

DATA ARTICLE

Limno-STOICH: A comprehensive database linking the elemental stoichiometry of organisms with inland aquatic habitats

Jessica R. Corman ^{1*} Halvor M. Halvorson, ² Casey Brucker, ³ Molly S. Costanza-Robinson, ⁴ J. Harrison Edwards, ³ Eric K. Moody, ⁴ Chad Petersen, ¹ Baker J. Angstman, ⁵ Qiting Cai, ⁶ Sarah M. Collins, ³ Elise Ehlers, ¹ W. Reilly Farrell, ¹ Julia Keon, ⁴ Amy C. Krist, ³ Alexander L. Lewanski, ⁷ Shuyi Lin, ⁸ Amina Mohamed, ⁸ Natalie Montano, ⁴ Briante L. Najev, ^{9,10} Emma D. Neill, ⁴ Carly R. Olson, ¹ Elizabeth G. Peebles, ⁴ Kayley Porter, ⁴ Linnea A. Rock, ³ Ella Roelofs, ⁴ Sophie Schuele, ⁴ Andrew D. Suchomel, ³ Steve Thomas, ¹¹ Liza Toll, ¹² Benjamin B. Tumolo, ³ Catherine E. Wagner, ³ Binbin Wang, ¹ Eli N. Wess, ² Gültekin Yilmaz, ¹ Carla L. Atkinson, ¹¹ Brent J. Bellinger, ¹³ John S. Brazner, ¹⁴ Marco J. Cabrerizo, ¹⁵ Andrew Camilleri, ¹⁶ Fabien Cremona, ¹⁷ Jean-Pierre Descy, ¹⁸ Anton Drobotov, ¹⁹ Bruce D. Dudley, ²⁰ Claudia Feijoó, ²¹ Kelley A. Fritz, ²² Darren P. Giling, ^{23,24} Justin R. Hanisch, ²⁵ Katie Hossler, ²⁶ Tjaša Kanduč, ²⁷ Zin'ichi Karube, ²⁸ Giri R. Kattel, ²⁹ Lesley B. Knoll, ³⁰ Tyler J. Kohler, ³¹ John S. Kominoski, ³² Erik Kristensen, ³³ Danny C. P. Lau, ³⁴ Matthew J. Lundquist, ³⁵ Stephen E. MacAvoy, ³⁶ Nicolas Martyniuk, ³⁷ Rosana Mazzoni, ³⁸ Rahmat Naddafi, ³⁹ Vinicius Neres-Lima, ³⁸ Rebecca North, ⁴⁰ Priscila Oliveira-Cunha, ³⁸ Kelly Ortega-Cisneros, ⁴¹ Ada Pastor, ⁴² Cynthia Paszkowski, ²⁵ Richard Piola, ⁴³ Tamar Rachamim, ⁴⁴ Takashi Sakamaki, ⁴⁵ Orlando Sarnelle, ⁷ Ursula M. Scharler, ⁴⁶ Garry Scrimgeour, ²⁵ Jonathan B. Shurin, ⁴⁷ Christopher F. Steiner, ⁴⁸ Kevin M. Theissen, ⁴⁹ Ross Thompson, ⁵⁰ Alexander Tolomeev, ¹⁹ Inés G. Viana, ⁵¹ Verónica D. Villanueva, ³⁷ Anne Watson, ⁵² Egor Zadereev, ¹⁹ Eugenia Zandonà, ³⁸

¹School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; ²Biology Department, University of Central Arkansas, Conway, Arkansas, USA; ³Botany Department, University of Wyoming, Laramie, Wyoming, USA;

⁴Program of Environmental Studies and Department of Chemistry, Middlebury College, Middlebury, Vermont, USA;

⁵Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ⁶Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA; ⁷Department of Integrative Biology, Michigan State

University, East Lansing, Michigan, USA; ⁸Department of Ecology and Evolutionary Biology, Cornell University, Ithaca,

New York, USA; ⁹Department of Biology, University of Iowa, Iowa City, Iowa, USA; ¹⁰Department of Biological Sciences,

University of Pittsburgh, Pennsylvania, USA; ¹¹Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA; ¹²Illinois Natural History Survey, University of Illinois, Champaign, Illinois, USA; ¹³Austin Watershed Protection Department, City of Austin, Austin, Texas, USA; ¹⁴Brazner Ecological Services, Black Rock, Nova Scotia, Canada;

¹⁵Department of Ecology and Universitary Institute of Water Research, University of Granada, Granada, Spain;

¹⁶Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan, USA; ¹⁷Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia; ¹⁸Freshwater and Oceanic

Science Unit of Research, University of Liège, Liège, Belgium; ¹⁹Institute of Biophysics, Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia; ²⁰Hydrodynamics Group, Earth Sciences

New Zealand, Christchurch, New Zealand; ²¹Institute of Ecology and Sustainable Development, National University of

*Correspondence: jcorman3@unl.edu

This is an open access article under the terms of the [Creative Commons Attribution](#) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Associate editor: Peter R. Leavitt

Luján, Buenos Aires, Argentina; ²²Department of Biological and Environmental Sciences, Southeast Missouri State University, Cape Girardeau, Missouri, USA; ²³CSIRO Environment, Albury, New South Wales, Australia; ²⁴Gulbali Institute, Charles Sturt University, Albury, Australia; ²⁵Department of Biological Sciences, University of Alberta, Edmonton, Canada; ²⁶Department of Biological Sciences, Wright State University, Dayton, Ohio, USA; ²⁷Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; ²⁸Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Hiroshima, Japan; ²⁹Department of Infrastructure Engineering, University of Melbourne, Parkville, Victoria, Australia; ³⁰Department of Biology, Miami University, Oxford, Ohio, USA; ³¹Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic; ³²Institute of Environment & Department of Biological Sciences, Florida International University, Miami, Florida, USA; ³³Department of Biology, University of Southern Denmark, Odense, Denmark; ³⁴Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; ³⁵Department of Natural Sciences, Marymount Manhattan College, New York City, New York, USA; ³⁶Department of Environmental Science, American University, Washington, District of Columbia, USA; ³⁷Laboratorio de Limnología, INIBIOMA (Universidad Nacional del Comahue—CONICET), Bariloche, Argentina; ³⁸Department of Ecology, State University of Rio de Janeiro, Rio de Janeiro, Brazil; ³⁹Department of Aquatic Resources, Swedish University of Agricultural Sciences, Uppsala, Sweden; ⁴⁰School of Natural Resources, University of Missouri-Columbia, Columbia, Missouri, USA; ⁴¹Marine & Antarctic Research for Innovation and Sustainability, Department of Biological Sciences, University of Cape Town, Cape Town, South Africa; ⁴²Group of Continental Aquatic Ecology Research, Institute of Aquatic Ecology, University of Girona, Girona, Spain; ⁴³Aeronautical and Maritime Research Laboratory, Defence Science and Technology Group, Melbourne, Victoria, Australia; ⁴⁴Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel; ⁴⁵Department of Civil & Environmental Engineering, Tohoku University, Sendai, Japan; ⁴⁶School of Agriculture and Science, University of KwaZulu-Natal, Durban, South Africa; ⁴⁷Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, USA; ⁴⁸Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA; ⁴⁹Department of Earth, Environment & Society, University of Saint Thomas, St. Paul, Minnesota, USA; ⁵⁰Zoology Department, University of Otago, Dunedin, New Zealand; ⁵¹Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO-CSIC), A Coruña, Spain; ⁵²School of Natural Sciences, University of Tasmania, Hobart, Australia

Scientific Significance Statement

All living things are made of the same building blocks: elements like carbon, nitrogen, and phosphorus. Based on decades of scientific research, we know that the ability for organisms to get these elements from their environment or their food can have profound impacts on organismal growth, biodiversity, and overall ecosystem production. Yet, much of this earlier work has been done at the small scale: within a lake or forest in a specific environment. To support studies to understand the larger scale regional and global constraints of elemental cycles on ecosystems, we have built the Limnology Stoichiometric Traits of Organisms in their Chemical Habitat (Limno-STOICH) database. The database contains information on the elemental contents of over 50,000 organisms or living material found in lake, river, wetland, and other inland aquatic ecosystems. These data represent all seven continents and over 190 distinct data sources, complemented by extensive spatial, temporal, taxonomic, and water chemistry information.

Abstract

All organisms contain carbon, nitrogen, and phosphorus in widely ranging amounts and proportions. Integrating existing datasets enables quantification of this variation at global scales. Such efforts could leverage ecological stoichiometry theory, the study of elemental supply and imbalances in ecological interactions, to connect ecological drivers and taxonomic constraints to ecosystem structure and function. Towards this goal, we developed the Limnology Stoichiometric Traits of Organisms In their Chemical Habitats (Limno-STOICH) database. The Limno-STOICH database includes 51,576 observations of organismal elemental stoichiometry from >3100 rivers, lakes, wetlands, and other aquatic ecosystem sites on seven continents, derived from 190+ sources. It also includes extensive spatial and temporal metadata to link elemental stoichiometry with ecosystem type, trophic status, etc., and information on organismal data (body size, taxonomic classifications, stable isotope composition) and water physicochemical parameters. The Limno-STOICH database sets the stage for significant applications across food web ecology, evolutionary ecology, biogeochemistry, and other disciplines.

