
Academic Editors: Erfu Yang and

Rafal Szczepanski

Received: 5 December 2025

Revised: 14 January 2026

Accepted: 15 January 2026

Published: 23 January 2026

Copyright: © 2026 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license.

Article

Experimental Validation of the Direct Kinematics of a Passive
Stewart-Gough Platform with Modified Cardan Joints Using
Integrated Absolute Linear Encoders
Martin Bem 1,*, Aleš Ude 1,2 and Bojan Nemec 1

1 Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
ales.ude@ijs.si (A.U.); bojan.nemec@ijs.si (B.N.)

2 Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
* Correspondence: martin.bem@ijs.si

Abstract

This paper presents the experimental validation of a computational kinematic model for a
passive Stewart–Gough platform equipped with modified Cardan joints. The introduced
joint geometry significantly increases structural stiffness but invalidates the standard spher-
ical joint assumption commonly used in hexapod kinematic formulations. To address this,
we develop an efficient numerical optimization-based framework that solves both the direct
and inverse kinematics without relying on simplified joint models. Furthermore, to enable
autonomous and absolute pose measurement, each cylindrical leg joint of the platform is
equipped with a LinACE™ absolute linear encoder. This sensor integration transforms
the passive mechanism into an IoT-enabled reconfigurable fixture capable of internally
sensing, tracking, and recalling its own configuration. The direct kinematics are computed
iteratively using a homogeneous transformation formulation and benchmarked against
analytical models derived for ideal spherical joints. Experimental results demonstrate
sub-millimeter accuracy in pose estimation, confirming the validity of the proposed kine-
matic model and highlighting the suitability of the sensor-equipped hexapod for industrial
flexible fixturing applications.

Keywords: Stewart-Gough platform; parallel robots; kinematics; Cardan joints; reconfigurable
fixtures

1. Introduction
In today’s highly competitive industrial environment, manufacturers face increasing

pressure to achieve high productivity while shortening time-to-market. As product portfolios
expand and product life cycles shorten, conventional manufacturing strategies, typically
optimized for producing large quantities of a few product types, are no longer sufficient.
Modern production systems therefore require a high degree of flexibility and reconfigurability
to efficiently handle product diversity and frequent design modifications [1,2].

This need for adaptability has driven advances in flexible robotic systems and re-
configurable fixturing technologies [3]. In this context, we investigate the use of passive
Stewart–Gough platforms (hexapods) as modular building blocks for flexible fixtures in
low-volume production environments [4,5].

Active parallel mechanisms based on the Stewart–Gough architecture have been
widely studied as generic six-degree-of-freedom motion generators in robotics since the
pioneering works of Gough and Stewart [6,7]. These architectures are particularly attractive
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in applications requiring accurate six-degree-of-freedom pose control, for example in
motion simulation, flight simulators, and precision positioning stages. A comprehensive
overview of the kinematics, dynamics, singularities, and applications of Stewart platforms
is provided in the review by Dasgupta and Mruthyunjaya [8].

Industrial implementations of Stewart platforms driven by electromechanical actuators
and servo controllers have been reported for motion control and trajectory tracking tasks,
such as reproducing cycloidal and ocean wave trajectories [9] and for evaluating commercial
motion controllers for hexapod operation [10]. Parallel platforms of this type have also
been explored for aerospace-related applications [11] and for base motion compensation in
vibration-sensitive systems [12].

In contrast to the active Stewart–Gough platforms discussed above, the hexapods
considered in this work are passive mechanisms without dedicated actuators. They are
instead equipped with mechanical brakes that lock the structure in a desired configuration
(see Section 2). This passivity is advantageous in robotic manufacturing settings: actuation
and sensing are already provided by readily available industrial robots that can reposition
the hexapod’s top plate once the brakes are released. As a result, the fixture can be realized
at substantially lower cost and with reduced integration effort compared to a fully actuated
hexapod, while still enabling reconfigurability when needed. To improve static performance
and load-bearing capacity, custom-designed Cardan joints have been integrated into the
leg assemblies. However, while this design increases rigidity, it also adds complexity to the
direct and inverse kinematic analyses.

Accurate geometric modeling and calibration of Stewart–Gough platforms remain
active research topics. Early work by Zhuang and Roth introduced leg-wise calibration
methods for these mechanisms [13], while a recent survey by Karmakar and Turner provides
an extensive review of modern calibration strategies [14]. Reliable kinematic modeling
is essential for estimating the pose of each hexapod and ensuring robust production
planning, particularly when multiple platforms simultaneously secure a single workpiece.
Earlier hexapod prototypes [2] omitted joint encoders to reduce cost. However, in the
current design, each leg incorporates a linear encoder, allowing precise measurement of leg
extension and thereby improving configuration estimation. Nonetheless, encoder data are
only useful in combination with a corresponding accurate kinematic model.

