals of dogs promoted the regeneration
of vascularized pulp-like tissue. The formation of a dentin-pulp
complex was also observed when collagen scaffolds were implanted
with DPSCs, whereas cell-free scaffolds failed to induce such
regeneration (57). Other cell-material combinations have also been
explored in regenerative endodontics with promising results. The
results of our study suggest that CF could also be a suitable carrier for
cDPSC-based regenerative endodontic strategies.

Furthermore, we assessed the effect of clinically relevant
conditioned medium exposure on cDPSC differentiation potential. To
assess the mineralization ability of the cells, we differentiated cells
from conditioned media culture into osteogenic lineages, as osteogenic
and odontogenic lineages share overlapping molecular pathways (58,
59). Here, Alizarin Red S (ARS)-positive staining was used as a marker
of early mineralizing (odontoblast-like) activity (60). All three tested
materials in this study supported ARS-positive mineral deposition
following osteogenic induction, with a difference observed only in
dilution D3, where MTA exceeded CE. These findings agree with
previous reports showing that when tested as extracts or after partial
setting, MTA and similar materials yield comparable alkaline
phosphatase activity and mineralization and tend to converge in
performance once they are set or sufficiently diluted (61-66). ARS
staining, together with increased expression levels of RUNX2, ALPL,
and MMP13, supports a shift toward an odontoblast-like, mineralizing
phenotype (67). Gene expression analysis was conducted only at D3
to examine how genes were regulated under the same conditions in
which a difference in ARS staining was observed. By focusing on the
dilution that resulted in a detectable change in mineralization, we
aimed to determine whether transcriptional responses aligned with
mineralization outcomes. Therefore, the gene expression findings refer
specifically to this dilution. In contrast to the results of ARS staining,
where CF performed comparably to calcium-silicate materials, we
observed differences in the expression levels of genes in ¢cDPSCs
cultured in MTA-, RS + -, and CF-conditioned media following
osteogenic differentiation. We tested three genes—RUNX2 (key
regulator of osteogenic differentiation and early tooth development
(68)), ALPL (commitment/mineralization), and MMP13 (a collagen-
remodeling enzyme implicated in dentin matrix organization).
RUNX2 is endogenously expressed in preodontoblasts, where it
promotes lineage commitment; however, its expression must be
downregulated for cells to progress toward terminal differentiation.
This downregulation is essential for both the maturation of osteoblasts
and the terminal differentiation of odontoblasts (69). Interestingly, in
our study, the expression of RUNX2 was lower in cells conditioned
with MTA than in cells conditioned with RS + and lower than that in
positive control cells. The observed lower expression of RUNX2 in
cells conditioned with MTA than in those conditioned with RS + and

TABLE 3 QPCR assays and justification for gene selection in odontogenesis.

10.3389/fvets.2026.1758525

the positive control suggests that cells exposed to MTA-conditioned
media may have already progressed beyond the preosteogenic/
odontoblastic stage toward terminal differentiation and thus may
reflect a more advanced stage of osteogenic/odontogenic
differentiation of MTA-cultured cells rather than impaired lineage
commitment. In contrast, the relatively high RUNX2 expression levels
in the RS +and CF groups could indicate that these conditions
maintained the cells in an earlier differentiated state. Like that of
RUNX2, the expression of ALPL was lower in cells conditioned with
MTA than in cells conditioned with RS+and CE ALPL is a
mineralization-associated marker gene (70, 71) and regulates the
odontoblastic differentiation of DPSCs (37). Moreover, it is an early
marker of osteogenesis, and its activity decreases as mineralization
occurs (72). The observed higher expression levels of ALPL in the RS*
and CF groups therefore might reflect differences in temporal
progression, with cells in the MTA group already entering an active
mineralization phase, whereas those in the RS* and CF groups
remained in earlier or transitional stages of differentiation. This
interpretation also aligns with the RUNX2 expression pattern. No
differences in MMP13 expression were observed between the groups.
MMP13 plays important roles in tooth development, odontogenic
differentiation, and dentin-pulp reparative mechanisms (73). MMP13
is involved in tertiary reactionary dentin formation after tooth injury
in vivo, potentially acting as a key molecule in the dental pulp during
dentin-pulp repair processes and organizing and regulating dentin-
pulp reparative processes (74). In our study, we detected no differences
in MMP13 expression between the groups, suggesting that all three
tested materials supported comparable levels of matrix remodeling
activity or that MMP13 regulation was not strongly influenced by the
moderate chemical differences among the conditioned media.

Taken together, the differentiation potential results indicate that all
three tested materials—MTA, RS + and CF—support the osteogenic/
odontogenic differentiation of cDPSCs under clinically relevant,
conditioned conditions. ARS staining confirmed comparable mineral
deposition across materials, and gene expression analysis of RUNX2 and
ALPL suggested that cells cultured in MTA-conditioned medium may
have progressed to a more advanced stage of differentiation than those
exposed to RS + or CE These results are in line with those of veterinary
studies reporting high vital pulp therapy success, with consistent hard-
tissue bridge formation and maintained pulp vitality in dogs (44-46),
supporting the translational relevance of our in vitro results.

A limitation of this study is the small donor sample size, which
may have contributed to biological variability and could limit the
generalizability of the results. Additionally, age and tooth
developmental stage can affect dental pulp regeneration (75).
Therefore, larger, age-balanced donor cohorts will help refine effect
sizes and reduce variability in future studies. Most importantly, future
in vivo studies in clinically relevant models are crucial to translate the
in vitro findings into clinically applicable outcomes (Table 3).

Gene symbol Gene name Assay ID (Canis familiaris)
RUNX2 Runt-related transcription factor 2 Cf02694692_m1
ALPL Alkaline phosphatase Cf02732788_uH
MMP13 Matrix metalloproteinase-13 Cf02741638_m1
TBP TATA-box binding protein Cf02637231_m1
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5 Conclusion

In summary, this study demonstrated that MTA, RS + and CF are
biocompatible with cDPSCs and support their metabolic activity,
viability and differentiation under clinically relevant exposure
conditions. All three materials supported comparable mineralization
with gene expression patterns, suggesting a more advanced
differentiation stage in MTA-conditioned cells, which is consistent
with the findings of current veterinary studies reporting high success
rates of vital pulp therapy with MTA. In contrast, in acute exposure
culture media, compared with calcium-silicate materials, CF
maintained higher cell viability and metabolic activity, indicating its
potential as a carrier for DPSC delivery in stem cell-based regenerative
endodontic strategies.
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