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Objective: Regenerative endodontic treatments are being developed in 
veterinary dentistry. The aim of this study was to evaluate the biocompatibility 
and odontogenic potential of three biomaterials, ProRoot® MTA (MTA), RS + ™ 
(RS+), and CellFoam™ (CF), on canine dental pulp stem cells (cDPSCs) under 
conditions simulating early and clinically relevant exposures.
Methods: cDPSCs were isolated from three healthy dog teeth extracted for 
clinical reasons and characterized by flow cytometry (CD44+/CD90+/CD29+/
CD34−) and multilineage differentiation. Cells were cultured with material 
suspensions (acute cytotoxic effect) or conditioned medium (physiologically 
relevant effect). Metabolic activity and cell viability were assessed by MTT and 
live/dead assays. Osteogenic/odontogenic differentiation was evaluated by 
Alizarin Red S staining and RT–qPCR for RUNX2, ALPL, and MMP13 expression.
Results: In suspension cultures, compared with MTA and RS+, CF maintained 
significantly higher metabolic activity and cell viability across several dilutions, 
indicating lower acute cytotoxicity. Under conditioned exposure, no significant 
differences among materials were observed, reflecting the dilution and buffering 
effects that mitigate early reactivity. All the materials supported Alizarin Red 
S-positive mineral deposition, with a significant difference at D3, when ARS 
staining of cDPSCs was greater in cells conditioned with MTA than in those 
conditioned with CF. Gene expression analysis revealed lower RUNX2 and ALPL 
expression in MTA-conditioned cells, suggesting, together with ARS staining, 
progression toward a more advanced osteogenic or odontogenic differentiation 
stage. MMP13 expression remained comparable across materials.
Conclusion: MTA, RS+, and CF demonstrated overall biocompatibility with 
cDPSCs and supported odontogenic differentiation under clinically relevant 
conditions. CF exhibited the lowest acute cytotoxicity, indicating its potential as 
a carrier for DPSC-based regenerative endodontic applications. These findings 
support the translational importance of in vitro cDPSC models for evaluating 
biomaterial performance in veterinary regenerative endodontics.
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1 Introduction

Traumatic dentoalveolar injuries (TDIs) are common in veterinary 
dental practice, affecting an estimated 26.2% of patients (92.7% in 
dogs and 7.3% in cats), with complicated crown fractures (CCFs) 
representing the most frequent entity (1). Following pulp exposure, 
superficial inflammation is evident histologically within 48 h; 
infection typically spreads throughout the pulp, leading to necrosis by 
approximately 65 days, and apical periodontitis can be observed in 
dogs within 20 days of exposure (2, 3).

Endodontically compromised teeth require intervention to 
eradicate infection and alleviate pain. Management options include 
extraction or endodontic therapy aimed at eliminating the 
intraradicular microbial ecosystem (4–8). When endodontic 
treatment is selected for a vital tooth, amputation of approximately 
5 mm of the coronal-most dental pulp within (ideally) the first 48 h in 
mature permanent teeth suffices to remove infected and inflamed 
pulp, followed by appropriate medication placement and restoration 
(i.e., vital pulpectomy, VP). Vital pulpectomy is recommended 
whenever feasible for immature permanent teeth with open apices 
(8–12). When the tooth becomes irreversibly inflamed or nonvital, 
root canal treatment (RCT) remains an endodontic treatment option 
for mature teeth. Endodontic treatment of nonvital immature 
permanent teeth remains challenging, but regenerative endodontic 
treatments are also being developed in veterinary dentistry (13, 14).

The success of such treatments depends on materials that are not 
only bioactive and capable of forming a mineralized barrier but also 
biocompatible with dental pulp stem cells (DPSCs) and supportive of 
their differentiation potential (15, 16). Historically, calcium hydroxide 
was used as a pulp dressing for VP; however, mineral trioxide 
aggregate (MTA) has demonstrated superior outcomes in dogs and is 
now widely considered the standard material in this context (12, 17, 
18). Nevertheless, classic MTA is a Portland cement-based endodontic 
material containing several oxides and radiopaque, brownish-colored 
bismuth oxide (Bi2O3), associated with a relatively long setting time 
(3–4 h), higher cost, and handling challenges; newer, bioceramic 
MTA-like hydraulic calcium trisilicate cements have been developed 
via purer, synthetic routes to mitigate these drawbacks, where Bi2O3 is 
usually replaced with biocompatible zirconia (19–22). Across these 
modalities, the ability of materials to promote a durable protective 
barrier while preserving vital pulp or enabling pulp regeneration is 
central to clinical success (17, 23), underscoring the need to evaluate 
the biocompatibility and bioactivity toward the cellular components 
of dental pulp (17, 24, 25).

Recent advances in regenerative dental medicine have introduced 
the concept of combining bioactive materials with stem cell-based 
approaches to achieve true pulp regeneration rather than mere repair 
(26–28). DPSCs represent a promising cell source and are particularly 
relevant for modeling vital pulp therapy and regenerative endodontic 
procedures in veterinary patients, as they are resident within dental 
soft tissues and contribute to dentin–pulp complex repair and 
regeneration (29). Using DPSCs, we can evaluate how biomaterials 
interact with resident DPSCs under clinically relevant in vitro 
conditions while also assessing how different materials influence stem 
cell behavior for potential combined cell–material applications. 
Emerging therapies that combine the reparative potential of DPSCs 
with biocompatible scaffolds or cements offer promise for treating 
pulp injuries (15).

