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In brief

This study identifies a unique class of
condensation-prone RNAs (smOOPs),
defined by semi-extractability and
enrichment in OOPS. smOOPs form
denser-than-expected RNA-RNA
subnetworks, display distinct sequence
features, and are strongly bound by
RBPs. They encode proteins rich in
intrinsically disordered regions,
suggesting a coordinated RNA-protein
interplay in phase separation.
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SUMMARY

Complex RNA-protein networks play a pivotal role in the formation of many types of biomolecular conden-
sates. How RNA features contribute to condensate formation, however, remains incompletely understood.
Here, we integrate tailored transcriptomics assays to identify a distinct class of developmental condensa-
tion-prone RNAs termed “smOOPs” (semi-extractable, orthogonal-organic-phase-separation-enriched
RNAs). These transcripts localize to larger intracellular foci, form denser RNA subnetworks than expected,
and are heavily bound by RNA-binding proteins (RBPs). Using an explainable deep learning framework,
we reveal that smOOPs harbor characteristic sequence composition, with lower sequence complexity,
increased intramolecular folding, and specific RBP-binding patterns. Intriguingly, these RNAs encode pro-
teins bearing extensive intrinsically disordered regions and are highly predicted to be involved in biomole-
cular condensates, indicating an interplay between RNA- and protein-based features in phase separation.
This work advances our understanding of condensation-prone RNAs and provides a versatile resource to

further investigate RNA-driven condensation principles.

INTRODUCTION

Cells exhibit a wide range of RNA assemblies that physically
partition into subcellular membraneless compartments or bio-
molecular condensates, but the general molecular rules govern-
ing RNA condensation and their local entrapment in ribonucleo-
proteins (RNPs) remain unclear.”? RNA-binding proteins (RBPs)
and RNAs have both been implicated in condensate formation,
and disruptions in their phase separation have been linked to
pathological conditions, including impaired embryonic develop-
ment, cancers, neurodegenerative diseases, and others.®>™®
Many proteins within RNP condensates contain intrinsically
disordered regions (IDRs) that are able to form weak multivalent
interactions,®’ and simple changes to protein sequence or
charge alone can drastically alter their condensation proper-
ties.>® Conversely, RNA molecules can drive condensation
themselves, either as a scaffold or through RNA-RNA interac-
tions (RRIs).'"'® Recently, G3BP1 was shown to work as an

“RNA condenser” that promotes intermolecular RRls that stabi-
lize stress granules,'®'” while exceptionally long cytoplasmic
mRNAs were shown to scaffold FXR1 protein into a network-
mediating signaling response.'® Understanding which and how
RNA features contribute to condensate formation and function,
particularly through their interplay with RBPs, remains a chal-
lenging question.

Several transcriptomic approaches opened the avenue for
exploring condensation principles in an RNA-centric manner.
Some of these methods are capturing RNAs based on their
biochemical properties and their associations with RBPs, which
are key for recruitment into and stabilization within conden-
sates.'® Studies on semi-extractable RNAs?>?' identified a
diverse array of RNA species associated with biomolecular
condensates, particularly within nuclear bodies.?' UV-crosslink-
ing-based methods recover RBP-bound RNAs.”'"?° In addi-
tion, RNA proximity-ligation approaches®* furthered our under-
standing of higher-order RNA structures, e.g., in stress
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granules,25 as well as intermolecular RRIs, such as those
between enhancer RNAs/mRNAs,?® small nucleolar RNAs
(snoRNAs)/target RNAs,?® and viral/host transcripts.””

To advance our current understanding of RNA-centric
condensation features, we designated a novel class of tran-
scripts as “smOOPs” (semi-extractable, orthogonal-organic-
phase-separation-enriched RNAs) due to their semi-extract-
ability>® and pronounced affinity for orthogonal organic phase
separation (OOPS).?” Together, these two methods provide a
comprehensive strategy to identify candidate RNAs that may
be involved in condensation processes—that is, condensation-
prone RNAs, which we define as highly interacting RNA mole-
cules that are likely to enrich and concentrate in phase-sepa-
rated compartments or other RNP assemblies. This group
includes RNAs known to form or localize within condensates,
alongside other RNAs sharing similar properties, which we hy-
pothesize are prone to condensation. Through RNA in situ
conformation sequencing (RIC-seq),”® we show that smOOPs
are in greater proximity to one another, suggesting that these
RNAs are closely associated within cells. Using a combinatorial
deep learning (DL) approach, we identified core smOOPs fea-
tures and revealed that these transcripts code for highly disor-
dered proteins with elevated phase-separation propensity.
Notably, this study offers a comprehensive methodological
framework for uncovering the principles of RNA assembly and
their possible role in coordinating post-transcriptional gene
regulation, accelerating the extraction of condensation-relevant
features from diverse datasets.

RESULTS

A class of semi-extractable and OOPS-enriched RNAs
across early development

To specifically enrich RNA molecules within RNP assemblies, we
employed a combination of the semi-extractability assay”® and
OOPS?? (Figure 1A). We applied these methods to recover
such RNAs during three distinct time points of early embryonic
development: naive pluripotent stem cells (nPSCs) in 2iLif condi-
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tions®®; primed epiblast stem cells (pPSCs), in which lineage
priming was prevented by Wnt inhibition®>*%; and the earliest
Whnt-differentiated primitive streak progenitors (dPSCs)®' (see
STAR Methods). A standard TRIzol RNA extraction protocol
was used as a control. We generated total RNA sequencing
(RNA-seq) libraries that showed high correlations in gene-level
counts within each developmental stage and assay type
(Figure S1A). In a principal-component analysis (PCA), the sam-
ples separated primarily by developmental stage (76% of the
variance), with nPSCs being more distinct from pPSCs and
dPSCs. The assay type further contributed to the separation
(14% of the variance), with the OOPS samples being the most
distinct (Figure S1B).

We next performed differential expression analysis to identify
semi-extractable and OOPS-enriched genes compared to stan-
dard TRIzol RNA-seq controls at each developmental stage
(Figures S1C and 1B; Data S1, S2, S3, S4, S5, and S6). By em-
ploying stringent effect-size and statistical cutoffs (at least
2-fold enrichment and an adjusted p value [padj] < 0.01), we
identified 449, 1,328, and 1,390 high-confidence genes at each
developmental stage with distinctly increased semi-extract-
ability and elevated RBP occupancy in OOPS samples, hence-
forth collectively referred to as smOOPs (Figures 1B-1E and
S1C; Table S1). Among smOOPs, we recovered RNAs known
to form condensates, such as Neat?, involved in para-
speckles?®?; Dync1h1, known to form cytoplasmic foci of 3-7
copies at active translation sites in Drosophila®®; and Peg3, for
which the human homolog was found to be enriched in
stress granules.®* These examples underscore the inclusion of
known condensate-forming RNAs within the smOOPs group
(Figure 1B). To assess this more systematically, we intersected
smOOPs with high-throughput datasets of condensate-enriched
RNAs (derived from human cells using ortholog gene transfer to
mouse®®~*%). We observed that smOOPs do not belong to a sin-
gle granule type but rather are heterogeneously distributed
across multiple condensate classes (Figure 1C). Notably, we
found significant overlap and overrepresentation of RNAs local-
ized to stress granules,*® processing bodies (P-bodies),*® and

Figure 1. Atlas of semi-extractable and OOPS-enriched RNAs across early development

(A) Experimental framework to identify RNAs that are both semi-extractable and highly RBP-bound RNAs (smOOPs) using three different TRIzol-based RNA
extractions (done in three replicates): aqueous phase of non-crosslinked sample as control, aqueous phase of heated and sheared TRIzol sample as semi-
extractable RNAs, and interphase of crosslinked sample to obtain OOPS-enriched RNAs (nPSCs, naive pluripotent embryonic stem cells; pPSCs, primed
pluripotent stem cells; dPSCs, 1 day Wnt-differentiated pPSCs).

(B) Scatterplots showing the overlap between semi-extractability and OOPS-enriched genes (padj < 0.01) as well as the Pearson correlation between their fold
changes compared to control at each developmental stage. At each stage, the genes enriched more than 2-fold compared to the control (padj < 0.01 and LFC > 1)
in both assays were defined as smOOPs.

(C) Mapping of the combined set of smOOPs from nPSCs, pPSCs, and dPSCs onto known RNP granules/membraneless compartments.

(D) Enrichment of RNAs within characterized RNP granules in the smOOPs set. Overrepresentation was assessed using a hypergeometric test, restricted to
granules from (C), where at least 10 smOOPs are specific to that granule.

(E) UpSet plot showing the intersections between smOOPs identified in nPSCs, pPSCs, and dPSCs.

(F) Percentage of gene biotypes for smOOPs and non-smOOPs in each cell state (TEC, to be experimentally confirmed).

(G) Comparison of transcript length distribution between smOOPs and non-smOOPs.

(H) Global iCLIP crosslinking signal normalized to expression and length and expression (crosslinks per million [CPM] density/semi-extractability TPM; pooled
from three replicates) for smOOPs compared to non-smOOPs. Statistical significance was determined using a one-sided Wilcoxon rank-sum test (**p < 0.0001).
(I) Representative HCR-FISH photomicrographs (scale bar: 5 pm), with the right image showing a magnified view of the region outlined by the dotted white box
(scale bar: 10 pm).

(J) HCR-FISH quantifications. The boxplot shows the mean of foci size for each target transcript, calculated as the mean of all foci for each transcript. Statistical
significance was determined using a two-sided Welch’s t test (*p < 0.01). n indicates the number of different mMRNAs against which the HCR-FISH probes were
designed. In total, >70 nuclei for a single transcript were imaged, and >890 foci were counted for each transcript.
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granules obtained by the localization of RNA (LoRNA)*°
method(Figures 1C and 1D). Although based on human data-
sets, the observed enrichments reinforce a broader link between
smOOPs and condensation propensity and indicate that they
share conserved features with RNAs found in biomolecular
condensates.