While non-ideal joint effects in Stewart–Gough platforms have been studied previously,
most existing approaches either assume simplified analytical joint models with intersecting
axes or rely on calibration-based compensation strategies. To the best of our knowledge, no
prior work has presented a general numerical formulation that explicitly incorporates non-
intersecting, preloaded Cardan joint geometry into the full kinematic constraint equations
while remaining applicable to both direct and inverse kinematics.

Using preloaded axis-offset Cardan joints makes standard Stewart–Gough kinematic
formulations unsuitable. Previous studies, such as [15], have examined the kinematics and
singularities of mechanisms with axis-offset Cardan joints, focusing mainly on identifying
all possible solutions. Building on these foundations, this paper presents a new iterative
kinematic method for computing a hexapod configuration in the vicinity of a known initial
pose. The approach can also be generalized to compute direct and inverse kinematic
solutions for hexapods with arbitrary leg geometries.

The main contributions of this paper are as follows: (a) the development and ex-
perimental evaluation of a sensorized passive Stewart–Gough platform equipped with
preloaded Cardan joints, which significantly reduce structural backlash and improve
stiffness; (b) the formulation and optimization of a Cardan-joint-aware kinematic model
that explicitly accounts for the true joint geometry and outperforms conventional Stew-
art–Gough formulations for the proposed mechanism; and (c) a systematic experimental
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evaluation of pose accuracy, convergence behavior, and numerical stability over a large
dataset of hexapod configurations.

The remainder of this paper is organized as follows: Section 2 describes the design
and mechanical characteristics of the developed passive hexapod fixtures. Sections 3 and 4
introduce the proposed iterative kinematic modeling approach and outline its mathematical
formulation. Section 5 presents experimental validation and discusses the accuracy and
performance of the proposed method. Finally, Section 6 summarizes the main findings and
outlines directions for future research.

2. Hexapod Design Overview
The mechanical design of the proposed hexapod is based on a passive Gough–Stewart

platform engineered to deliver high rigidity and full reconfigurability for robotic assembly
applications. The structure comprises two rigid plates: a base plate fixed to the robotic
workcell and a top plate outfitted with modular workpiece locating assemblies. These
plates are interconnected by six extendable legs, each equipped with a cylindrical joint,
an integrated hydro-mechanical brake, and two custom-designed Cardan joints at both
ends [16]. This configuration enables the top plate to move freely across all six degrees of
freedom during reconfiguration and to be locked precisely in place for operation. When
the hydraulic brakes are disengaged, the platform can be repositioned manually or by a
robot through a tool-exchange interface mounted on the top plate. Once the desired pose
is achieved, the brakes are activated, fixing the structure with exceptional stiffness and
positional accuracy.

A key feature of the design is the hydro-mechanical braking system integrated into
each leg [17]. Each brake consists of a deformable sleeve surrounding the moving rod and
three concentric pressure chambers radially arranged around the outside of the sleeve.
In the unpressurized state, the sleeve geometry provides a high radial preload against the
rod, generating a large normal force that rigidly locks the leg. When hydraulic pressure
is applied to the chambers, the sleeve deforms, releasing the contact pressure and letting
the rod slide freely. This pressure-to-release principle means that any loss of hydraulic
pressure during operation leads to an inherently safe state in which all legs remain locked.
The brake, in its locked state, can withstand substantial axial loads without slippage, and its
compact geometry and simple hydraulic interface make it well suited for integration into
industrial hexapod fixtures and other reconfigurable support systems. The Cardan joints
used in the system introduce several improvements over conventional universal joint
configurations. Each joint incorporates non-intersecting rotational axes together with a
central hub featuring adjustable preload that eliminates play and micro gaps, which are
common sources of backlash.

The separation of axes and the adjustable preload contribute to increased structural
stiffness when the brakes are engaged. Additionally, the joint geometry promotes more
uniform load distribution, reducing wear on the contact surfaces and improving long-term
reliability. Despite these enhancements, the design maintains a compact form factor while
providing high load-bearing capacity.

Together, the hydro-mechanical braking system and enhanced Cardan joints enable
the hexapod to achieve sub-millimeter repeatability, minimal backlash, and exceptional
rigidity while maintaining a fully passive, low-cost design. The modular top plate can be
fitted with interchangeable fixtures, such as centering pins and pneumatic lever clamps,
allowing adaptation to a wide range of components, for example, various automotive light
housings. Furthermore, multiple hexapods can be combined to form a flexible, robotically
reconfigurable fixture system. In general, the integration of precision mechanical locking,
adjustable kinematic joints, and modular adaptability delivers an optimal balance between
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flexibility, structural performance, and precision, establishing the hexapod as a highly
capable platform for reconfigurable robotic manufacturing systems.