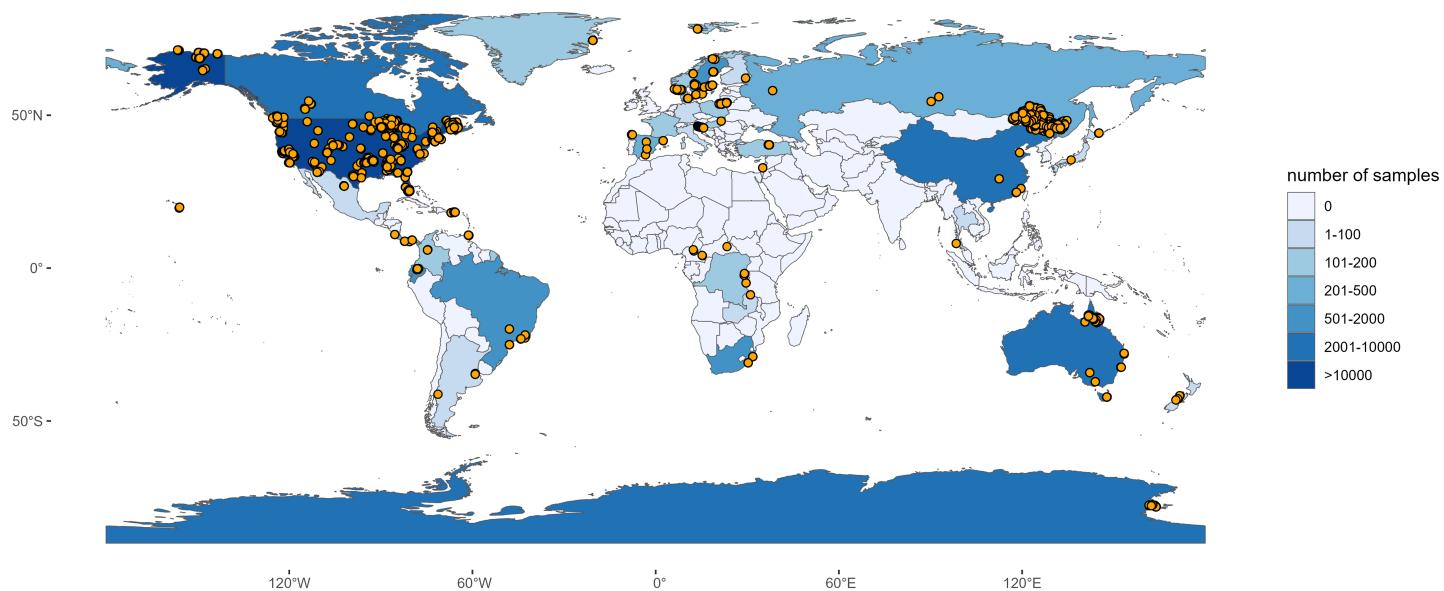
Background and motivation

All organisms require carbon (C), nitrogen (N), phosphorus (P), and other elements for cellular structures, metabolism, and growth. Supply of any of these biologically essential elements can limit process rates from biogeochemical transformations to organismal growth and reproduction to community assembly (Urabe and Watanabe 1992; Elser et al. 2007a; Schade et al. 2011; Tromboni et al. 2018; Liu et al. 2023). Ecological stoichiometry (ES) theory, the study of the balance of multiple chemical elements and energy in ecological systems (Sterner and Elser 2002), informs our understanding of the drivers and implications of organismal elemental ratio and supply in ecological systems. The ES framework links questions across biological levels of organization because it characterizes interactions between organisms and their environment using a common currency (i.e., chemical elements) grounded in the first principles of conservation of mass and energy (e.g., Hillebrand et al. 2014). While ES theory derived from limnology (Hessen et al. 2013), it has since been applied to study various topics including the toxicity of marine and freshwater cyanobacterial blooms (Van De Waal et al. 2014; Wagner et al. 2023), recovery of biogeochemical processes following fires (Butler et al. 2018), large mammalian control of savannah vegetation dynamics (Sitters and Olde Venterink 2018), and even tumor growth in human cancer (Elser et al. 2007b; Kareva 2013). While meta-analyses have provided greater insight into our mechanistic understanding of ES theory (e.g., Hillebrand et al. 2013; Halvorson et al. 2019; Thomas et al. 2022), our understanding of ecological stoichiometric principles at broad spatial scales remains limited by our ability to coordinate organismal data collection across regional to continental scales (Van De Waal et al. 2018).

We developed the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (hereafter, “Limno-STOICH”) database to provide a public resource to be used to understand broad-scale patterns in the ecological stoichiometry of organisms and their resources in inland aquatic ecosystems (lakes, rivers, streams, wetlands, etc.). In building Limno-STOICH, we compiled elemental composition data for field-collected organisms from inland waters together with information about different environmental attributes. Our database complements other synthetic efforts that compile stoichiometric data of basal resources (e.g., living autotrophs and/or decomposing organic matter; Robbins et al. 2023), organismal traits (e.g., stoichiometry of fish excretion; Vanni et al. 2017) or across taxonomic domains (e.g., stoichiometry of aquatic and terrestrial animals; González et al. 2025; or marine plankton; Liu et al. 2025). However, Limno-STOICH uniquely connects stoichiometric observations across multiple taxonomic groups and ecosystem components. Limno-STOICH will expand our capacity to address macroscale questions about ecological stoichiometry across biological domains ranging from biogeochemical

properties to food web dynamics to organismal ecology and evolution.

Data description


Spatial and temporal distribution of Limno-STOICH

The Limno-STOICH database (v.20250910) contains stoichiometric information about 50,696 organisms from 3112 sites across seven continents (Fig. 1). In the database, the widest spatial coverage across longitudinal and latitudinal gradients and ecosystem types occurs in North America, representing 74% of all sites (2320) and 86% of all sampling events (40,123). Over 42% of the organismal samples have concomitantly collected water chemistry information ($n = 21,835$), representing 1706 sites. Notably, Antarctica has a limited number of unique sites (46) but possesses the second-highest number of sampling events (4220), primarily due to the inclusion in the database of extensive time-series data obtained from eight lakes between 1993 and 2022 (Priscu 2022). In terms of ecosystem types, streams are most represented, at 32.4% of unique sites and 34% of sampling events, respectively. Reservoirs, while comprising only 0.9% of unique sites, are represented in a disproportionately high number of sampling events (19.7%), attributable to the long-term monitoring studies in the database (Vanni et al. 2022a).

The earliest records of organismal stoichiometry in the Limno-STOICH database are C : N ratios from 1915 (Birge and Juday 2022). Records for organismal N : P and C : P ratios in Limno-STOICH begin in 1926 (Birge and Juday 2022) and 1992 (Sterner and George 2000; Vanni et al. 2022), respectively; though this is a reflection of data availability at the time of publication rather than scientific progress per se (see Baudouin and Ravera 1972; Olsen et al. 1986; Andersen and Hessen 1991) when observations of organismal N : P and C : P ratios began to be reported, respectively. Over a third of our data contributions come from collections during summer months in the Northern hemisphere (June, July, August). Other temporal trends include basal resource samples peaking in the 1920s and again in the 2000s; and consumer samples peaking in the 1990s and 2000s. More than 100 sites have organismal data spanning more than 5 yr, with long-term data available for seston, periphyton, Mollusca, macrophyte, Insecta, Crustacea, Bryophyte, and detritus for at least one site. The longest datasets spanned 34 yr for the Emerald Lake in California, USA (1983–2016; Sadro 2018), followed by 33 yr for various springs in Florida, USA (since 1989; Briceno 2025), and 29 yr for Lake Bonney, Antarctica (1993–2022; Priscu 2022).

Organismal representation and stoichiometry

We categorized our organismal samples within Limno-STOICH first by type (zooplankton, periphyton, etc.) and then further identified them as either basal resources (living or dead autotrophs) or consumers (heterotrophs), representing 69% and 31% of samples, respectively (Figs. 2, 3). Across resource

Fig. 1. Geographic distribution of data included in the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (Limno-STOICH) database. Shading represents the number of organismal samples within each country (darker shading corresponds to more samples), and orange points indicate site locations.

and consumer types, stoichiometric values from seston ($n = 14,075$), fine particulate organic matter (FPOM, $n = 5633$), and Insecta ($n = 6667$) are most represented in the database (Fig. 3). Fifty-four taxonomic orders are represented

by more than 25 samples, with Trichoptera ($n = 1368$), Poales ($n = 1079$), and Diptera ($n = 1055$) most represented. Additionally, 117 families are represented by more than 25 samples and 218 genera by more than 10 samples. *Dreissena*

Fig. 2. Sankey diagram describing the diversity of consumers and basal resources across inland water ecosystem types in the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (Limno-STOICH) database, with each line representing a single organism type. Line thickness correlates to the number of samples represented by each group.

polymorpha (zebra mussels) and *Cyclonaias* spp. are represented by 656 and 371 sample points in Limno-STOICH, respectively, largely from Naddafi et al. (2012a).