Of the total 1,828 unique smOOPs, 276 were common to all
stages, with most occurring at later stages. Notably, there
were fewer unique smOOPs identified in nPSCs (76) compared
to the other stages (pPSCs, 304; dPSCs, 385; Figure 1E). A pos-
itive correlation was observed between fold changes in the
OOPS and semi-extractability assays, particularly upon the
onset of cell fate commitment. However, the degree of enrich-
ment (fold change) for a gene in one assay (OOPS or semi-
extractability) did not always reflect the degree of enrichment
in the other (Figure 1B). Some smOOPs highly enriched in
OOPS were not similarly enriched in semi-extractability
(Figure S1D), indicating that each assay preferentially captures
distinct RNA characteristics and that the smOOPs pool is re-
wired during developmental transitions (Figures 1B-1E and
S1D). Classifying smOOPs by gene biotype revealed that the
majority consist of protein-coding genes (74.6%-82.2%), fol-
lowed by TEC genes (“to be experimentally confirmed” genes;
14.5%-16.7%) and long non-coding RNAs (IncRNAs) (2.2%-
4.1%) (Figure 1F). Notably, the TEC proportion was more than
double that of the genes not classified as smOOPs (non-
smOOPs) (6.3%). To better understand the potential function
of TECs within smOOPs, we assessed their coding potential. Us-
ing INcRNAnet,”® most TECs were predicted to be non-coding
(Figure S1E). Furthermore, ribosome profiling data in mouse em-
bryonic stem cells (MESCs)*" showed no detectable translated
open reading frames (ORFs) in TECs, supporting their classifica-
tion as non-coding transcripts (Figure S1F). The overrepresenta-
tion of TECs in the smOOPs group suggests that these under-
studied transcripts might play previously unrecognized roles in
RNA-centered processes independent of translation. In conclu-
sion, our approach identifies smOOPs as transcripts that are
both highly bound by RBPs and display distinct extractability,
revealing a developmentally regulated class of RNAs with prop-
erties consistent with condensation propensity and RNA-protein
organization.

smOOPs: Condensation-prone RNAs form RNP granules

Our dual approach enabled us to identify smOOPs as candidate
RNAs with potential for involvement in condensation processes.
We observed that smOOPs are longer RNAs compared to non-
smOOPs (Figure 1G), which may partially contribute to their
distinct properties. To validate the tendency of smOOPs for
RNP interactions, we performed global individual-nucleotide
resolution crosslinking and immunoprecipitation (iICLIP)—an
orthogonal method for mapping the cumulative RBP occupancy
across the transcriptome.*? This not only confirmed the elevated
RBP binding compared to non-smOOPs (normalized for
expression and length; nPSCs p = 1.28 x 107", pPSCs
p=1.41 x 107*%) (Figure 1H) but also provided precise positional
information on RBP interactions (Figure S1K). We hypothesized
that higher RBP occupancy, in addition to the semi-extractability
of smOOPs, could indicate that they are part of RNP assemblies.
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To test this, we performed hybridization chain reaction fluores-
cence in situ hybridization (HCR-FISH)*® using probes against
the exons of 17 candidate protein-coding transcripts, including
smOOPs and non-smOOPs (Figure S1G) with largely compara-
ble expression levels (median transcripts per million [TPM] of
21.9 for non-smOOPs and 32.5 for smOOPs; Figure S1J). Image
analysis confirmed that smOOPs formed larger foci compared to
non-smOOPs (Figures 11, 1J, and S1H; Table S2), with higher
overall intensity (Figure S1l), suggesting an enrichment of these
RNAs in localized regions within the cell, potentially reflecting
high local RNA concentrations. While these are clearly visible
foci of a single RNA, this observation does not exclude the pos-
sibility that they are part of heterotypic assemblies occupying a
larger subcellular area. Notably, this pattern was observed for
smOOPs mRNAs that were already implicated in condensate
formation: Dync1h1 and Peg3.%*** Further analysis of RNA dis-
tribution found that only 36.9% of tested smOOPs foci were nu-
clear, compared to 46.5% for non-smOOPs transcripts
(Figure S1l). Taken together, our findings suggest that smOOPs
are a unique class of semi-extractable transcripts that are highly
bound by RBPs and form larger foci within cells. These charac-
teristics provide evidence of their condensation-prone nature.

smOOPs establish RNA subnetworks with enhanced
connectivity
Given the well-established role of RBPs in regulating RNA as-
sembly, we hypothesized that smOOPs participate in broader
RNA networks. We applied RIC-seq”® to map intra- and intermo-
lecular RNA proximities across the transcriptome, capturing
both direct and indirect RBP-associated RRIs in nPSCs and
pPSCs (Figure 2A). We detected 758,135 hybrid reads in nPSCs
and 1,245,548 in pPSCs (excluding rRNA, tRNA, and mitochon-
drial reads), with 28% being intermolecular in nPSCs and 44% in
pPSCs (Figure 2B). Gene-level intermolecular hybrid frequency
was highly reproducible across samples (Figure S2A), with
PCA showing that the developmental stage explained 88% of
the variance (Figure S2B). The global distribution across tran-
script regions remained consistent across stages, with most
hybrid reads containing intronic regions (~66%, Figure S2C),
similar to previous findings.”®

We generated developmental-stage-specific RRI networks
using the intermolecular hybrid reads from the RIC-seq data,
with genes as nodes and connecting them with edges weighted
by the frequency of hybrid reads spanning each gene pair. The
inferred networks showed typical characteristics of biological
networks, such as protein-protein interaction (PPI) and RRI net-
works.** Specifically, the networks displayed scale-free-like
behavior, with most nodes having few connections and a small
number of highly connected nodes that dominate (Figure S2D).
This suggests that a few genes play central roles in the network,
while most genes have fewer connections, creating a heavy-
tailed distribution of connectivity (Figure S2D). The RIC-seq net-
works also have small-world properties, with a higher global
clustering coefficient than random networks of the same size,
suggesting modular organization (Figure S2E), and a relatively
short average path length of 3.5, indicating that most RNAs are
within short network distances, consistent with widespread
RNP-mediated proximity (Figure S2F).
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(A) Schematic overview of the approach for inferring RNA-RNA networks in nPSCs and pPSCs using RIC-seq,”® with key steps shown.
(B) RIC-seq hybrid read counts in nPSCs and pPSCs (pooled from three replicates each), categorized by type, excluding hybrid reads containing rRNA, tRNA, and

mitochondrial RNA.

(C) Visualization of the nPSC smOOPs RRI subnetwork from RIC-seq data, where nodes represent genes and edges connect gene pairs supported by hybrid
reads. Node size corresponds to degree, and edge width represents the number of hybrid reads between nodes. Unconnected smOOPs are displayed on the

right and connectivity metrics underneath.

(D) smOOPs subnetwork connectivity comparison with degree-matched control subnetworks in nPSCs and pPSCs. Density plots show the distribution of
connectivity metrics from 10,000 degree-matched sub-sampled networks (null models). The dashed lines indicate observed values for the smOOPs RIC-seq
subnetworks, with p values from permutation tests comparing smOOPs subnetworks’ metrics to the metric distributions for the degree-matched sub-sampled

networks.

Next, we explored the characteristics and connectivity of
smOOPs in these RRI networks. In the nPSCs network, 430 of
449 smOOPs were present, and in pPSCs, 1,255 out of 1,328
smOOPs were present. In the RIC-seq networks, degree (the
count of distinct nodes linked to each gene) strongly correlated
with expression for genes of similar length, regardless of whether
they were classified as smOOPs (Figure S2G), likely reflecting
the higher sensitivity of RIC-seq for detecting interactions
involving abundant RNAs. Although smOOPs appeared to
have a high degree compared to all non-smOOPs, non-smOOPs
matched for expression levels and lengths (Figure S2H) ex-
hibited similarly high degrees (Figure S2I). This suggests that
the observed elevated degree of smOOPs is primarily driven
by their expression and length rather than their smOOPs status.

To explore network connectivity patterns among smOOPs, we
focused on the smOOPs subnetworks within the RIC-seq data
(Figures 2C and 2D). The nPSC and pPSC smOOPs subnetworks
appeared highly connected based on several network connec-
tivity metrics: edge density (the proportion of possible edges
present), largest connected component (the size of the
largest connected subnetwork), and global clustering coefficient
(the tendency of nodes to form tightly connected groups)
(Figures 2C and 2D). Because nodes with high degrees are inher-
ently more likely to connect, we specifically tested whether
smOOPs preferentially connect with each other rather than being
broadly or randomly connected across the transcriptome. To do
this, we generated degree-matched random subnetworks by
sampling RNAs with a similar degree as smOOPs. These
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degree-matched random subnetworks provide a null expecta-
tion for connectivity, enabling comparison to the observed
smOOPs subnetwork while controlling for biases related to de-
gree, expression, and transcript length. Compared to these
random expectations, smOOPs subnetworks exhibited signifi-
cantly greater connectivity across all metrics in nPSCs and
pPSCs (Figure 2D), indicating that their interconnectivity cannot
be explained by their degree alone. Furthermore, despite the
identity of smOOPs varying across development (Figure 1C),
this characteristic is maintained in both nPSCs and pPSCs
(Figure 2D). Together, these findings suggest that smOOPs are
more interconnected among themselves even when controlling
for general connectivity with the whole transcriptome, reflecting
a specific network organization that points to their proximity in
cells.

DL accurately predicts smOOPs from intrinsic

and regulatory RNA features

Given that smOOPs are enriched in the semi-extractability and
OOPS assays (Figure 1) and form denser RNA subnetworks
than expected by chance (Figure 2), we pursued an in-depth
investigation of the RNA features that define this group of
condensation-prone transcripts. Using intrinsic RNA features—
such as sequence and structure—and transcriptome-wide
data for trans-acting factors, we developed an explainable DL
approach to distinguish smOOPs from a background RNA pop-
ulation that are neither semi-extractable nor OOPS enriched. We
focused on NnPSCs due to the greater availability of public tran-
scriptomic data compared to pPSCs, allowing us to utilize a
more extensive set of features. Thus, for our binary classification,
smOOPs from nPSCs with processed transcript lengths under
20 kb were used as the positive class (n = 447 out of 449), while
genes without strong evidence of enrichment at any stage of the
semi-extractable assay or OOPS vs. control (padj > 0.01 and |log
fold change| [|LFC|] < 1.4; see STAR Methods) were defined as
the all-stage control genes (n = 1,232), referred to herein as com-
mon control genes (Table S1). The control genes have similar
expression levels to smOOPs (Figure S3A), which strengthens
our comparison by reducing potential confounding effects from
expression differences. To identify the unique features of
smOOPs, we trained DL classifiers with multiple feature sets:
RNA nucleotide sequence, global RBP occupancy (global iCLIP;
this study), N6-methyladenosine (m®A) modification sites (m®A-
iCLIP),*>  transcriptome-wide base-pairing intramolecular
(PARIS-Intra) and intermolecular (PARIS-Inter) interactions,® in
silico structure prediction with RNAfold,*” and RNA-binding sites
of 46 RBPs determined via CLIP from various mouse cell lines
from the POSTARS database.*® We encoded all features as po-
sitional information layers for each transcript, enabling efficient
feature extraction (Figure 3A; see STAR Methods). To capture
complex patterns and positional dependencies in the data, we
implemented a DL architecture consisting of multiple convolu-
tional neural network (CNN) blocks, a recurrent neural network
(RNN), and a multi-layer perceptron (MLP) for classification
(Figure 3A). The main goal was not merely to achieve accurate
predictions but also to extract and understand the discriminating
power contributed by each dataset, both individually and in com-
bination. To accomplish this, we trained a separate model on
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every subset of the seven datasets, resulting in 127 unique
models, each trained in eight replicates (Figure 3A; Table S3;
see STAR Methods).