Encoder Integration

Several authors have employed external vision systems for kinematic calibration of
Stewart platforms, including omnidirectional cameras [18] and stereo vision [19]. A broader
survey of calibration methods for spatial parallel mechanisms using internal and external
sensing is provided by Majarena et al. [20]. Additional approaches exploiting supplemen-
tary sensing, such as dedicated motion controllers or industrial servo hardware, have also
been reported for calibration and state estimation [9,10].

In contrast to these external techniques, the sensor-integrated hexapod developed
here uses LinACE™ absolute linear encoders installed on all six legs (Figure 1a). LinACE
technology employs variable magnetic permeability (VMP) sensing: an absolute pseudo-
random binary sequence is embedded directly into the steel shaft as regions of differing
magnetic permeability, which modulate an applied magnetic field. A compact single-die
Hall sensor array reads these field variations, and internal signal processing algorithms
reconstruct the absolute position with micrometer-scale accuracy. This solid-state magnetic
encoding provides drift-free measurement and preserves absolute position even after
power loss.

Each encoder communicates via a CAN bus with a Raspberry Pi Model B running
Raspberry Pi OS (64-bit, Kernel 6.1), located in the hexapod base. Because the Raspberry Pi
lacks native CAN support, a two-channel isolated MCP2515 CAN controller (Microchip
Technology Inc., Chandler, AZ, USA) combined with an SN65HVD230 CAN transceiver
(Texas Instruments, Dallas, TX, USA) was used in a CAN-HAT configuration to ensure
robust communication. The Raspberry Pi runs a ROS node Robot Operating System [21]
that continuously acquires the encoder values and publishes the raw joint data on the
ROS network at a rate of 1 Hz. Importantly, the Raspberry Pi functions solely as an
edge-level data acquisition device: the inverse kinematic computation of the hexapod
pose is performed on an external PC. Once the PC calculates the updated platform pose,
the Raspberry Pi records this information in its non-volatile memory (SD card), enabling
seamless pose recovery after shutdown or extended storage. The block scheme of the setup
is given in Figure 1b.

(a) (b)

Figure 1. (a) Hexapod equipped with LinACE™ absolute linear encoders. (b) Schematic overview of
the hexapod sensory system.

Integrating absolute encoders significantly increases fixture reliability and operational
continuity. With measurement accuracy exceeding that of most industrial robots, robot–
fixture alignment becomes simpler and more repeatable. Native ROS communication
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further supports effortless integration into modular robotic workcells, enabling real-time
monitoring and automated calibration routines. Absolute encoders are essential whenever
the hexapod is repositioned manually, which frequently occurs in multi-hexapod fixturing
scenarios where final alignment must be tuned by a human operator. Without internal
sensing, such manual repositioning would render the fixture state unobservable to the
robot controller, making autonomous recovery impossible after brake release, servicing,
or safety-related shutdowns.

A remaining limitation is that the encoders measure only linear leg extensions rather
than the full six-degree-of-freedom pose of the top plate. Accurate pose recovery therefore
requires solving the hexapod’s inverse kinematics. Conventional models are not directly
applicable due to the use of preloaded Cardan joints with non-intersecting rotational
axes, which alter the mechanism’s geometry and constraints. To address this, a dedicated
computational method was developed to reliably reconstruct the platform pose despite the
non-standard joint configuration. The resulting system combines precise sensing, robust
embedded communication, and advanced external computation, delivering a reliable and
reconfigurable fixture well suited for modern robotic manufacturing environments.

3. Direct and Inverse Kinematics of Parallel Mechanisms
In this section, we summarize the standard Stewart–Gough model used for platforms

with spherical joints, which will later serve as a reference when experimentally compar-
ing it to the modified kinematic model developed for our mechanism with preloaded
Cardan joints.

For standard Stewart–Gough platforms, the inverse kinematics problem is straightfor-
ward [22]. Given the pose of the moving platform, the leg directions follow from the vector
loop equation

llli = Gi(xxx) = −bbbi + ttt + Rpppi i = 1, . . . , 6 (1)

where R is the rotation matrix of the platform, ttt = [x, y, z]T is the position, and bbbi, pppi are the
fixed leg attachment-point vectors on the base and platform (see Figure 2). The leg lengths
follow from

li = ∥llli∥. (2)

In contrast, the direct kinematics problem (computing xxx from measured leg lengths)
is considerably more difficult and may admit multiple solutions [15]. For obtaining the
configuration nearest to a known state, a Newton–Raphson [23] iteration may be used:

xxxj+1 = xxxj − J−1(G(xxxj)− lllm), (3)

where lllm = [lm
1 , . . . , lm

6 ]T are the measured leg lengths and J is the Jacobian

J =
∂G(xxx)

∂xxx
∈ R6×6. (4)

However, this formulation assumes ideal spherical joints and therefore cannot be
applied to our platform, which incorporates twelve preloaded Cardan joints. In this
case, the leg direction vectors in (1) are insufficient because the rotational axes of the
joints are offset and do not intersect. The kinematics must instead be expressed through
homogeneous transformations, as described next.
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Figure 2. Schematic representation of a Stewart–Gough platform.

