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SUMMARY

Complex RNA-protein networks play a pivotal role in the formation of many types of biomolecular conden-

sates. How RNA features contribute to condensate formation, however, remains incompletely understood. 
Here, we integrate tailored transcriptomics assays to identify a distinct class of developmental condensa-

tion-prone RNAs termed ‘‘smOOPs’’ (semi-extractable, orthogonal-organic-phase-separation-enriched 
RNAs). These transcripts localize to larger intracellular foci, form denser RNA subnetworks than expected, 
and are heavily bound by RNA-binding proteins (RBPs). Using an explainable deep learning framework, 
we reveal that smOOPs harbor characteristic sequence composition, with lower sequence complexity, 
increased intramolecular folding, and specific RBP-binding patterns. Intriguingly, these RNAs encode pro-

teins bearing extensive intrinsically disordered regions and are highly predicted to be involved in biomole-

cular condensates, indicating an interplay between RNA- and protein-based features in phase separation. 
This work advances our understanding of condensation-prone RNAs and provides a versatile resource to 
further investigate RNA-driven condensation principles.

INTRODUCTION

Cells exhibit a wide range of RNA assemblies that physically 

partition into subcellular membraneless compartments or bio-

molecular condensates, but the general molecular rules govern-

ing RNA condensation and their local entrapment in ribonucleo-

proteins (RNPs) remain unclear. 1,2 RNA-binding proteins (RBPs) 

and RNAs have both been implicated in condensate formation, 

and disruptions in their phase separation have been linked to 

pathological conditions, including impaired embryonic develop-

ment, cancers, neurodegenerative diseases, and others. 3–5 

Many proteins within RNP condensates contain intrinsically 

disordered regions (IDRs) that are able to form weak multivalent 

interactions, 6,7 and simple changes to protein sequence or 

charge alone can drastically alter their condensation proper-

ties. 8,9 Conversely, RNA molecules can drive condensation 

themselves, either as a scaffold or through RNA-RNA interac-

tions (RRIs). 10–15 Recently, G3BP1 was shown to work as an

‘‘RNA condenser’’ that promotes intermolecular RRIs that stabi-

lize stress granules, 16,17 while exceptionally long cytoplasmic 

mRNAs were shown to scaffold FXR1 protein into a network-

mediating signaling response. 18 Understanding which and how 

RNA features contribute to condensate formation and function, 

particularly through their interplay with RBPs, remains a chal-

lenging question.

Several transcriptomic approaches opened the avenue for 

exploring condensation principles in an RNA-centric manner. 

Some of these methods are capturing RNAs based on their 

biochemical properties and their associations with RBPs, which 

are key for recruitment into and stabilization within conden-

sates. 19 Studies on semi-extractable RNAs 20,21 identified a 

diverse array of RNA species associated with biomolecular 

condensates, particularly within nuclear bodies. 21 UV-crosslink-

ing-based methods recover RBP-bound RNAs. 21–23 In addi-

tion, RNA proximity-ligation approaches 24 furthered our under-

standing of higher-order RNA structures, e.g., in stress
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granules, 25 as well as intermolecular RRIs, such as those 

between enhancer RNAs/mRNAs, 26 small nucleolar RNAs 

(snoRNAs)/target RNAs, 25 and viral/host transcripts. 27

To advance our current understanding of RNA-centric 

condensation features, we designated a novel class of tran-

scripts as ‘‘smOOPs’’ (semi-extractable, orthogonal-organic-

phase-separation-enriched RNAs) due to their semi-extract-

ability 20 and pronounced affinity for orthogonal organic phase 

separation (OOPS). 22 Together, these two methods provide a 

comprehensive strategy to identify candidate RNAs that may 

be involved in condensation processes—that is, condensation-

prone RNAs, which we define as highly interacting RNA mole-

cules that are likely to enrich and concentrate in phase-sepa-

rated compartments or other RNP assemblies. This group 

includes RNAs known to form or localize within condensates, 

alongside other RNAs sharing similar properties, which we hy-

pothesize are prone to condensation. Through RNA in situ 

conformation sequencing (RIC-seq), 26 we show that smOOPs 

are in greater proximity to one another, suggesting that these 

RNAs are closely associated within cells. Using a combinatorial 

deep learning (DL) approach, we identified core smOOPs fea-

tures and revealed that these transcripts code for highly disor-

dered proteins with elevated phase-separation propensity. 

Notably, this study offers a comprehensive methodological 

framework for uncovering the principles of RNA assembly and 

their possible role in coordinating post-transcriptional gene 

regulation, accelerating the extraction of condensation-relevant 

features from diverse datasets.

RESULTS

A class of semi-extractable and OOPS-enriched RNAs 

across early development

To specifically enrich RNA molecules within RNP assemblies, we 

employed a combination of the semi-extractability assay 20 and 

OOPS 22 (Figure 1A). We applied these methods to recover 

such RNAs during three distinct time points of early embryonic 

development: naive pluripotent stem cells (nPSCs) in 2iLif condi-

tions 28 ; primed epiblast stem cells (pPSCs), in which lineage 

priming was prevented by Wnt inhibition 29,30 ; and the earliest 

Wnt-differentiated primitive streak progenitors (dPSCs) 31 (see 

STAR Methods). A standard TRIzol RNA extraction protocol 

was used as a control. We generated total RNA sequencing 

(RNA-seq) libraries that showed high correlations in gene-level 

counts within each developmental stage and assay type 

(Figure S1A). In a principal-component analysis (PCA), the sam-

ples separated primarily by developmental stage (76% of the 

variance), with nPSCs being more distinct from pPSCs and 

dPSCs. The assay type further contributed to the separation 

(14% of the variance), with the OOPS samples being the most 

distinct (Figure S1B).

We next performed differential expression analysis to identify 

semi-extractable and OOPS-enriched genes compared to stan-

dard TRIzol RNA-seq controls at each developmental stage 

(Figures S1C and 1B; Data S1, S2, S3, S4, S5, and S6). By em-

ploying stringent effect-size and statistical cutoffs (at least 

2-fold enrichment and an adjusted p value [padj] < 0.01), we 

identified 449, 1,328, and 1,390 high-confidence genes at each 

developmental stage with distinctly increased semi-extract-

ability and elevated RBP occupancy in OOPS samples, hence-

forth collectively referred to as smOOPs (Figures 1B–1E and 

S1C; Table S1). Among smOOPs, we recovered RNAs known 

to form condensates, such as Neat1, involved in para-

speckles 20,32 ; Dync1h1, known to form cytoplasmic foci of 3–7 

copies at active translation sites in Drosophila 33 ; and Peg3, for 

which the human homolog was found to be enriched in 

stress granules. 34 These examples underscore the inclusion of 

known condensate-forming RNAs within the smOOPs group 

(Figure 1B). To assess this more systematically, we intersected 

smOOPs with high-throughput datasets of condensate-enriched 

RNAs (derived from human cells using ortholog gene transfer to 

mouse 35–39 ). We observed that smOOPs do not belong to a sin-

gle granule type but rather are heterogeneously distributed 

across multiple condensate classes (Figure 1C). Notably, we 

found significant overlap and overrepresentation of RNAs local-

ized to stress granules, 36 processing bodies (P-bodies), 35 and

Figure 1. Atlas of semi-extractable and OOPS-enriched RNAs across early development

(A) Experimental framework to identify RNAs that are both semi-extractable and highly RBP-bound RNAs (smOOPs) using three different TRIzol-based RNA 

extractions (done in three replicates): aqueous phase of non-crosslinked sample as control, aqueous phase of heated and sheared TRIzol sample as semi-

extractable RNAs, and interphase of crosslinked sample to obtain OOPS-enriched RNAs (nPSCs, naive pluripotent embryonic stem cells; pPSCs, primed 

pluripotent stem cells; dPSCs, 1 day Wnt-differentiated pPSCs).

(B) Scatterplots showing the overlap between semi-extractability and OOPS-enriched genes (padj < 0.01) as well as the Pearson correlation between their fold 

changes compared to control at each developmental stage. At each stage, the genes enriched more than 2-fold compared to the control (padj < 0.01 and LFC > 1) 

in both assays were defined as smOOPs.

(C) Mapping of the combined set of smOOPs from nPSCs, pPSCs, and dPSCs onto known RNP granules/membraneless compartments.

(D) Enrichment of RNAs within characterized RNP granules in the smOOPs set. Overrepresentation was assessed using a hypergeometric test, restricted to 

granules from (C), where at least 10 smOOPs are specific to that granule.

(E) UpSet plot showing the intersections between smOOPs identified in nPSCs, pPSCs, and dPSCs.

(F) Percentage of gene biotypes for smOOPs and non-smOOPs in each cell state (TEC, to be experimentally confirmed).

(G) Comparison of transcript length distribution between smOOPs and non-smOOPs.

(H) Global iCLIP crosslinking signal normalized to expression and length and expression (crosslinks per million [CPM] density/semi-extractability TPM; pooled 

from three replicates) for smOOPs compared to non-smOOPs. Statistical significance was determined using a one-sided Wilcoxon rank-sum test (***p < 0.0001).

(I) Representative HCR-FISH photomicrographs (scale bar: 5 μm), with the right image showing a magnified view of the region outlined by the dotted white box 

(scale bar: 10 μm).

(J) HCR-FISH quantifications. The boxplot shows the mean of foci size for each target transcript, calculated as the mean of all foci for each transcript. Statistical 

significance was determined using a two-sided Welch’s t test (**p < 0.01). n indicates the number of different mRNAs against which the HCR-FISH probes were 

designed. In total, >70 nuclei for a single transcript were imaged, and >890 foci were counted for each transcript.

Cell Genomics 6, 101065, February 11, 2026 3

Article
ll

OPEN ACCESS



granules obtained by the localization of RNA (LoRNA) 39 

method(Figures 1C and 1D). Although based on human data-

sets, the observed enrichments reinforce a broader link between 

smOOPs and condensation propensity and indicate that they 

share conserved features with RNAs found in biomolecular 

condensates.

Of the total 1,828 unique smOOPs, 276 were common to all 

stages, with most occurring at later stages. Notably, there 

were fewer unique smOOPs identified in nPSCs (76) compared 

to the other stages (pPSCs, 304; dPSCs, 385; Figure 1E). A pos-

itive correlation was observed between fold changes in the 

OOPS and semi-extractability assays, particularly upon the 

onset of cell fate commitment. However, the degree of enrich-

ment (fold change) for a gene in one assay (OOPS or semi-

extractability) did not always reflect the degree of enrichment 

in the other (Figure 1B). Some smOOPs highly enriched in 

OOPS were not similarly enriched in semi-extractability 

(Figure S1D), indicating that each assay preferentially captures 

distinct RNA characteristics and that the smOOPs pool is re-

wired during developmental transitions (Figures 1B–1E and 

S1D). Classifying smOOPs by gene biotype revealed that the 

majority consist of protein-coding genes (74.6%–82.2%), fol-

lowed by TEC genes (‘‘to be experimentally confirmed’’ genes; 

14.5%–16.7%) and long non-coding RNAs (lncRNAs) (2.2%– 

4.1%) (Figure 1F). Notably, the TEC proportion was more than 

double that of the genes not classified as smOOPs (non-

smOOPs) (6.3%). To better understand the potential function 

of TECs within smOOPs, we assessed their coding potential. Us-

ing lncRNAnet, 40 most TECs were predicted to be non-coding 

(Figure S1E). Furthermore, ribosome profiling data in mouse em-

bryonic stem cells (mESCs) 41 showed no detectable translated 

open reading frames (ORFs) in TECs, supporting their classifica-

tion as non-coding transcripts (Figure S1F). The overrepresenta-

tion of TECs in the smOOPs group suggests that these under-

studied transcripts might play previously unrecognized roles in 

RNA-centered processes independent of translation. In conclu-

sion, our approach identifies smOOPs as transcripts that are 

both highly bound by RBPs and display distinct extractability, 

revealing a developmentally regulated class of RNAs with prop-

erties consistent with condensation propensity and RNA-protein 

organization.

smOOPs: Condensation-prone RNAs form RNP granules 

Our dual approach enabled us to identify smOOPs as candidate 

RNAs with potential for involvement in condensation processes. 