Given that smOOPs were longer than control transcripts, with
a ~3-fold longer coding sequence (CDS) as the primary driver
of the overall length enrichment (Figure S3B) and because all
input tracks implicitly encode transcript length, we additionally
trained a baseline model using sequence length as the sole
feature, also in 8 replicates (Table S3). Transcript length alone
achieves a good baseline performance (area under the receiver
operating characteristic curve [AUROC] = 0.82, accuracy =
74%), which indicates that length provides meaningful informa-
tion for smOOPs prediction (Figure 3B). The DL model trained
only on sequence data greatly improved the prediction accu-
racy on the smOOPs previously not seen by the model
(AUROC = 0.91, accuracy = 81%) (Figures 3B, S3C, and
S3D), indicating that although length is a contributing factor,
sequence-specific features provide critical information for
accurately distinguishing smOOPs. Notably, the sequence-
based model outperformed models trained on any other indi-
vidual dataset (Figure 3B, number of datasets = 1). The sec-
ond-highest predictive performance was achieved by models
trained exclusively on global iCLIP data, with an AUROC of
0.89 and an accuracy of 79%, which may reflect the fact that
both iCLIP and OOPS rely on UV crosslinking to detect RBP
binding and therefore sample related biochemical events.
Generally, as additional datasets were introduced, the predic-
tive power gradually improved, ultimately reaching an AUROC
of 0.94 and an accuracy of 83% with all datasets included
(Figure 3B, number of datasets = 7). To confirm that the DL
model accurately classifies smOOPs using unseen data from
a different experimental batch, we repeated the semi-extract-
ability assay and OOPS in nPSCs. The new batch produced a
partially overlapping but not identical smOOPs set compared
with the original dataset (Figure S3E; Tables S1 and S5), which
served as an independent test set for model evaluation. We
observed a reasonably strong generalization of the model to
the new smOOPs and control datasets, with the all-features
model achieving an AUROC of 0.79 (Figure S3F). Again, the
predictive performance of the DL model trained on all features
or on the sequence alone (AUROC of 0.75) exceeded the model
trained on transcript length alone (AUROC of 0.67), empha-
sizing that the selected features are robust predictors across
batches.

To highlight how each information layer contributed to the
model’s predictive power beyond the others, we assessed the
average AUROC improvement by comparing the model’s perfor-
mance with and without each dataset. Our analysis revealed that
the sequence, POSTARS peaks, global iCLIP, and PARIS-Intra
layers significantly improved the performance of the models in
which they were incorporated, giving us the confidence that
these datasets contain important information about the features
that distinguish smOOPs transcripts (Figure 3C). Surprisingly,
RNAfold predictions reduced performance, presumably by intro-
ducing noise, due to the binary encoding of only the optimal
structure, the limited ability of free energy minimization algo-
rithms to predict secondary structures for long sequences,*’
and the absence of context-specific information (e.g., cellular
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Figure 3. Deep learning-based classification of smOOPs and control transcripts

(A) Schematic visualization of the feature encoding and deep learning model training across 127 unique combinations of transcriptomic datasets. Each com-
bination was used to train a model through convolutional and recurrent layers for nPSC smOOPs and control transcript classification.

(B) Model performance across dataset combinations. (Left) AUROC of the best model trained on each unique dataset combination. Dots represent included
datasets, with lines connecting models where one is a subset of the other, color coded by AUROC improvement. (Right) Boxplots showing the median per-
formance and interquartile range for all the models for which specific datasets were included.

(C) AUROC improvement with the addition of a particular dataset to each combination of previously included datasets. Color indicates the p value from a two-

sided Welch’s t test against zero.

(D) Pairwise feature combination analysis quantifying the difference between maximum individual and joined contributions of features to model performance.
Statistically significant results are marked (‘o < 0.05, two-sided Welch’s t test against zero).

factors like RBPs or the influence of in vivo conditions that can
affect folding). Most features showed minimal AUROC improve-
ment when used in combination, likely because they provided
limited additional information (Figure 3C). To explore this overlap
further, we analyzed feature pairs from the top four most infor-
mative datasets (sequence, POSTARS, global iCLIP, and
PARIS-Intra) to assess their individual and combined contribu-
tions to AUROC. Excluding both features and adding one or
both back revealed additive effects, particularly between RNA
sequence and RBP occupancy. Notably, sequence data alone
(which also reflect transcript length) encode most information
represented by the other datasets, except for individual RBP
binding profiles, which likely refined the model by distinguishing

sequences recognized by specific RBPs for better information
extraction (Figure 3D). To validate the contribution of each
feature across different transcript regions, we conducted mask-
ing experiments in which we omitted the 5’ untranslated region
(5" UTR), CDS, and 3 untranslated region (3’ UTR) signal
(Figure S3G). We found that the sequence data contributed
most to the predictive power in the CDS, while the global iCLIP
and POSTARS3 were most informative in the 3’ UTR. In contrast,
the performance of the PARIS-Intra-based models decreased
when either the CDS or the 3' UTR was masked (Figure S3G).
Together, our analyses demonstrate that using the selected
datasets within our DL framework enabled accurate smOOPs
prediction and that unbiased training on all feature combinations

Cell Genomics 6, 101065, February 11, 2026 7




Cell Genomics

- ¢? CellPress
OPEN ACCESS

Gene type

Cluster

protein-coding
IncRNA
TEC

mm other

Cluster 2

n=119

|

16

<

Z Jusuodwod dvInn

Cluster 1

n =328

4 6 8 10
UMAP component 1

2

0

-2

81090s aoue

<O 0>

(&)

004
o0z
-0000

002

004

b=

Global iCLIP -

PARIS-Intra -
POSTARS sum

100

90

80

70

60

50

40

30

20

10

2100s aouepodw|

g g

0

Global iCLIP-

PARIS-Intra-
POSTAR3 sum-

cbs
Relative position (bins)

Relative position (bins)

8 &
O » 8
o & E
&> o 2
£ 5
3 o
o w 0
< © . 3a
e T &
| R s
c
o 8
© k=
172
[e]
o o
] [
=
©
S
14
o
(]
o
N
=l
o
o o o o o o o ® © < [
S w oS W o - - Q Q = <
- v o ©o o o o o
(%) @oualayig SHUI|SSOIO PasI|ewloN
(O]
o »
0 [+
O sw
o
S wM
E s
< 3 o
o O
22
o
! R 5 ©F
] £
| e &
c
082
o g
o o
~ o
=
B
g ®©
© o
14
o
N
e
£a
_&C
o
o o o o o N O ®©® © ¥ o
o v o Ww o < ©w © © o o©
-~ v ~ o o o o o o
(%) @oualayiq SHUI|SSOIO PaSI|eW.IoN
(18

20 30 40 50 60 70 80 90 100

10

10 20 30 40 50

40 END

30

20

0 START 10

cbs
Relative position (bins)

CDs

Relative position (bins)

o~
P
5| .
8|«
=
] o S B B ) S
~ & 2 2 3 3
o) :
5[ o
=
o ,
|
L) S ) S
- - =] o
(¢:01 %) SIUNOD BAUI-SIYVd PaSI[eWION

I

— FCOQHLA
F¥4730

y
L i
&

w
<
N
=}

FYOZLNV4
FLINEGW
F¢HZ3
Fsnd
Frdll

ZX048d

2100s @ouepodw|
| JaIsn|o

Full
transcript
nPSCs non-smOOPs

cDS  3UTR
Transcript region

5UTR
e NPSCs smOOPs

FZOaHLA

6
—~ 4
o
o 2
2
X0
_.2_

2100s aouepodw|

Zasno

(legend on next page)

Cell Genomics 6, 101065, February 11, 2026

8



Cell Genomics

revealed nuanced dataset interactions predictive of these
transcripts.

Deconvolving the features of smOOPs
To extract the unique features distinguishing smOOPs, we used
integrated gradients to compute nucleotide-resolution feature
importance scores for the models trained on each of the top
four datasets that improved the average model performance
(i.e., sequence, POSTARS, global iCLIP, and PARIS-Intra). Over-
laying the importance scores over each transcript uncovered
distinct patterns of feature contributions for each individual data-
set (Figure S3H). We analyzed global feature patterns by dividing
smOOPs transcripts into 100 bins and averaging feature impor-
tance scores within each bin, capturing patterns across data-
sets. We then clustered smOOPs based on the importance
scores across these feature dimensions, revealing two clusters
(cluster 1, n = 328; cluster 2, n = 119) (Figure 4A; Table S1).
Cluster 1 primarily contained mRNAs (98.2%), while cluster 2
was a mix of TECs (56.4%), mRNAs (36.4%), and IncRNAs
(7.3%) (Figure 4A). We observed distinct sequence compositions
in each cluster: cluster 1 exhibited a pronounced cytosine
(C) enrichment across the transcript, particularly within the 5’
UTR and CDS, which overlapped with high PARIS-Intra impor-
tance (Figure 4B). In contrast, cluster 2 displayed increased
overall importance of uridine (U), with adenine (A) being slightly
more important at the 5 ends of the transcripts (Figure 4C).
Although global RBP occupancy (global iCLIP) is a key feature
across all smOOPs, our analysis highlighted the positional spec-
ificity of RBP binding in each cluster: the importance of RBP oc-
cupancy was predominantly concentrated in the 3' UTR for clus-
ter 1, while for cluster 2, it was distributed more uniformly across
the entire transcript (Figures 4B and 4C). Furthermore, the re-
gions of POSTARS importance, summing individual CLIP binding
profiles (POSTAR3 sum), portrayed more specific regions of
importance, emphasizing the precise nature of RBP interactions
at these sites (Figures S4A and S4B). Cumulatively, our DL
approach pinpoints the key biological information for RNA
condensation propensity, with sequence, intramolecular struc-
ture, and RBP binding information being the most predictive.

¢? CellPress
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Comparing nPSC smOOPs with all non-smOOPs transcripts,
we sought to validate and deepen the insights gained from
our models by directly investigating features highlighted as impor-
tant. Building on model predictions, a lower sequence complexity
compared to controls was confirmed for both clusters: the mRNAs
in cluster 1 portrayed a C-rich CDS (Figure 4D), with the “CCC”
triplet being the most enriched, followed by “GCC,” “CGC,”
“CCG,” and “CCA” (Figures S4C and S4E). The most frequent trip-
lets in the U-rich cluster 2 (Figure 4E) included “UUU,” followed by
“UUA,” “UCU,” “UGU,” and “UAU” (Figures S4D and S4F). Global
iCLIP data showed enhanced global RBP binding in the 3’ UTR of
smOOPs in cluster 1 (Figure 4F); however, there was an overall
10-fold greater RBP occupancy for transcripts in cluster 2, and
this was also more pronounced within the 3 UTRs of cluster
2 mRNAs (Figures 4G and S4G). Since UV crosslinking preferen-
tially targets uridines, we cannot determine the exact extent to
which this bias influences the observed enrichment in RBP occu-
pancy. Importance scores for POSTARS data revealed that in both
clusters, RBFOX2, SRRM4, and SRSF3 carried key predictive in-
formation (Figure 4H). Since SRRM4 is not expressed at sufficient
levels in our cell line, the model likely determined its importance
based on the presence of its binding motifs. The frequency of intra-
molecular interactions determined by PARIS was also significantly
increased in the CDS of smOOPs from cluster 1 and was overall
higher in smOOPs from cluster 2 (Figure 4l). Despite these specific
features of smOOPs, we did not observe any major differences in
translation efficiency®® or in mRNA stability®' compared to non-
smOOPs (Figures S4H-S4J).

These findings highlight that smOOPs are more strongly
bound by RBPs, generally more structured than non-smOOPs,
and can be divided into two clusters with distinct sequence
composition in NnPSCs: one comprising C-rich mRNAs and the
other predominantly comprising A/U-rich transcripts. In both
clusters, RBP binding plays a crucial role, emphasizing its role
in shaping the behavior of these unique transcripts.

smOOPs mRNAs encode proteins rich in IDRs
Since smOOPs in nPSCs were clearly distinguished from control
transcripts based on their sequence features, we investigated

Figure 4. Analysis of smOOPs predictive features

(A) Uniform manifold approximation and projection (UMAP) of binned importance scores per feature for nPSC smOOPs. Each dot represents a transcript, color
coded by cluster. The accompanying pie charts show the distribution of gene types within each cluster (TEC, to be experimentally confirmed).
(B) Heatmap showing the average nucleotide- and dataset-specific feature importance scores for all transcripts in cluster 1, divided into 10 bins for the 5 UTR and

50 bins each for the CDS and 3’ UTR.