The aim of our study was to investigate the in vitro effects of three 
biomaterials—ProRoot® MTA (MTA), RS + ™ (RS+) and CellFoam™ 
(CF)—on cDPSCs to clarify the influence of these materials on 
cDPSCs from two different but complementary aspects:

	(1)	 Acute cytotoxic effect—the initial acute effect of particle-
associated cytotoxicity that may occur immediately after 
material placement, simulating the initial contact between 
freshly mixed material and the surrounding pulp cells.

	(2)	 Physiologically relevant effect—a longer-term effect of soluble 
leachates, simulating more physiological, diffusion-controlled 
conditions, representing the environment that cells experience 
within the tissue or when the material is combined with stem 
cell-laden scaffolds in regenerative applications.

In this study, we investigated how selected biomaterials (with 
MTA as the clinical benchmark reference material in veterinary 
endodontics) affect cDPSCs with respect to viability, metabolic 
activity, and odontogenic/osteogenic differentiation potential in vitro 
to inform their prospective therapeutic use in veterinary endodontics.

We hypothesized that the biomaterials RS + ™ and CellFoam™ 
exhibit in vitro biocompatibility comparable to that of ProRoot® MTA 
when applied to canine dental pulp stem cells with respect to cell 
viability, metabolic activity, and odontogenic/osteogenic 
differentiation potential.

2 Materials and methods

2.1 Dental pulp tissue collection

Dental pulp tissue was collected at the Small Animal Clinic, 
Veterinary Faculty, University of Ljubljana, from the teeth of two 
client-owned dogs undergoing clinically indicated mandibular canine 
tooth extraction of endodontally and periodontally healthy teeth (to 
treat traumatic malocclusion from linguoversion) under general 
anesthesia. Dogs (a 4-year-old male Poodle and a 7-month-old male 
Labrador Retriever) were treated by a board-certified veterinary 
dentist in accordance with the current state-of-the-art guidelines; no 
changes to the treatment protocols were made for the purpose of the 
study. Owners provided written informed consent for the procedures. 
Immediately after surgical extraction (30), all three teeth were 
disinfected externally (i.e., briefly rinsed in 2% chlorhexidine), the 
crowns were sectioned under aseptic conditions to expose the pulp 
chamber, and pulp tissue was retrieved with a sterile barbed broach 
and transferred into cold Dulbecco’s phosphate-buffered saline (DPBS; 
Gibco, Grand Island, NY, USA).

2.2 Isolation and expansion of canine 
dental pulp stem cells (cDPSCs)

The three isolated dental pulp tissue samples were subsequently 
washed with DPBS (Gibco, Grand Island, NY, USA), cut into small pieces 
with a scalpel and incubated overnight at 37 °C in Dulbecco’s modified 
Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) supplemented 
with 0.1% collagenase type II (Sigma–Aldrich, Taufkirchen, Germany). 
The digested tissue was centrifuged at 240 × g for 4 min, after which the 
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supernatant was discarded. The cell pellet was resuspended in cell culture 
medium supplemented with DMEM, 10% fetal bovine serum (FBS; 
Gibco, Grand Island, NY, USA) and 1% antibiotic (Penicillin: 
Streptomycin solution 100X, VWR International, Vienna, Austria). The 
cell suspension was plated into 6-well plates (TPP, Trasadingen, 
Switzerland) at passage 0 and cultured at 37 °C in a 5% CO2 incubator. 
The cell culture medium was changed every 2–3 days. After reaching 
70–90% confluence, the cells were trypsinized and multiplied by seeding 
into a larger (T75) cell culture flask at passage 1. After a sufficient number 
of cells were obtained, the cells from passage 1 were frozen at −80 °C in 
cell freezing medium containing 10% dimethylsulfoxide (Sigma–Aldrich, 
Taufkirchen, Germany). Thawed cells were seeded at passage 2, multiplied 
and further processed for the expression of surface markers, differentiation 
potential, and experimental cell cultures (Table 1). Suspension media 
cultures were used for MTT and live/dead assays, and conditioned media 
cultures were used for MTT and live/dead assays, Alizarin Red S staining 
and gene expression analysis.

2.3 Flow cytometry for cell-surface 
markers

Flow cytometry was performed on the untreated cells to evaluate 
the expression of cell surface markers. Antibodies against the MSC 
markers CD44, CD90, CD29, and CD34 were applied as previously 
reported for cDPSCs (CD44+/CD90+/CD29+/CD34−) (31, 32). A total 
of 1 × 106 cells were used. Cells frozen at passage 1 were thawed, 
seeded at passage 2, multiplied, reseeded and analyzed at passage 3. 
Following trypsinization, the cells were counted, centrifuged (240 × g 
for 4 min), and washed twice with DPBS. Cells were stained with the 
following antibodies for canine adipose-derived mesenchymal stem 

cells (ADMSCs): allophycocyanin (APC) conjugated against CD44 
(antibody clone IM7, 103,012, BioLegend, San Diego, CA, USA), 
phycoerythrin (PE) conjugated against CD90 (antibody clone 
YKIX337.217, 12–5,900-42, eBioscience, San Diego, CA, USA), 
fluorescein isothiocyanate (FITC) conjugated against CD29 (antibody 
clone MEM-101A, MA1-19566, Thermo Fisher Scientific, Waltham, 
MA, USA), and CD34 (antibody clone 581, 60013FI, Stemcell 
Technologies, Cambridge, MA, USA). For antibody titration, 1, 2, 3, 
4, 5, and 10 μL of each antiserum per 100 μL of 1 × 106 cells was used. 
Appropriate dilutions of the antibodies used for staining are shown in 
Table 2. The cells were then vortexed, incubated at room temperature 
in the dark for 10 min, washed twice with DPBS, vortexed, and 
centrifuged again (240 × g for 5 min). The supernatant was 
subsequently decanted. Finally, the cells were resuspended in 100 μL 
of DPBS for FACS analysis. The exclusion of nonviable cells was 
performed by staining cells with propidium iodide solution (Molecular 
Probes, Eugene, OR, USA). Experimental settings were set up using 
unstained cells and single-color staining. A minimum of 20,000 events 
was recorded. The cells were analyzed with a BD FACSAria III flow 
cytometer (BD Bioscience, Franklin Lakes, NJ, USA). FACSDiva 9.4 
software (BD Bioscience) was used for FACS data analysis.