We observed that smOOPs are longer RNAs compared to non-

smOOPs (Figure 1G), which may partially contribute to their 

distinct properties. To validate the tendency of smOOPs for 

RNP interactions, we performed global individual-nucleotide 

resolution crosslinking and immunoprecipitation (iCLIP)—an 

orthogonal method for mapping the cumulative RBP occupancy 

across the transcriptome. 42 This not only confirmed the elevated 

RBP binding compared to non-smOOPs (normalized for 

expression and length; nPSCs p = 1.28 × 10 − 15 , pPSCs 

p = 1.41 × 10 − 49 ) (Figure 1H) but also provided precise positional 

information on RBP interactions (Figure S1K). We hypothesized 

that higher RBP occupancy, in addition to the semi-extractability 

of smOOPs, could indicate that they are part of RNP assemblies.

To test this, we performed hybridization chain reaction fluores-

cence in situ hybridization (HCR-FISH) 43 using probes against 

the exons of 17 candidate protein-coding transcripts, including 

smOOPs and non-smOOPs (Figure S1G) with largely compara-

ble expression levels (median transcripts per million [TPM] of 

21.9 for non-smOOPs and 32.5 for smOOPs; Figure S1J). Image 

analysis confirmed that smOOPs formed larger foci compared to 

non-smOOPs (Figures 1I, 1J, and S1H; Table S2), with higher 

overall intensity (Figure S1I), suggesting an enrichment of these 

RNAs in localized regions within the cell, potentially reflecting 

high local RNA concentrations. While these are clearly visible 

foci of a single RNA, this observation does not exclude the pos-

sibility that they are part of heterotypic assemblies occupying a 

larger subcellular area. Notably, this pattern was observed for 

smOOPs mRNAs that were already implicated in condensate 

formation: Dync1h1 and Peg3. 33,34 Further analysis of RNA dis-

tribution found that only 36.9% of tested smOOPs foci were nu-

clear, compared to 46.5% for non-smOOPs transcripts 

(Figure S1I). Taken together, our findings suggest that smOOPs 

are a unique class of semi-extractable transcripts that are highly 

bound by RBPs and form larger foci within cells. These charac-

teristics provide evidence of their condensation-prone nature.

smOOPs establish RNA subnetworks with enhanced 

connectivity

Given the well-established role of RBPs in regulating RNA as-

sembly, we hypothesized that smOOPs participate in broader 

RNA networks. We applied RIC-seq 26 to map intra- and intermo-

lecular RNA proximities across the transcriptome, capturing 

both direct and indirect RBP-associated RRIs in nPSCs and 

pPSCs (Figure 2A). We detected 758,135 hybrid reads in nPSCs 

and 1,245,548 in pPSCs (excluding rRNA, tRNA, and mitochon-

drial reads), with 28% being intermolecular in nPSCs and 44% in 

pPSCs (Figure 2B). Gene-level intermolecular hybrid frequency 

was highly reproducible across samples (Figure S2A), with 

PCA showing that the developmental stage explained 88% of 

the variance (Figure S2B). The global distribution across tran-

script regions remained consistent across stages, with most 

hybrid reads containing intronic regions (∼66%, Figure S2C), 

similar to previous findings. 26

We generated developmental-stage-specific RRI networks 

using the intermolecular hybrid reads from the RIC-seq data, 

with genes as nodes and connecting them with edges weighted 

by the frequency of hybrid reads spanning each gene pair. The 

inferred networks showed typical characteristics of biological 

networks, such as protein-protein interaction (PPI) and RRI net-

works. 44 Specifically, the networks displayed scale-free-like 

behavior, with most nodes having few connections and a small 

number of highly connected nodes that dominate (Figure S2D). 

This suggests that a few genes play central roles in the network, 

while most genes have fewer connections, creating a heavy-

tailed distribution of connectivity (Figure S2D). The RIC-seq net-

works also have small-world properties, with a higher global 

clustering coefficient than random networks of the same size, 

suggesting modular organization (Figure S2E), and a relatively 

short average path length of 3.5, indicating that most RNAs are 

within short network distances, consistent with widespread 

RNP-mediated proximity (Figure S2F).
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Next, we explored the characteristics and connectivity of 

smOOPs in these RRI networks. In the nPSCs network, 430 of 

449 smOOPs were present, and in pPSCs, 1,255 out of 1,328 

smOOPs were present. In the RIC-seq networks, degree (the 

count of distinct nodes linked to each gene) strongly correlated 

with expression for genes of similar length, regardless of whether 

they were classified as smOOPs (Figure S2G), likely reflecting 

the higher sensitivity of RIC-seq for detecting interactions 

involving abundant RNAs. Although smOOPs appeared to 

have a high degree compared to all non-smOOPs, non-smOOPs 

matched for expression levels and lengths (Figure S2H) ex-

hibited similarly high degrees (Figure S2I). This suggests that 

the observed elevated degree of smOOPs is primarily driven 

by their expression and length rather than their smOOPs status.

To explore network connectivity patterns among smOOPs, we 

focused on the smOOPs subnetworks within the RIC-seq data 

(Figures 2C and 2D). The nPSC and pPSC smOOPs subnetworks 

appeared highly connected based on several network connec-

tivity metrics: edge density (the proportion of possible edges 

present), largest connected component (the size of the 

largest connected subnetwork), and global clustering coefficient 

(the tendency of nodes to form tightly connected groups) 

(Figures 2C and 2D). Because nodes with high degrees are inher-

ently more likely to connect, we specifically tested whether 

smOOPs preferentially connect with each other rather than being 

broadly or randomly connected across the transcriptome. To do 

this, we generated degree-matched random subnetworks by 

sampling RNAs with a similar degree as smOOPs. These

Figure 2. smOOPs connectivity within RIC-seq networks

(A) Schematic overview of the approach for inferring RNA-RNA networks in nPSCs and pPSCs using RIC-seq, 26 with key steps shown.

(B) RIC-seq hybrid read counts in nPSCs and pPSCs (pooled from three replicates each), categorized by type, excluding hybrid reads containing rRNA, tRNA, and 

mitochondrial RNA.

(C) Visualization of the nPSC smOOPs RRI subnetwork from RIC-seq data, where nodes represent genes and edges connect gene pairs supported by hybrid 

reads. Node size corresponds to degree, and edge width represents the number of hybrid reads between nodes. Unconnected smOOPs are displayed on the 

right and connectivity metrics underneath.

(D) smOOPs subnetwork connectivity comparison with degree-matched control subnetworks in nPSCs and pPSCs. Density plots show the distribution of 

connectivity metrics from 10,000 degree-matched sub-sampled networks (null models). The dashed lines indicate observed values for the smOOPs RIC-seq 

subnetworks, with p values from permutation tests comparing smOOPs subnetworks’ metrics to the metric distributions for the degree-matched sub-sampled 

networks.
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degree-matched random subnetworks provide a null expecta-

tion for connectivity, enabling comparison to the observed 

smOOPs subnetwork while controlling for biases related to de-

gree, expression, and transcript length. Compared to these 

random expectations, smOOPs subnetworks exhibited signifi-

cantly greater connectivity across all metrics in nPSCs and 

pPSCs (Figure 2D), indicating that their interconnectivity cannot 

be explained by their degree alone. Furthermore, despite the 

identity of smOOPs varying across development (Figure 1C), 

this characteristic is maintained in both nPSCs and pPSCs 

(Figure 2D). Together, these findings suggest that smOOPs are 

more interconnected among themselves even when controlling 

for general connectivity with the whole transcriptome, reflecting 

a specific network organization that points to their proximity in 

cells.

DL accurately predicts smOOPs from intrinsic

and regulatory RNA features

Given that smOOPs are enriched in the semi-extractability and 

OOPS assays (Figure 1) and form denser RNA subnetworks 

than expected by chance (Figure 2), we pursued an in-depth 

investigation of the RNA features that define this group of 

condensation-prone transcripts. Using intrinsic RNA features— 

such as sequence and structure—and transcriptome-wide 

data for trans-acting factors, we developed an explainable DL 

approach to distinguish smOOPs from a background RNA pop-

ulation that are neither semi-extractable nor OOPS enriched. We 

focused on nPSCs due to the greater availability of public tran-

scriptomic data compared to pPSCs, allowing us to utilize a 

more extensive set of features. Thus, for our binary classification, 

smOOPs from nPSCs with processed transcript lengths under 

20 kb were used as the positive class (n = 447 out of 449), while 

genes without strong evidence of enrichment at any stage of the 

semi-extractable assay or OOPS vs. control (padj > 0.01 and |log 

fold change| [|LFC|] < 1.4; see STAR Methods) were defined as 

the all-stage control genes (n = 1,232), referred to herein as com-

mon control genes (Table S1). The control genes have similar 

expression levels to smOOPs (Figure S3A), which strengthens 

our comparison by reducing potential confounding effects from 

expression differences. To identify the unique features of 

smOOPs, we trained DL classifiers with multiple feature sets: 

RNA nucleotide sequence, global RBP occupancy (global iCLIP; 

this study), N6-methyladenosine (m 6 A) modification sites (m 6 A-

iCLIP), 45 transcriptome-wide base-pairing intramolecular 

(PARIS-Intra) and intermolecular (PARIS-Inter) interactions, 46 in 

silico structure prediction with RNAfold, 47 and RNA-binding sites 

of 46 RBPs determined via CLIP from various mouse cell lines 

from the POSTAR3 database. 48 We encoded all features as po-

sitional information layers for each transcript, enabling efficient 

feature extraction (Figure 3A; see STAR Methods). To capture 

complex patterns and positional dependencies in the data, we 

implemented a DL architecture consisting of multiple convolu-

tional neural network (CNN) blocks, a recurrent neural network 

(RNN), and a multi-layer perceptron (MLP) for classification 

(Figure 3A). The main goal was not merely to achieve accurate 

predictions but also to extract and understand the discriminating 

power contributed by each dataset, both individually and in com-

bination. To accomplish this, we trained a separate model on

every subset of the seven datasets, resulting in 127 unique 

models, each trained in eight replicates (Figure 3A; Table S3; 

see STAR Methods).