(C) Heatmap showing the average nucleotide- and dataset-specific feature importance scores for all transcripts in cluster 2, binned into 100 intervals along the

transcript length.

(D) Per-bin difference in average nucleotide content between cluster 1 smOOPs and control transcripts, with nucleotide content divided into 10 bins for the 5’ UTR

and 50 bins each for the CDS and 3’ UTR.

(E) Per-bin difference in average nucleotide content between cluster 2 smOOPs and control transcripts, with nucleotide content divided into 100 bins across the

transcripts.

(F) Median global iCLIP signal, normalized for expression and binned (10 bins for the 5 UTR and 50 bins each for the CDS and 3’ UTR; pooled from three
replicates) for cluster 1 and control transcripts. Shaded areas represent 95% confidence intervals per bin, estimated via bootstrapping.

(G) Median global iCLIP signal, normalized for expression and binned (100 bins across the transcripts; pooled from three replicates) for cluster 2 smOOPs and
control transcripts. Shaded areas represent 95% confidence intervals per bin, estimated via bootstrapping.

(H) Average importance scores for CLIP datasets from POSTARS3 across all transcripts in clusters 1 and 2, shown for each RNA-binding protein with 95%

confidence intervals.

(I) Bar charts showing PARIS intramolecular hybrid counts across individual transcript regions for cluster 1 and smOOPs compared to all non-smOOPs tran-
scripts, adjusted for region length and expression (***p < 0.001, two-sided Welch'’s t test).
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Figure 5. IDR content, amino acid composition, and functional characteristics of smOOPs-encoded proteins
(A) Percentage of smOOPs transcripts in the C-rich and A/U-rich clusters across developmental stages (nPSCs, pPSCs, and dPSCs).
(B) Density distributions of semi-extractability and OOPS enrichment for smOOPs transcripts in the C-rich and A/U-rich clusters across nPSCs, pPSCs, and

dPSCs.

(C) Amino acid enrichment in C-rich and A/U-rich smOOPs clusters compared to non-smOOPs. Dot size indicates the percentage of C/A nucleotides in codons
encoding each amino acid, with gradient strength showing statistical significance for the difference in mean codon usage (two-sided Welch’s t test).
(D) Enrichment of amino acid groups in C-rich and A/U-rich smOOPs clusters compared to non-smOOPs.
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whether these features persisted throughout development. To
address this, we trained an additional DL model using only
the sequence of smOOPs transcripts identified at all three devel-
opmental stages—nPSCs, pPSCs, and dPSCs—and compared
them to the same set of common control transcripts (Table S1).
This newly trained model achieved a performance comparable to
that of the nPSC-only model (AUROC = 0.90, accuracy = 82%),
indicating that sequence features uniquely define smOOPs
throughout embryonic development, not only in nPSCs. Further-
more, when examining the model’s learned features, we again
identified two smOOPs clusters—C rich and A/U rich—which
showed 96% consistency with those from the nPSCs-only
model (Figures S5A and S5B; Table S1). This confirms that this
separation is a general feature of smOOPs that persists
throughout development.

Interestingly, the ratio of C-rich to A/U-rich smOOPs shifts dur-
ing development. In nPSCs, C-rich smOOPs were predominant,
comprising approximately 75% of nPSC-specific smOOPs. In
dPSCs, their proportion declined to 56%, reflecting an increased
representation of A/U-rich smOOPs at later developmental
stages (Figures 5A and S5C). This observation prompted further
investigation into how smOOPs behavior changes across semi-
extractability and OOPS assays for the two clusters. While C-rich
smOOPs maintained consistent enrichment across both assays,
A/U-rich  smOOPs became increasingly semi-extractable
during development while showing reduced OOPS enrichment
(Figure 5B). This coincided with a higher proportion of mMRNAs
in the A/U-rich cluster and a gradual decline of TECs
(Figure S5D).

To elucidate the basis of the nucleotide composition differ-
ences between the smOOPs clusters, we examined the contri-
bution of codon bias or amino acid composition. In line with
the A/U-rich smOOPs nucleotide bias, the amino acid composi-
tion of this group was heavily enriched in charged and polar res-
idues (Figures 5C and 5D). In contrast, C-rich smOOPs encoded
proteins enriched in proline and polar uncharged residues,
particularly serine (Figures 5C and 5D). Since many enriched
amino acids (proline and serine in the C-rich cluster and gluta-
mine, glutamate, and lysine in the A/U-rich cluster) are all highly
abundant in the IDRs of proteins,®® we investigated whether
smOOPs encode proteins with an inherent propensity for
condensation.

Structural analysis confirmed this hypothesis, revealing that
both C-rich and A/U-rich clusters encode more proteins with
IDRs and a higher percentage of disordered amino acids
(Figure 5E). Notably, as many as 84.4% of C-rich and 86.2%
of A/U-rich smOOPs-encoded proteins contain IDRs, while
only 57.8% of non-smOOPs-encoded proteins contain IDRs
(Figure 5E). In addition, smOOPs-encoded proteins are, on
average, more than twice the size of the non-smOOPs group, re-
sulting in significantly longer IDRs. Both the number of IDR-con-
taining proteins and the proportion of disorder within these pro-

¢? CellPress

OPEN ACCESS

teins (Figure 5E) suggested that smOOPs-encoded proteins
might be involved in condensate formation. We tested this using
the PICNIC (proteins involved in condensates in cells) prediction
model,>? providing further evidence that smOOPs-encoded pro-
teins are also more likely to be involved in condensates
(Figures 5E and S5F). Observed protein features were reproduc-
ibly recapitulated among smOOPs in the second nPSCs batch
(Figure S5E). Interestingly, despite their shared structural prop-
erties and condensation potential, the two clusters encode pro-
teins with distinct cellular functions. Gene Ontology (GO) anal-
ysis revealed that C-rich cluster proteins are localized to the
cell membrane and periphery, are mainly involved in develop-
mental processes, and play roles in protein binding. In contrast,
A/U-rich cluster proteins are mostly nuclear, involved in gene
regulation and containing nucleic-acid-binding domains, espe-
cially zinc-finger motifs (Figures 5F and S5G; Table S4).

These findings suggest that smOOPs encode two classes of
proteins with high condensation propensity but distinct cellular
roles. Differences at both the RNA and protein levels underscore
the sequence-driven and developmentally regulated nature of
smOOPs, highlighting their involvement in condensate formation
throughout development.

DISCUSSION

Understanding the principles governing RNA condensates in
their native cellular context is crucial to uncovering how they
shape cellular biology. In this study, we use a dual methodol-
ogy —semi-extractability assay and OOPS—to define smOOPs
based on their shared biochemical properties during early mu-
rine embryonic development. This combination provides a
comprehensive view of RNAs potentially involved in RNP assem-
blies and condensation. smOOPs are a distinct class of long
transcripts that consist of predominantly protein-coding RNAs
exhibiting subcellular localization in larger foci, among which
many are enriched in known transcriptomes of RNP granules.
RNA networks from RIC-seq further revealed that smOOPs
form more densely connected subnetworks than expected, sug-
gesting their proximity to one another and potential spatial orga-
nization and cellular compartmentalization.

We systematically investigate the characteristics of smOOPs
using an integrative DL approach that identifies two clusters
based on sequence composition, RBP-binding patterns, and
structuredness: C-rich mRNAs with structured regions and
extensive 3' UTR RBP binding and A/U-rich transcripts with an
overall higher RBP occupancy. A previous report has linked
longer mRNAs and 3’ UTR-bound RBPs with local translation
in subcytoplasmic compartments®’; however, we detected no
general differences in the translational output of smOOPs.
This heterogeneity suggests that smOOPs may contribute
to condensation through diverse mechanisms or in different
cellular contexts. Across the three developmental time points,

(E) Percentage of proteins with IDRs and measures of disorder for C-rich and A/U-rich smOOPs clusters compared to non-smOOPs. Bar chart shows the
percentage of proteins with IDRs, and the boxplots show the percentage of disorder in proteins, their mass, and PICNIC scores (proteins involved in condensates
in cells)®? (***p < 0.001; two-sided Wilcoxon rank-sum test for disorder percentage, two-sided Welch’s t test for mass and PICNIC scores).

(F) GO term enrichment analysis for C-rich and A/U-rich smOOPs clusters. The dot size represents the percentage of proteins enriched for each term, and the

color intensity reflects statistical significance (false discovery rate [FDR]).

Cell Genomics 6, 101065, February 11,2026 11




¢? CellPress

OPEN ACCESS

transcripts in the C-rich cluster show stable enrichment in both
methods, while those in the A/U-rich cluster become increas-
ingly semi-extractable and less OOPS enriched. This suggests
that A/U-rich smOOPs undergo greater developmental changes
in RNP assembly and may play distinct roles in condensate for-
mation at later developmental stages.

The most striking finding is the link between smOOPs’ RNA
sequence features and the presence of IDRs in their encoded
proteins. Disordered protein regions tend to be encoded by re-
petitive nucleotides or sequence motifs, such that the sequence
repetitiveness is reinforced by codon biases.>* Here, we show
that both smOOPs clusters encode a significantly higher propor-
tion of proteins with IDRs compared to non-smOOPs. However,
the two clusters are distinguished by differences in nucleotide
and amino acid composition, which likely contribute to the
distinct functionalities of their encoded proteins. This finding
hints at a possible coordination between RNA identity and the
phase-separation potential of the proteins they encode, a
concept that requires further systematic investigation.

While earlier studies have examined the roles of specific RNAs
or RBPs in condensation, this study takes a broader approach by
identifying and characterizing an entirely new class of RNAs with
potential implications for phase separation. This resource and
our findings provide a foundation for future research aimed at
confirming the involvement of smOOPs in condensation, unrav-
eling the functional relevance of the two identified clusters, and
elucidating the mechanisms by which RNA features may coordi-
nate with protein disorder and phase-separation potential. Such
coordination has been described for nuclear speckles, where
groups of proteins with condensation-prone domains promote
the selective sequestration of related mRNAs encoding these
proteins.®* Comparison of smOOPs with high-throughput data-
sets of condensate-enriched RNAs revealed a significant over-
representation of RNAs localized in stress granules. While long
RNAs have been reported to localize in stress granules,*®:°%%6
we also observed this enrichment in unstressed cells, raising
the question of whether smOOPs act as early scaffolds for
condensate formation.

Repeating the semi-extractability assay and OOPS years later
in NnPSCs confirmed that smOOPs are primarily defined by
shared features, which remained consistently predictive despite
batch-to-batch differences in gene-level identities. Our definition
of smOOPs used stringent thresholds to capture strong effect
sizes and ensure that the identified RNAs exhibited robust
semi-extractability and OOPS enrichment. Nonetheless, these
properties lie on a continuum rather than forming discrete cate-
gories, so fixed cutoffs inevitably exclude RNAs with intermedi-
ate characteristics. Thus, we view smOOPs as an assay-defined
subset with consistent features, though their exact membership
may vary across experiments due to biological or technical
variability.