4. Kinematics of a Stewart–Gough Platform with Preloaded Cardan Joints
This section presents a numerical framework for computing the direct and inverse

kinematics of a Stewart–Gough platform equipped with preloaded Cardan joints (Figure 3)
whose rotational axes do not intersect. Because the joint axes are offset, the classical
spherical joint Stewart–Gough model is not applicable; instead, we explicitly model each
leg using homogeneous transformation matrices. We first introduce a full Cardan-joint-
aware closure constraint and then derive an optimized constraint set that removes rotational
redundancy while preserving the solution.

Z0, Z1X0, X1
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Figure 3. (a) Preloaded Cardan joint illustrating offset, non-intersecting axes; (b) kinematic chain of a
single leg with labeled joint variables; (c) Denavit–Hartenberg (DH) frame assignment for the leg;
and (d) full hexapod with base and platform frames and leg indices.

In the previoisly proposed Cardan-joint-aware model [24], the direct kinematics is
obtained by solving the full set of 72 scalar equations defined by Equation (6), whereas the
optimized Cardan-joint-aware model reduces the number of required equations from 72
to 36 by enforcing only the subset in Equation (14), thereby significantly decreasing the
computational load. Both formulations are mathematically equivalent and converge to the
same solution for a given set of encoder readings. Therefore, the numerical accuracy is
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not compared separately, and the analysis focuses solely on differences in computational
efficiency. The equivalence of both solutions is discussed in Section 4.7.

4.1. Kinematic Description and Coordinate Frames

We define a base frame B attached to the base plate and a platform frame P attached
to the moving top plate. The pose of the platform relative to the base is represented by the
homogeneous transformation matrix

Ttop =

[
R t
0 1

]
, R ∈ SO(3), t = [x y z]T , (5)

where R is the top plate rotation matrix and t is the translation vector connecting the top
and the bottom plate. The orientation can be parameterized, for example, by Euler angles
(α, β, γ) such that R = R(α, β, γ).

4.2. Full Cardan-Joint-Aware Closure Constraints

For each leg i ∈ {1, . . . , 6}, we define two transformation chains:

• Platform-side chain: Ttop Ttp,i, where Ttp,i is a constant transform from the platform
frame P to the platform-side Cardan joint reference frame of leg i.

• Base-side chain: Tbp,i TDH,i, where Tbp,i is a constant transform from the base frame B
to the base-side Cardan joint reference frame and TDH,i is a DH transform describing
the internal kinematic chain of leg i, including both Cardan joints and the cylindrical
joint (containing the measured leg length).

A valid configuration must satisfy the loop-closure constraint

Tbp,i TDH,i = Ttop Ttp,i, i = 1, . . . , 6. (6)

Equation (6) is a matrix equality that corresponds to 12 scalar equations per leg (9 rotational
and 3 translational), i.e., 72 scalar equations for the full mechanism. Because rotations
in SO(3) have only three independent degrees of freedom, the rotational part of the full
constraint contains redundancy. Next, we introduce an optimized constraint set that
removes this redundancy and improves numerical conditioning.

4.3. Optimized (Reduced) Constraint Formulation
4.3.1. Relative Transformation

For each leg, define the relative transform

Ci = T−1
bp,i Ttop Ttp,i. (7)

In a valid configuration, the relative transform matches the leg DH transform,

Ci = TDH,i. (8)

Let the rotation and translation components be denoted by

Ci = {RC,i, tC,i}, TDH,i = {RDH,i, tDH,i}. (9)

4.3.2. Translational Constraints

Matching translations yields three scalar constraints per leg:

et,i = tC,i − tDH,i = 0. (10)
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4.3.3. Rotational Constraints

To compare rotations, define the relative rotation

Rerr,i = RT
DH,i RC,i. (11)

If the rotations match, then Rerr,i = I. A minimal three-parameter rotation error vector can
be obtained from the skew-symmetric part of Rerr,i:

eR,i =
1
2

(Rerr,i)32 − (Rerr,i)23

(Rerr,i)13 − (Rerr,i)31

(Rerr,i)21 − (Rerr,i)12

 = 0. (12)

This representation provides three independent rotational constraints (locally equivalent to
imposing RC,i = RDH,i) and eliminates algebraic redundancy from the nine scalar rotation
matrix equalities.