2.4 Differentiation potential

For the determination of differentiation potential, untreated cells 
were used. Differentiation potential was assessed by inducing cell 
differentiation into osteocytes and chondrocytes. Cells frozen at passage 
1 were thawed, seeded at passage 2, multiplied and reseeded at passage 
3 for the differentiation assay. For osteogenic differentiation, 4 × 104 cells 
were seeded in 12-well plates. After 90–100% confluence was reached, 

TABLE 1  Experimental groups, media, and culture conditions used in the study (applies to MTA, RS+, and CF media conditions).

Experimental medium 
(24 h-cell pretreatment)

Control of the culture Dilutions (D) of 
experimental medium

Analysis (Method)

Suspension MTA/RS+/CF medium Negative control (nontreated cells) D1–D8 	-	 Viability (live/dead assay)

	-	 Metabolic activity (MTT)

Conditioned MTA/RS+/CF medium Negative control (non-treated cells) for 

non-differentiated cells and Positive 

control (non-treated differentiated cells) 

for differentiated cells

D1–D4 	-	 Viability (live/dead assay)

	-	 Metabolic activity (MTT)

	-	 Mineralization (Alizarin Red S)

	-	 Gene expression analysis (qPCR)

D1 = 5%, followed by twofold serial dilutions.

TABLE 2  Antibodies and dilutions used for flow cytometry.

Surface 
marker

Conjugation Antibody 
clone

Isotype Target 
species

Catalog no. Source Antibody 
dilution per 
1 × 106 cells

CD44 APC IM7 Rat IgG2b Mouse, Human 103,012 BioLegend (USA) 1:67

CD90 PE YKIX337.217 Mouse IgG1 Dog 12–5,900-42 eBioscience (USA) 1:20

CD29 FITC MEM-101A Mouse IgG1 Dog/Human/

Pig

MA1-19566 ThermoFisher 

Scientific (USA)

1:5

CD34 FITC 581 Mouse IgG1 Human 60013FI STEMCELL 

Technologies 

(Canada)

1:20

CD, cluster of differentiation; FITC, fluorescein isothiocyanate; APC, allophycocyanin; PE, phycoerythrin.
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the cell culture medium was removed. Osteogenic medium (StemPro 
Osteogenesis Differentiation Kit, Gibco, Grand Island, NY, USA) was 
added, and the medium was changed every 2–3 days. The cell culture 
medium was added to the wells, which served as a negative control. 
Osteogenic differentiation was analyzed after 14 days of cultivation 
using Alizarin Red S staining (Sigma Aldrich, Taufkirchen, Germany) 
according to the standard procedure. For chondrogenic differentiation, 
micromass cultures were generated by seeding 5 μL droplets containing 
4 × 104 cells into the middle wells of a 12-well plate. After the micromass 
cultures were cultured for 6 h under high humidity, chondrogenic 
medium (StemPro Chondrogenesis Differentiation Kit, Gibco, Grand 
Island, NY, USA) was added to the culture vessels. The cell culture 
medium was added to the wells, which served as a negative control. The 
micromass cultures were incubated at 37 °C in an incubator with 5% 
CO2 and a humid atmosphere. The medium was changed every 
2–3 days. Chondrogenic differentiation was analyzed after 14 days of 
cultivation using Alcian blue staining (Sigma Aldrich, Taufkirchen, 
Germany) according to a standard procedure. The differentiated cells 
were visualized under a light microscope.

2.5 Biomaterials and media preparation

Three materials were tested on polystyrene-grown cDPSCs: (1) 
ProRoot® MTA (Dentsply Sirona, Johnson City, TN, USA) (MTA), a 
calcium-silicate endodontic cement commonly used for pulp capping 
and root-end filling; (2) RS + ™ (GenTech – Genuine Technologies 
d.o.o., a spin-out of Jožef Stefan Institute, Ljubljana, Slovenia) (RS+), a 
synthetic bioceramic, calcium trisilicate-based powder with small 
additions of biocompatible phyllosilicate clay (bentonite) and bioactive 
amorphous calcium silicate for an enhanced handling, setting, and 
remineralization response, indicated for root canal repair and sealing; 
and (3) CellFoam™ (BioChange Ltd., Yokneam, Israel) (CF), a 
commercially available porous, cell-culture-grade biodegradable 
scaffold.

We prepared two different media, containing experimental 
materials, as exposure models:

	(i)	 Suspension medium (to simulate acute cytotoxic conditions)

Each biomaterial was suspended in cell culture medium at an 
initial concentration of 50 mg/mL (defined as the first dilution, D1). 
Seven additional twofold serial dilutions were prepared (D1–D8). This 
powder-in-medium setup simulated the immediate, high-exposure 
environment that may occur after material placement, which is 
particularly relevant for calcium silicate-based cements (MTA and 
RS+), which can transiently release Ca(OH)₂, increase the pH, and 
directly contact surrounding cells with particulate matter.