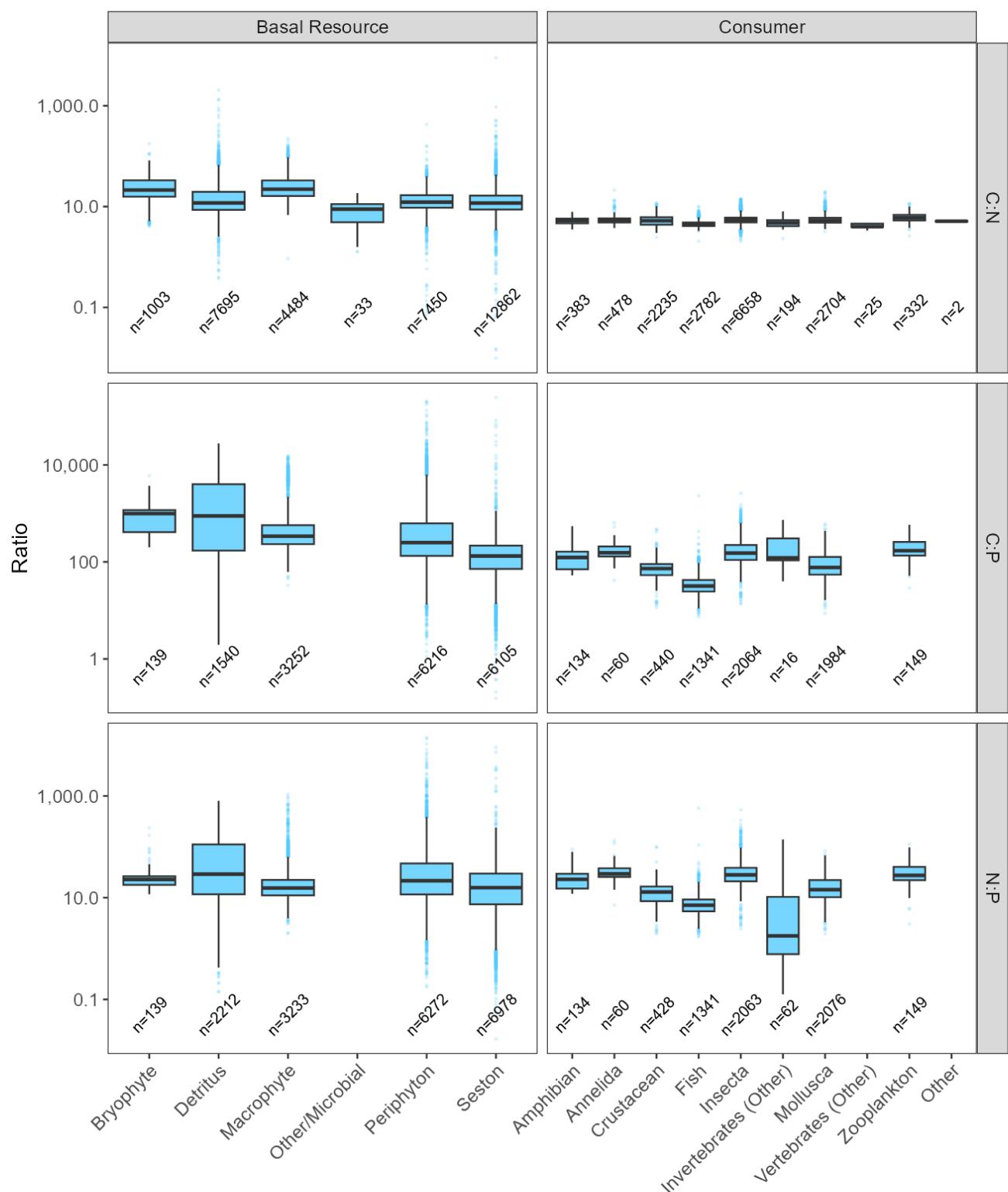
Carbon-to-nitrogen ratios are the most frequent of the three ratios reported, with 95.6% of organisms in Limno-STOICH having C : N ratios but only 45.4% or 48.8% having C : P or N : P ratios, respectively, and 44.7% having all three. Carbon-to-nitrogen and C : P ratios of consumers tend to be lower than those of resources, while N : P ratios are more similar (Fig. 3). Consistent with Cross et al. (2005), across nearly all types of organisms and stoichiometries, basal resource ratios are more variable than consumer ratios (Fig. 3).

Reported methods to determine C, N, and P content varied somewhat. Of 46,838 reported organismal C values, 45.5% entries specified the method of analysis: 99.9% were measured using elemental analysis techniques, and the remainder were measured with alternative methods such as a total organic carbon (TOC) analyzer or loss on ignition. Similarly, for 48,722 values reporting organismal N, 43.6% specified a method, with 99.4% of N values measured using elemental analysis and the remaining 0.6% determined using a TOC analyzer, Kjeldahl analysis, or an unspecified digestion method. The database includes 24,852 values for organismal P content, and 57.6% specified a method for P analysis. We classified the 10 unique methods into colorimetric methods (2.0%), Inductively Coupled Plasma Mass Spectrometry (ICP-MS, 34.2%), Inductively Coupled Plasma Atomic Emission Spectroscopy/Optical Emission Spectroscopy (ICP-AES/OES, 0.8%), and unspecified acid digestion methods (63%, Supporting Information Table S5).

Most elemental values were from single organisms, but some values were pooled from multiple observations: 23.3% of entries indicated whether the observation was statistically pooled or not. Among these, 79.8% represent a single independent measure of an organismal sample, while the remainder summarizes multiple observations.

Methods: Data components and acquisition

We used three strategies to assemble the data for the Limno-STOICH database. First, we partnered with the US National Ecological Observatory Network (hereafter, “NEON”; Nagy et al. 2021) to build a dataset of the stoichiometry of benthic macroinvertebrate, resource, and water from ongoing NEON sampling at aquatic field sites. Briefly, NEON is funded by the US government to collect ecological data from 24 wadeable stream sites, three non-wadeable river sites, and seven lake sites across North America, with sites selected to represent the full breadth of terrestrial biomes and regions across the continent. Previous to our project, NEON did not collect benthic macroinvertebrate samples in a manner that permitted stoichiometric analysis but for 2 yr, they partnered with our project to collect samples for stoichiometric analysis. Once we received benthic invertebrate samples from NEON, we


identified, processed, and analyzed them for C, N, and P content. Information about water, primary producers, and resources such as seston were acquired directly from NEON. Second, we conducted a literature review to incorporate relevant stoichiometric data from published manuscripts and repositories. Finally, we collaborated with stoichiometry researchers to add unpublished investigator datasets into our database. The details of our approach for compiling these data sources follow:

Benthic invertebrate sampling and analysis

Community samples of benthic macroinvertebrates were collected from the 34 aquatic sites monitored by NEON in 2021 and 2022. At each site, one community sample was collected from the dominant habitat, according to NEON standard operating procedures (Parker 2023), was frozen and shipped to Middlebury College (Middlebury, VT, USA) for identification and stoichiometric analysis. To target taxa not present at the NEON sites, additional collections occurred in Vermont and Arizona (USA) following the same procedures as NEON. Standard benthic invertebrate sampling collection took place three times per year with some exceptions (e.g., COVID-19 travel restrictions, lack of surface water to sample, and natural disasters). Prior to stoichiometric analyses, samples were thawed, identified to the lowest practical taxonomic level (typically genus), and dried at 60°C for 48 h. All identifications were cross-checked against finalized site- and sampling event-specific taxonomic data from NEON. Discrepancies in identifications were reviewed with specimen photographs or, if photographs were not available or ambiguous, specimen identifications were left at the lowest agreed upon taxonomic level. To determine P (body) content, samples were combusted at 550°C for 4 h, digested in HCl, and then analyzed using ICP-MS at Middlebury College (Costanza-Robinson et al. 2025). To determine C and N (body) content, samples were analyzed using an elemental analyzer at the University of Wyoming Stable Isotope Facility. When possible, individual organisms were prepared separately for analysis, but in many cases, low body mass required pooling multiple individuals from the same community and sampling event into a composite sample to achieve minimum detection limits. A maximum of five replicate samples of each taxon from each community sample were analyzed for P, C, and N, but in many cases, insufficient biomass in community samples limited replicates. This work ultimately generated 984 individual C and N samples and 1483 individual P samples encompassing 185 genera in 93 families.

Literature review, data repositories, and contributed datasets

We conducted literature searches to find published stoichiometric data on May 26, 2021 and July 14, 2022 using Web of Science v. 5.35 with the search terms: TOPIC: (((lake OR stream OR wetland OR river OR freshwater) AND ((carbon AND nitrogen) OR (carbon AND phosphorus) OR (nitrogen

Fig. 3. Variation across basal resource and consumer stoichiometry in carbon to nitrogen (C : N), carbon to phosphorus (C : P), and nitrogen to phosphorus (N : P) molar ratios. For each boxplot, the middle line represents the median, the top and bottom of the box correspond to the first and third quartile values, and the whiskers represent the largest or smallest values, up to 1.5 times the interquartile range, respectively.