4.3.4. Stacked Constraint Vector

For each leg, stack rotational and translational errors into a six-dimensional vector

fi =

[
eR,i

et,i

]
= 0, (13)

and define the full constraint vector as

f(·) =


f1(·)

...
f6(·)

 = 0. (14)

The optimized formulation yields 6 scalar constraints per leg and therefore 36 scalar
constraints in total. In practice, this reduction improves numerical conditioning and
reduces computation time while preserving the converged solution.

4.4. Direct Kinematics

In the direct kinematics problem, the measured leg lengths li are known, while the
platform pose and internal joint variables are unknown. Each leg DH transform TDH,i

depends on five internal joint variables (Cardan and cylindrical-joint coordinates), denoted

δi, εi, ζi, ηi, θi, i = 1, . . . , 6. (15)

Collect all unknowns into the vector

z =
[
x, y, z, α, β, γ, δ1, ε1, ζ1, η1, θ1, . . . , δ6, ε6, ζ6, η6, θ6

]T . (16)

The system f(z) = 0 in Equation (14) is solved iteratively using a Newton–Raphson update

zk+1 = zk − J+(zk) f(zk), (17)

where J(z) = ∂f(z)/∂z is the Jacobian and J+ denotes the Moore–Penrose pseudoinverse.
The pseudoinverse improves robustness when J is ill-conditioned or locally rank-deficient.
The iteration stops when

∥zk+1 − zk∥ < εgoal, (18)

with the initial guess z0 taken from the previously known configuration.
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4.5. Inverse Kinematics

In inverse kinematics, the platform pose is prescribed and the unknowns are the leg
lengths and internal joint variables. We collect the unknowns as

y =
[
l1, δ1, ε1, ζ1, η1, θ1, . . . , l6, δ6, ε6, ζ6, η6, θ6

]T . (19)

The constraint equations remain
f(y) = 0, (20)

and the solution is obtained via

yk+1 = yk − J+(yk) f(yk), (21)

initialized from the most recently known configuration.

4.6. Generality of the Formulation

A key feature of the proposed approach is that it is not restricted to a fixed choice of
unknown variables. Any subset of variables appearing in the closure relation Equation (6)
can be selected as optimization variables, enabling direct, inverse, or hybrid kinematic
computations within a unified framework. This generality is particularly useful for mecha-
nisms with non-standard joint geometries, such as the preloaded Cardan joints considered
here, where classical closed-form Stewart–Gough expressions are not directly applicable.

4.7. Justification of Rotational Constraint Reduction

In the full Cardan-joint-aware formulation, rotational consistency for each leg is en-
forced by equating the rotation matrices RC,i and RDH,i, which yields nine scalar equations
per leg. However, these equations are not independent. Rotation matrices are elements of
the special orthogonal group SO(3), which is a three-dimensional Lie group. The orthogo-
nality condition

RTR = I (22)

together with the unit-determinant constraint

det(R) = 1 (23)

imposes six algebraic constraints on the nine matrix entries, leaving only three indepen-
dent degrees of freedom. Consequently, enforcing equality between two rotation matri-
ces requires only three independent scalar constraints, and the remaining six equations
are redundant.

To obtain a minimal and non-redundant representation of rotational consistency,
the optimized formulation introduces the relative rotation

Rerr,i = RT
DH,iRC,i. (24)

The condition RC,i = RDH,i is satisfied if and only if Rerr,i = I. Instead of enforcing this
condition through nine scalar equations, rotational mismatch is characterized by the skew-
symmetric part of Rerr,i, yielding the rotational error vector Equation (12). This vector
provides a local minimal parameterization of the rotation error in the Lie algebra SO(3). In a
neighborhood of the identity, eR,i = 0 if and only if Rerr,i = I, establishing the equivalence
between the rotational error vector formulation and direct rotation matrix equality.

From a numerical standpoint, replacing the overconstrained set of nine scalar equa-
tions with a minimal three-dimensional representation significantly improves the condi-
tioning of the resulting nonlinear system. In the full formulation defined by Equation (6),
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the resulting error equation contains linearly dependent rows associated with redundant
rotational constraints, which may lead to ill-conditioning or local rank deficiency during
the Newton–Raphson iteration. In contrast, the optimized error formulation defined by
Equation (14) yields a square Jacobian matrix whose rows correspond to independent
translational and rotational constraints, resulting in consistently lower condition numbers
across the workspace.

To further enhance numerical robustness, the Newton updates are computed using
the Moore–Penrose pseudoinverse of the Jacobian. This approach provides a well-defined
least-squares correction even in the presence of mild ill-conditioning and ensures stable
convergence near singular or near-singular configurations. Consequently, the optimized
formulation preserves the full kinematic fidelity of the original model while achieving
improved numerical stability and reduced computational complexity.