	(ii)	 Conditioned medium (to simulate physiologically relevant 
conditions)

Each biomaterial was first suspended in culture medium at 50 mg/
mL, shaken overnight at room temperature, and centrifuged the 
following day at 500 × g for 10 min. After the supernatant was 
collected, we adjusted its pH to 7.5 to isolate material-specific effects 
from pH-mediated cytotoxicity. To adjust the pH, we used 1 N HCl, 
as the buffering components of the culture medium were insufficient 

to counteract the high alkalinity resulting from Ca(OH)₂ release. The 
supernatant was then filtered through 0.22 μm syringe filters. The 
resulting conditioned medium was used for experimental cell culture 
at four twofold serial dilutions (D1–D4).

2.6 MTT assay (metabolic activity)

An MTT assay was employed for the suspension and conditioned 
media cultures. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide was used to measure cellular metabolic activity as an indicator 
of the cytotoxicity of the biomaterials. It is based on the reduction of a 
yellow tetrazolium salt (MTT) to purple formazan crystals by 
metabolically active cells. Cells frozen at passage 1 were thawed, seeded 
at passage 2, multiplied and reseeded at passage 3 for the MTT assay. 
Cells were seeded in quadruplicate into clear 96-well microtiter plates 
at a cell density of 104 cells/cm2 in a final volume of 100 μL of culture 
medium. Cells were cultured at 37 °C in a 5% CO2 incubator for 48 h 
until they reached 70% confluency. After the incubation period, the cell 
culture medium was removed, and experimental medium was added. 
The cells were cultured overnight. The experimental medium was 
removed, and 10 μL of MTT labeling reagent (at a final concentration 
of 0.5 mg/mL) was added to 100 μL of DMEM without phenol red 
(Gibco, Grand Island, NY, USA) in each well. Following 4 h of 
incubation at 37 °C, in a 5% CO2 incubator, 100 μL of solubilization 
buffer was added to each well and incubated overnight at 37 °C in a 5% 
CO2 incubator. The next day, the total solubilization of the purple 
formazan crystals was measured with a Byonoy absorbance reader 
(Byonoy, Hamburg, Germany). The sample wavelength was set at 
562 nm, and the reference wavelength was 650 nm.

2.7 Live/dead assay (viability)

A live/dead assay was employed for suspension and 
conditioned media cultures. Cells frozen at passage 1 were thawed, 
seeded at passage 2, multiplied and reseeded at passage 3 for the 
live/dead assay. Cells were seeded at a density of 10,000 cells/cm2 
into 8-well glass chamber slides (Merck, Darmstadt, Germany) and 
cultured for 48 h until they reached 70% confluence. After the 
incubation period, the cell culture medium was removed, and 
experimental medium was added. The cells were cultured 
overnight, after which the experimental medium was removed. A 
live/dead cell imaging kit (488/570) (Thermo Fisher Scientific, 
Waltham, MA, USA) was added to the cells, which were then 
incubated for 15 min. The cells were observed under a fluorescence 
microscope (Nikon Eclipse 80i, Nikon) equipped with a Nikon 
Digital Sight DS-U2 camera. Images were captured in the 
NIS-Elements D3.2 Live quality program at 400 × magnification 
and qualitatively analyzed. To calculate the viability from live and 
dead cell counts, the 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑙𝑖𝑣𝑒 𝑐𝑒𝑙𝑙𝑠 and 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 
𝑑𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠 were added to determine the total cell number. Viability 
was calculated using the following formula:

	

V of viablecells X total count of test sample
total count of control sample
=%  (( )/

( ))
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2.8 Alizarin Red S staining (osteogenic 
readout)

An Alizarin Red S (ARS) staining assay of cDPSCs differentiated 
into osteogenic lineages was performed for conditioned media cultures. 
Cells frozen at passage 1 were thawed, seeded at passage 2, multiplied 
and reseeded at passage 3 for ARS staining. Cells were first differentiated 
into osteogenic lineages. For osteogenic differentiation, 15 × 104 cells/
cm2 were seeded into 6-well plates. At 70% confluency, the cell culture 
medium was exchanged with experimental medium. After 24 h, the 
experimental medium was removed. Osteogenic medium (StemPro 
Osteogenesis Differentiation Kit, Gibco, Grand Island, NY, USA) was 
added, and the medium was changed every 2–3 days. Osteogenic 
differentiation was analyzed after 14 days of cultivation using Alizarin 
Red S staining (Sigma Aldrich, Taufkirchen, Germany) according to the 
standard procedure. The cells were observed under a fluorescence 
microscope at 400 × magnification and qualitatively analyzed. In each 
well, 3 images were taken and processed with the ImageJ program.

2.9 Image analysis

Images for the live/dead and ARS staining assays were analyzed 
with the ImageJ program. Images were captured in the NIS-Elements 
D3.2 Live quality program. Images were captured at 40 × magnification. 
For the live/dead assay, 3 images of live cells and 3 images of dead cells 
were randomly selected from each well and quantitatively analyzed by 
measuring the areas of green (live) and dead (red) cells in each well and 
processed with the ImageJ program. In the ImageJ program, images 
were converted to binary types and then segmented using the 
DynamicThreshold_1d.class plugin (33), which displayed (max + 
min)/2 images. The area of particles larger than 100 μm2 was measured 
in each field view, and the total area covered by cells was calculated. For 
ARS staining, 3 images were randomly selected from each well and 
quantitatively analyzed by measuring the area of red particles (mineral 
deposits) in each well, after which the samples were processed with the 
ImageJ program. In the ImageJ program, the images were processed 
with background adjustment, separated with Color Deconvolution2 
(34), segmented using the DynamicThreshold_1d.class plugin, 
displayed as (max + min)/2 images, and the red area was measured. 
Particles larger than 10 μm2 were measured in each field view. The total 
area of red particles was calculated.