Given that smOOPs were longer than control transcripts, with 

a ∼3-fold longer coding sequence (CDS) as the primary driver 

of the overall length enrichment (Figure S3B) and because all 

input tracks implicitly encode transcript length, we additionally 

trained a baseline model using sequence length as the sole 

feature, also in 8 replicates (Table S3). Transcript length alone 

achieves a good baseline performance (area under the receiver 

operating characteristic curve [AUROC] = 0.82, accuracy = 

74%), which indicates that length provides meaningful informa-

tion for smOOPs prediction (Figure 3B). The DL model trained 

only on sequence data greatly improved the prediction accu-

racy on the smOOPs previously not seen by the model 

(AUROC = 0.91, accuracy = 81%) (Figures 3B, S3C, and 

S3D), indicating that although length is a contributing factor, 

sequence-specific features provide critical information for 

accurately distinguishing smOOPs. Notably, the sequence-

based model outperformed models trained on any other indi-

vidual dataset (Figure 3B, number of datasets = 1). The sec-

ond-highest predictive performance was achieved by models 

trained exclusively on global iCLIP data, with an AUROC of 

0.89 and an accuracy of 79%, which may reflect the fact that 

both iCLIP and OOPS rely on UV crosslinking to detect RBP 

binding and therefore sample related biochemical events. 

Generally, as additional datasets were introduced, the predic-

tive power gradually improved, ultimately reaching an AUROC 

of 0.94 and an accuracy of 83% with all datasets included 

(Figure 3B, number of datasets = 7). To confirm that the DL 

model accurately classifies smOOPs using unseen data from 

a different experimental batch, we repeated the semi-extract-

ability assay and OOPS in nPSCs. The new batch produced a 

partially overlapping but not identical smOOPs set compared 

with the original dataset (Figure S3E; Tables S1 and S5), which 

served as an independent test set for model evaluation. We 

observed a reasonably strong generalization of the model to 

the new smOOPs and control datasets, with the all-features 

model achieving an AUROC of 0.79 (Figure S3F). Again, the 

predictive performance of the DL model trained on all features 

or on the sequence alone (AUROC of 0.75) exceeded the model 

trained on transcript length alone (AUROC of 0.67), empha-

sizing that the selected features are robust predictors across 

batches.

To highlight how each information layer contributed to the 

model’s predictive power beyond the others, we assessed the 

average AUROC improvement by comparing the model’s perfor-

mance with and without each dataset. Our analysis revealed that 

the sequence, POSTAR3 peaks, global iCLIP, and PARIS-Intra 

layers significantly improved the performance of the models in 

which they were incorporated, giving us the confidence that 

these datasets contain important information about the features 

that distinguish smOOPs transcripts (Figure 3C). Surprisingly, 

RNAfold predictions reduced performance, presumably by intro-

ducing noise, due to the binary encoding of only the optimal 

structure, the limited ability of free energy minimization algo-

rithms to predict secondary structures for long sequences, 49 

and the absence of context-specific information (e.g., cellular
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factors like RBPs or the influence of in vivo conditions that can 

affect folding). Most features showed minimal AUROC improve-

ment when used in combination, likely because they provided 

limited additional information (Figure 3C). To explore this overlap 

further, we analyzed feature pairs from the top four most infor-

mative datasets (sequence, POSTAR3, global iCLIP, and 

PARIS-Intra) to assess their individual and combined contribu-

tions to AUROC. Excluding both features and adding one or 

both back revealed additive effects, particularly between RNA 

sequence and RBP occupancy. Notably, sequence data alone 

(which also reflect transcript length) encode most information 

represented by the other datasets, except for individual RBP 

binding profiles, which likely refined the model by distinguishing

sequences recognized by specific RBPs for better information 

extraction (Figure 3D). To validate the contribution of each 

feature across different transcript regions, we conducted mask-

ing experiments in which we omitted the 5 ′ untranslated region 

(5 ′ UTR), CDS, and 3 ′ untranslated region (3 ′ UTR) signal 

(Figure S3G). We found that the sequence data contributed 

most to the predictive power in the CDS, while the global iCLIP 

and POSTAR3 were most informative in the 3 ′ UTR. In contrast, 

the performance of the PARIS-Intra-based models decreased 

when either the CDS or the 3 ′ UTR was masked (Figure S3G). 

Together, our analyses demonstrate that using the selected 

datasets within our DL framework enabled accurate smOOPs 

prediction and that unbiased training on all feature combinations

Figure 3. Deep learning-based classification of smOOPs and control transcripts

(A) Schematic visualization of the feature encoding and deep learning model training across 127 unique combinations of transcriptomic datasets. Each com-

bination was used to train a model through convolutional and recurrent layers for nPSC smOOPs and control transcript classification.

(B) Model performance across dataset combinations. (Left) AUROC of the best model trained on each unique dataset combination. Dots represent included 

datasets, with lines connecting models where one is a subset of the other, color coded by AUROC improvement. (Right) Boxplots showing the median per-

formance and interquartile range for all the models for which specific datasets were included.

(C) AUROC improvement with the addition of a particular dataset to each combination of previously included datasets. Color indicates the p value from a two-

sided Welch’s t test against zero.

(D) Pairwise feature combination analysis quantifying the difference between maximum individual and joined contributions of features to model performance. 

Statistically significant results are marked (*p < 0.05, two-sided Welch’s t test against zero).
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revealed nuanced dataset interactions predictive of these 

transcripts.

Deconvolving the features of smOOPs

To extract the unique features distinguishing smOOPs, we used 

integrated gradients to compute nucleotide-resolution feature 

importance scores for the models trained on each of the top 

four datasets that improved the average model performance 

(i.e., sequence, POSTAR3, global iCLIP, and PARIS-Intra). Over-

laying the importance scores over each transcript uncovered 

distinct patterns of feature contributions for each individual data-

set (Figure S3H). We analyzed global feature patterns by dividing 

smOOPs transcripts into 100 bins and averaging feature impor-

tance scores within each bin, capturing patterns across data-

sets. We then clustered smOOPs based on the importance 

scores across these feature dimensions, revealing two clusters 

(cluster 1, n = 328; cluster 2, n = 119) (Figure 4A; Table S1). 

Cluster 1 primarily contained mRNAs (98.2%), while cluster 2 

was a mix of TECs (56.4%), mRNAs (36.4%), and lncRNAs 

(7.3%) (Figure 4A). We observed distinct sequence compositions 

in each cluster: cluster 1 exhibited a pronounced cytosine

(C) enrichment across the transcript, particularly within the 5 ′ 

UTR and CDS, which overlapped with high PARIS-Intra impor-

tance (Figure 4B). In contrast, cluster 2 displayed increased 

overall importance of uridine (U), with adenine (A) being slightly 

more important at the 5 ′ ends of the transcripts (Figure 4C). 

Although global RBP occupancy (global iCLIP) is a key feature 

across all smOOPs, our analysis highlighted the positional spec-

ificity of RBP binding in each cluster: the importance of RBP oc-

cupancy was predominantly concentrated in the 3 ′ UTR for clus-

ter 1, while for cluster 2, it was distributed more uniformly across 

the entire transcript (Figures 4B and 4C). Furthermore, the re-

gions of POSTAR3 importance, summing individual CLIP binding 

profiles (POSTAR3 sum), portrayed more specific regions of 

importance, emphasizing the precise nature of RBP interactions 

at these sites (Figures S4A and S4B). Cumulatively, our DL 

approach pinpoints the key biological information for RNA 

condensation propensity, with sequence, intramolecular struc-

ture, and RBP binding information being the most predictive.

Comparing nPSC smOOPs with all non-smOOPs transcripts, 

we sought to validate and deepen the insights gained from 

our models by directly investigating features highlighted as impor-

tant. Building on model predictions, a lower sequence complexity 

compared to controls was confirmed for both clusters: the mRNAs 

in cluster 1 portrayed a C-rich CDS (Figure 4D), with the ‘‘CCC’’ 

triplet being the most enriched, followed by ‘‘GCC,’’ ‘‘CGC,’’ 

‘‘CCG,’’ and ‘‘CCA’’ (Figures S4C and S4E). The most frequent trip-

lets in the U-rich cluster 2 (Figure 4E) included ‘‘UUU,’’ followed by 

‘‘UUA,’’ ‘‘UCU,’’ ‘‘UGU,’’ and ‘‘UAU’’ (Figures S4D and S4F). Global 

iCLIP data showed enhanced global RBP binding in the 3 ′ UTR of 

smOOPs in cluster 1 (Figure 4F); however, there was an overall 

10-fold greater RBP occupancy for transcripts in cluster 2, and 

this was also more pronounced within the 3 ′ UTRs of cluster

2 mRNAs (Figures 4G and S4G). Since UV crosslinking preferen-

tially targets uridines, we cannot determine the exact extent to 

which this bias influences the observed enrichment in RBP occu-

pancy. Importance scores for POSTAR3 data revealed that in both 

clusters, RBFOX2, SRRM4, and SRSF3 carried key predictive in-

formation (Figure 4H). Since SRRM4 is not expressed at sufficient 

levels in our cell line, the model likely determined its importance 

based on the presence of its binding motifs. The frequency of intra-

molecular interactions determined by PARIS was also significantly 

increased in the CDS of smOOPs from cluster 1 and was overall 

higher in smOOPs from cluster 2 (Figure 4I). Despite these specific 

features of smOOPs, we did not observe any major differences in 

translation efficiency 50 or in mRNA stability 51 compared to non-

smOOPs (Figures S4H–S4J).

These findings highlight that smOOPs are more strongly 

bound by RBPs, generally more structured than non-smOOPs, 

and can be divided into two clusters with distinct sequence 

composition in nPSCs: one comprising C-rich mRNAs and the 

other predominantly comprising A/U-rich transcripts. In both 

clusters, RBP binding plays a crucial role, emphasizing its role 

in shaping the behavior of these unique transcripts.

smOOPs mRNAs encode proteins rich in IDRs

Since smOOPs in nPSCs were clearly distinguished from control 

transcripts based on their sequence features, we investigated

Figure 4. Analysis of smOOPs predictive features

(A) Uniform manifold approximation and projection (UMAP) of binned importance scores per feature for nPSC smOOPs. Each dot represents a transcript, color 

coded by cluster. The accompanying pie charts show the distribution of gene types within each cluster (TEC, to be experimentally confirmed).

(B) Heatmap showing the average nucleotide- and dataset-specific feature importance scores for all transcripts in cluster 1, divided into 10 bins for the 5 ′ UTR and 

50 bins each for the CDS and 3 ′ UTR.

(C) Heatmap showing the average nucleotide- and dataset-specific feature importance scores for all transcripts in cluster 2, binned into 100 intervals along the 

transcript length.

(D) Per-bin difference in average nucleotide content between cluster 1 smOOPs and control transcripts, with nucleotide content divided into 10 bins for the 5 ′ UTR 

and 50 bins each for the CDS and 3 ′ UTR.

(E) Per-bin difference in average nucleotide content between cluster 2 smOOPs and control transcripts, with nucleotide content divided into 100 bins across the 

transcripts.

(F) Median global iCLIP signal, normalized for expression and binned (10 bins for the 5 ′ UTR and 50 bins each for the CDS and 3 ′ UTR; pooled from three 

replicates) for cluster 1 and control transcripts. Shaded areas represent 95% confidence intervals per bin, estimated via bootstrapping.

(G) Median global iCLIP signal, normalized for expression and binned (100 bins across the transcripts; pooled from three replicates) for cluster 2 smOOPs and 

control transcripts. Shaded areas represent 95% confidence intervals per bin, estimated via bootstrapping.