Additionally, the difference between the full Cardan-joint-aware approach and the
optimized one is in the improved numerical stability, evaluated by comparing the Jacobian
conditioning number defined as

κ(J) =
σmax(J)
σmin(J)

, (25)

where σmax(J) and σmin(J) are the maximal and minimal Jacobian singular values, respec-
tively. The analyses of comparing conditional numbers for the Cardan-joint-aware and the
optimized Cardan-joint-aware approach are presented in Section 5.4.

5. Experimental Validation
5.1. Experimental Setup

The experimental validation was conducted on a passive hexapod equipped with
six LinACE™ (https://www.rls.si/eng/linace-absolute-linear-shaft-encoder, accessed on
14 January 2026) absolute linear encoders embedded in the mechanism’s legs. To generate
reproducible and spatially diverse test poses, a UR10e collaborative robot (Universal Robots,
Novi, MI, USA) [25] was rigidly mounted to the same support frame as the hexapod.
A custom top plate with a tool-changer interface was added to the hexapod, enabling
direct mechanical coupling to the UR10e end effector. This arrangement ensured a stable
connection while allowing the robot to displace the platform into random poses throughout
its workspace.

To obtain independent ground-truth pose measurements, a PrimeX 22 OptiTrack
motion capture system was used [26]. Six infrared cameras were arranged to cover a
compact measurement volume of approximately 0.5 m3, maximizing triangulation accuracy
within the region of interest. A rigid marker cluster was mounted on the hexapod’s top plate
and tracked at full frame rate. Prior to experimentation, the OptiTrack system was calibrated
using the standard wand-calibration procedure, followed by rigid-body alignment between
the OptiTrack reference frame and the hexapod base frame. The resulting setup provided
sub-millimeter positional accuracy and sub-degree rotational accuracy.

During validation, the UR10e robot moved the top plate of the hexapod to a sequence
of randomly generated poses within the workspace. At each pose, three data sources
were collected synchronously: the 6-DoF ground-truth pose from OptiTrack, the six leg-
extension values from the LinACE encoders, and the robot TCP pose, used solely for
motion execution and not for accuracy evaluation. A total of 3000 pose configurations
were recorded.

5.2. Accuracy Evaluation

Two numerical kinematic models were evaluated: the proposed optimized Cardan-
joint-aware model that accounts for the specific preloaded Cardan joint geometry and the
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standard Stewart–Gough formulation based on the spherical joint assumption [7,8].
The non-optimized Cardan-joint-aware model was not included in this comparison, as it
yields numerically identical pose estimates to the optimized formulation, differing only
in computational efficiency. Both models used the same encoder-derived leg lengths to
compute platform pose estimates for comparison against the OptiTrack measurements.
Random target configurations were generated by sampling translations within ±50 mm
of the workspace center and Euler-angle rotations within ±25◦. Each candidate pose was
validated using inverse kinematics; poses requiring leg lengths outside the mechanical
limits were discarded and regenerated.

For each feasible pose, the UR10e robot—attached to the hexapod top plate via the tool-
changer interface—manipulated the platform into the corresponding spatial configuration.
Once the target pose was reached, the hexapod brakes were engaged to lock the structure.
The robot then retracted to avoid occluding the OptiTrack cameras, and all measurements
were recorded after a short stabilization interval.

For each of the 3000 valid poses, the encoder readings were processed using both
the optimized Cardan-joint-aware and standard Stewart–Gough models. The resulting
pose estimates were stored along with the corresponding OptiTrack reference pose for
subsequent accuracy evaluation.

Ground-truth and model-estimated poses were compared using separate metrics for
translation and rotation. The translational error was computed as

∆p =
∥∥pg − pcm

∥∥, (26)

where pg is the OptiTrack position measurement and pcm is the position estimated by the
computational model.

Orientation error was computed using the norm of the rotation-vector representation:

∆θ =
∥∥∥Log

(
RT

g Rcm

)∥∥∥, (27)

where Rg is the OptiTrack rotation matrix, Rcm is the estimated rotation, and Log(·) de-
notes the matrix logarithm mapping SO(3) to its rotation-vector representation [23]. This
formulation is equivalent to computing the minimal-angle orientation difference.

To visualize the spatial distribution of errors across the workspace, both translation
and orientation errors were represented as color-encoded point clouds, where each point
corresponds to a single tested pose and its color encodes the magnitude of the respective
error. Positional and rotational errors were visualized separately due to their different
physical units. Results for the proposed optimized Cardan-joint-aware and standard
Stewart–Gough computational models are presented in Figures 4 and 5.