2.10 RNA isolation

RNA was isolated from experimental and control cDPSCs. 
Cells were detached from the wells with a cell scraper. The cell 
suspension was removed from the wells and centrifuged at 240 × g 
for 4 min. The supernatant was discarded, and the pellet was 
flash-frozen in liquid nitrogen. The cell pellet was then 
homogenized with a homogenizer (IKA T10 basic, Staufen, 
Germany) in 350 μL of RLT lysis buffer (Qiagen, Hilden, 
Germany). Total RNA extraction was carried out with an RNeasy 
Plus Mini Kit (Qiagen) according to the manufacturer’s protocol. 
The amount of extracted total RNA was measured using a UV 
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, 
USA) at 260/280 nm.

2.11 Reverse transcription and real-time 
qPCR

Two-step reverse transcription quantitative polymerase chain 
reaction (RT–qPCR) for experimental cDPSCs at the third dilution 
and positive control cDPSCs was performed. First, 2 μg of total 
RNA from each sample was reverse transcribed into cDNA using 
a High-Capacity cDNA Reverse Transcription Kit with RNase 
Inhibitor (Thermo Fisher Scientific, Waltham, MA, USA) according 
to the manufacturer’s protocol. Negative reverse transcription 
controls were included in each PCR run. All reactions were 
conducted in a total volume of 20 μL. The conditions for reverse 
transcription were as suggested in the manufacturer’s protocol: 
25 °C for 10 min, 37 °C for 120 min, and 85 °C for 5 min. In the 
second step, relative quantification was performed using TaqMan 
Universal PCR Master Mix with UNG (Thermo Fisher Scientific, 
Waltham, MA, USA) and the TaqMan gene expression assays 
RunX2 and ALPL. TBP was used as a reference gene (Thermo 
Fisher). All the qPCR amplifications were conducted in triplicate 
in a total volume of 20 μL. cDNA (20 ng) was used as a template. 
Amplification was carried out in 96-well plates with a Light Cycler 
96 (Roche Life Science) using the following program: 50 °C for 
2 min, 95 °C for 10 min, and 40 cycles at 95 °C for 15 s and 60 °C 
for 60 s.

2.12 Statistical analysis

Statistical analysis was performed for cells isolated from three 
dental pulp tissues and grown on standard polystyrene surfaces 
(Table 1). All the statistical analyses were performed with GraphPad 
Prism version 9.5.0 for Windows (GraphPad Software, San Diego, CA, 
USA, www.graphpad.com, accessed on 15 April 2024).

All the data were log-transformed to normalize the data and 
residuals. The normality and lognormality of the residuals were 
checked with the Kolmogorov–Smirnov test.

All the data were log-transformed (Y = log(Y)) and normalized to 
the control samples to account for differences in the control samples 
(formula: value/baseline). For the MTT, live/dead and ARS staining 
assays, 2-way ANOVA was performed to analyze the differences 
between the experimental cell cultures. For qPCR, conditioned media 
cultures from the third dilution (D3) were used. The efficiency-
corrected double delta Ct method was employed to normalize the 
gene expression values (35). The expression levels of RUNX2, ALPL 
and MMP13 were compared to the expression levels of RUNX2, ALPL 
and MMP13 in positive control cDPSCs, and the results were analyzed 
by one-way ANOVA.

Statistical significance was defined as p < 0.05.

3 Results

3.1 Isolation and characterization of 
cDPSCs

Dental pulp tissue was successfully collected from all three teeth 
of the two dogs. Under a light microscope, the cells from passage 3 
appeared spindle-shaped with a fibroblast-like morphology (Figure 1).
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3.2 Flow cytometry for surface marker 
expression

Flow cytometry was performed at passage 3 with conjugated 
primary antibodies against the positive surface markers CD44-APC, 
CD90-PE, and CD29-FITC and the negative surface marker CD34-
FITC. The cells were positive for CD44, CD90, and CD29 but negative 
for CD34 (Figure 2).

3.3 Multilineage differentiation potential

cDPSCs successfully differentiated into chondrogenic and 
osteogenic lineages. Chondrogenesis was indicated by the formation 
of chondrogenic nodules, which were stained blue with Alcian blue 
(Figure 3A). Mineral deposits in the extracellular matrix stained red 
with Alizarin Red S indicate osteogenesis (Figure 3B). The 
corresponding negative controls are shown on the right (Figures 3C,D).

3.4 Metabolic activity (MTT)

In suspension culture, the MTT absorbance (a proxy for viable 
cell number) was greater with RS + than with MTA at D1 and 
greater with CF than with MTA at D1 and D2. CF also yielded 
higher values than RS + did at D2 and D3 (Figure 4A). No 
significant differences in MTT absorbance were observed among 
the groups treated with conditioned media (Figure 4B). In the 
MTT with the conditioned media, dilutions 2, 3, and 4 were used; 
the first dilution was omitted to avoid introducing possible artifacts 
into the analysis because preliminary attempts using this dilution 
produced inconsistent absorbance values.

3.5 Viability (live/dead)

In suspension culture, cell viability was greater with CF than with 
MTA at dilutions D2–D5 and greater with CF than with RS + at D2; 
RS + also exceeded MTA at D4 and D5 (Figure 5A). In the conditioned 
media, no statistically significant differences in viability were observed 
among the groups (Figure 5B).