(H) Average importance scores for CLIP datasets from POSTAR3 across all transcripts in clusters 1 and 2, shown for each RNA-binding protein with 95% 

confidence intervals.

(I) Bar charts showing PARIS intramolecular hybrid counts across individual transcript regions for cluster 1 and smOOPs compared to all non-smOOPs tran-

scripts, adjusted for region length and expression (***p < 0.001, two-sided Welch’s t test).
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Figure 5. IDR content, amino acid composition, and functional characteristics of smOOPs-encoded proteins

(A) Percentage of smOOPs transcripts in the C-rich and A/U-rich clusters across developmental stages (nPSCs, pPSCs, and dPSCs).

(B) Density distributions of semi-extractability and OOPS enrichment for smOOPs transcripts in the C-rich and A/U-rich clusters across nPSCs, pPSCs, and 

dPSCs.

(C) Amino acid enrichment in C-rich and A/U-rich smOOPs clusters compared to non-smOOPs. Dot size indicates the percentage of C/A nucleotides in codons 

encoding each amino acid, with gradient strength showing statistical significance for the difference in mean codon usage (two-sided Welch’s t test).

(D) Enrichment of amino acid groups in C-rich and A/U-rich smOOPs clusters compared to non-smOOPs.

(legend continued on next page)
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whether these features persisted throughout development. To 

address this, we trained an additional DL model using only 

the sequence of smOOPs transcripts identified at all three devel-

opmental stages—nPSCs, pPSCs, and dPSCs—and compared 

them to the same set of common control transcripts (Table S1). 

This newly trained model achieved a performance comparable to 

that of the nPSC-only model (AUROC = 0.90, accuracy = 82%), 

indicating that sequence features uniquely define smOOPs 

throughout embryonic development, not only in nPSCs. Further-

more, when examining the model’s learned features, we again 

identified two smOOPs clusters—C rich and A/U rich—which 

showed 96% consistency with those from the nPSCs-only 

model (Figures S5A and S5B; Table S1). This confirms that this 

separation is a general feature of smOOPs that persists 

throughout development.

Interestingly, the ratio of C-rich to A/U-rich smOOPs shifts dur-

ing development. In nPSCs, C-rich smOOPs were predominant, 

comprising approximately 75% of nPSC-specific smOOPs. In 

dPSCs, their proportion declined to 56%, reflecting an increased 

representation of A/U-rich smOOPs at later developmental 

stages (Figures 5A and S5C). This observation prompted further 

investigation into how smOOPs behavior changes across semi-

extractability and OOPS assays for the two clusters. While C-rich 

smOOPs maintained consistent enrichment across both assays, 

A/U-rich smOOPs became increasingly semi-extractable 

during development while showing reduced OOPS enrichment 

(Figure 5B). This coincided with a higher proportion of mRNAs 

in the A/U-rich cluster and a gradual decline of TECs 

(Figure S5D).

To elucidate the basis of the nucleotide composition differ-

ences between the smOOPs clusters, we examined the contri-

bution of codon bias or amino acid composition. In line with 

the A/U-rich smOOPs nucleotide bias, the amino acid composi-

tion of this group was heavily enriched in charged and polar res-

idues (Figures 5C and 5D). In contrast, C-rich smOOPs encoded 

proteins enriched in proline and polar uncharged residues, 

particularly serine (Figures 5C and 5D). Since many enriched 

amino acids (proline and serine in the C-rich cluster and gluta-

mine, glutamate, and lysine in the A/U-rich cluster) are all highly 

abundant in the IDRs of proteins, 53 we investigated whether 

smOOPs encode proteins with an inherent propensity for 

condensation.

Structural analysis confirmed this hypothesis, revealing that 

both C-rich and A/U-rich clusters encode more proteins with 

IDRs and a higher percentage of disordered amino acids 

(Figure 5E). Notably, as many as 84.4% of C-rich and 86.2% 

of A/U-rich smOOPs-encoded proteins contain IDRs, while 

only 57.8% of non-smOOPs-encoded proteins contain IDRs 

(Figure 5E). In addition, smOOPs-encoded proteins are, on 

average, more than twice the size of the non-smOOPs group, re-

sulting in significantly longer IDRs. Both the number of IDR-con-

taining proteins and the proportion of disorder within these pro-

teins (Figure 5E) suggested that smOOPs-encoded proteins 

might be involved in condensate formation. We tested this using 

the PICNIC (proteins involved in condensates in cells) prediction 

model, 52 providing further evidence that smOOPs-encoded pro-

teins are also more likely to be involved in condensates 

(Figures 5E and S5F). Observed protein features were reproduc-

ibly recapitulated among smOOPs in the second nPSCs batch 

(Figure S5E). Interestingly, despite their shared structural prop-

erties and condensation potential, the two clusters encode pro-

teins with distinct cellular functions. Gene Ontology (GO) anal-

ysis revealed that C-rich cluster proteins are localized to the 

cell membrane and periphery, are mainly involved in develop-

mental processes, and play roles in protein binding. In contrast, 

A/U-rich cluster proteins are mostly nuclear, involved in gene 

regulation and containing nucleic-acid-binding domains, espe-

cially zinc-finger motifs (Figures 5F and S5G; Table S4).

These findings suggest that smOOPs encode two classes of 

proteins with high condensation propensity but distinct cellular 

roles. Differences at both the RNA and protein levels underscore 

the sequence-driven and developmentally regulated nature of 

smOOPs, highlighting their involvement in condensate formation 

throughout development.

DISCUSSION

Understanding the principles governing RNA condensates in 

their native cellular context is crucial to uncovering how they 

shape cellular biology. In this study, we use a dual methodol-

ogy—semi-extractability assay and OOPS—to define smOOPs 

based on their shared biochemical properties during early mu-

rine embryonic development. This combination provides a 

comprehensive view of RNAs potentially involved in RNP assem-

blies and condensation. smOOPs are a distinct class of long 

transcripts that consist of predominantly protein-coding RNAs 

exhibiting subcellular localization in larger foci, among which 

many are enriched in known transcriptomes of RNP granules. 

RNA networks from RIC-seq further revealed that smOOPs 

form more densely connected subnetworks than expected, sug-

gesting their proximity to one another and potential spatial orga-

nization and cellular compartmentalization.

We systematically investigate the characteristics of smOOPs 

using an integrative DL approach that identifies two clusters 

based on sequence composition, RBP-binding patterns, and 

structuredness: C-rich mRNAs with structured regions and 

extensive 3 ′ UTR RBP binding and A/U-rich transcripts with an 

overall higher RBP occupancy. A previous report has linked 

longer mRNAs and 3 ′ UTR-bound RBPs with local translation 

in subcytoplasmic compartments 37 ; however, we detected no 

general differences in the translational output of smOOPs. 

This heterogeneity suggests that smOOPs may contribute 

to condensation through diverse mechanisms or in different 

cellular contexts. Across the three developmental time points,

(E) Percentage of proteins with IDRs and measures of disorder for C-rich and A/U-rich smOOPs clusters compared to non-smOOPs. Bar chart shows the 

percentage of proteins with IDRs, and the boxplots show the percentage of disorder in proteins, their mass, and PICNIC scores (proteins involved in condensates 

in cells) 52 (***p < 0.001; two-sided Wilcoxon rank-sum test for disorder percentage, two-sided Welch’s t test for mass and PICNIC scores).

(F) GO term enrichment analysis for C-rich and A/U-rich smOOPs clusters. The dot size represents the percentage of proteins enriched for each term, and the 

color intensity reflects statistical significance (false discovery rate [FDR]).
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transcripts in the C-rich cluster show stable enrichment in both 

methods, while those in the A/U-rich cluster become increas-

ingly semi-extractable and less OOPS enriched. This suggests 

that A/U-rich smOOPs undergo greater developmental changes 

in RNP assembly and may play distinct roles in condensate for-

mation at later developmental stages.

The most striking finding is the link between smOOPs’ RNA 

sequence features and the presence of IDRs in their encoded 

proteins. Disordered protein regions tend to be encoded by re-

petitive nucleotides or sequence motifs, such that the sequence 

repetitiveness is reinforced by codon biases. 54 Here, we show 

that both smOOPs clusters encode a significantly higher propor-

tion of proteins with IDRs compared to non-smOOPs. However, 

the two clusters are distinguished by differences in nucleotide 

and amino acid composition, which likely contribute to the 

distinct functionalities of their encoded proteins. This finding 

hints at a possible coordination between RNA identity and the 

phase-separation potential of the proteins they encode, a 

concept that requires further systematic investigation.

While earlier studies have examined the roles of specific RNAs 

or RBPs in condensation, this study takes a broader approach by 

identifying and characterizing an entirely new class of RNAs with 

potential implications for phase separation. This resource and 

our findings provide a foundation for future research aimed at 

confirming the involvement of smOOPs in condensation, unrav-

eling the functional relevance of the two identified clusters, and 

elucidating the mechanisms by which RNA features may coordi-

nate with protein disorder and phase-separation potential. Such 

coordination has been described for nuclear speckles, where 

groups of proteins with condensation-prone domains promote 

the selective sequestration of related mRNAs encoding these 

proteins. 54 Comparison of smOOPs with high-throughput data-

sets of condensate-enriched RNAs revealed a significant over-

representation of RNAs localized in stress granules. While long 

RNAs have been reported to localize in stress granules, 36,55,56 

we also observed this enrichment in unstressed cells, raising 

the question of whether smOOPs act as early scaffolds for 

condensate formation.

Repeating the semi-extractability assay and OOPS years later 

in nPSCs confirmed that smOOPs are primarily defined by 

shared features, which remained consistently predictive despite 

batch-to-batch differences in gene-level identities. Our definition 

of smOOPs used stringent thresholds to capture strong effect 

sizes and ensure that the identified RNAs exhibited robust 

semi-extractability and OOPS enrichment. Nonetheless, these 

properties lie on a continuum rather than forming discrete cate-

gories, so fixed cutoffs inevitably exclude RNAs with intermedi-

ate characteristics. Thus, we view smOOPs as an assay-defined 

subset with consistent features, though their exact membership 

may vary across experiments due to biological or technical 

variability.

In terms of methodology, our study demonstrates the power of 

explainable machine learning to reveal complex patterns across 

diverse datasets, enabling unbiased classification and charac-

terization of gene groups. This is especially valuable in the study 

of condensates, where distinguishing different assemblies and 

RNA functions is challenging using traditional approaches. By 

integrating RNA proximity-ligation datasets into network-based

analyses, we provide an approach to uncover new insights into 

the features organizing specific RNA networks, aiding our under-

standing of protein-RNA condensates.

Overall, this study opens a new avenue for understanding the 

complex interplay between RNA identity and protein condensa-

tion potential in cellular organization and function, positioning 

smOOPs as potential players in the regulation of condensation 

processes.

Limitations of the study

This study presents a new class of semi-extractable RNAs with 

high RBP occupancy determined by both OOPS and global 

iCLIP. Both assays rely on UV crosslinking, which has a strong 

bias toward uridines. Therefore, we cannot determine to what 

extent the observed higher RBP occupancy, especially in the 

A/U-rich cluster, reflects the actual increase in biological interac-

tions or increased crosslinking efficiency. Although we per-

formed orthogonal HCR-FISH experiments that have been 

used as proxies for condensation, these did not directly assess 

phase-separation processes.

smOOPs networks obtained by RIC-seq rely on pairwise RNA 

proximity, showing that individual smOOPs can be near each 

other, though not necessarily all at the same time. Furthermore, 

it remains unclear whether their non-random association and 

proximity result from RNA condensation processes (such as 

co-assembly) or if they are influenced by other factors. GO 

term analysis suggests different functions of smOOPs-encoded 

proteins from C- and A/U-rich clusters; however, the functional 

implications in the context of development and condensate for-

mation could be further explored.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Miha Modic (miha. 

modic@kit.edu).