In terms of methodology, our study demonstrates the power of
explainable machine learning to reveal complex patterns across
diverse datasets, enabling unbiased classification and charac-
terization of gene groups. This is especially valuable in the study
of condensates, where distinguishing different assemblies and
RNA functions is challenging using traditional approaches. By
integrating RNA proximity-ligation datasets into network-based
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analyses, we provide an approach to uncover new insights into
the features organizing specific RNA networks, aiding our under-
standing of protein-RNA condensates.

Overall, this study opens a new avenue for understanding the
complex interplay between RNA identity and protein condensa-
tion potential in cellular organization and function, positioning
smOOPs as potential players in the regulation of condensation
processes.

Limitations of the study
This study presents a new class of semi-extractable RNAs with
high RBP occupancy determined by both OOPS and global
iCLIP. Both assays rely on UV crosslinking, which has a strong
bias toward uridines. Therefore, we cannot determine to what
extent the observed higher RBP occupancy, especially in the
A/U-rich cluster, reflects the actual increase in biological interac-
tions or increased crosslinking efficiency. Although we per-
formed orthogonal HCR-FISH experiments that have been
used as proxies for condensation, these did not directly assess
phase-separation processes.

smOOPs networks obtained by RIC-seq rely on pairwise RNA
proximity, showing that individual smOOPs can be near each
other, though not necessarily all at the same time. Furthermore,
it remains unclear whether their non-random association and
proximity result from RNA condensation processes (such as
co-assembly) or if they are influenced by other factors. GO
term analysis suggests different functions of smOOPs-encoded
proteins from C- and A/U-rich clusters; however, the functional
implications in the context of development and condensate for-
mation could be further explored.
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Lead contact
Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Miha Modic (miha.
modic@kit.edu).

Materials availability
The strains generated in the course of this work are freely available to aca-
demic researchers through the lead contact.

Data and code availability

Newly produced and publicly available data were used for this work. Newly
produced data were deposited on ArrayExpress under accession numbers
E-MTAB-14762 (RNA-seq for semi-extractability and OOPS assays in
nPSCs, pPSCs, and dPSCs), E-MTAB-15428 (RNA-seq for semi-extractability
and OOPS assays in nPSCs, second batch), E-MTAB-14763 (global iCLIP),
and E-MTAB-14764 (RIC-seq). Raw PARIS data are available at GEO:
GSE74353. Raw ribosome profiling data are available at GEO: GSE30839,
with processed data (translation efficiency values) obtained from
the supplemental information.”® Ribosome profiing data on mMESCs
were downloaded from GEO (accession numbers GEO: GSM3943973 and
GSM3943975). SlamSeq metabolic RNA-seq data were downloaded from
GEO: GSE99978. Raw miCLIP (mPA) data are available at GEO: GSE169549.
POSTARS3 CLIP datasets were obtained from the POSTARS platform (http://
postar.ncrnalab.org/). The best-performing models trained for this manuscript
are deposited at Zenodo (https://doi.org/10.5281/zenodo.17076365). The
PICNIC scores for the mouse proteome were obtained from the PICNIC plat-
form (https://picnic.cd-code.org/). The IncRNA prediction scores were calcu-
lated using IncRNAnet (https://github.com/nofundamental/IncRNAnet). The
code and notebooks to analyze the data and produce the figures in this
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work are available at https://github.com/ModicLab/smOOPs_project. The im-
ages and code used for HCR-FISH quantification are deposited at Zenodo
(https://doi.org/10.5281/zenodo.13860869).
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STARxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TRIzol Invitrogen Cat#15596018

TRIzol-LS Invitrogen Cat#10296010

Proteinase K Roche Cat#3115828001

Phenol:Chloroform:lsoamyl Alcohol Sigma Cat#P3803

Agencourt AMPure XP Beckman Coulter Cat#A63881

RNase | Thermo Scientific Cat#EN0602

NuPAGE® Novex 4-12% Bis-Tris Gel 1.0 mm, 12 well Thermo Fisher Cat#NP0322BOX

6% TBE-Urea gel Thermo Fisher Cat#EC6865BOX

Disuccinimidyl suberate (DSS) Thermo Fisher Cat#21655

Micrococcal Nuclease (MNase) ThermoFisher Cat#ENO0181

T4 RNA ligase NEB Cat#M0204L

FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific Cat#EF0651

T4 Polynucleotide Kinase (PNK) NEB Cat#M0201L

RecJf Exonuclease NEB Cat#M0264S

T4 DNA Ligase Thermo Fisher Cat#EL001

MyOne Streptavidin C1 beads Invitrogen Cat#65001

Nuclease-free water Thermo Fisher Cat#AM9930

Turbo DNase Thermo Fisher Cat#AM2238

Phusion™ High-Fidelity PCR Master Mix with HF NEB Cat#M0531L

Buffer

Geltrex™ Reduced-Growth Factor Basement- Gibco Cat#A1413302

Membrane Matrix, LDEV-free, stem-cell qualified

p-Slide 8 Well Glass Bottom Ibidi Cat#80827

Fluoromount G Thermo Scientific Cat#00-4958-02

Pierce™ 16% Formaldehyde (w/v), Methanol-free ThermoFisher Cat#28906

Critical commercial assays

RNeasy Plus Mini Kit (Qiagen) Qiagen Cat#74134

CORALL Total RNA-Seq V1 with RiboCop rRNA Lexogen Cat#95.96

depletion

pCp-biotin ligation kit Thermo Fisher Cat#20160

Superscript IV RT kit Invitrogen Cat#18090050

Deposited data

Total RNA-seq for semi-extractability and OOPS This paper ArrayExpress (E-MTAB-14762; E-MTAB-15428)

assays

Global iCLIP This paper ArrayExpress (E-MTAB-14763)

RIC-seq This paper ArrayExpress (E-MTAB-14764)

Raw images and image analysis scripts This paper https://doi.org/10.5281/zenodo.13860869

Trained models (with highest performance) This paper https://doi.org/10.5281/zenodo.17076366

Ribo-seq dataset
Ribosome profiling data (monosome and disome)

SLAM-seq dataset
miCLIP (m6a) dataset
POSTARS collection

Ingolia et al., 2011°°
Tuck et al., 2020"!

Herzog et al., 2017°"

Modic et al., 2024*°
Zhao et al., 2022%¢

GEO, Accession number: GSE30839

GEO, Accession numbers: GSM3943973
and GSM3943975

GEO, Accession number: GSE99978
GEO, Accession number: GSE169549
http://postar.ncrnalab.org

(Continued on next page)
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Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
UniProt The UniProt Consortium®’ https://www.uniprot.org

STRING version 12.0
Original code for data analysis

Szklarczyk et al., 2023°°
This paper

https://string-db.org
https://github.com/ModicLab/smOOPs_project

Experimental models: Cell lines

M. musculus: WT pluripotent stem cells IDG3.2
(129S8/B6 background)

M. musculus: TGFP/+;Foxa2tagRFP/+ (G9)

on IDG3.2 background

Hitz et al., 2007°°

Scheibner et al., 2021%°

(RRID:CVCL_A2WN)

Oligonucleotides

Oligonucleotides

This paper

Table S4

Software and algorithms

Fiji

Rstudio v2024.12.1
R version 4.3.2
Python 3.9
iCount-Mini

Tosca v1.0.0
nf-core/rnaseq v3.4

R version 4.4.0
DESeq?2 v1.44.0

Ashr
ComplexHeatmap v2.20.0

Ultraplex v1.2.9
nf-core/clipseq v1.0.0
Cutadapt

BBMerge

featureCounts
igraph v2.0.3
bedtools
RNAfold

IncRNAnet
TensorFlow 2.12.0
UMAP

Optuna framework
riboseqg-flow v1.1.1
RiboCode 1.2.14
clipplotr
ComplexUpset 1.3.3

Schindelin et al., 2012°"

R Core Team

Chakrabarti et al., 2023

Bushnell et al., 2017°%;
Ewels et al., 2020%*

R Core Team
Love et al., 2014%°

Stephens, 2017°%°
Gu et al., 2016°”

Wilkins et al., 2021°®
West et al., 2023%°
Martin, 20117°
Bushnell et al., 2017%°

Liao et al., 2013""

Csardi & Nepusz, 2006">"°
Quinlan & Hall, 20107
Lorenz et al., 20117

Baek et al., 2018%°
Abadi et al., 2015”°

Mclnnes and Healy, 20187¢

Akiba et al., 20197°
losub et al., 202477

Xiao et al., 2018"®
Chakrabarti et al., 2023"°

https://fiji.sc/

http://www.posit.co/
https://www.r-project.org/
https://www.python.org
https://github.com/ulelab/icount-mini
https://github.com/amchakra/tosca
https://nf-co.re/rnaseq/3.4

https://www.r-project.org/

https://bioconductor.org/packages/release/bioc/
html/DESeg2.html

https://cran.r-project.org/package=ashr

https://bioconductor.org/packages/release/bioc/
html/ComplexHeatmap.html

https://github.com/ulelab/ultraplex
https://nf-co.re/clipseq/1.0.0
https://cutadapt.readthedocs.io/en/stable/

https://jgi.doe.gov/data-and-tools/bbtools/bb-
tools-user-guide/bbmerge/

http://bioinf.wehi.edu.au/featureCounts/
https://igraph.org/
https://bedtools.readthedocs.io/en/latest/

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/
RNAfold.cgi

https://github.com/nofundamental/IncRNAnet
https://www.tensorflow.org
https://umap-learn.readthedocs.io
https://github.com/optuna/optuna
https://github.com/iraiosub/riboseq-flow
https://github.com/xryanglab/RiboCode
https://github.com/ulelab/clipplotr

https://cran.r-project.org/web/packages/
ComplexUpset/index.html

circlize 0.4.16 Gu et al., 2014%° https://cran.r-project.org/package=circlize
corrplot 0.94 - https://cran.r-project.org/package=corrplot
Other

UV Crosslinker CL-3000 (254 nm)

AnalytikJena

Cat# 849-95-0615-02
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
Low-passage, wildtype mouse pluripotent stem cells IDG3.2 PSCs (12958/B6 background)®® and TGFP/+;Foxa2tagRFP/+ (G9)*°
were cultured feeder-free, on cell culture dishes (TPP) coated with 0.1% Gelatin (ES-006-B, Millipore). Naive PSCs (nPSCs) were
maintained in N2B27 medium composed of 1:1 Neurobasal (21103049) and DMEM-F12 (11320074) medium containing N2
(17502001) and B27 (17504001) supplements, 1% Glutamax (35050061), 1% nonessential amino acids (11140050) and 0.1 mM
2-mercaptoethanol (31350-010) (all Thermo Fisher Scientific), 12 ng/mL LIF (Qk018, Qkine), with additional use of small molecule in-
hibitors: for a condition commonly named 2iLIF, 1 pM MEK inhibitor PD0325901 (1408, Axon Medchem) and 3 pM GSK3 inhibitor
CHIR99021 (SML1046, Sigma). nPSCs were fed every day and split every 2-3 days using Accutase (A6964, Sigma). To transit
from naive to primed pluripotency state, the G9 PSCs were accutased and seeded onto gelatin and FBS-coated (EmbryoMax ES
Cell Qualified FBS, ES-009-B, Merck) plates in N2B27 medium supplemented with 1,000 U/mL LIF (ESGRO ESG1107, Merck),
12 ng/mL bFGF (100-18B, Peprotech), 20 ng/mL Activin A (338-AC-050, R&D Systems), and 2 pM IWP2 (3533, Tocris). Once the
nPSCs reached primed pluripotency state - pPSCs - they can be maintained indefinitely using the abovementioned FAI medium.
For further expansion, pPSCs G9 cells were maintained in FAI medium on cell culture dishes (TPP) coated with Geltrex
(A1413302, Gibco), fed every day and split every 2-3 days using Accutase (A6964, Sigma).