3.6 Osteogenic outcome (Alizarin Red S)

In the ARS, dilutions 2, 3, and 4 of conditioned media were used; 
the first dilution was omitted to avoid introducing possible artifacts 
into the analysis because preliminary attempts using this dilution 
produced uneven well-to-well staining. There was a difference in ARS 
staining at D3, where the ARS staining of cDPSCs was greater in cells 
conditioned with MTA than in cells conditioned with CF (Figure 6). 
Representative images of ARS staining and the corresponding images 
processed with ImageJ are shown in Figure 7.

3.7 Gene expression analysis (RT-qPCR)

As there was a significant difference in ARS staining on D3, 
gene expression was evaluated at this dilution. The expression of 

FIGURE 1

Morphology of cells grown on a standard plastic surface. cDPSCs 
from passage 3 are spindle shaped with a typical fibroblast-like 
morphology.

FIGURE 2

Expression of cDPSC surface markers. Blue cells are labeled with antibodies. Red cells are unlabeled cells. On the left dot plot are cells stained with the 
positive cell surface markers CD44-APC and CD90-PE (quadrant Q2). Unlabeled cells (red) are appended to quadrant Q3. On the right dot plot are 
cells positive for the cell surface marker CD44-APC (quadrant Q1) and CD29-FITC (quadrant Q4) and negative for the cell surface marker CD34-FITC 
(quadrant Q3). Unlabeled cells (red) are appended to quadrant Q3.
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RUNX2 was lower in cells conditioned with MTA than in cells 
conditioned with RS + (* p < 0.1) and lower than that in positive 
control cells (** p < 0.01; Figure 8A). ALPL expression was lower 
in cells conditioned with MTA than in cells conditioned with 
RS + (** p < 0.01) and CF (* p < 0.1; Figure 8B). No differences in 
the expression of MMP13 were observed between the groups 
(Figure 8C).

4 Discussion

Stem cell-based regenerative therapies are being increasingly 
extended to dentistry and oral tissue regeneration. Dental pulp stem 
cells (DPSCs) are central to dentin–pulp repair and regeneration, and 
their beneficial effect has already been reported in a vital pulpectomy 
setting in dogs (36). In addition, DPSCs provide a relevant in vitro 

FIGURE 3

Chondrogenic (A; Alcian blue) and osteogenic (B; Alizarin Red S) differentiation of cDPSCs with corresponding negative controls (C,D).

FIGURE 4

MTT assays in experimental media. In suspension culture (A), log transformation of the data revealed that higher plotted values corresponded to lower 
absorbance (lower mitochondrial activity). In suspension culture, the MTT absorbance was greater with RS + than with MTA at D1 and greater with CF 
than with MTA at D1 and D2. CF also yielded higher values than RS + did at D2 and D3 (* p < 01, *** p < 0.001). In the conditioned media (B), no 
significant differences in MTT absorbance were observed among the groups.
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model for evaluating biomaterial interactions and their suitability for 
combined cell–material applications (29, 37).

To better understand how clinically established or emerging 
materials influence pulp-resident stem cells, we investigated the in 
vitro effects of three different materials on canine DPSCs (cDPSCs). 
The cDPSCs isolated in our study exhibited a typical mesenchymal 
phenotype (CD44+/CD90+/CD29+/CD34−) and multilineage potential, 
which is consistent with previous reports on cDPSCs (31, 32). We then 
compared the effects of ProRoot® MTA (the clinical reference material 
in veterinary endodontics (38)), RS + ™ and CellFoam™ on the 
metabolic activity and cell viability of cDPSCs, as well as on their 
potential to undergo osteogenic and odontogenic differentiation. Two 
exposure paradigms were used to bracket the clinically relevant range 
of early material–tissue interactions. First, we modeled the initial, 
acute particle-associated cytotoxicity that may have occurred 
immediately after placement, simulating direct contact between 
freshly mixed material and adjacent pulp cells. Second, we assessed 
physiologically relevant, diffusion-controlled exposure using 
conditioned media (eluates), which better reflects the environment in 
which cells are present within tissue or when materials are combined 
with stem cell-laden scaffolds for regenerative applications. Assessing 

acute cytotoxicity is important because early interfacial chemistry 
(particularly Ca2+ and OH− release and the resulting increase in pH) 
can strongly influence early cell survival, proliferation, and the onset 
of repair/regeneration. Materials that are excessively cytotoxic during 
this window could jeopardize pulp vitality or delay healing even if 
their long-term behavior is favorable once set (39). Although calcium-
silicate cements such as MTA and RS + are typically applied freshly 
mixed with an appropriate diluent, such as deionized water or saline 
solution, and their interaction with pulp tissue begins immediately 
upon placement, unreacted particles with an ongoing topological 
transformation due to dissolution/recrystallization and subsequent 
ion release can transiently shift the microenvironment (40). Therefore, 
this study’s two-condition design aligns with prior in vitro work on 
bioceramic, hydraulic calcium-silicate cements, which often appear 
more cytotoxic when freshly mixed but become highly biocompatible 
after setting or when tested as eluates (41–43). Related animal and 
clinical studies similarly report that any transient irritation 
immediately after placement subsides as the material hydrates, with 
ultimate support for pulp healing, dentin bridge formation, and tissue 
integration (44–46).