Materials availability

The strains generated in the course of this work are freely available to aca-

demic researchers through the lead contact.

Data and code availability

Newly produced and publicly available data were used for this work. Newly 

produced data were deposited on ArrayExpress under accession numbers 

E-MTAB-14762 (RNA-seq for semi-extractability and OOPS assays in 

nPSCs, pPSCs, and dPSCs), E-MTAB-15428 (RNA-seq for semi-extractability 

and OOPS assays in nPSCs, second batch), E-MTAB-14763 (global iCLIP), 

and E-MTAB-14764 (RIC-seq). Raw PARIS data are available at GEO: 

GSE74353. Raw ribosome profiling data are available at GEO: GSE30839, 

with processed data (translation efficiency values) obtained from 

the supplemental information. 50 Ribosome profiling data on mESCs 

were downloaded from GEO (accession numbers GEO: GSM3943973 and 

GSM3943975). SlamSeq metabolic RNA-seq data were downloaded from 

GEO: GSE99978. Raw miCLIP (m 6 A) data are available at GEO: GSE169549. 

POSTAR3 CLIP datasets were obtained from the POSTAR3 platform (http:// 

postar.ncrnalab.org/). The best-performing models trained for this manuscript 

are deposited at Zenodo (https://doi.org/10.5281/zenodo.17076365). The 

PICNIC scores for the mouse proteome were obtained from the PICNIC plat-

form (https://picnic.cd-code.org/). The lncRNA prediction scores were calcu-

lated using lncRNAnet (https://github.com/nofundamental/lncRNAnet). The 

code and notebooks to analyze the data and produce the figures in this
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work are available at https://github.com/ModicLab/smOOPs_project. The im-

ages and code used for HCR-FISH quantification are deposited at Zenodo 

(https://doi.org/10.5281/zenodo.13860869).
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TRIzol Invitrogen Cat#15596018

TRIzol-LS Invitrogen Cat#10296010

Proteinase K Roche Cat#3115828001

Phenol:Chloroform:Isoamyl Alcohol Sigma Cat#P3803

Agencourt AMPure XP Beckman Coulter Cat#A63881

RNase I Thermo Scientific Cat#EN0602

NuPAGE® Novex 4–12% Bis-Tris Gel 1.0 mm, 12 well Thermo Fisher Cat#NP0322BOX

6% TBE-Urea gel Thermo Fisher Cat#EC6865BOX

Disuccinimidyl suberate (DSS) Thermo Fisher Cat#21655

Micrococcal Nuclease (MNase) ThermoFisher Cat#EN0181

T4 RNA ligase NEB Cat#M0204L

FastAP Thermosensitive Alkaline Phosphatase Thermo Scientific Cat#EF0651

T4 Polynucleotide Kinase (PNK) NEB Cat#M0201L

RecJf Exonuclease NEB Cat#M0264S

T4 DNA Ligase Thermo Fisher Cat#EL001

MyOne Streptavidin C1 beads Invitrogen Cat#65001

Nuclease-free water Thermo Fisher Cat#AM9930

Turbo DNase Thermo Fisher Cat#AM2238

Phusion TM High-Fidelity PCR Master Mix with HF 

Buffer

NEB Cat#M0531L

Geltrex TM Reduced-Growth Factor Basement-

Membrane Matrix, LDEV-free, stem-cell qualified

Gibco Cat#A1413302

μ-Slide 8 Well Glass Bottom Ibidi Cat#80827

Fluoromount G Thermo Scientific Cat#00-4958-02

Pierce TM 16% Formaldehyde (w/v), Methanol-free ThermoFisher Cat#28906

Critical commercial assays

RNeasy Plus Mini Kit (Qiagen) Qiagen Cat#74134

CORALL Total RNA-Seq V1 with RiboCop rRNA 

depletion

Lexogen Cat#95.96

pCp-biotin ligation kit Thermo Fisher Cat#20160

Superscript IV RT kit Invitrogen Cat#18090050

Deposited data

Total RNA-seq for semi-extractability and OOPS 

assays

This paper ArrayExpress (E-MTAB-14762; E-MTAB-15428)

Global iCLIP This paper ArrayExpress (E-MTAB-14763)

RIC-seq This paper ArrayExpress (E-MTAB-14764)

Raw images and image analysis scripts This paper https://doi.org/10.5281/zenodo.13860869

Trained models (with highest performance) This paper https://doi.org/10.5281/zenodo.17076366

Ribo-seq dataset Ingolia et al., 2011 50 GEO, Accession number: GSE30839

Ribosome profiling data (monosome and disome) Tuck et al., 2020 41 GEO, Accession numbers: GSM3943973 

and GSM3943975

SLAM-seq dataset Herzog et al., 2017 51 GEO, Accession number: GSE99978

miCLIP (m6a) dataset Modic et al., 2024 45 GEO, Accession number: GSE169549

POSTAR3 collection Zhao et al., 2022 48 http://postar.ncrnalab.org
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Cell Genomics 6, 101065, February 11, 2026 e1

Article
ll

OPEN ACCESS

https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-14762
https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-15428
https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-14763
https://www.ebi.ac.uk/biostudies/ArrayExpress/studies/E-MTAB-14764
https://doi.org/10.5281/zenodo.13860869
https://doi.org/10.5281/zenodo.17076366
http://postar.ncrnalab.org


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

UniProt The UniProt Consortium 57 https://www.uniprot.org

STRING version 12.0 Szklarczyk et al., 2023 58 https://string-db.org

Original code for data analysis This paper https://github.com/ModicLab/smOOPs_project

Experimental models: Cell lines

M. musculus: WT pluripotent stem cells IDG3.2 

(129S8/B6 background)

Hitz et al., 2007 59 (RRID:CVCL_A2WN)

M. musculus: TGFP/+;Foxa2tagRFP/+ (G9) 

on IDG3.2 background

Scheibner et al., 2021 60

Oligonucleotides

Oligonucleotides This paper Table S4

Software and algorithms

Fiji Schindelin et al., 2012 61 https://fiji.sc/

Rstudio v2024.12.1 – http://www.posit.co/

R version 4.3.2 R Core Team https://www.r-project.org/

Python 3.9 – https://www.python.org

iCount-Mini – https://github.com/ulelab/icount-mini

Tosca v1.0.0 Chakrabarti et al., 2023 62 https://github.com/amchakra/tosca

nf-core/rnaseq v3.4 Bushnell et al., 2017 63 ; 

Ewels et al., 2020 64

https://nf-co.re/rnaseq/3.4

R version 4.4.0 R Core Team https://www.r-project.org/

DESeq2 v1.44.0 Love et al., 2014 65 https://bioconductor.org/packages/release/bioc/

html/DESeq2.html

Ashr Stephens, 2017 66 https://cran.r-project.org/package=ashr

ComplexHeatmap v2.20.0 Gu et al., 2016 67 https://bioconductor.org/packages/release/bioc/

html/ComplexHeatmap.html

Ultraplex v1.2.9 Wilkins et al., 2021 68 https://github.com/ulelab/ultraplex

nf-core/clipseq v1.0.0 West et al., 2023 69 https://nf-co.re/clipseq/1.0.0

Cutadapt Martin, 2011 70 https://cutadapt.readthedocs.io/en/stable/

BBMerge Bushnell et al., 2017 63 https://jgi.doe.gov/data-and-tools/bbtools/bb-

tools-user-guide/bbmerge/

featureCounts Liao et al., 2013 71 http://bioinf.wehi.edu.au/featureCounts/

igraph v2.0.3 Csardi & Nepusz, 2006 72,73 https://igraph.org/

bedtools Quinlan & Hall, 2010 74 https://bedtools.readthedocs.io/en/latest/

RNAfold Lorenz et al., 2011 47 http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/

RNAfold.cgi

lncRNAnet Baek et al., 2018 40 https://github.com/nofundamental/lncRNAnet

TensorFlow 2.12.0 Abadi et al., 2015 75 https://www.tensorflow.org

UMAP McInnes and Healy, 2018 76 https://umap-learn.readthedocs.io

Optuna framework Akiba et al., 2019 76 https://github.com/optuna/optuna

riboseq-flow v1.1.1 Iosub et al., 2024 77 https://github.com/iraiosub/riboseq-flow

RiboCode 1.2.14 Xiao et al., 2018 78 https://github.com/xryanglab/RiboCode

clipplotr Chakrabarti et al., 2023 79 https://github.com/ulelab/clipplotr

ComplexUpset 1.3.3 – https://cran.r-project.org/web/packages/

ComplexUpset/index.html

circlize 0.4.16 Gu et al., 2014 80 https://cran.r-project.org/package=circlize

corrplot 0.94 – https://cran.r-project.org/package=corrplot

Other

UV Crosslinker CL-3000 (254 nm) AnalytikJena Cat# 849-95-0615-02
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture

Low-passage, wildtype mouse pluripotent stem cells IDG3.2 PSCs (129S8/B6 background) 59 and TGFP/+;Foxa2tagRFP/+ (G9) 60 

were cultured feeder-free, on cell culture dishes (TPP) coated with 0.1% Gelatin (ES-006-B, Millipore). Naive PSCs (nPSCs) were 

maintained in N2B27 medium composed of 1:1 Neurobasal (21103049) and DMEM-F12 (11320074) medium containing N2 

(17502001) and B27 (17504001) supplements, 1% Glutamax (35050061), 1% nonessential amino acids (11140050) and 0.1 mM 

2-mercaptoethanol (31350-010) (all Thermo Fisher Scientific), 12 ng/mL LIF (Qk018, Qkine), with additional use of small molecule in-

hibitors: for a condition commonly named 2iLIF, 1 μM MEK inhibitor PD0325901 (1408, Axon Medchem) and 3 μM GSK3 inhibitor 

CHIR99021 (SML1046, Sigma). nPSCs were fed every day and split every 2–3 days using Accutase (A6964, Sigma). To transit 

from naive to primed pluripotency state, the G9 PSCs were accutased and seeded onto gelatin and FBS-coated (EmbryoMax ES 

Cell Qualified FBS, ES-009-B, Merck) plates in N2B27 medium supplemented with 1,000 U/mL LIF (ESGRO ESG1107, Merck), 

12 ng/mL bFGF (100-18B, Peprotech), 20 ng/mL Activin A (338-AC-050, R&D Systems), and 2 μM IWP2 (3533, Tocris). Once the 

nPSCs reached primed pluripotency state - pPSCs - they can be maintained indefinitely using the abovementioned FAI medium. 

For further expansion, pPSCs G9 cells were maintained in FAI medium on cell culture dishes (TPP) coated with Geltrex 

(A1413302, Gibco), fed every day and split every 2–3 days using Accutase (A6964, Sigma).

To generate differentiated primitive streak progenitors (dPSCs) pPSCs were grown in Wnt3a-differentiation medium (N2B27 

medium supplemented with 20 ng/mL ActA, 12 ng/mL bFGF and 250 ng/mL Wnt3a) for 24 h prior collecting the cells.