To generate differentiated primitive streak progenitors (dPSCs) pPSCs were grown in Wnt3a-differentiation medium (N2B27
medium supplemented with 20 ng/mL ActA, 12 ng/mL bFGF and 250 ng/mL Wnt3a) for 24 h prior collecting the cells.

METHOD DETAILS

Semi-extractability and OOPS assays

pPSCs G9 (p9) were prepared for experiment one day prior harvesting by plating them on 10 cm plates (TPP), and Wnt3a-differen-
tiation medium was added to pPSCs for 24 h to generate differentiated primitive streak progenitors (dPSCs). For this experiment only,
5% FBS (ES-009-B, Merck) was added to gelatin during coating for nPSCs (p20). Cells were prepared as follows: for semi-extract-
ability and standard TRIzol RNA-seq controls one confluent 6-well was used per replicate, triplicates in total. After washing cells
2x with PBS, 1 mL TRIzol-LS (10296010, Invitrogen) was added to the plate and scraped, then transferred to a 1.5 mL Eppendorf
tube. Samples were snap-frozen and stored at —80°C. The semi-extractability assay was performed according to the protocol*’:
upon thawing and diluting TRIzol LS accordingly, the sample was heated for 10 min at 55°C and then sheared 40x through a 20G
needle (the heating and shearing steps were omitted for control samples). Next, chloroform was added and mixed vigorously before
the tube was centrifuged at 12,000x g for 15 min at 4°C. The aqueous phase was then mixed with 1.5x volume of 100% ethanol, and
the isolation was continued with the RNeasy Plus Mini Kit (Qiagen) according to manufacturer’s instructions.

For OOPS, one confluent 10 cm plate was used per replicate (triplicates in total), washed twice with ice-cold PBS before cross-
linking them at 400 mJ/cm? (Crosslinker CL-3000 at 254 nm (AnalytikJena)). After removing residual PBS, 1 mL TRIzol-LS was added
to the plate before scraping off the cells content and transferring it to a 1.5 mL Eppendorf tube that was stored at —80°C. For RNA
isolation, we followed the protocol provided by the Lilley Lab.?" Briefly, the content of TRIzol LS tubes was first diluted with 1 x volume
nuclease-free water, then we added 1/5th volume of chloroform, mixed vigorously and centrifuged at 12,000x g for 15 min at 4°C.
The aqueous and organic phase were carefully removed and the remaining interphase resuspended in fresh 1 mL TRIzol (15596018,
Invitrogen). Again, 200 pL chloroform was added before centrifugation and removal of aqueous and organic phases. Finally, the inter-
phase was resuspended in 1 mL TRIzol once more before adding chloroform and separating the phases by centrifugation (12,000 g,
15 min, 4°C). This time, we removed as much of the aqueous and organic phases as possible and precipitated the remaining inter-
phase (100 pL) using 100% Methanol (1 mL). After vortexing, the sample was centrifuged (14,000 g for 10 min at room temperature),
supernatant was removed and the pellet digested using proteinase K (sro-3115828001, Roche) for two hours at 50°C. RNA was finally
extracted by addition of 1 volume of phenol:chloroform (P3803, Sigma) and vortexing before centrifugation at 10,000 x g for 10 min at
room temperature. The aqueous phase was collected and RNA was precipitated for 20 min at room temperature with isopropanol.
After centrifugation (12,000xg, 10 min, 4°C) the RNA pellet was washed twice using 75% ethanol and finally resuspended in nuclease-
free water (AM9930, Thermo Fisher). All RNA samples were treated with Turbo DNase (AM2238, Thermo Fisher) for 30 min at 37°C to
remove DNA contaminants and bead-purified using Agencourt AMPure XP (A63881, Beckman Coulter). Sequencing libraries were
prepared using CORALL Total RNA-Seq V1 with RiboCop rRNA depletion (Lexogen) starting with 500 ng DNase-treated RNA as
input. The resulting cDNA libraries were sequenced as single-end 100 bp reads on HiSeq at the Advanced Sequencing Facility at
The Francis Crick Institute.

For the second batch of semi-extractability and OOPS, nPSCs G9 (p30) were cultured on gelatin alone (ES-006-B, Millipore) and
prepared the same way as described above with a few adjustments. TRIzol (15596018, Invitrogen) instead of TRIzol-LS was used for
RNA extraction and the library was prepared using CORALL Total RNA-Seq Kit with RiboCop (V2) starting with 1000 ng DNase-
treated RNA as input. The resulting cDNA libraries were sequenced as paired-end 150 bp reads on lllumina NovaSeq X Plus Series
with only Read 1 used for analysis (Table S5).
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Global iCLIP

iCLIP was performed according to the iiCLIP protocol.*? First, 10 cm plates of nPSCs (G9, passage 17) and pPSCs (G9, passage 20)
containing ~1.5 mg of total protein mass per sample were lysed. Three replicates were prepared for each developmental stage.
Briefly, cells were lysed upon UV-crosslinking (150 mJ/cm? in Crosslinker CL-3000 at 254 nm (AnalytikJena)) and treated with RNase
| before binding the RNA to an IR dye-labelled adaptor and separating the RNA-protein complexes on SDS-PAGE. After cutting the
desired part of the membrane (from 40 kDa upwards), we digested the proteins and extracted the protein-bound RNA to prepare
libraries for next-generation-sequencing (see Table S6 for adapter and primer sequences). Libraries were sequenced as paired-
end 150 bp reads on NovaSeq at Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital at Ljubljana Uni-
versity Medical Center.

RIC-seq

Experiments were performed using nPSCs (G9, passage 20) and pPSCs (G9, passage 13)) in three replicates following the protocol®
with some modifications. Two 10 cm confluent plates per sample were crosslinked using freshly prepared 0.5 mg/mL DSS (21655,
Thermo Fisher Scientific) at room temperature for 30 min (rotating at 20 rpm). The reaction was quenched using 20 mM Tris (pH7.5) for
15 min at room temperature (rotating at 20 rpm). All centrifugation steps were carried out at 3500 rpm for 5 min at 4°C. After pelleting
the cells, they were washed with PBS and then permeabilized (10 mM Tris-HCI (pH 7.5), 10 mM NaCl, 0.5% Igepal, 0.3% Triton X-100
and 0.1% Tween 20) for 15 min on ice. Cells were washed three times with 1x PNK buffer before fragmenting the RNA using 6U
MNase (EN0181, ThermoFisher) at 37°C for 10 min. The following steps including FastAP treatment (EF0651, Thermo Fisher),
pCp-biotin ligation (20160, Thermo Fisher), second FastAP and PNK treatment (M0201L, NEB) were performed as in the original pro-
tocol. Proximity ligation was performed using a different T4 RNA ligase (M0204L, NEB) and hence 1 mM ATP was added to the over-
night reaction. Finally, cells were lysed using 200 pL proteinase K buffer (10 mM Tris-HCI pH 7.4, 100 mM NaCl, 1mM EDTA, 0.2%
SDS) and 50 pL proteinase K (sro-3115828001, Roche) and an addition of 1.5 uL Turbo DNase (AM2238, Thermo Fisher), incubating
at 37°C for 30 min, then 50°C for 60 min before adding Trizol-LS and snap freezing the samples. Once thawed and brought to room
temperature, the samples were heated for 10 min at 55°C before adding the chloroform and precipitating RNA from the aqueous
phase with isopropanol. The RNA was treated with Turbo DNAse once more and cleaned up using phenol:chloroform extraction
as above. 21 pg of RNA was fragmented using 5x First Strand Synthesis Buffer (SuperScript IV, 18090050, Invitrogen) for 3.5 min
at 94°C, immediately placed on ice and mixed with the MyOne Streptavidin C1 beads (65001, Invitrogen) to pull down biotinylated
RNA (30 min at room temperature). Eluted RNA (10 pL) was extracted using phenol:chloroform method (see above). The biotinylation
and pulldown efficiency were confirmed using dot blot assay before preparing sequencing libraries.

The biotin-enriched eluate was next subjected to 3’end dephosphorylation using PNK (M0201L, NEB) and FastAP (EF0654,
Thermo Fisher) and purified using Agencourt AMPure XP beads (A63881, Beckman Coulter) before 3'end adapter ligation overnight
at 20°C (Table S7). Once again, RNA cleanup was done with Agencourt AMPure XP beads before adapter removal (using Deadeny-
lase (M0331, NEB) and RecJf exonuclease (M0264S, NEB)). Reverse transcription was performed according to the Superscript IV RT
kit (18090050, Invitrogen) manual with the use of a custom RT primer (Table S7). Following cDNA cleanup (Agencourt AMPure XP
beads) 5 cDNA adapter was ligated using T4 DNA ligase (EL001, Thermo Fisher, without ATP) (Table S7). Samples were loaded
onto 6% TBE-Urea gel (EC6865BOX, Thermo Fisher) and cDNAs exceeding 200 nt were excised from the gel and extracted using
Crush-Soak Gel buffer (as per iiCLIP protocol*?), followed by phenol:chloroform extraction. Precipitated cDNAs were stored at
—20°C before performing PCR using P5/P7 standard lllumina primers and Phusion HF master mix (M0531L, NEB). Ribosomal
RNA contaminants were removed from the final library using Ribocutter which utilises Cas9-guided rRNA depletion®®; for this,
275 gRNAs were designed against mature 5S, 18S and 28S rRNAs (obtained as 50 pmol oPool from IDT) (Table S8). Final libraries
(~10 nM) were treated with 4 pM sgRNAs for 30 min at 37°C and after beads purification, the libraries were reamplified with additional
6 cycles. They were sequenced as paired-end 150 bp reads on NovaSeq at Clinical Institute of Special Laboratory Diagnostics, Uni-
versity Children’s Hospital at Ljubljana University Medical Center.