We used an MTT assay to measure cellular metabolic activity as 
an indicator of the cytotoxicity of the biomaterials. In conditioned 
medium culture, compared with the cells grown in MTA medium, 
the cells grown in RS + and CF media showed higher mitochondrial 
activity in the early stages, particularly at D1, suggesting higher 
initial metabolic activity. The higher metabolic activity of cells 
grown in the CF medium than in the RS + medium at D2 and D3 
further indicates that metabolic activity is more prolonged when the 
cells are cultured with CF. This pattern aligns with the early alkalinity 
and ion release of hydraulic calcium-silicate cements, which can 
transiently depress metabolism at higher effective concentrations 
(41–43). Under conditioned exposure, intermaterial differences 
diminished or disappeared, indicating that dilution, buffering, and 
partial setting modulate chemistry to levels compatible with those 
of pulp cells (44–46). From a clinical perspective, these dynamics are 
expected. In vivo, dentin and tissue fluids buffer the strong alkalinity 
of freshly mixed cement while the material hydrates and sets. 
Dentin’s hydroxyapatite (phosphate- and carbonate-substituted) 
mineral phases and organic matrix adsorb ions and favor 

FIGURE 5

Viability in suspension culture across dilutions. In suspension media culture (A), cell viability was greater with CF than with MTA at dilutions D2–D5 and 
greater with CF than with RS + at D2; RS + also exceeded MTA at D4 and D5. Exact significance levels are indicated on the plot (* p < 0.05; ** p < 0.01). 
In conditioned media culture (B), no statistically significant differences in viability were observed among the groups.

FIGURE 6

Relative mineralized areas after osteogenic induction of cDPSCs 
preexposed to conditioned media (D2–D4). Indicates p < 0.01 at D3 
(MTA vs. CF).
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calcium–phosphate precipitation, lowering effective hydroxyl and 
calcium ion activity at the interface (47–49). Tubular diffusion and 
pulpal fluid flow disperse ions further, and progressive hydration 
reduces reactivity over time (50–52). These mechanisms explain why 
freshly mixed MTA may appear to be cytotoxic in vitro but is well 
tolerated clinically.

The results of the live/dead assay were similar to those of the MTT 
analysis. Under acute suspension exposure, compared with MTA 
(dilutions D2–D5) and RS + (D2), CF consistently increased cell 
viability, whereas compared with MTA, RS + promoted greater cell 
viability at dilutions D4–D5. These findings confirm the low acute 
cytotoxicity of CF and its favorable interaction with cDPSCs. The 
reduced viability observed with suspended MTA likely reflects its 
transiently high alkalinity and rapid Ca(OH)₂ release, which can 
exceed physiological tolerance and compromise cell membrane 
integrity during early exposure (39, 52). In contrast, under conditioned 
medium exposure, the differences in viability among the materials 
were no longer significant, indicating that dilution and buffering 
during conditioning effectively mitigated the initial cytotoxic effects.

Taken together, the results of the MTT and live/dead assays 
support the concept that set or preconditioned calcium-silicate 
materials become highly biocompatible once the early reactive phase 
subsides, which is consistent with clinical observations of pulp healing 
following transient initial irritation (45, 46). Compared with MTA and 
RS + cells, cells cultured in CF maintained higher metabolic activity 
and viability in suspension cultures across multiple dilutions. These 
results indicate that CF has lower cytotoxicity and could therefore 
function as an immediate delivery vehicle for cDPSCs at the time of 
pulp capping or regenerative endodontic therapy. Specifically, in 
veterinary regenerative endodontics, 3D scaffolds (e.g., silk fibroin) 
are being increasingly explored as adjuncts that host cells, enable 
nutrient diffusion, and stabilize the microenvironment, whereas 
hydraulic cements provide the seal (53–55). In practice, such 
combinations may enhance tissue healing and bridge formation. The 
feasibility of stem cell-mediated pulp regeneration using cell-seeded 
scaffolds has been demonstrated in several in vivo studies in animal 
models. In a canine model, Bio-Oss scaffolds loaded with autologous 
DPSCs successfully supported the regeneration of periodontal and 

FIGURE 7

Representative images of ARS staining (upper row) and the corresponding images processed with ImageJ (lower row).

FIGURE 8

Gene expression in cDPSCs after conditioned media exposure followed by osteogenic induction. The expression of RUNX2 (A) was lower in cells 
conditioned with MTA than in cells conditioned with RS + (* p < 01) and lower than that in positive control cells (** p < 0.01). ALPL expression (B) was 
lower in cells conditioned with MTA than in cells conditioned with RS + (** p < 001) and CF (* p < 0.1). No differences in the expression of MMP13 
(C) were observed between the groups.
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TABLE 3  QPCR assays and justification for gene selection in odontogenesis.

Gene symbol Gene name Assay ID (Canis familiaris)

RUNX2 Runt-related transcription factor 2 Cf02694692_m1

ALPL Alkaline phosphatase Cf02732788_uH

MMP13 Matrix metalloproteinase-13 Cf02741638_m1

TBP TATA-box binding protein Cf02637231_m1

pulp-like tissues within experimental defects (56). Similarly, (76) 
reported that the delivery of DPSCs within scaffolds and their 
implantation into the root canals of dogs promoted the regeneration 
of vascularized pulp-like tissue. The formation of a dentin–pulp 
complex was also observed when collagen scaffolds were implanted 
with DPSCs, whereas cell-free scaffolds failed to induce such 
regeneration (57). Other cell–material combinations have also been 
explored in regenerative endodontics with promising results. The 
results of our study suggest that CF could also be a suitable carrier for 
cDPSC-based regenerative endodontic strategies.