METHOD DETAILS

Semi-extractability and OOPS assays

pPSCs G9 (p9) were prepared for experiment one day prior harvesting by plating them on 10 cm plates (TPP), and Wnt3a-differen-

tiation medium was added to pPSCs for 24 h to generate differentiated primitive streak progenitors (dPSCs). For this experiment only, 

5% FBS (ES-009-B, Merck) was added to gelatin during coating for nPSCs (p20). Cells were prepared as follows: for semi-extract-

ability and standard TRIzol RNA-seq controls one confluent 6-well was used per replicate, triplicates in total. After washing cells 

2× with PBS, 1 mL TRIzol-LS (10296010, Invitrogen) was added to the plate and scraped, then transferred to a 1.5 mL Eppendorf 

tube. Samples were snap-frozen and stored at − 80 ◦ C. The semi-extractability assay was performed according to the protocol 20 : 

upon thawing and diluting TRIzol LS accordingly, the sample was heated for 10 min at 55 ◦ C and then sheared 40× through a 20G 

needle (the heating and shearing steps were omitted for control samples). Next, chloroform was added and mixed vigorously before 

the tube was centrifuged at 12,000× g for 15 min at 4 ◦ C. The aqueous phase was then mixed with 1.5× volume of 100% ethanol, and 

the isolation was continued with the RNeasy Plus Mini Kit (Qiagen) according to manufacturer’s instructions.

For OOPS, one confluent 10 cm plate was used per replicate (triplicates in total), washed twice with ice-cold PBS before cross-

linking them at 400 mJ/cm 2 (Crosslinker CL-3000 at 254 nm (AnalytikJena)). After removing residual PBS, 1 mL TRIzol-LS was added 

to the plate before scraping off the cells content and transferring it to a 1.5 mL Eppendorf tube that was stored at − 80 ◦ C. For RNA 

isolation, we followed the protocol provided by the Lilley Lab. 81 Briefly, the content of TRIzol LS tubes was first diluted with 1× volume 

nuclease-free water, then we added 1/5th volume of chloroform, mixed vigorously and centrifuged at 12,000× g for 15 min at 4 ◦ C. 

The aqueous and organic phase were carefully removed and the remaining interphase resuspended in fresh 1 mL TRIzol (15596018, 

Invitrogen). Again, 200 μL chloroform was added before centrifugation and removal of aqueous and organic phases. Finally, the inter-

phase was resuspended in 1 mL TRIzol once more before adding chloroform and separating the phases by centrifugation (12,000× g, 

15 min, 4 ◦ C). This time, we removed as much of the aqueous and organic phases as possible and precipitated the remaining inter-

phase (100 μL) using 100% Methanol (1 mL). After vortexing, the sample was centrifuged (14,000× g for 10 min at room temperature), 

supernatant was removed and the pellet digested using proteinase K (sro-3115828001, Roche) for two hours at 50 ◦ C. RNA was finally 

extracted by addition of 1 volume of phenol:chloroform (P3803, Sigma) and vortexing before centrifugation at 10,000× g for 10 min at 

room temperature. The aqueous phase was collected and RNA was precipitated for 20 min at room temperature with isopropanol. 

After centrifugation (12,000xg, 10 min, 4 ◦ C) the RNA pellet was washed twice using 75% ethanol and finally resuspended in nuclease-

free water (AM9930, Thermo Fisher). All RNA samples were treated with Turbo DNase (AM2238, Thermo Fisher) for 30 min at 37 ◦ C to 

remove DNA contaminants and bead-purified using Agencourt AMPure XP (A63881, Beckman Coulter). Sequencing libraries were 

prepared using CORALL Total RNA-Seq V1 with RiboCop rRNA depletion (Lexogen) starting with 500 ng DNase-treated RNA as 

input. The resulting cDNA libraries were sequenced as single-end 100 bp reads on HiSeq at the Advanced Sequencing Facility at 

The Francis Crick Institute.

For the second batch of semi-extractability and OOPS, nPSCs G9 (p30) were cultured on gelatin alone (ES-006-B, Millipore) and 

prepared the same way as described above with a few adjustments. TRIzol (15596018, Invitrogen) instead of TRIzol-LS was used for 

RNA extraction and the library was prepared using CORALL Total RNA-Seq Kit with RiboCop (V2) starting with 1000 ng DNase-

treated RNA as input. The resulting cDNA libraries were sequenced as paired-end 150 bp reads on Illumina NovaSeq X Plus Series 

with only Read 1 used for analysis (Table S5).
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Global iCLIP

iCLIP was performed according to the iiCLIP protocol. 42 First, 10 cm plates of nPSCs (G9, passage 17) and pPSCs (G9, passage 20) 

containing ∼1.5 mg of total protein mass per sample were lysed. Three replicates were prepared for each developmental stage. 

Briefly, cells were lysed upon UV-crosslinking (150 mJ/cm 2 in Crosslinker CL-3000 at 254 nm (AnalytikJena)) and treated with RNase 

I before binding the RNA to an IR dye-labelled adaptor and separating the RNA-protein complexes on SDS-PAGE. After cutting the 

desired part of the membrane (from 40 kDa upwards), we digested the proteins and extracted the protein-bound RNA to prepare 

libraries for next-generation-sequencing (see Table S6 for adapter and primer sequences). Libraries were sequenced as paired-

end 150 bp reads on NovaSeq at Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital at Ljubljana Uni-

versity Medical Center.

RIC-seq

Experiments were performed using nPSCs (G9, passage 20) and pPSCs (G9, passage 13)) in three replicates following the protocol 82 

with some modifications. Two 10 cm confluent plates per sample were crosslinked using freshly prepared 0.5 mg/mL DSS (21655, 

Thermo Fisher Scientific) at room temperature for 30 min (rotating at 20 rpm). The reaction was quenched using 20 mM Tris (pH7.5) for 

15 min at room temperature (rotating at 20 rpm). All centrifugation steps were carried out at 3500 rpm for 5 min at 4 ◦ C. After pelleting 

the cells, they were washed with PBS and then permeabilized (10 mM Tris-HCl (pH 7.5), 10 mM NaCl, 0.5% Igepal, 0.3% Triton X-100 

and 0.1% Tween 20) for 15 min on ice. Cells were washed three times with 1× PNK buffer before fragmenting the RNA using 6U 

MNase (EN0181, ThermoFisher) at 37 ◦ C for 10 min. The following steps including FastAP treatment (EF0651, Thermo Fisher), 

pCp-biotin ligation (20160, Thermo Fisher), second FastAP and PNK treatment (M0201L, NEB) were performed as in the original pro-

tocol. Proximity ligation was performed using a different T4 RNA ligase (M0204L, NEB) and hence 1 mM ATP was added to the over-

night reaction. Finally, cells were lysed using 200 μL proteinase K buffer (10 mM Tris-HCl pH 7.4, 100 mM NaCl, 1mM EDTA, 0.2% 

SDS) and 50 μL proteinase K (sro-3115828001, Roche) and an addition of 1.5 μL Turbo DNase (AM2238, Thermo Fisher), incubating 

at 37 ◦ C for 30 min, then 50 ◦ C for 60 min before adding Trizol-LS and snap freezing the samples. Once thawed and brought to room 

temperature, the samples were heated for 10 min at 55 ◦ C before adding the chloroform and precipitating RNA from the aqueous 

phase with isopropanol. The RNA was treated with Turbo DNAse once more and cleaned up using phenol:chloroform extraction 

as above. 21 μg of RNA was fragmented using 5× First Strand Synthesis Buffer (SuperScript IV, 18090050, Invitrogen) for 3.5 min 

at 94 ◦ C, immediately placed on ice and mixed with the MyOne Streptavidin C1 beads (65001, Invitrogen) to pull down biotinylated 

RNA (30 min at room temperature). Eluted RNA (10 μL) was extracted using phenol:chloroform method (see above). The biotinylation 

and pulldown efficiency were confirmed using dot blot assay before preparing sequencing libraries.

The biotin-enriched eluate was next subjected to 3 ′ end dephosphorylation using PNK (M0201L, NEB) and FastAP (EF0654, 

Thermo Fisher) and purified using Agencourt AMPure XP beads (A63881, Beckman Coulter) before 3 ′ end adapter ligation overnight 

at 20 ◦ C (Table S7). Once again, RNA cleanup was done with Agencourt AMPure XP beads before adapter removal (using Deadeny-

lase (M0331, NEB) and RecJf exonuclease (M0264S, NEB)). Reverse transcription was performed according to the Superscript IV RT 

kit (18090050, Invitrogen) manual with the use of a custom RT primer (Table S7). Following cDNA cleanup (Agencourt AMPure XP 

beads) 5 ′ cDNA adapter was ligated using T4 DNA ligase (EL001, Thermo Fisher, without ATP) (Table S7). Samples were loaded 

onto 6% TBE-Urea gel (EC6865BOX, Thermo Fisher) and cDNAs exceeding 200 nt were excised from the gel and extracted using 

Crush-Soak Gel buffer (as per iiCLIP protocol 42 ), followed by phenol:chloroform extraction. Precipitated cDNAs were stored at

− 20 ◦ C before performing PCR using P5/P7 standard Illumina primers and Phusion HF master mix (M0531L, NEB). Ribosomal 

RNA contaminants were removed from the final library using Ribocutter which utilises Cas9-guided rRNA depletion 83 ; for this, 

275 gRNAs were designed against mature 5S, 18S and 28S rRNAs (obtained as 50 pmol oPool from IDT) (Table S8). Final libraries 

(∼10 nM) were treated with 4 μM sgRNAs for 30 min at 37 ◦ C and after beads purification, the libraries were reamplified with additional

6 cycles. They were sequenced as paired-end 150 bp reads on NovaSeq at Clinical Institute of Special Laboratory Diagnostics, Uni-

versity Children’s Hospital at Ljubljana University Medical Center.