AND phosphorus)) AND (stoichiometr* OR ratio* OR nutri*))). From these searches, we identified 22,306 publications that were potentially useful for STOICH. Of these, we surveyed all publications for inclusion criteria (see “Dataset Inclusion Criteria” below). A total of 1154 papers (5.2%) were identified as meeting criteria for the database (see below). Of these, 44 had data available in online repositories or supplemental materials. Of the remaining papers (1110), all first authors and/or corresponding authors were contacted to solicit their raw data. Associated metadata were gained from authors or the associated publication(s). Plot digitizing software with manual extraction may be a useful tool for future expansions of the database (Jelicic Kadic et al. 2016; Aydin and Yassikaya 2022). Additionally, in May 2023, we searched for published repositories associated with online libraries including Dryad, DataOne, and Environmental Data Initiative (EDI; <https://edirepository.org/>) using the search terms “lake carbon nitrogen ratio” and “aquatic stoichiometry.” These search terms were modified from the original search terms due to more limited search tools. After removing duplicate publications, these searches resulted in 5125 repositories. Of these, we identified 126 repository datasets as containing data that fit our requirements. In total, we added 180 published datasets (101 from author contributions and 79 from data repositories) included in data repositories into Limno-STOICH (Sarnelle 1992; Manca et al. 1994; Feijoo et al. 1996; Sterner and George 2000; Brazner et al. 2001; Cloern et al. 2002; Kiffney et al. 2002; Cross et al. 2003; Volk et al. 2003; Paszkowski et al. 2004; Steiner 2004; Descy et al. 2005; Hamilton et al. 2005; Jardine et al. 2005; Gladyshev et al. 2007; Hendrixson et al. 2007; Kanduč et al. 2007; Köster et al. 2008; Piola et al. 2008; Cremona et al. 2009; Elser et al. 2009; Walters et al. 2009; Hanisch et al. 2010; Hanson et al. 2010; Rachamim et al. 2010; Bode et al. 2011; Hossler et al. 2011; Sakamaki and Richardson 2011; Watson and Barmuta 2011; Giling et al. 2012; Jardine et al. 2012a, 2012b; Karube et al. 2012; Kohler et al. 2012; Kominoski et al. 2012; Morse et al. 2012; Naddafi et al. 2012; North et al. 2012; Spencer et al. 2012; Theissen et al. 2012; Volk and Kiffney 2012; Bonin 2013; Jardine et al. 2013; Kling 2013; Koshino et al. 2013; McKnight 2013; Sakamaki and Richardson 2013; Atkinson et al. 2014; Bellinger et al. 2014; El-Sabaawi et al. 2014; Feijoo et al. 2014; Johnson et al. 2014; Lau et al. 2014; Milanovich et al. 2014; Mooney et al. 2014; Peipoch et al. 2014; Zadereev et al. 2014; Georgia Coastal Ecosystems LTER Project and Alber 2015; Gladyshev et al. 2015; Halvorson et al. 2015a, 2015b; Jaffe and Pisani 2015; Kaymak et al. 2015; Liu et al. 2015; Mozsár et al. 2015; Mulholland 2015; Ortega-Cisneros and Scharler 2015; Pringle 2015; Santa Barbara Coastal LTER and Melack 2015; Wang et al. 2015; Biederman et al. 2016; Corman et al. 2016; Díaz Villanueva et al. 2016; Kling and Cory 2016; Kling and Luecke 2016; Knoll et al. 2016;

MacAvoy et al. 2016; Myers-Smith and Bonanza Creek LTER 2016; Neres-Lima et al. 2016; Showalter et al. 2016; Syväraanta et al. 2016; Ball 2017; Cabrerizo et al. 2017; Chodkowski and Bernot 2017; Dionne et al. 2017; Dudley et al. 2017; Eberts et al. 2017; González et al. 2017; Halvorson et al. 2017; Kristensen et al. 2017; Melvin et al. 2017; Mischler et al. 2017; Neres-Lima et al. 2017; Takacs-Vesbach et al. 2017; Zandonà et al. 2017; Aranguren-Riaño et al. 2018; Diehl et al. 2018; Durston and El-Sabaawi 2018; Fritz and Whiles 2018; Halvorson et al. 2018; Johnson et al. 2018; Kohler 2018; Niwot Ridge LTER and Caine 2018; Sadro 2018; Sterner 2018; Valiela et al. 2018; Zhang et al. 2018; Крылов et al. 2018; Camilleri and Ozersky 2019; Díaz Villanueva 2019; Isanta Navarro et al. 2019; Kristensen et al. 2019; Moody et al. 2019; Pastor et al. 2019; Pearce et al. 2019; Rugema et al. 2019; Salonen et al. 2019; Williams 2019; Wollheim et al. 2019; Bergström et al. 2020; Gladyshev et al. 2020; Isles et al. 2020; Kattel et al. 2020; Pothoven and Vanderploeg 2020; Rojo et al. 2020; Shurin et al. 2020; Caine 2021a, 2021b, 2021c, 2021d, 2021e; Gao et al. 2021; Georgia Coastal Ecosystems LTER Project and Alber 2021; Hu et al. 2021b; Karpowicz et al. 2021; Knapp et al. 2021; Moe et al. 2021; Nocentini and Kominoski 2021; Olid et al. 2021; Price et al. 2021; Sadro 2021; Tonin et al. 2021; Williams 2021a, 2021b; Zandonà et al. 2021; Beck et al. 2022; Bergström et al. 2022; Briceno 2022; Elser 2022; Fogelman et al. 2022; Gao et al. 2022; Goetz and Johnson 2022; Harms et al. 2022; Machado-Silva et al. 2022; Morrison et al. 2022; Oliveira-Cunha et al. 2022; Priscu 2022; Santa Barbara Coastal LTER et al. 2022; Swanner et al. 2022; Vanni et al. 2022; Baruch et al. 2023; Beaufort Lagoon Ecosystems LTER 2023a, 2023b; Gaiser and Tobias 2023; Gotelli and Ellison 2023; Kling 2023; Kohler and McKnight 2023; National Ecological Observatory Network (NEON) 2023a, 2023b, 2023c; Sánchez González et al. 2023; Strickland et al. 2023; Yan et al. 2023; Finne et al. 2024).

Lastly, we solicited contributions of unpublished stoichiometry datasets from stoichiometry researchers. We also encouraged data contributions during our correspondence with publication authors during the literature review (see above) and at scientific workshops and conferences attended by our group members. These solicitations resulted in 11 additional unpublished datasets contributed to Limno-STOICH for a total of 191 datasets.

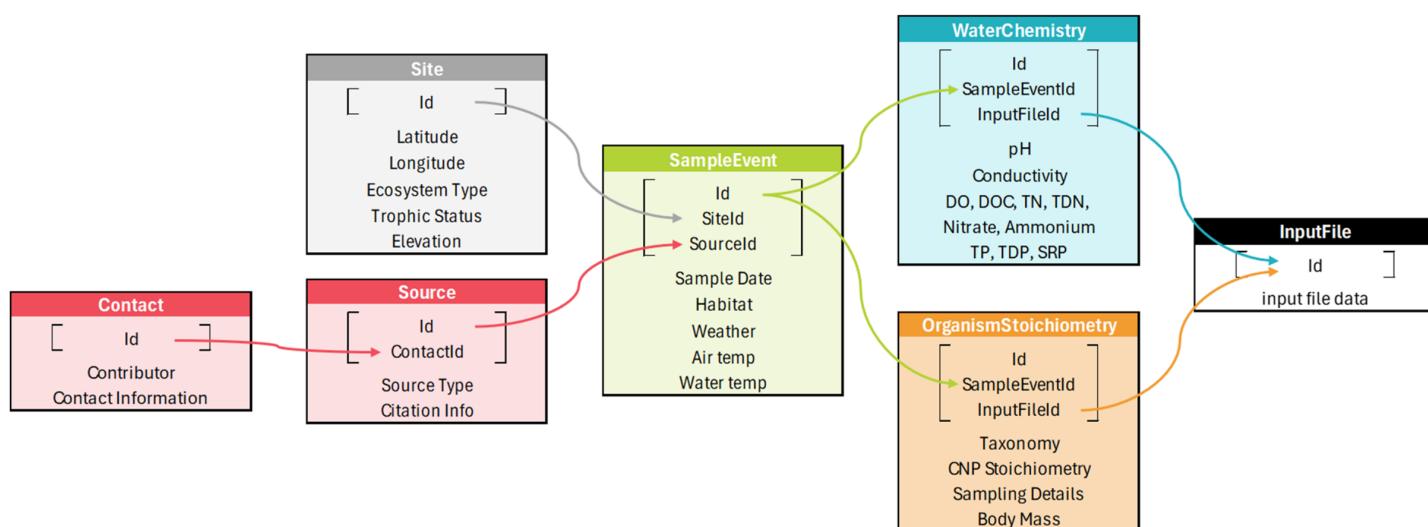
Dataset inclusion criteria

Data included in the Limno-STOICH database had to meet several basic criteria. First, organisms must have been collected from inland aquatic ecosystems, including tidally influenced waters not extending beyond the coastline. We also included water-filled pools in plants, for example, tank bromeliads, as inland aquatic ecosystems because these pools are aquatic and host multiple trophic levels (González et al. 2011;

Benavides-Gordillo et al. 2019). Second, the organism must have been collected from the field, so any organisms that had been artificially manipulated in the field or spent significant time in a laboratory were excluded. Third, we only included samples of entire organisms; targeted tissues or muscle plugs were excluded. Basal food resources that were sampled as communities were included regardless if living (e.g., phytoplankton or periphyton) or non-living (e.g., leaf litter), if the sample was composed primarily of organic material (e.g., benthic sediments were excluded). Fourth, the samples must include organismal tissue measurements from at least two of the following three elements: C, N, or P. Finally, we only accepted datasets from primary sources to avoid duplication. Datasets meeting all these criteria were entered into the Limno-STOICH data template by a trained project technician and were included in the database (Supporting Information Table S1).

Methods: Database assembly

The Limno-STOICH database consists of seven tables: data entry information (InputFile), data source information (Contact and Source tables), Site, environmental information (SampleEvent and WaterChemistry tables), and OrganismStoichiometry (Fig. 4). The data template includes general information about each column within the tables (Supporting Information Table S2). The data were ingested into an SQL Server and exported into a comma-separated


value (csv) file format. Each table uses a unique Id to identify and link entries in related tables.

InputFile Table

The InputFile table exists for data provenance purposes by tracking the status of the data transfer and if any updates to the data template were made during technical validation. The data templates were stored in a Google Drive during database construction, and this table ensures we can track updates from the Google Drive into the database.