Furthermore, we assessed the effect of clinically relevant 
conditioned medium exposure on cDPSC differentiation potential. To 
assess the mineralization ability of the cells, we differentiated cells 
from conditioned media culture into osteogenic lineages, as osteogenic 
and odontogenic lineages share overlapping molecular pathways (58, 
59). Here, Alizarin Red S (ARS)-positive staining was used as a marker 
of early mineralizing (odontoblast-like) activity (60). All three tested 
materials in this study supported ARS-positive mineral deposition 
following osteogenic induction, with a difference observed only in 
dilution D3, where MTA exceeded CF. These findings agree with 
previous reports showing that when tested as extracts or after partial 
setting, MTA and similar materials yield comparable alkaline 
phosphatase activity and mineralization and tend to converge in 
performance once they are set or sufficiently diluted (61–66). ARS 
staining, together with increased expression levels of RUNX2, ALPL, 
and MMP13, supports a shift toward an odontoblast-like, mineralizing 
phenotype (67). Gene expression analysis was conducted only at D3 
to examine how genes were regulated under the same conditions in 
which a difference in ARS staining was observed. By focusing on the 
dilution that resulted in a detectable change in mineralization, we 
aimed to determine whether transcriptional responses aligned with 
mineralization outcomes. Therefore, the gene expression findings refer 
specifically to this dilution. In contrast to the results of ARS staining, 
where CF performed comparably to calcium-silicate materials, we 
observed differences in the expression levels of genes in cDPSCs 
cultured in MTA-, RS + -, and CF-conditioned media following 
osteogenic differentiation. We tested three genes—RUNX2 (key 
regulator of osteogenic differentiation and early tooth development 
(68)), ALPL (commitment/mineralization), and MMP13 (a collagen-
remodeling enzyme implicated in dentin matrix organization). 
RUNX2 is endogenously expressed in preodontoblasts, where it 
promotes lineage commitment; however, its expression must be 
downregulated for cells to progress toward terminal differentiation. 
This downregulation is essential for both the maturation of osteoblasts 
and the terminal differentiation of odontoblasts (69). Interestingly, in 
our study, the expression of RUNX2 was lower in cells conditioned 
with MTA than in cells conditioned with RS + and lower than that in 
positive control cells. The observed lower expression of RUNX2 in 
cells conditioned with MTA than in those conditioned with RS + and 

the positive control suggests that cells exposed to MTA-conditioned 
media may have already progressed beyond the preosteogenic/
odontoblastic stage toward terminal differentiation and thus may 
reflect a more advanced stage of osteogenic/odontogenic 
differentiation of MTA-cultured cells rather than impaired lineage 
commitment. In contrast, the relatively high RUNX2 expression levels 
in the RS + and CF groups could indicate that these conditions 
maintained the cells in an earlier differentiated state. Like that of 
RUNX2, the expression of ALPL was lower in cells conditioned with 
MTA than in cells conditioned with RS + and CF. ALPL is a 
mineralization-associated marker gene (70, 71) and regulates the 
odontoblastic differentiation of DPSCs (37). Moreover, it is an early 
marker of osteogenesis, and its activity decreases as mineralization 
occurs (72). The observed higher expression levels of ALPL in the RS+ 
and CF groups therefore might reflect differences in temporal 
progression, with cells in the MTA group already entering an active 
mineralization phase, whereas those in the RS+ and CF groups 
remained in earlier or transitional stages of differentiation. This 
interpretation also aligns with the RUNX2 expression pattern. No 
differences in MMP13 expression were observed between the groups. 
MMP13 plays important roles in tooth development, odontogenic 
differentiation, and dentin–pulp reparative mechanisms (73). MMP13 
is involved in tertiary reactionary dentin formation after tooth injury 
in vivo, potentially acting as a key molecule in the dental pulp during 
dentin–pulp repair processes and organizing and regulating dentin–
pulp reparative processes (74). In our study, we detected no differences 
in MMP13 expression between the groups, suggesting that all three 
tested materials supported comparable levels of matrix remodeling 
activity or that MMP13 regulation was not strongly influenced by the 
moderate chemical differences among the conditioned media.

Taken together, the differentiation potential results indicate that all 
three tested materials—MTA, RS + and CF—support the osteogenic/
odontogenic differentiation of cDPSCs under clinically relevant, 
conditioned conditions. ARS staining confirmed comparable mineral 
deposition across materials, and gene expression analysis of RUNX2 and 
ALPL suggested that cells cultured in MTA-conditioned medium may 
have progressed to a more advanced stage of differentiation than those 
exposed to RS + or CF. These results are in line with those of veterinary 
studies reporting high vital pulp therapy success, with consistent hard-
tissue bridge formation and maintained pulp vitality in dogs (44–46), 
supporting the translational relevance of our in vitro results.

A limitation of this study is the small donor sample size, which 
may have contributed to biological variability and could limit the 
generalizability of the results. Additionally, age and tooth 
developmental stage can affect dental pulp regeneration (75). 
Therefore, larger, age-balanced donor cohorts will help refine effect 
sizes and reduce variability in future studies. Most importantly, future 
in vivo studies in clinically relevant models are crucial to translate the 
in vitro findings into clinically applicable outcomes (Table 3).
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5 Conclusion

In summary, this study demonstrated that MTA, RS + and CF are 
biocompatible with cDPSCs and support their metabolic activity, 
viability and differentiation under clinically relevant exposure 
conditions. All three materials supported comparable mineralization 
with gene expression patterns, suggesting a more advanced 
differentiation stage in MTA-conditioned cells, which is consistent 
with the findings of current veterinary studies reporting high success 
rates of vital pulp therapy with MTA. In contrast, in acute exposure 
culture media, compared with calcium-silicate materials, CF 
maintained higher cell viability and metabolic activity, indicating its 
potential as a carrier for DPSC delivery in stem cell-based regenerative 
endodontic strategies.
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