Across all 3000 tested configurations, the hexapod achieved mean translational er-
rors below 0.62 mm and mean orientation errors below 0.26◦ when evaluated using the
optimized Cardan-joint-aware model. The aforementioned model consistently outper-
formed the standard Stewart–Gough model [13,14,20]. These results demonstrate that the
integration of absolute linear encoders, combined with a joint-geometry-aware kinematic
model, enables sub-millimeter and sub-degree pose estimation, confirming the suitability
of the sensor-enhanced hexapod for high-precision industrial fixturing applications [9,10].
The corresponding statistical analyses for the optimized Cardan-joint-aware model and
standard Stewart–Gough model are summarized in Table 1.
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(a) Positional error distribution. (b) Orientation error distribution.

Figure 4. Translation and rotation error distributions obtained using the optimized Cardan-joint-
aware model.

(a) Positional error distribution. (b) Orientation error distribution.

Figure 5. Translation and rotation error distributions obtained using the standard Stewart–
Gough model.

Table 1. Statistical summary of translation and rotation errors for the optimized Cardan-joint-aware
model compared with the standard Stewart–Gough model. The paired t-tests confirm that the
proposed model yields significantly lower errors in both translation and rotation. Negative t-values
indicate the superior performance of the proposed model across all 3000 evaluated configurations.

Metric Optimized
Cardan-Joint-Aware Model

Standard
Stewart–Gough Model

Mean translation error µ [mm] 0.6205 3.1684
Std. dev. translation error σ [mm] 0.2609 0.9094

Mean rotation error µ [deg] 0.4657 1.0037
Std. dev. rotation error σ [deg] 0.2417 0.5117

Paired t-test (translation) t = −131.997, p < 0.001
Paired t-test (rotation) t = −43.974, p < 0.001
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5.3. Convergence Evaluation

In addition to the workspace error statistics, we analysed the convergence behavior of
the three inverse kinematic solvers by plotting the parameter update norm ∥∆x∥2 given in
Equation (28) as a function of computation time [23] (see Figure 6).

∥∥∥∆x(k)
∥∥∥

2
=

∥∥∥x(k+1) − x(k)
∥∥∥

2
=

√
n

∑
i=1

(
x(k+1)

i − x(k)i

)2
. (28)

All three methods exhibit a nearly linear decrease on the semi-logarithmic scale, indicating
stable and well-conditioned Newton iterations (see Figure 6). The two detailed model
variants (the Cardan-joint-aware model, which solves the full equation system in (6), and the
optimized Cardan-joint-aware model, which solves the reduced systems (12) and (14)) are
both based on the same matematical model and converge to essentially identical final
parameter values. Consequently, the translational and rotational errors they produce are
indistinguishable within numerical resolution, and the only practical difference between
them is the time required to reach the stopping criterion, with the modified formulation
being consistently faster. The reported computation times were obtained on a desktop PC
equipped with an AMD Ryzen 9 9950X3D 16-core processor (Advanced Micro Devices,
Inc., Santa Clara, CA, USA), and all solvers were implemented with symbolic computation
in Python 3.11.6.

Figure 6. Convergence of different methods.

In contrast, the standard Stewart–Gough model converges much more rapidly in
time, with its convergence curve shifted far to the left, but the error distributions in the
3D plots reveal substantially larger translation and rotation errors across the workspace.
This indicates that, although numerically efficient, the simplified formulation does not
reproduce the true mechanism kinematics as accurately as the proposed models. It is
therefore best regarded as a fast approximation or an initial-guess generator rather than a
replacement for the full kinematic description when high absolute accuracy is required.

Note that the relatively long computation times are primarily a consequence of the
symbolic calculation performed using the SymPy package (version 1.12). While this sym-
bolic formulation offers substantial flexibility, particularly the ability to accommodate
arbitrary kinematic structures, as discussed in Section 4.5, it also makes the approach too
computationally demanding for real-time execution on the Raspberry Pi. As part of our
future work, we plan to derive an optimized set of analytical expressions tailored to a
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specific hexapod configuration, enabling the kinematic calculations to be executed directly
on the Raspberry Pi with significantly reduced computational effort.

5.4. Numerical Stability Evaluation

To prove the numerical stability benefits of the optimized versus Cardan-joint-aware
approach, we calculated the conditioning number (Equation (25)) in each iteration across
all 3000 tested configurations for both methods. The results, which clearly outline the
improved numerical stability of the optimized Cardan-joint-aware approach, are shown in
Figure 7.

Figure 7. Comparison of the mean and standard deviation for the Cardan-joint aware and optimized
Cardan-joint aware models.