Contact and Source Tables

The Contact and Source tables contain the list of all sources of data used to build Limno-STOICH with an associated unique identification code (“Id”) for each data source. The Contact table includes the name and email of the data provider; most often the communicating author of the publication, but in some cases was another author or data curator. For the published NEON datasets, the contributor was listed as the Limno-STOICH data manager due to the work to prepare the datasets for ingestion and continual efforts to keep them updated in the Limno-STOICH database. The Source table includes information on whether the data were derived directly from a paper or data repository, contributed by the author, or unpublished. Associated bibliographic information (Title, First Author, Journal, Publication Year; Supporting Information Table S2) is included for published papers. In cases where data came from a repository or other source, identifying information is included about the Publisher or URL. If

Fig. 4. General structure of the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (Limno-STOICH) database and connections between its seven tables. Data entry began with entering information about each data source and generating a unique shared Contact and Source Id. A separate table, InputFile, was also generated to track data provenance. Site information for each site within a data source was then entered into the Site table, and each site was given a unique Siteld. Sitelds and Sourcelds were carried over into the SampleEvent, where information about the sampling event was entered and a SampleEventId was generated. Information about organismal stoichiometry and water chemistry characterization, along with any supporting data, was then entered into the OrganismStoichiometry or WaterChemistry table, respectively, linked by the Source Id and SampleEventId.

unpublished data were provided, the source is designated using the data curator's name or research group/lab as the author and either the year the data were received or the year the data were entered into the Limno-STOICH template for inclusion in the database.

SampleEvent Table

The SampleEvent table includes specific timing, location, and habitat information and condition for each observation. Sample dates were included in the Sample_Start_Date column when a single date was provided. When a date range was provided for a sample event, we used the Sample_Start_Date and Sample_End_Date columns to indicate the date range. Habitat_type and Depth_m columns further specify the habitat sampled, allowing us to distinguish sample events occurring on the same date. When pelagic samples were collected over a range of depths and numerical values were included, we included the average depth. When pelagic samples were taken at multiple depths, but numerical depth values were not included, sample events were characterized by the layer from which they were sampled ("Pelagic—epilimnion", for example). Air_temp, Water_temp, Cloud_cover, Canopy_cover, and Light columns were included to better characterize a sample event when provided. In instances when multiple water temperatures were provided for the same water chemistry or organismal chemistry data, these water temperatures were averaged. Only sample event rows with links to organismal stoichiometry or water chemistry observations were included in STOICH. However, in some instances, water chemistry observations were not collected on the same day as or were collected more frequently than the organismal stoichiometry data. In these scenarios, water chemistry observations were retained.

OrganismStoichiometry Table

The OrganismStoichiometry table includes metadata about organism taxonomy, body size and life stage, and elemental contents and ratios. First, we classified all organisms by their type which encompasses broad taxonomy- or origin-based classifications of Fish, Insecta, Mollusca, Annelida, Amphibian, Crustacean, Periphyton, Seston, Detritus (FPOM), Detritus (CPOM), Detritus (Other), Macrophyte, Bryophyte, Zooplankton, Invertebrates (Other), Vertebrates (Other), or Microbial (Other), where FPOM and CPOM denote fine or coarse particulate organic matter, respectively. We developed decision criteria to assist in applying these categorizations (Supporting Information Table S3). Next, to increase the spatial accuracy of each organism sampled within a given site, we designated the organism origin as Benthic, Sestonic, Epiphytic, Epixylic, Epipsammic, Epipelic, Epilithic, or Epizootic when such information was available. Then, we included an open entry for trophic mode for each organism. Finally, we included taxonomic levels of Kingdom, Order, Family, Genus, and Species. We did not include Phylum or Class to simplify our data submission process as these can be determined by the other

taxonomic information provided. When taxonomic information was not provided (for example, to add Order identification when only Family and Genus were included), we used the National Center for Biotechnology Information (NCBI) taxonomy database, via the R package *taxize* (Chamberlain et al. 2012), to back-fill taxonomic information at higher levels. We also included annotations of "sp." and "spp." for species when provided by data sources, but we listed "NA" when the species was unknown.

For each organismal sample, we recorded whether the data provided represented a Single Individual, Multiple Individuals, or Subsample of a Composite (e.g., homogenized tissues). We also recorded whether a given observation represented an Independent measurement or an Aggregate of multiple samples, in which case we provided the sample size. We included sample sizes as interpreted and contributed by the source author, which typically entailed either the statistical sample number contributing to a mean or the number of individuals homogenized and included within a sample. If a range in the number of individuals was reported, the lowest value was included. We included annotations about developmental stage (open entry) and gut clearance (Cleared or Gut Removed) for each organism sample. We included measurements of organism mass with units. While we required whole organismal data for inclusion in STOICH, we did accept organismal data that represented the entirety of the organism but analyzed in parts, as for macrophytes. These samples are denoted Partial Organism and only represent above ground and below ground measurements. We also interpreted snails or mollusks with the shell removed as Whole Organisms given current conventions in the field. We included information on life stage, if provided; only about a fifth (20.8%) of macroinvertebrate samples contained this information. Even for those macroinvertebrate samples without this information, we expect that most will be in the juvenile stage as the aquatic stage is their juvenile life stage (some exceptions would be insects with aquatic adult life stages, like whirligig or riffle beetles).

Finally, for C, N, or P contents of each organism, we recorded the measurement of elemental content and its units (where we converted values into the following units when possible: percent, μg , $\mu\text{g L}^{-1}$, $\mu\text{g cm}^{-2}$), standard deviation of the measurement (when provided), and the method of measurement with supporting notes and links to method descriptions, when available. When the units of elemental contents were unclear, we excluded the data from the database. If elemental content was available for at least two of the elements, but the third element was below detection limit, the data that were below detection were coded as $-999,999,999$ ($<0.7\%$ of all entries). We also report elemental molar ratios as provided by the data contributor. When not provided, we calculated them from individual elemental data. When provided, we reported the $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ isotopic composition and standard deviation (Supporting Information Text S1) and any

measurement of chlorophyll and its units. We also annotated (Yes or No) if some measurement of quantity as standing stocks was associated with the organismal sample; whether other elemental data (beyond C, N, or P) were reported for that sample (designated as Yes or No); and any additional notes from the data provider.

Site Table

The Site table contains information about the location from which samples were taken. Each site was given a “Site Name,” which the data contributor provided. Because of the individualistic nature of naming a location, Site Names may be unique to data sources and may not be associated with other sites within the same body of water. For example, both Toolik Lake (Kling 2013b; Johnson et al. 2014b) and Lake Superior (Bellinger et al. 2014; Camilleri and Ozersky 2019b) had multiple contributors. While we realize this decision may present certain challenges in using the database, it is a parsimonious way to synthesize many disparate data sources. When a site name was not provided, we entered one based on the latitude and longitude: “UNK_lat_long” using the decimal format.

Each site also includes information on latitude, longitude, elevation, country, state/province, and ecosystem type. If latitude and longitude were not available either from the source or provided by the authors, and if it was not possible to determine the sampling location from the source information, then the dataset was dropped. In some instances, location information was acquired using Google Earth based on study site information or figures. There were several instances in which data repositories used a bounding box; in this case, the coordinates of the centroid were entered. In both instances, the modification was noted or the rough coordinates were provided in the “Note_SampleLocation” column.

Ecosystem types provided by the researcher were standardized to the following list: Coastal, Lake, Pond, Reservoir, River, Stream, Tank Bromeliads, and Wetland. Generally, we did not provide quantitative distinctions among categories and defaulted to what was provided by the author contributor. When ecosystem type was not provided, we developed decision criteria to assist in applying these categorizations (Supporting Information Table S4). And, while we did not intentionally seek out coastal ecosystems (e.g., estuaries, marshes, tidal rivers), we did receive or encounter datasets with sites that were potentially marine. If the site was at least partly influenced by inland waters and/or resided at the ecotone on inland waters and marine waters, we retained this bycatch and categorized the ecosystem type as Coastal. However, database users interested in coastal or oceanic ecosystems should be aware that these ecosystems were not included in search terms and therefore are anticipated to be poorly represented in Limno-STOICH. For one dataset (i.e., Hu et al. 2021a), sites were reported collectively as “lakes, streams, rivers, or ponds.” We assigned specific ecosystem

types (pond, river, reservoir, stream, or wetland) to these 251 sites in northeastern China using their reported coordinates and a visual inspection of the ecosystem using Google Earth. Criteria included size, natural vs. man-made origin, altitude, and stream order. Notes about these site assignments were recorded in the “Notes” column. Users may want to consider carefully what is defined as a “Lake” or “Pond”, or a “River” or “Stream” if the divisions are of interest.

WaterChemistry Table

The WaterChemistry table includes physical or chemical variables associated with the aquatic ecosystem from which the associated organismal sample(s) were collected (Supporting Information Table S2). This table includes non-particulate variables only, as seston, FPOM, and other particulates are considered basal resources and categorized in the OrganismStoichiometry table. Availability of these data varied widely among data sources. These data were either extracted from tables within data sources, data repositories, or provided by data contributors. Whenever possible, data were only entered as values for the sites and days that corresponded to the organismal collections. When multiple measurements were collected on the same day, data were averaged and inputted as a single value for each day. Multiple measurements over depth were only included if there was associated organismal data for those depths; otherwise, data not associated with an organismal collection were excluded. Information about statistical pooling, whether performed by data technicians or by data providers, is reported in the “Statistical_Pooling_Water” and “Sample_size_water” columns.

In some instances, water chemistry data were included at a site with dates prior to the organismal collections. However, we generally avoided this inclusion and encourage readers to link to more robust water chemical databases for this type of information (e.g., Water Quality Portal—Environmental Protection Agency and United States Geological Survey 2013; Waterbase—European Environment Agency 2024). The one exception of this is the NEON-derived data. NEON seldom collected aquatic organisms on the same day as water chemistry collections, sometimes up to 2 weeks apart. Depending on the interests of the data user, this time period may or may not be reasonable, so we left the data “unlinked” in Limno-STOICH. A function for linking these data is available in *stoichUtilities* Application Programming Interface (API; see below).