HCR-FISH

Hybridization-chain reaction FISH was prepared by following the protocol 43 with slight modifications. The probes (8 pairs of probes 

per target, Table S9) were designed using https://github.com/rwnull/insitu_probe_generator 84 against mature mRNAs, however not 

targeting exon-exon junctions (average expression for controls 23.6 ± 16 TPM, for smOOPs 37.9 TPM ±31 TPM in semi-extractability 

total RNA-seq library). For imaging purposes WT IDG3.2 nPSCs were plated on Geltrex (A1413302, Gibco) coated 8-well glass-bot-

tom ibidi plate (80827, ibidi) one day prior to fixation. After washing the cells with PBS, the cells were fixed by the fixation mixture 

(4% formaldehyde, 0.4% glyoxal, 0.1% methanol, 1× PBS). Amplification stage of a protocol to generate a tethered fluorescent 

amplification polymer lasted 10 h. Cells were then washed as described in the protocol and finally mounted in 300 μL Fluoromount 

G (00-4958-02, Thermo Scientific). For each transcript, over 70 nuclei were imaged and over 890 RNA foci counted. Images were 

acquired with a custom-built STED microscope (Abberior instruments) using a 1.2 NA 60× water immersion objective and lasers 

running at 80 MHz repetition rate. We excited fluorescently labeled mRNA by one of the three lasers at either 488, 561 or 640 nm, 

with 120 ps pulse length, with maximal power of 116 μW, 111 μW and 300 μW in the sample plane and DAPI stained nuclei with 

405 nm laser with maximal power 810 mW in the sample plane. The laser powers used were 10% for 405 laser and 30% for the other 

three lasers. We acquired the fluorescence intensity using an avalanche photodiode with 500–550 nm, 580–625 nm or 650–720 nm
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filters (Semrock) in front. The combinations of lasers and detectors were as follows: 405 nm laser and 500–550 nm, 488 nm laser and 

500–550 nm, 561 nm laser and 680-620 nm filter, and 640 nm laser and 650–720 nm filter. The dwell time in the pixel was 10 μs, the 

pixel size was set to 50 nm and the pinhole size was set to 1.07 AU to achieve a good confocal resolution. Images were acquired with 

the help of automatic acquisition as described by Trupej and colleagues. 85

QUANTIFICATION AND STATISTICAL ANALYSIS

HCR-FISH image analysis

The image analysis was done in Fiji 61 using custom-made macros. Briefly, for each fluorophore background was subtracted (30.0 

pixels rolling radius) and threshold was set accordingly to conform all different transcripts with the same fluorophore ((9,255) for chan-

nel for 561, (3,255) for the 488 channel and (33,255) for the 640 channel). Next, particle analysis was performed and all subsequent 

analysis was done using ‘‘Fiji’s particle analyser’’ and R (version 4.3.2, http://www.posit.co/). Total intensity was calculated by multi-

plying mean intensity and area for each foci. The average of total intensity for the control transcripts in each fluorophore was used to 

normalise other values and obtain ‘‘Total intensity’’.

Reference annotation

For all analyses we used the GRCm39 build of the mouse genome with the Gencode M27 annotation. We used a custom reference 

sequence built on this annotation for the alignment of hybrid reads, generated as previously described. 62 To unambiguously annotate 

the genes within hybrid reads, we used a flattened annotation produced by iCount-Mini (https://github.com/ulelab/icount-mini). Both 

are available for download with the Tosca pipeline 62 (https://github.com/amchakra/tosca).

RNA-seq data analysis

The sequencing reads were processed using nf-core/rnaseq version 3.4 63,64 (https://nf-co.re/rnaseq/3.4). For differential expression 

analyses we used gene-summarised count tables generated by nf-core/rnaseq 3.4 (using Salmon) as input to DESeq2 version 

1.44.0. 65 The design incorporated both stage (nPSCs, pPSCs, dPSCs) and assay (control, semi-extractability, OOPS) factors. Prior 

to running DESeq2, we pre-filtered the count matrix to retain only genes with at least 10 normalised counts in at least 6 samples. For 

each desired contrast, we extracted results using the Wald test and applied ashr Log2FoldChange (LFC) shrinkage. 66 To identify 

genes enriched in OOPS or semi-extractability compared to control, we selected genes with padj <0.01 and LFC >1 for each contrast 

(semi-extractability vs. control or OOPS vs. control at each stage). Genes passing these thresholds in both semi-extractability and 

OOPS were defined as smOOPs. For data visualisation across assays, we converted rlog-normalised count data into Z-scores for 

each stage and plotted it using the ComplexHeatmap package 67 version 2.20.0. For the second batch described in Figure S3, 

smOOPs were defined as genes with padj <0.01 and LFC >0 in both assays. We used a reduced LFC threshold to account for 

the lower magnitude of fold-changes observed in this batch.

Global iCLIP data analysis

Sequencing reads were first demultiplexed using Ultraplex version 1.2.9 (https://github.com/ulelab/ultraplex) 68 and then processed 

with the nf-core/clipseq version 1.0.0 69 (https://nf-co.re/clipseq/1.0.0). We used BED files with crosslink positions and scores for all 

analyses. To normalise crosslinks by expression and correct for length for each transcript, we calculated crosslink density (CPM per 

kb) for exons and divided this by expression (semi-extractability TPM values obtained with Salmon).

RIC-seq data processing

We trimmed sequencing adapters using Cutadapt, 70 then paired reads were merged with BBMerge. 63 The merged FASTQ files were 

used as input for Tosca v1.0.0 62 to identify and analyze hybrid reads formed through RNA proximity ligation. To normalise RIC-seq 

gene-level counts to expression, we used TPM values calculated from RIC-seq nonhybrid reads summarised at the gene-level 

including all features (exons and introns) with featureCounts. 71 To visualise the regions identified in the hybrid reads, we used the 

circlize R package. 80

RIC-seq network inference and analysis

For each stage, we pooled the RIC-seq deduplicated hybrids files produced by Tosca, filtered out rRNA, tRNA and mitochondrial 

RNA containing hybrids, and retained the hybrid reads mapping to two different genes (representing intermolecular interactions), 

and analyzed it using igraph 72,73 version 2.0.3 in R 4.4.0. To assess the connectivity of the smOOPs subgraph, we compared the 

observed subgraph with control networks generated by degree-matched sub-sampling. For the degree-matched sampling method, 

we sub-sampled random subnetworks from the full RIC-seq network maintaining the same number of nodes as the number of 

smOOPs identified in the RIC-seq data at each stage and a similar degree distribution (allowing for ±1 ◦ variation). We performed 

10,000 iterations to build a null distribution for comparison. Connectivity metrics were calculated for each random subset and 

compared to those of the observed smOOPs subnetworks for nPSCs and pPSC separately. While we also considered degree-pre-

serving randomization methods, they were deemed less suitable for this analysis due to the network topology and the high degrees of 

the smOOPs, which could bias the results by preserving inherent connectivity patterns, especially among high-degree nodes. 86 We
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also considered random sub-sampling, but found it overestimated smOOPs interconnectivity due to their high degree relative to most 

other nodes. In contrast, degree-matched sub-sampling, which directly compares smOOPs to randomly selected groups of nodes 

with similar degrees, provided a more appropriate baseline for comparison, and was used as control.

PARIS data processing

We first trimmed sequencing adapters using Cutadapt and collapsed PCR duplicates with the readCollapse.pl script provided with 

the original publication 46 (https://github.com/qczhang/icSHAPE). Subsequent processing was performed using Tosca v1.0.0. 62

Ribo-seq data processing

Public mESCs ribo-seq data 41 was processed using the riboseq-flow v1.1.1 77 pipeline. We then applied RiboCode 78 using the align-

ments to predict translated ORFs from ribosome-protected fragments. Translation efficiency measurements were obtained from the 

Supplementary Tables accompanying the manuscript. 41

Processing of RNP granule gene sets

All genes expressed in mouse embryonic stem cells (mESCs) were used as the starting set. Orthologous human genes were identified 

through BioMart’s orthologue mapping table, enabling cross-species comparison. Human transcriptomes associated with specific 

subcellular compartments were then compiled by extracting supplementary data from previously published studies: P-body-

enriched transcripts, 35 stress granule-associated RNAs, 36 transcripts localized to TIS granules and the endoplasmic reticulum, 37 

a subcellular transcriptome atlas generated using APEX proximity labeling 38 and localization of RNA (LoRNA) data obtained by quan-

tifying RNA abundance across density-separated cellular fractions and inferring subcellular identity based on RNA co-distribution 

profiles. 39 To assess the overlap of smOOPs with RNP granule-associated RNAs, we intersected the gene IDs of smOOPs recovered 

at all stages with mouse-mapped RNP granule gene sets from each study and visualised the intersections using the ComplexUpset 

package in R. For enrichment testing, we retained granule sets in which at least 10 smOOPs were exclusively annotated to that 

compartment (i.e., not overlapping any other granule set). One-sided hypergeometric tests were performed for each retained set, 

using all genes expressed in our dataset (i.e., the input genes for DESeq2) as the background population.

lncRNAnet prediction of long non-coding RNA

To determine whether genes annotated as ‘‘To Be Experimentally Confirmed’’ (TEC) are predicted to encode long non-coding RNAs, 

we first collected their processed sequences into a FASTA file formatted per lncRNAnet 40 instructions (https://github.com/ 

nofundamental/lncRNAnet). These sequences were then processed through the lncRNAnet prediction model consisting of recurrent 

neural networks modeling RNA sequence features and convolutional neural networks scanning for stop codons to generate an open 

reading frame indicator, with their outputs being integrated to assign each transcript a continuous confidence score from − 1 (strongly 

coding) to +1 (strongly non-coding).

Data preparation for deep learning

To define genes that do not exhibit the condensation prones features in all stages, we selected those with padj >0.01 and |LFC| < 1.4 

in each stage and then selected their intersection as the unified control set. To create a reference transcriptome for the smOOPs and 

control genes, we selected the most highly expressed transcripts, based on semi-extractability, for each of the three stages. For tran-

scripts that varied across the stages, we selected the longest isoform among the most expressed transcripts at each stage.

To facilitate the training of the model on the selected datasets mapped across each transcript, we first encoded the data into a 

format suitable for deep learning. For both smOOPs and control transcripts, we extracted the genomic location of each exon 

from the reference genome. The RNA sequence for each exon was obtained based on their genomic coordinates using bedtools, 74 

and served as the raw sequence input for the model.

Several nucleotide-resolution transcriptomic datasets were extracted and aligned to the exon genomic locations: global iCLIP 

crosslinks (this work); POSTAR3 database of CLIP binding peaks for 46 RBPs 48 in mouse cell lines; Psoralen Analysis of RNA Inter-

actions and Structures (PARIS) 46 ; RNAfold 47 predicting secondary RNA structures; and m 6 A methylation profiles. 45 To precisely 

assign scores to exon positions, we generated a list of values corresponding to the length of each exon, initialised to zero. The exper-

imental data were mapped onto the exon’s genomic coordinates relative to its start position. Overlaps between experimental signals 

and exonic regions were located, and their scores were added to the list at the corresponding positions. The result was a list of exper-

imental values corresponding to each position within the exon. For POSTAR3 peaks, each RBP peak was mapped in a binary manner, 

indicating only the presence or absence of a peak. After assigning scores, exons were concatenated back into transcripts, producing 

a list of feature scores spanning the entire transcript length for each feature. The global iCLIP, m 6 A modification sites and PARIS-

Intra/Inter counts at each nucleotide were first normalised to transcript-level expression (TPM) estimated using the semi-extract-

ability assay data, before encoding all feature layers of information over each smOOPs and control transcript.This approach pre-

serves the positional importance and allows efficient feature extraction. Additionally, RNAfold was used to predict secondary 

RNA structures in dot-bracket notation, classifying each position as either single- or double-stranded. This classification was then 

encoded in binary form.
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The datasets were randomly split into distinct training, validation, and testing subsets in a 70:15:15 ratio. Stratified sampling was 

employed to maintain consistent class proportions across subsets, and oversampling was applied to the minority group within each 

subset to balance class sizes. Each subset was stored independently and used directly for training, with dynamic data fetching and 

encoding implemented during the training process.

Data encoding

During training, batches of data were procedurally encoded by iterating over the training dataset and processing the mapped infor-

mation to a DL compatible array. For each batch, the transcript sequence information was first converted from its native nucleotide 

string format into a numerical representation. To ensure transparency and interpretability, we employed one-hot encoding for the 

sequence data, with each nucleotide represented as a binary vector: Adenine (A) as [1, 0, 0, 0], Cytosine (C) as [0, 1, 0, 0], Guanine 

(G) as [0, 0, 1, 0], and Thymine (T) as [0, 0, 0, 1]. Non-sequence features, such as global iCLIP crosslink scores, were encoded as one-

dimensional arrays of floats. All encoded data layers, including the nucleotide sequences and other transcriptomic features, were 

stacked vertically for each transcript. To then standardise input lengths for neural network processing, sequences were padded 

with − 1 to match the length of the globally longest transcript. The output class was similarly encoded using a one-hot encoding 

scheme, where class membership was represented by a binary vector. Such encoded transcripts were then stacked to a new dimen-

sion representing the batch and as such processed by the training function.