HCR-FISH

Hybridization-chain reaction FISH was prepared by following the protocol™ with slight modifications. The probes (8 pairs of probes
per target, Table S9) were designed using https://github.com/rwnull/insitu_probe_generator®* against mature mRNAs, however not
targeting exon-exon junctions (average expression for controls 23.6 + 16 TPM, for smOOPs 37.9 TPM +31 TPM in semi-extractability
total RNA-seq library). For imaging purposes WT IDG3.2 nPSCs were plated on Geltrex (A1413302, Gibco) coated 8-well glass-bot-
tom ibidi plate (80827, ibidi) one day prior to fixation. After washing the cells with PBS, the cells were fixed by the fixation mixture
(4% formaldehyde, 0.4% glyoxal, 0.1% methanol, 1x PBS). Amplification stage of a protocol to generate a tethered fluorescent
amplification polymer lasted 10 h. Cells were then washed as described in the protocol and finally mounted in 300 pL Fluoromount
G (00-4958-02, Thermo Scientific). For each transcript, over 70 nuclei were imaged and over 890 RNA foci counted. Images were
acquired with a custom-built STED microscope (Abberior instruments) using a 1.2 NA 60x water immersion objective and lasers
running at 80 MHz repetition rate. We excited fluorescently labeled mRNA by one of the three lasers at either 488, 561 or 640 nm,
with 120 ps pulse length, with maximal power of 116 pW, 111 pW and 300 pW in the sample plane and DAPI stained nuclei with
405 nm laser with maximal power 810 mW in the sample plane. The laser powers used were 10% for 405 laser and 30% for the other
three lasers. We acquired the fluorescence intensity using an avalanche photodiode with 500-550 nm, 580-625 nm or 650-720 nm
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filters (Semrock) in front. The combinations of lasers and detectors were as follows: 405 nm laser and 500-550 nm, 488 nm laser and
500-550 nm, 561 nm laser and 680-620 nm filter, and 640 nm laser and 650-720 nm filter. The dwell time in the pixel was 10 ps, the
pixel size was set to 50 nm and the pinhole size was set to 1.07 AU to achieve a good confocal resolution. Images were acquired with
the help of automatic acquisition as described by Trupej and colleagues.®®

QUANTIFICATION AND STATISTICAL ANALYSIS

HCR-FISH image analysis

The image analysis was done in Fiji®' using custom-made macros. Briefly, for each fluorophore background was subtracted (30.0
pixels rolling radius) and threshold was set accordingly to conform all different transcripts with the same fluorophore ((9,255) for chan-
nel for 561, (3,255) for the 488 channel and (33,255) for the 640 channel). Next, particle analysis was performed and all subsequent
analysis was done using “Fiji’s particle analyser” and R (version 4.3.2, http://www.posit.co/). Total intensity was calculated by multi-
plying mean intensity and area for each foci. The average of total intensity for the control transcripts in each fluorophore was used to
normalise other values and obtain “Total intensity”.

Reference annotation

For all analyses we used the GRCm39 build of the mouse genome with the Gencode M27 annotation. We used a custom reference
sequence built on this annotation for the alignment of hybrid reads, generated as previously described.” To unambiguously annotate
the genes within hybrid reads, we used a flattened annotation produced by iCount-Mini (https://github.com/ulelab/icount-mini). Both
are available for download with the Tosca pipeline®® (https://github.com/amchakra/tosca).

RNA-seq data analysis

The sequencing reads were processed using nf-core/rnaseq version 3.4°%% (https://nf-co.re/rnaseq/3.4). For differential expression
analyses we used gene-summarised count tables generated by nf-core/rnaseq 3.4 (using Salmon) as input to DESeq2 version
1.44.0.°° The design incorporated both stage (nPSCs, pPSCs, dPSCs) and assay (control, semi-extractability, OOPS) factors. Prior
to running DESeq2, we pre-filtered the count matrix to retain only genes with at least 10 normalised counts in at least 6 samples. For
each desired contrast, we extracted results using the Wald test and applied ashr Log2FoldChange (LFC) shrinkage.®® To identify
genes enriched in OOPS or semi-extractability compared to control, we selected genes with padj <0.01 and LFC >1 for each contrast
(semi-extractability vs. control or OOPS vs. control at each stage). Genes passing these thresholds in both semi-extractability and
OOPS were defined as smOOPs. For data visualisation across assays, we converted rlog-normalised count data into Z-scores for
each stage and plotted it using the ComplexHeatmap package®’ version 2.20.0. For the second batch described in Figure S3,
smOOPs were defined as genes with padj <0.01 and LFC >0 in both assays. We used a reduced LFC threshold to account for
the lower magnitude of fold-changes observed in this batch.

Global iCLIP data analysis

Sequencing reads were first demultiplexed using Ultraplex version 1.2.9 (https://github.com/ulelab/ultraplex)®® and then processed
with the nf-core/clipseq version 1.0.0°° (https://nf-co.re/clipseq/1.0.0). We used BED files with crosslink positions and scores for all
analyses. To normalise crosslinks by expression and correct for length for each transcript, we calculated crosslink density (CPM per
kb) for exons and divided this by expression (semi-extractability TPM values obtained with Salmon).

RIC-seq data processing

We trimmed sequencing adapters using Cutadapt,’® then paired reads were merged with BBMerge.®® The merged FASTQ files were
used as input for Tosca v1.0.0°° to identify and analyze hybrid reads formed through RNA proximity ligation. To normalise RIC-seq
gene-level counts to expression, we used TPM values calculated from RIC-seq nonhybrid reads summarised at the gene-level
including all features (exons and introns) with featureCounts.”' To visualise the regions identified in the hybrid reads, we used the
circlize R package.®°

RIC-seq network inference and analysis

For each stage, we pooled the RIC-seq deduplicated hybrids files produced by Tosca, filtered out rRNA, tRNA and mitochondrial
RNA containing hybrids, and retained the hybrid reads mapping to two different genes (representing intermolecular interactions),
and analyzed it using igraph’?® version 2.0.3 in R 4.4.0. To assess the connectivity of the smOOPs subgraph, we compared the
observed subgraph with control networks generated by degree-matched sub-sampling. For the degree-matched sampling method,
we sub-sampled random subnetworks from the full RIC-seq network maintaining the same number of nodes as the number of
smOOPs identified in the RIC-seq data at each stage and a similar degree distribution (allowing for +1° variation). We performed
10,000 iterations to build a null distribution for comparison. Connectivity metrics were calculated for each random subset and
compared to those of the observed smOOPs subnetworks for nPSCs and pPSC separately. While we also considered degree-pre-
serving randomization methods, they were deemed less suitable for this analysis due to the network topology and the high degrees of
the smOOPs, which could bias the results by preserving inherent connectivity patterns, especially among high-degree nodes.®® We
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also considered random sub-sampling, but found it overestimated smOOPs interconnectivity due to their high degree relative to most
other nodes. In contrast, degree-matched sub-sampling, which directly compares smOOPs to randomly selected groups of nodes
with similar degrees, provided a more appropriate baseline for comparison, and was used as control.

PARIS data processing
We first trimmed sequencing adapters using Cutadapt and collapsed PCR duplicates with the readCollapse.pl script provided with
the original publication®® (https://github.com/qczhang/icSHAPE). Subsequent processing was performed using Tosca v1.0.0.°?

Ribo-seq data processing

Public mESCs ribo-seq data®’ was processed using the riboseg-flow v1.1 pipeline. We then applied RiboCode’® using the align-
ments to predict translated ORFs from ribosome-protected fragments. Translation efficiency measurements were obtained from the
Supplementary Tables accompanying the manuscript.*’

A7

Processing of RNP granule gene sets

All genes expressed in mouse embryonic stem cells (MESCs) were used as the starting set. Orthologous human genes were identified
through BioMart’s orthologue mapping table, enabling cross-species comparison. Human transcriptomes associated with specific
subcellular compartments were then compiled by extracting supplementary data from previously published studies: P-body-
enriched transcripts,® stress granule-associated RNAs,*® transcripts localized to TIS granules and the endoplasmic reticulum,®”
a subcellular transcriptome atlas generated using APEX proximity labeling®® and localization of RNA (LoRNA) data obtained by quan-
tifying RNA abundance across density-separated cellular fractions and inferring subcellular identity based on RNA co-distribution
profiles.® To assess the overlap of smOOPs with RNP granule-associated RNAs, we intersected the gene IDs of smOOPs recovered
at all stages with mouse-mapped RNP granule gene sets from each study and visualised the intersections using the ComplexUpset
package in R. For enrichment testing, we retained granule sets in which at least 10 smOOPs were exclusively annotated to that
compartment (i.e., not overlapping any other granule set). One-sided hypergeometric tests were performed for each retained set,
using all genes expressed in our dataset (i.e., the input genes for DESeq?2) as the background population.

IncRNAnet prediction of long non-coding RNA

To determine whether genes annotated as “To Be Experimentally Confirmed” (TEC) are predicted to encode long non-coding RNAs,
we first collected their processed sequences into a FASTA file formatted per IncRNAnet*° instructions (https:/github.com/
nofundamental/IncRNAnet). These sequences were then processed through the IncRNAnet prediction model consisting of recurrent
neural networks modeling RNA sequence features and convolutional neural networks scanning for stop codons to generate an open
reading frame indicator, with their outputs being integrated to assign each transcript a continuous confidence score from —1 (strongly
coding) to +1 (strongly non-coding).

Data preparation for deep learning

To define genes that do not exhibit the condensation prones features in all stages, we selected those with padj >0.01 and |LFC| < 1.4
in each stage and then selected their intersection as the unified control set. To create a reference transcriptome for the smOOPs and
control genes, we selected the most highly expressed transcripts, based on semi-extractability, for each of the three stages. For tran-
scripts that varied across the stages, we selected the longest isoform among the most expressed transcripts at each stage.

To facilitate the training of the model on the selected datasets mapped across each transcript, we first encoded the data into a
format suitable for deep learning. For both smOOPs and control transcripts, we extracted the genomic location of each exon
from the reference genome. The RNA sequence for each exon was obtained based on their genomic coordinates using bedtools,”*
and served as the raw sequence input for the model.

Several nucleotide-resolution transcriptomic datasets were extracted and aligned to the exon genomic locations: global iCLIP
crosslinks (this work); POSTARS database of CLIP binding peaks for 46 RBPs® in mouse cell lines; Psoralen Analysis of RNA Inter-
actions and Structures (PARIS)*®; RNAfold*’ predicting secondary RNA structures; and m®A methylation profiles.*® To precisely
assign scores to exon positions, we generated a list of values corresponding to the length of each exon, initialised to zero. The exper-
imental data were mapped onto the exon’s genomic coordinates relative to its start position. Overlaps between experimental signals
and exonic regions were located, and their scores were added to the list at the corresponding positions. The result was a list of exper-
imental values corresponding to each position within the exon. For POSTARS peaks, each RBP peak was mapped in a binary manner,
indicating only the presence or absence of a peak. After assigning scores, exons were concatenated back into transcripts, producing
a list of feature scores spanning the entire transcript length for each feature. The global iCLIP, m®A modification sites and PARIS-
Intra/Inter counts at each nucleotide were first normalised to transcript-level expression (TPM) estimated using the semi-extract-
ability assay data, before encoding all feature layers of information over each smOOPs and control transcript.This approach pre-
serves the positional importance and allows efficient feature extraction. Additionally, RNAfold was used to predict secondary
RNA structures in dot-bracket notation, classifying each position as either single- or double-stranded. This classification was then
encoded in binary form.
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The datasets were randomly split into distinct training, validation, and testing subsets in a 70:15:15 ratio. Stratified sampling was
employed to maintain consistent class proportions across subsets, and oversampling was applied to the minority group within each
subset to balance class sizes. Each subset was stored independently and used directly for training, with dynamic data fetching and
encoding implemented during the training process.