Water chemistry data were submitted in the reporting units and converted upon database inclusion to the standard units of μM C, N, or P, $\mu\text{g L}^{-1}$ (dissolved oxygen), unitless (pH), or $\mu\text{S cm}^{-1}$ (specific conductivity). If other variables were reported in the data source or repository, we included a comment in the “Other_elements_water” column. Some datasets reported nitrate concentrations as nitrate + nitrite; given the negligible concentrations of nitrite compared to nitrate in most surface waters, these concentrations were assumed to be

primarily nitrate and reported as nitrate in Limno-STOICH. As decisions about handling records including negative values, zeros, or below detection limits (BDL) can lead to bias due to inconsistency in detection limits and reporting practices (Stow et al. 2018), we erred towards reporting data how they were reported in the original dataset. Hence, negative or zero values were entered without modification. If a BDL or non-detect was reported with no corresponding value, the concentration was entered as $-999,999,999$. If a value was reported, but flagged by the data contributor as a BDL, the value was entered without modification, but the BDL flag was noted in the “Notes_Water” column.

Technical validation

We employed manual and automatic checks in our technical validation of the Limno-STOICH database for quality assurance and quality control (QA/QC). After initial entry into the data template, a second trained project technician reviewed the data to ensure correct formatting, correct template version, and data completeness and accuracy. As described above, missing taxonomic data (e.g., Kingdom, Order, Class) were populated using the R package *taxize*. Then, a taxonomic expert assisted in correcting spelling errors and standardizing taxonomic classification (i.e., due to outdated classification). Taxonomic revisions can be found in Supporting Information Table S6.

Once the dataset passed this initial inspection, the dataset was reviewed through an automated check. The automated check first verified file contents for required columns, units, and proper case in text. Next, numeric values were converted to standardized units. Then, these values were automatically reviewed for expected or valid ranges and flags were created if values fell out of this range (Supporting Information Table S2). Expected ranges for organismal stoichiometry were also examined during this stage. We flagged samples with C or N contents below or above certain thresholds that were deemed out of the range of likelihood. Lower thresholds were C below 20% and N below 4% for animal tissues and C below 0.1% and N below 0.1% for resource samples. This QA/QC resulted in 1040 observations of C or N values being converted to $-999,999,999$. Upper thresholds were C above 80% or samples where %C plus %N was greater than 90% or samples where %C plus %N plus %P was greater than 100%. All samples for P content were retained, but samples below the reported detection limit were recorded as $-999,999,999$. This QA/QC resulted in dropping 1.4% of samples (734 samples were removed representing 207 consumer and 527 resource entries) because they no longer included data from at least two elements after QA/QC.

If a dataset contained organismal C, N, and P contents in addition to C : N, C : P, and N : P ratios, the ratios contributed in the dataset were checked against the ratios derived from the contributed C, N, and P contents. While some differences

between contributed and calculated C : N, C : P, and N : P ratios were expected (e.g., due to calculation of means, rounding errors, or differences in sample sizes in each reported elemental content), any difference greater than 9% was flagged to catch common errors (e.g., mass ratios mistakenly reported as molar ratios). Once numeric checks were complete, we reviewed the logs and either corrected minor issues with formatting or conducted further review, including contact with the original dataset author for data verification, cleaning, or rejection.

We conducted a final review of each dataset by examining distribution plots of numeric data, which allowed us to identify inconsistent units or auto-increments due to errors during copying and to check for missing data. Once a dataset was technically validated, a final check was done to ensure that the data were not duplicates of an existing entry. If multiple reports of sampling event information or water chemical characterization were found, individual values are stored in the “sample event” or “water chemistry” notes columns and averages are calculated in the data columns.

To conduct further QA/QC on the compiled database, we organized a remote beta testing program (recruiting participants from professional networks) along with five in-person workshops. These beta testing stages involved input from approximately 100 individuals. For the remote beta testing program, participants were challenged with various standardized and freeform activities related to database use through email communication. Additionally, we provided asynchronous instructions through video tutorials and instructional documentation with examples posted on a dedicated webpage and synchronous assistance through weekly office hours hosted by the Database Manager (C. Petersen). The workshops involved 10–25 individuals who tested example code, explored potential applications of the database, and assisted with targeted QA/QC. Beta testers and workshop participants reported issues directly to project PI’s and database staff using a Google Form feedback tool. Over 40 submissions for errors and feedback were made, including typos, purported data errors, and R package documentation clarification. Recommended edits were brought to the database metadata committee and incorporated into subsequent beta versions of Limno-STOICH.

Associated API: STOICH-utilities

To facilitate the use of the Limno-STOICH Database, we created an application programming interface (API) in R called *stoichUtilities*. This package provides functions for loading, filtering, and joining tables in the Limno-STOICH Database (Petersen 2025). These functions allow users to load database tables and filter and join the tables using the Id for each table, reducing the burden for users by eliminating data type errors while loading and filtering data. The *stoichUtilities* package links to the most updated version of

the Limno-STOICH Database (available from https://snr-stoich.unl.edu/get_data.htm).

Data use and recommendations for reuse

We anticipate that the Limno-STOICH database will be leveraged to address a wide variety of ecological and evolutionary questions and conservation or management concerns. In particular, the Limno-STOICH database can be used to study spatiotemporal scales of stoichiometric variation across levels of biological organization and determine when and where stoichiometric mismatches across trophic levels exist. Of course, any investigation into trophic mismatches will need to consider whether basal resources actually represent what are being consumed; the isotopic data within Limno-STOICH may help with this endeavor (Supporting Information Text S1). To help guide research inquiries, our group has developed a framework for investigating how stoichiometric diversity varies over time and space in biological communities (Moody *et al.* 2025) and explored how scaling-up ecological stoichiometry affects our understanding of ecological thresholds across space, time, and levels of biological organization with attention to patterns of freshwater biodiversity and evolution (Tumolo *et al.* 2025). And, while we attempted to be comprehensive in the information included in Limno-STOICH, we understand that all details may not have been addressed. For these scenarios, users are encouraged to dive into the source material (found in the *Contact* and *Source* tables) if there are aspects of the Limno-STOICH data that would be important to the questions they are asking but are not annotated within the database.

We also anticipate that linking Limno-STOICH to other existing databases and resources will further increase its impact. For instance, by linking Limno-STOICH to phylogenetic information from resources such as the Fish Tree of Life (Rabosky *et al.* 2018) or Open Tree of Life (Hinchliff *et al.* 2015), one can explore the extent to which stoichiometric traits are constrained by phylogeny, how much they evolve in different communities, and the relationships among community phylogenetic diversity, stoichiometric diversity, and basal resource stoichiometry. Additionally, by linking Limno-STOICH to existing databases on climate, land use/land cover, and other geographic variables (e.g., terrestrial ecoregions, Olson *et al.* 2001; HydroATLAS, Linke *et al.* 2019; Lehner *et al.* 2022), one can explore how ecosystem stoichiometries vary along climate, land use, and productivity gradients, how landscape alterations are reflected in stoichiometric changes of key species or communities, and how stoichiometric traits may interact with or mediate effects of climate change or other anthropogenic influences.

Our project would not have been possible without substantial funding. Specifically, our project employed a full-time database manager and a full-time database technician for most of the grant's duration, with additional full-time support staff

hired to assist on a seasonal basis as needed. We also employed 45 undergraduate students across several institutions to conduct literature surveys, help add data into the database, and perform stoichiometric analysis of NEON samples, supplemented by graduate student support. Project faculty and graduate students served on database and metadata committees that discussed issues and solutions related to dealing with complex data syntheses and discussed ways to use the data in future papers.

We have made efforts to automate our data contribution processes for future datasets that could be included in Limno-STOICH in the hope that there will be future database updates. Future database updates will be critical for research and management of inland waters in the face of global change. We recognize that there are current gaps in the geographic, biome, and taxonomic coverage in the database (Figs. 1, 2). Furthermore, we acknowledge variation across methods used to collect and analyze samples (e.g., P analytical methods; Costanza-Robinson *et al.* 2025) and the temporal mismatch between water chemistry and organismal sampling at some field sites. To support the ease of database updates, we recommend standard protocols from NEON to those who may be collecting data that might be incorporated into Limno-STOICH. NEON provides extensive details on methods for sampling aquatic organisms and chemistry in lakes and streams. Among their protocols are details on sampling periphyton and phytoplankton (Parker 2025); aquatic macroinvertebrates (Parker 2023); aquatic plants, bryophytes, lichen, and macroalgae (Lafaver 2023); zooplankton (Parker 2024); and fish (Del Priore 2025). The protocols also include sampling surface waters for chemistry (Goodman *et al.* 2025) and depth profile sampling (Parker 2021). Standardized data collection, along with an eye towards data formatting previously described (Supporting Information Tables S1 and S2), will help ensure more useful, tractable, and timely updates to Limno-STOICH into the future.