Deep learning model architecture

The model architecture employs a previously optimised design, 45 combining multiple convolutional, recurrent, and fully connected 

layers (MLP) to effectively classify sequential data, implemented in TensorFlow. 75 This hybrid approach leverages the strengths of 

each layer type to capture diverse patterns in the input data, progressively transforming the sequences into representations suited 

for binary classification. Initially, we wanted to enable the architecture of the model to have the ability to achieve optimal classification 

performance, therefore a hyperparameter optimization process was conducted - defining the models architecture. Due to the 

complexity and size of the hyperparameter search space, a manual approach was impractical. Instead, a systematic search via 

Bayesian optimization, using the Optuna framework, 76 was implemented, exploring batch sizes (8, 16, 32, 64), number of convolu-

tional blocks (2–8), final number of CNN units (16–1024), CNN unit increase percentages (0.0–0.5), kernel sizes (3, 5, 7, 9), kernel size 

increases (1–4), dilation increases (1–4), dropout probabilities (0.0–0.4), L1-L2 regularisation values (0–0.01), max pooling size (2, 3, 

4), GRU units (16–1024), Dense units (16–1024), learning rates (10 − 5 to 10 − 3 ), and normalisation methods (None, BatchNormalization, 

LayerNormalization). The optimisation was performed over 100 trials to identify the hyperparameter set that maximised AUROC on 

the validation set. The best-performing configuration was selected for final model training. The optimised model architecture starts 

with four convolutional blocks. Each block consists of a 1D convolutional layer with a progressively increasing number of filters of 

108, 144, 192, and 256 respectively, and kernel size of 9. Dilation rates exponentially increase with each block, with the first block 

using a dilation of 1 and later blocks using 4, 16, and 64, respectively. Each convolutional layer is followed by layer normalisation, 

a ReLU activation function, and a Dropout layer with a rate of 0.34 to mitigate overfitting. Max-pooling (pool size of 4) is used after 

each convolutional block to reduce spatial dimensions and preserve key features. After the convolutional layers, a bidirectional GRU 

layer with 128 units per direction is employed to capture sequence dependencies, again followed by layer normalisation and dropout. 

Following the GRU, two fully connected (Dense) layers are included, with 64 and 32 units, respectively, followed by layer normal-

isation and dropout. The final output layer consists of two units, with a softmax activation to predict binary classes. The Convolu-

tional, GRU and Dense layers were configured with L1-L2 regularisation (λ = 1.2 × 10 − 5 ) to further mitigate overfitting in the learning 

process. The model contains between 1,149,986 and 1,203,446 trainable parameters, depending on the input shape. It was trained 

using the Adam optimizer, with a learning rate optimised to 10 − 4 , and categorical cross-entropy as the loss function. The model was 

trained for unlimited epochs, employing early stopping with 20 epoch patience, based on validation AUROC, to stop training and 

return best weights when overfitting.

Training of the powerset

To evaluate the predictive power of individual features and their combinations, we trained a separate model for each of the 127 sub-

sets in the powerset of the 7 available datasets. For each subset, only the selected features were encoded as input to the model, 

ensuring that the model was trained specifically with that particular feature combination. Each model was trained in 8 replicates 

to account for variability and to ensure optimal performance for every subset. The trained models were saved after completion to 

enable further analysis of feature importance and interactions.

Assessing model performance

The final performance of each of the 1016 trained models (127 subsets trained in 8 replicates) was established by predicting the com-

bined validation and testing dataset, both of which were not previously seen by the model, ensuring robust validation and mitigating 

the optimisation overfitting. Of the 8 replicates trained on each subset, the best performing model, based on the AUROC, was 

selected, ensuring the robustness of the predictive power assessment. To identify the datasets that improved the predictive power 

of a model trained on any given subset of datasets, the difference in AUROC was calculated for all possible pairs of models where 

they were both trained on the same subset of datasets with the only difference being an additional inclusion of the unique dataset.
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This was further repeated for all possible pairs for each of the unique datasets and the differences were evaluated using a one-sample 

t-test to evaluate if the mean of differences is statistically different from zero, Using this technique, we could identify the datasets 

containing biological information that significantly improved the predictive capability of a model, irrespective of the number of other 

information layers included. To further assess the informational overlap between features, we conducted pairwise analyses of feature 

combinations. For each pair of features, we calculated AUROC scores for each subset of each item in their powerset, first by adding 

one feature from the pair, and then by adding both features. This approach allowed us to quantify the individual and combined con-

tributions of each feature to model performance. To evaluate the extent of overlap, we calculated the difference between the 

maximum AUROC achieved when adding either feature individually and the AUROC obtained when both features were included. 

These differences were calculated across all subsets of the remaining five features, resulting in a comprehensive set of values for 

each feature pair. Averaging these differences provided insight into the distinct contributions of each feature combination with a 

one-sample t-test comparing the mean to zero.

To validate model performance on the smOOPs identified in the second batch, we constructed a new set of smOOPs and matched 

control transcripts using the same criteria described above without excluding the smOOPs defined in the previous batch (161 over-

lapping genes). These samples were processed through the same pipeline, with identical feature encoding, and their class identity 

was predicted using three models: a length-controlled model, a sequence-only model, and a model incorporating all features.

Explaining the trained weights

To evaluate the contribution of individual positions and feature components to the model’s predictions, we employed the integrated 

gradients (IG) method. The technique quantifies the importance of each nucleotide in the sequence by computing the gradient of the 

prediction output with respect to the input features, integrated along a path from a baseline of zeros to the actual input sequence. By 

summing these gradients across the entire path, IGs assign attribution/importance scores to each nucleotide, indicating its contri-

bution to the prediction. We calculated the IGs for each of the models trained on individual datasets of sequence, global iCLIP, 

POSTAR3 peaks and PARIS-Intra. This approach enabled us to identify the regions within each transcript that had the greatest 

impact on the model’s classification decision, providing insights into which specific sequence elements were driving the condensa-

tion-prone smOOPs RNA predictions compared to controls.

Gaining insight into the learned features

To gain insight into the global features the model has learned, not limited to a single example but integrated for the entire groups of 

transcripts, we firstly stacked the integrated gradients of each of the top 4 models to obtain the importance scores over all the pre-

dictive features for each transcript. These scores were grouped into 100 bins along the transcript length, and the average importance 

score within each bin was calculated to create a length-standardised distribution of importance across the sequence. We used Uni-

form Manifold Approximation and Projection (UMAP) 87 to reduce the binned transcripts to 2D space, using correlation as the distance 

metric. Agglomerative clustering was then applied to group the transcripts into 2 clusters.

To elucidate the features defining each cluster we continued with the following analysis separately for each. We calculated the 

importance of nucleotide triplets across the transcripts. For each transcript, a sliding window approach was used to capture triplet 

sequences, and their integrated gradient scores were averaged for each triplet at every position. This reduced the transcript length by 

two. The triplet importance scores were then divided into 100 equal-length segments, and the scores were averaged across all tran-

scripts. To further analyze the predictive importance of each POSTAR3 track, we calculated the average importance scores across all 

bins for each POSTAR3 RBP binding site in each transcript.

Validation of the predicted importance

To assess nucleotide frequency differences between smOOPs and control transcripts in both clusters, we binned the sequences and 

averaged the presence of each nucleotide (A, C, G, T) across bins. For cluster 1, the sequence was separated into transcript regions, 

with the 5 ′ UTR divided into 10 bins and the CDS and 3 ′ UTR each divided into 50 bins. For cluster 2, the entire transcript was divided 

into 100 bins. The average nucleotide frequency within each bin was calculated separately for smOOPs and control transcripts. The 

differences in nucleotide frequency were determined by subtracting the control average from the smOOPs average for each nucle-

otide in each bin. To further investigate sequence composition, we calculated the frequency of each possible nucleotide triplet 

(3-mer) across the entire sequence for cluster 2 and within the transcript regions for cluster 1. The triplet occurrence frequency 

for control transcripts was subtracted from that of smOOPs transcripts for each cluster, yielding the difference in triplet usage. A 

similar approach was applied to the global iCLIP crosslinking signals. For cluster 1, the normalised signal was binned and averaged 

by transcript regions, with the 5 ′ UTR divided into 10 bins and the CDS and 3 ′ UTR into 50 bins each. For cluster 2, the signal was 

binned and averaged across the entire transcript into 100 bins. The median signal value for each bin was calculated for both smOOPs 

and control transcripts, and a 95% confidence interval for the median was estimated using bootstrapping with 1000 samples.

For cluster 1, we evaluated the impact of specific transcript regions on model predictions by masking either sequence, global 

iCLIP, POSTAR, and PARIS intramolecular interactions features. The entire region of the transcript was masked using zeros for

5 ′ UTR, CDS, and 3 ′ UTR individually. Models trained on each dataset were then used to predict outcomes based on these masked 

inputs. The AUROC curves were used to identify the region with the highest impact on the prediction when masked. For cluster 1
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and 2, the number of PARIS intramolecular hybrids was calculated for each transcript part (5 ′ UTR, CDS, 3 ′ UTR) and full transcripts, 

respectively. These counts were normalised by transcript region length and expression levels.

Investigation of the protein features

To generalise the two-cluster annotation obtained in naive PSCs (nPSCs) and apply it to all smOOPs transcripts, we trained an addi-

tional machine-learning (ML) model focused solely on RNA sequence features. As before, we used eight replicate training runs and 

retained the model achieving the highest area under the receiver operating characteristic curve (AUROC). We calculated the impor-

tance scores for each nucleotide position via integrated gradients, binned these scores, and clustered all smOOPs based on these 

aggregate importance profiles. We then evaluated how well the newly defined clusters (across all developmental stages) overlapped 

with the nPSC-specific clusters by measuring their percentage of intersection.

Next, to examine whether the two smOOPs clusters display distinct protein-level characteristics, we calculated amino acid fre-

quencies for all proteins encoded by transcripts in each cluster and compared them against non-smOOPs. For each amino acid, 

we computed the log 2 fold change in mean usage relative to non-smOOPs and determined statistical significance using Welch’s 

t-test.

We further assessed the extent of protein disorder in each cluster by extracting annotated intrinsically disordered regions (IDRs) 

from the UniProt Reviewed database. 57 For each protein, we recorded whether it contained any IDRs and calculated the average 

proportion of the protein length exhibiting disorder. Additionally, we used PICNIC, 52 a deep learning approach that leverages 

both sequence- and structure-derived information from AlphaFold2 models to evaluate how likely these proteins are to localize in 

biomolecular condensates.

Lastly, we performed gene ontology (GO) enrichment analysis to elucidate the functional distinctions of the two smOOPs clusters 

relative to the set of all expressed genes used as input to DESeq2. Using the STRING database, 58 we identified significantly enriched 

GO terms in each cluster across biological process, molecular function, and cellular component ontologies.
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