Data encoding

During training, batches of data were procedurally encoded by iterating over the training dataset and processing the mapped infor-
mation to a DL compatible array. For each batch, the transcript sequence information was first converted from its native nucleotide
string format into a numerical representation. To ensure transparency and interpretability, we employed one-hot encoding for the
sequence data, with each nucleotide represented as a binary vector: Adenine (A) as [1, 0, 0, 0], Cytosine (C) as [0, 1, 0, 0], Guanine
(G)as|0, 0, 1, 0], and Thymine (T) as [0, O, O, 1]. Non-sequence features, such as global iCLIP crosslink scores, were encoded as one-
dimensional arrays of floats. All encoded data layers, including the nucleotide sequences and other transcriptomic features, were
stacked vertically for each transcript. To then standardise input lengths for neural network processing, sequences were padded
with —1 to match the length of the globally longest transcript. The output class was similarly encoded using a one-hot encoding
scheme, where class membership was represented by a binary vector. Such encoded transcripts were then stacked to a new dimen-
sion representing the batch and as such processed by the training function.

Deep learning model architecture
The model architecture employs a previously optimised design,*® combining multiple convolutional, recurrent, and fully connected
layers (MLP) to effectively classify sequential data, implemented in TensorFlow.”” This hybrid approach leverages the strengths of
each layer type to capture diverse patterns in the input data, progressively transforming the sequences into representations suited
for binary classification. Initially, we wanted to enable the architecture of the model to have the ability to achieve optimal classification
performance, therefore a hyperparameter optimization process was conducted - defining the models architecture. Due to the
complexity and size of the hyperparameter search space, a manual approach was impractical. Instead, a systematic search via
Bayesian optimization, using the Optuna framework,’® was implemented, exploring batch sizes (8, 16, 32, 64), number of convolu-
tional blocks (2-8), final number of CNN units (16—1024), CNN unit increase percentages (0.0-0.5), kernel sizes (3, 5, 7, 9), kernel size
increases (1-4), dilation increases (1-4), dropout probabilities (0.0-0.4), L1-L2 regularisation values (0-0.01), max pooling size (2, 3,
4), GRU units (16-1024), Dense units (16-1024), learning rates (10~° to 10~2), and normalisation methods (None, BatchNormalization,
LayerNormalization). The optimisation was performed over 100 trials to identify the hyperparameter set that maximised AUROC on
the validation set. The best-performing configuration was selected for final model training. The optimised model architecture starts
with four convolutional blocks. Each block consists of a 1D convolutional layer with a progressively increasing number of filters of
108, 144, 192, and 256 respectively, and kernel size of 9. Dilation rates exponentially increase with each block, with the first block
using a dilation of 1 and later blocks using 4, 16, and 64, respectively. Each convolutional layer is followed by layer normalisation,
a RelLU activation function, and a Dropout layer with a rate of 0.34 to mitigate overfitting. Max-pooling (pool size of 4) is used after
each convolutional block to reduce spatial dimensions and preserve key features. After the convolutional layers, a bidirectional GRU
layer with 128 units per direction is employed to capture sequence dependencies, again followed by layer normalisation and dropout.
Following the GRU, two fully connected (Dense) layers are included, with 64 and 32 units, respectively, followed by layer normal-
isation and dropout. The final output layer consists of two units, with a softmax activation to predict binary classes. The Convolu-
tional, GRU and Dense layers were configured with L1-L2 regularisation (A = 1.2 x 10°) to further mitigate overfitting in the learning
process. The model contains between 1,149,986 and 1,203,446 trainable parameters, depending on the input shape. It was trained
using the Adam optimizer, with a learning rate optimised to 104, and categorical cross-entropy as the loss function. The model was
trained for unlimited epochs, employing early stopping with 20 epoch patience, based on validation AUROC, to stop training and
return best weights when overfitting.

Training of the powerset

To evaluate the predictive power of individual features and their combinations, we trained a separate model for each of the 127 sub-
sets in the powerset of the 7 available datasets. For each subset, only the selected features were encoded as input to the model,
ensuring that the model was trained specifically with that particular feature combination. Each model was trained in 8 replicates
to account for variability and to ensure optimal performance for every subset. The trained models were saved after completion to
enable further analysis of feature importance and interactions.

Assessing model performance

The final performance of each of the 1016 trained models (127 subsets trained in 8 replicates) was established by predicting the com-
bined validation and testing dataset, both of which were not previously seen by the model, ensuring robust validation and mitigating
the optimisation overfitting. Of the 8 replicates trained on each subset, the best performing model, based on the AUROC, was
selected, ensuring the robustness of the predictive power assessment. To identify the datasets that improved the predictive power
of a model trained on any given subset of datasets, the difference in AUROC was calculated for all possible pairs of models where
they were both trained on the same subset of datasets with the only difference being an additional inclusion of the unique dataset.
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This was further repeated for all possible pairs for each of the unique datasets and the differences were evaluated using a one-sample
t-test to evaluate if the mean of differences is statistically different from zero, Using this technique, we could identify the datasets
containing biological information that significantly improved the predictive capability of a model, irrespective of the number of other
information layers included. To further assess the informational overlap between features, we conducted pairwise analyses of feature
combinations. For each pair of features, we calculated AUROC scores for each subset of each item in their powerset, first by adding
one feature from the pair, and then by adding both features. This approach allowed us to quantify the individual and combined con-
tributions of each feature to model performance. To evaluate the extent of overlap, we calculated the difference between the
maximum AUROC achieved when adding either feature individually and the AUROC obtained when both features were included.
These differences were calculated across all subsets of the remaining five features, resulting in a comprehensive set of values for
each feature pair. Averaging these differences provided insight into the distinct contributions of each feature combination with a
one-sample t-test comparing the mean to zero.

To validate model performance on the smOOPs identified in the second batch, we constructed a new set of smOOPs and matched
control transcripts using the same criteria described above without excluding the smOOPs defined in the previous batch (161 over-
lapping genes). These samples were processed through the same pipeline, with identical feature encoding, and their class identity
was predicted using three models: a length-controlled model, a sequence-only model, and a model incorporating all features.

Explaining the trained weights

To evaluate the contribution of individual positions and feature components to the model’s predictions, we employed the integrated
gradients (IG) method. The technique quantifies the importance of each nucleotide in the sequence by computing the gradient of the
prediction output with respect to the input features, integrated along a path from a baseline of zeros to the actual input sequence. By
summing these gradients across the entire path, IGs assign attribution/importance scores to each nucleotide, indicating its contri-
bution to the prediction. We calculated the IGs for each of the models trained on individual datasets of sequence, global iCLIP,
POSTARS peaks and PARIS-Intra. This approach enabled us to identify the regions within each transcript that had the greatest
impact on the model’s classification decision, providing insights into which specific sequence elements were driving the condensa-
tion-prone smOOPs RNA predictions compared to controls.

Gaining insight into the learned features

To gain insight into the global features the model has learned, not limited to a single example but integrated for the entire groups of
transcripts, we firstly stacked the integrated gradients of each of the top 4 models to obtain the importance scores over all the pre-
dictive features for each transcript. These scores were grouped into 100 bins along the transcript length, and the average importance
score within each bin was calculated to create a length-standardised distribution of importance across the sequence. We used Uni-
form Manifold Approximation and Projection (UMAP)®” to reduce the binned transcripts to 2D space, using correlation as the distance
metric. Agglomerative clustering was then applied to group the transcripts into 2 clusters.

To elucidate the features defining each cluster we continued with the following analysis separately for each. We calculated the
importance of nucleotide triplets across the transcripts. For each transcript, a sliding window approach was used to capture triplet
sequences, and their integrated gradient scores were averaged for each triplet at every position. This reduced the transcript length by
two. The triplet importance scores were then divided into 100 equal-length segments, and the scores were averaged across all tran-
scripts. To further analyze the predictive importance of each POSTARS track, we calculated the average importance scores across all
bins for each POSTARS3 RBP binding site in each transcript.

Validation of the predicted importance

To assess nucleotide frequency differences between smOOPs and control transcripts in both clusters, we binned the sequences and
averaged the presence of each nucleotide (A, C, G, T) across bins. For cluster 1, the sequence was separated into transcript regions,
with the 5’UTR divided into 10 bins and the CDS and 3'UTR each divided into 50 bins. For cluster 2, the entire transcript was divided
into 100 bins. The average nucleotide frequency within each bin was calculated separately for smOOPs and control transcripts. The
differences in nucleotide frequency were determined by subtracting the control average from the smOOPs average for each nucle-
otide in each bin. To further investigate sequence composition, we calculated the frequency of each possible nucleotide triplet
(3-mer) across the entire sequence for cluster 2 and within the transcript regions for cluster 1. The triplet occurrence frequency
for control transcripts was subtracted from that of smOOPs transcripts for each cluster, yielding the difference in triplet usage. A
similar approach was applied to the global iCLIP crosslinking signals. For cluster 1, the normalised signal was binned and averaged
by transcript regions, with the 5’UTR divided into 10 bins and the CDS and 3'UTR into 50 bins each. For cluster 2, the signal was
binned and averaged across the entire transcript into 100 bins. The median signal value for each bin was calculated for both smOOPs
and control transcripts, and a 95% confidence interval for the median was estimated using bootstrapping with 1000 samples.

For cluster 1, we evaluated the impact of specific transcript regions on model predictions by masking either sequence, global
iCLIP, POSTAR, and PARIS intramolecular interactions features. The entire region of the transcript was masked using zeros for
5'UTR, CDS, and 3'UTR individually. Models trained on each dataset were then used to predict outcomes based on these masked
inputs. The AUROC curves were used to identify the region with the highest impact on the prediction when masked. For cluster 1
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and 2, the number of PARIS intramolecular hybrids was calculated for each transcript part (5'UTR, CDS, 3'UTR) and full transcripts,
respectively. These counts were normalised by transcript region length and expression levels.

Investigation of the protein features

To generalise the two-cluster annotation obtained in naive PSCs (nPSCs) and apply it to all smOOPs transcripts, we trained an addi-
tional machine-learning (ML) model focused solely on RNA sequence features. As before, we used eight replicate training runs and
retained the model achieving the highest area under the receiver operating characteristic curve (AUROC). We calculated the impor-
tance scores for each nucleotide position via integrated gradients, binned these scores, and clustered all smOOPs based on these
aggregate importance profiles. We then evaluated how well the newly defined clusters (across all developmental stages) overlapped
with the nPSC-specific clusters by measuring their percentage of intersection.

Next, to examine whether the two smOOPs clusters display distinct protein-level characteristics, we calculated amino acid fre-
quencies for all proteins encoded by transcripts in each cluster and compared them against non-smOOPs. For each amino acid,
we computed the log.fold change in mean usage relative to non-smOOPs and determined statistical significance using Welch’s
t-test.

We further assessed the extent of protein disorder in each cluster by extracting annotated intrinsically disordered regions (IDRs)
from the UniProt Reviewed database.”” For each protein, we recorded whether it contained any IDRs and calculated the average
proportion of the protein length exhibiting disorder. Additionally, we used PICNIC,** a deep learning approach that leverages
both sequence- and structure-derived information from AlphaFold2 models to evaluate how likely these proteins are to localize in
biomolecular condensates.

Lastly, we performed gene ontology (GO) enrichment analysis to elucidate the functional distinctions of the two smOOPs clusters
relative to the set of all expressed genes used as input to DESeq2. Using the STRING database,*® we identified significantly enriched
GO terms in each cluster across biological process, molecular function, and cellular component ontologies.
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