Author Contributions

Amy C. Krist, Alexander L. Lewanski, Catherine E. Wagner, Eric K. Moody, Halvor M. Halvorson*, Jessica R. Corman*, Sarah M. Collins, and Steve Thomas contributed to the conceptualization and funding acquisition. Benjamin B. Tumolo, Casey Brucker*, Elise Ehlers*, Eli N. Wess, Gultekin Yilmaz, J. Harrison Edwards*, Halvor M. Halvorson*, Jessica R. Corman, Linnea A. Rock, Sarah M. Collins, and W. Reilly Farrell contributed to data curation and administration. Amina Mohamed, Benjamin B. Tumolo, Briante L. Najev, Binbin Wang, Cynthia Paszkowski*, Eric K. Moody, Gultekin Yilmaz, Halvor M. Halvorson, and Jessica R. Corman contributed to analysis and/or generation of visualizations. Amy C. Krist, Baker J. Angstman, Eric K. Moody*, Emma D. Neill, Elizabeth G. Peebles, Ella Roelofs, John S. Kominoski, Kayley Porter, Liza Toll, Molly S. Costanza-Robinson*, Natalie Montano, Qiting

Cai, Shuyi Lin, and Sophie Schuele contributed to NEON macroinvertebrate sample analysis. Chad Petersen*, Halvor M. Halvorson, and Jessica R. Corman contributed to code development. Amina Mohamed, Benjamin B. Tumolo, Briante L. Najev, Binbin Wang, Casey Brucker, Chad Petersen, Eric K. Moody, Gültekin Yilmaz, J. Harrison Edwards, Halvor M. Halvorson*, Jessica R. Corman*, Linnea A. Rock, Sarah M. Collins, and W. Reilly Farrell contributed to the writing of the manuscript. Amy C. Krist, Baker J. Angstman, Eric K. Moody, Emma D. Neill, Eli N. Wess, Elizabeth G. Peebles, Ella Roelofs, Halvor M. Halvorson, John S. Kominoski, Jessica R. Corman, Kayley Porter, Liza Toll, Molly S. Costanza-Robinson, Natalie Montano, Qiting Cai, Shuyi Lin, Sophie Schuele, and all other authors contributed data. All authors reviewed and provided edits for the final draft. Asterisks denote leads or co-leads of the different contributing efforts.

Acknowledgments

This project was funded by National Science Foundation (OIA-2019596). We thank Mozsár Attila, Wyatt Cross, Steve Hamilton, Tim Jardine, Matt Hopton, Jose Milanovich, Steve Pothoven, Mao Rong, Bob Sterner, Mike Vanni, Annika Walters, and Arthur Whiting for data contributions. We thank William (Bill) Armstrong, Katie Bearden, Sarah Birchard, Benjamin (Brady) Bowers, Maddie Carpenter, Amelia Collins, Aimee Dycus, Sophia Fatima, Makenna Foley, Fern Holian, Joanna Kelly, Trevor Knowles, Jean Kwizerimana, Molly Legg, Danielle Lichtenwalner, Ava McQuillen, Malissa Mobley, Muzn Mohamed, Cady Murphy, Dominic Nath, Hannah Nguyen, Muhammad Nuruddin, Aidan Patton, Anthony Pignatelli, Tanner Pittman, Ashlyn Rasmussen, Theodore (Ted) Rittle, Mariah Saville, Easton Sckerl, Liberty Sears, Natalie Stocks, Connor Tolly, Hannah Van Tassel, Cameron Tyler, Emily Walsh, Stephanie Webster, Sophie Wulffing, Angela Zhu, Shrimai Raghuvanshi, and Alida Grobbelaar for their assistance with collecting and preparing datasets for inclusion into STOICH. We thank James Elser, Angelica Gonzalez, Elena Litchman, and Matthew Mayernik for generative conversations about the construction of STOICH.

Conflicts of Interest

None declared.

Data Availability Statement

Data are available in the Environmental Data Initiative repository at <https://doi.org/10.6073/pasta/d63489af723aec3b4a608c54ba7d636d>. The code that supports the analyses in this study is uploaded to Zenodo and is available at <https://doi.org/10.5281/zenodo.18276533>. Measurements: Organismal elemental content (carbon, nitrogen, phosphorus) and ecosystem attributes. Temporal range: Varies by location, 1922–2024. Frequency or sampling interval: Varies by location. Spatial scale: Global.

References

Andersen, T., and D. O. Hessen. 1991. "Carbon, Nitrogen, and Phosphorus Content of Freshwater Zooplankton." *Limnology and Oceanography* 36: 807–814. <https://doi.org/10.4319/lo.1991.36.4.0807>.

Aranguren-Riaño, N. J., J. B. Shurin, A. Pedroza-Ramos, C. L. Muñoz-López, R. López, and O. Cely. 2018. "Sources of Nutrients Behind Recent Eutrophication of Lago de Tota, a High Mountain Andean Lake." *Aquatic Sciences* 80: 39. <https://doi.org/10.1007/s00027-018-0588-x>.

Atkinson, C. L., J. P. Julian, and C. C. Vaughn. 2014. "Species and Function Lost: Role of Drought in Structuring Stream Communities." *Biological Conservation* 176: 30–38. <https://doi.org/10.1016/j.biocon.2014.04.029>.

Aydin, O., and M. Y. Yassikaya. 2022. "Validity and Reliability Analysis of the PlotDigitizer Software Program for Data Extraction From Single-Case Graphs." *Perspectives on Behavior Science* 45: 239–257. <https://doi.org/10.1007/s40614-021-00284-0>.

Ball, B. 2017. "The Role of Moss as Integrators of Soil and Stream Nutrient Status in Deserts, Greater Phoenix Area, Arizona, 2011 to 2013." <https://doi.org/10.6073/PASTA/3C51F50D0D37E96FB6B55E206B8069A4>.

Baruch, E. M., T. K. Harms, A. Ruhi, M. Lu, L. Gaines-Sewell, and J. L. Sabo. 2023. "Food Web Efficiency in Desert Streams." *Limnology and Oceanography* 68: 723–734. <https://doi.org/10.1002/lo.12305>.

Baudouin, M. F., and O. Ravera. 1972. "Weight, Size, and Chemical Composition of Some Freshwater Zooplankton: *Daphnia hyalina* (Leydig)." *Limnology and Oceanography* 17: 645–649. <https://doi.org/10.4319/lo.1972.17.4.0645>.

Beaufort Lagoon Ecosystems LTER. 2023a. "Carbon and Nitrogen Content and Stable Isotope Compositions From Biota Samples From Lagoon Sites Along the Alaska Beaufort Sea Coast, 2018–Ongoing." <https://doi.org/10.6073/PASTA/04A064B8EA70A0EC24CAD6C1418E57BF>.

Beaufort Lagoon Ecosystems LTER. 2023b. "Carbon and Nitrogen Content and Stable Isotope Compositions From Particulate Organic Matter Samples From Lagoon, River, and Open Ocean Sites Along the Alaska Beaufort Sea Coast, 2018–Ongoing." <https://doi.org/10.6073/PASTA/C32D8337571A37E50F8090D15ED26089>.

Beck, M., E. Billoir, V. Felten, A. Meyer, P. Usseglio-Polatera, and M. Danger. 2022. "A Database of West European Headwater Macroinvertebrate Stoichiometric Traits." *Global Ecology and Biogeography* 31: 4–9. <https://doi.org/10.1111/geb.13413>.

Bellinger, B. J., B. A. S. Van Mooy, J. B. Cotner, et al. 2014. "Physiological Modifications of Seston in Response to Physicochemical Gradients within Lake Superior." *Limnology and Oceanography* 59: 1011–1026. <https://doi.org/10.4319/lo.2014.59.3.1011>.

Benavides-Gordillo, S., V. F. Farjalla, A. L. González, and G. Q. Romero. 2019. "Changes in Rainfall Level and Litter Stoichiometry Affect Aquatic Community and Ecosystem Processes in Bromeliad Phytotelmata." *Freshwater Biology* 64: 1357–1368. <https://doi.org/10.1111/fwb.13310>.

Bergström, A., D. C. P. Lau, P. D. F. Isles, A. Jonsson, and I. F. Creed. 2022. "Biomass, Community Composition and N:P Recycling Ratios of Zooplankton in Northern High-Latitude Lakes with Contrasting Levels of N Deposition and Dissolved Organic Carbon." *Freshwater Biology* 67: 1508–1520. <https://doi.org/10.1111/fwb.13956>.

Bergström, A.-K., A. Jonsson, P. D. F. Isles, I. F. Creed, and D. C. P. Lau. 2020. "Changes in Nutritional Quality and Nutrient Limitation Regimes of Phytoplankton in Response to Declining N Deposition in Mountain Lakes." *Aquatic Sciences* 82: 31. <https://doi.org/10.1007/s00027-020-0697-1>.

Biederman, J. A., T. Meixner, A. A. Harpold, et al. 2016. "Riparian Zones Attenuate Nitrogen Loss Following Bark Beetle-Induced Lodgepole Pine Mortality." *JGR Biogeosciences* 121: 933–948. <https://doi.org/10.1002/2015JG003284>.

Birge, E., and C. Juday. 2022. "Historical Birge—Juday Lake Survey—major ions 1900–1943." <https://doi.org/10.6073/PASTA/A6AC7102D0B63F6DD213C2E68E76D2D8>.

Bode, A., M. Varela, and R. Prego. 2011. "Continental and Marine Sources of Organic Matter and Nitrogen for Rías of Northern Galicia (Spain)." *Marine Ecology Progress Series* 437: 13–26. <https://doi.org/10.3354/meps09289>.

Bonin, H. L. 2013. "Nutrient and Microbial Characteristics of Mountain Stream Fine Benthic Organic Matter in the H.J. Andrews Experimental Forest, 1995 to 1996." <https://doi.org/10.6073/PASTA/1C7D15AA7533DEC1CF3616A57FFADF20>.

Brazner, J. C., D. K. Tanner, and J. A. Morrice. 2001. "Fish-Mediated Nutrient and Energy Exchange between a Lake Superior Coastal Wetland and its Adjacent Bay." *Journal of Great Lakes Research* 27: 98–111. [https://doi.org/10.1016/S0380-1330\(01\)70625-9](https://doi.org/10.1016/S0380-1330(01)70625-9).