5.5. Practical Use-Case Evaluation

Finally, we performed a series of tests to demonstrate that the robot can accurately
manipulate the hexapod after it has been randomly displaced by a human operator. In this
experiment, we used the hexapod equipped with six LinACE™ absolute linear encoders
together with a UR10e collaborative robot. Both the robot and the hexapod were fitted
with a Destaco QC30–TP30 tool-changer interface (Destaco, Auburn Hills, Michigan, USA),
and communication between the two systems was handled through a ROS.

During each trial, the human operator manually displaced the hexapod and then
engaged its hydro-mechanical brakes to lock its position. The robot then read the pose
of the hexapod’s top plate, approached it, and connected the two halves of the clamping
mechanism. Achieving this requires sub-millimeter absolute accuracy.

We performed 50 repetitions of the experiment and achieved a 100 % success rate.
Videos of the experiment are provided in the Supplementary Materials.

6. Conclusions
This work experimentally validated a direct kinematics formulation for a passive

hexapod fixture equipped with absolute linear encoders embedded in its cylindrical leg
joints. Using a UR10e robot to move the mechanism and an OptiTrack PrimeX 22 motion
capture system as an external reference, 3000 randomly selected poses were recorded
and evaluated. Across all tested configurations, the proposed Cardan-joint-aware model
achieved mean translational errors below 0.62 mm and mean orientation errors below 0.26°,
confirming that the combination of encoder instrumentation and an accurate joint geometry
model enables high-precision pose estimation suitable for industrial fixturing and flexible
assembly applications.
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The aim of this work is not to introduce a new numerical solver, but to address a fun-
damental modeling limitation that arises when classical Stewart–Gough formulations are
applied to mechanisms with non-intersecting Cardan joint axes. The primary contribution
is therefore a geometry-consistent kinematic constraint model that explicitly captures the
true joint structure and enables reliable pose reconstruction using only internal encoder
measurements, without relying on empirical calibration or data-driven correction methods.

The choice of an optical measurement system as the ground-truth reference requires
some clarification. This system enabled the acquisition of a large number of measure-
ments within a short time, allowing the entire operational workspace of the hexapod to be
thoroughly sampled. Although its absolute accuracy is lower than that of high-precision
coordinate metrology equipment, it remains sufficient for evaluating performance in the
intended industrial, non-human-interaction applications, as well as for robot-assisted ma-
nipulation of the hexapod. Using a precision coordinate measuring device would yield
higher absolute accuracy and might demonstrate even better agreement with the hexapod’s
built-in sensors; however, such increased precision would not meaningfully affect the
assessment of the system’s practical usability.

The comparison between the three inverse kinematics variants showed a clear trade-off
between model fidelity and computational cost. The optimized Cardan-joint-aware model
is relatively slow, as all kinematic quantities are represented and manipulated symbolically,
but this design choice allows the same model to be used consistently for both direct and
inverse kinematics and to handle arbitrary input vectors, with the remaining hexapod
parameters being inferred automatically from the symbolic equations. Evaluating this
unified symbolic formulation in more detail, including its behavior for different choices of
input variables, is an important topic for future work.

The two proposed models, which both incorporate the modified Cardan joint geome-
try, converge to essentially identical pose estimates and therefore yield the same translation
and rotation error distributions over the workspace. Their only practical difference lies in
runtime: the optimized Cardan-joint-aware model reaches the same convergence thresh-
old significantly faster, making it the preferable choice for real-time or high-throughput
implementations. The standard Stewart–Gough model, in contrast, exhibits much smaller
computation times and a rapid decay of the Newton update norm, but its translational and
rotational errors are substantially larger and show stronger spatial variation. This indicates
that the standard Stewart–Gough model does not capture the true mechanism kinematics
with sufficient accuracy and is best used as a fast approximation or as an initial-guess
generator rather than as a stand-alone solution when absolute accuracy is critical.

Overall, the results demonstrate that a passive hexapod equipped with absolute
encoders and driven by a numerically efficient, geometry-aware direct kinematics model
can provide reliable 6-DoF pose feedback without resorting to external measurement
systems during operation. This makes the concept particularly attractive for reconfigurable
fixtures in flexible manufacturing, where rapid changeovers and reproducible positioning
are essential. In particular, the ability to reconstruct the platform pose solely from internal
encoder measurements is a key enabling technology for human–robot collaboration: any
manual repositioning of the hexapod by an operator would otherwise be unobservable and
therefore unusable by the robot controller in the absence of such a feedback system. Future
work will focus on extending the approach to dynamic loading conditions, studying long-
term stability under thermal and mechanical drift, and exploring alternative high-level,
task-oriented optimization criteria that enable optimal changeover from one workpiece to
another. Moreover, we will derive an optimized set of analytical expressions tailored to a
specific hexapod configuration, enabling the kinematic calculations to be executed directly
on the Raspberry Pi.
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Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s26030771/s1, Video S1: Hexapod demo.
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