Briceno, H. 2022. "Surface Water Quality Monitoring Data Collected in South Florida Coastal Waters (FCE LTER), Florida, USA, June 1989–Ongoing." <https://doi.org/10.6073/PASTA/49ADEA692415666D289EAC906BE41B57>.

Briceno, H. 2025. "Surface Water Quality Monitoring Data Collected in South Florida Coastal Waters (FCE LTER), Florida, USA, June 1989–Ongoing." <https://doi.org/10.6073/PASTA/1DC41EB688AE334EDE9705C250AAE64B>.

Butler, O. M., J. J. Elser, T. Lewis, B. Mackey, and C. Chen. 2018. "The Phosphorus-Rich Signature of Fire in the Soil-Plant System: A Global Meta-Analysis." *Ecology Letters* 21: 335–344. <https://doi.org/10.1111/ele.12896>.

Cabrerizo, M. J., J. M. Medina-Sánchez, I. Dorado-García, M. Villar-Argaiz, and P. Carrillo. 2017. "Rising Nutrient-Pulse Frequency and High UVR Strengthen Microbial Interactions." *Scientific Reports* 7: 43615. <https://doi.org/10.1038/srep43615>.

Caine, T. N. 2021a. "Stream Water Chemistry Data for Albion Site, 1982–Ongoing." <https://doi.org/10.6073/PASTA/59396E2B8D291BADCFB140425E1B3A38>.

Caine, T. N. 2021b. "Stream Water Chemistry Data for Arikaree Cirque, 1984–Ongoing." <https://doi.org/10.6073/PASTA/DB83E4BB2F3FB8C9BE1FAFA5956957D0>.

Caine, T. N. 2021c. "Stream Water Chemistry Data for Green Lake 4, 1982–Ongoing." <https://doi.org/10.6073/PASTA/277121F0334757746D9D52CE2C2E82AB>.

Caine, T. N. 2021d. "Stream Water Chemistry Data for Green Lake 5 Rock Glacier, 1998–Ongoing." <https://doi.org/10.6073/PASTA/09667EB64C33A5D9A5E35B8D1C516D93>.

Caine, T. N. 2021e. "Stream Water Chemistry Data for Navajo Meadow, 1984–Ongoing." <https://doi.org/10.6073/PASTA/660F24F6F2FE35D950DB91BED79F6D59>.

Camilleri, A. C., and T. Ozersky. 2019. "Large Variation in Periphyton $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$ Values in the Upper Great Lakes: Correlates and Implications." *Journal of Great Lakes Research* 45: 986–990. <https://doi.org/10.1016/j.jglr.2019.06.003>.

Chamberlain, S., E. Szoecs, Z. Foster, and Z. Arendsee. 2012. "taxize: Taxonomic Information From Around the Web. 0.10.0." <https://doi.org/10.32614/CRAN.package.taxize>.

Chodkowski, N., and R. J. Bernot. 2017. "Parasite and Host Elemental Content and Parasite Effects on Host Nutrient Excretion and Metabolic Rate." *Ecology and Evolution* 7: 5901–5908. <https://doi.org/10.1002/ece3.3129>.

Cloern, J. E., E. A. Canuel, and D. Harris. 2002. "Stable Carbon and Nitrogen Isotope Composition of Aquatic and Terrestrial Plants of the San Francisco Bay Estuarine System." *Limnology and Oceanography* 47: 713–729. <https://doi.org/10.4319/lo.2002.47.3.0713>.

Corman, J. R., E. K. Moody, and J. J. Elser. 2016. "Calcium Carbonate Deposition Drives Nutrient Cycling in a Calcareous Headwater Stream." *Ecological Monographs* 86: 448–461. <https://doi.org/10.1002/ecm.1229>.

Costanza-Robinson, M. S., B. J. Angstman, Q. Cai, et al. 2025. "Comparison of Inductively Coupled Plasma Mass Spectrometry and Molybdenum Blue Colorimetry for Total Phosphorus Determination in Freshwater Invertebrates." *PLoS One* 20: e0317871. <https://doi.org/10.1371/journal.pone.0317871>.

Cremona, F., S. Hamelin, D. Planas, and M. Lucotte. 2009. "Sources of Organic Matter and Methylmercury in Littoral Macroinvertebrates: A Stable Isotope Approach." *Biogeochemistry* 94: 81–94. <https://doi.org/10.1007/s10533-009-9309-9>.

Cross, W. F., J. P. Benstead, P. C. Frost, and S. A. Thomas. 2005. "Ecological Stoichiometry in Freshwater Benthic Systems: Recent Progress and Perspectives." *Freshwater Biology* 50: 1895–1912. <https://doi.org/10.1111/j.1365-2427.2005.01458.x>.

Cross, W. F., J. P. Benstead, A. D. Rosemond, and J. B. Wallace. 2003. "Consumer-Resource Stoichiometry in Detritus-Based Streams." *Ecology Letters* 6: 721–732. <https://doi.org/10.1046/j.1461-0248.2003.00481.x>.

Del Priore, T. 2025. *AOS Protocol and Procedure: FSL—Fish Sampling in Lakes*. NEON.DOC.001296. National Ecological Observatory Network.

Deschy, J.-P., Deschy, M.-A., Hardy, et al. 2005. "Phytoplankton Pigments and Community Composition in Lake Tanganyika." *Freshwater Biology* 50: 668–684. <https://doi.org/10.1111/j.1365-2427.2005.01358.x>.

Díaz Villanueva, V. 2019. "Dissolved Organic Matter as P Source for Biofilms in Two Contrasting Low-Order Streams." *Fundamental and Applied Limnology* 193: 131–142. <https://doi.org/10.1127/fal/2019/1234>.

Díaz Villanueva, V., M. Bastidas Navarro, and R. Albariño. 2016. "Seasonal Patterns of Organic Matter Stoichiometry Along a Mountain Catchment." *Hydrobiologia* 771: 227–238. <https://doi.org/10.1007/s10750-015-2636-z>.

Diehl, S., G. Thomsson, M. Kahlert, J. Guo, J. Karlsson, and A. Liess. 2018. "Inverse Relationship of Epilithic Algae and Pelagic Phosphorus in Unproductive Lakes: Roles of N₂ Fixers and Light." *Freshwater Biology* 63: 662–675. <https://doi.org/10.1111/fwb.13103>.

Dionne, K., F. Dufresne, and C. Nozaïs. 2017. "Overlapping Trophic Niches Among Co-Occurring Amphipods From a Cryptic Species Complex." *Freshwater Biology* 62: 1052–1062. <https://doi.org/10.1111/fwb.12924>.

Dudley, B. D., R. A. MacKenzie, T. S. Sakihara, M. H. Riney, and R. Ostertag. 2017. "Effects of Invasion at Two Trophic Levels on Diet, Body Condition, and Population Size Structure of Hawaiian Red Shrimp." *Ecosphere* 8: e01682. <https://doi.org/10.1002/ecs2.1682>.

Durston, D. J., and R. W. El-Sabaawi. 2018. "Data From: Bony Traits and Genetics Drive Intraspecific Variation in Vertebrate Elemental Composition. 233074 Bytes." <https://doi.org/10.5061/DRYAD.V577V>.

Eberts, R. L., B. Wissel, G. L. Simpson, et al. 2017. "Isotopic Structure of Lake Whitefish in Lake Huron: Evidence for Regional and Local Populations Based on Resource Use." *North American Journal of Fisheries Management* 37: 133–148. <https://doi.org/10.1080/02755947.2016.1245225>.

El-Sabaawi, R. W., J. Travis, E. Zandonà, P. B. McIntyre, D. N. Reznick, and A. Flecker. 2014. "Intraspecific Variability Modulates Interspecific Variability in Animal Organismal Stoichiometry." *Ecology and Evolution* 4: 1505–1515. <https://doi.org/10.1002/ece3.981>.

Elser, J. J. 2022. "Nutrient Concentrations, Loading, and N:P Stoichiometry (1983–2020) and Impacts in Flathead Lake (Montana, USA). 224805 Bytes." <https://doi.org/10.5061/DRYAD.HDR7SQVKW>.

Elser, J. J., M. E. S. Bracken, E. E. Cleland, et al. 2007a. "Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems." *Ecology Letters* 10: 1135–1142. <https://doi.org/10.1111/j.1461-0248.2007.01113.x>.

Elser, J. J., M. Kyle, L. Steger, K. R. Nydick, and J. S. Baron. 2009. "Nutrient Availability and Phytoplankton Nutrient Limitation across a Gradient of Atmospheric Nitrogen Deposition." *Ecology* 90: 3062–3073. <https://doi.org/10.1890/08-1742.1>.

Elser, J. J., M. M. Kyle, M. S. Smith, and J. D. Nagy. 2007b. "Biological Stoichiometry in Human Cancer." *PLoS One* 2: e1028. <https://doi.org/10.1371/journal.pone.0001028>.

Environmental Protection Agency and United States Geological Survey. 2013. "Water Quality Portal." <https://doi.org/10.5066/P9QRKUVJ>.

European Environment Agency. 2024. *Waterbase WISE State of Environment (SoE)*. European Environment Agency.

Feijoó, C. S., C. Feijoó, L. Leggieri, et al. 2014. "Stoichiometric Homeostasis in the Food Web of a Chronically Nutrient-Rich Stream." *Freshwater Science* 33: 820–831. <https://doi.org/10.1086/677056>.

Feijoó, C. S., F. R. Momo, C. A. Bonetto, and N. M. Tur. 1996. "Factors Influencing Biomass and Nutrient Content of the Submersed Macrophyte *Egeria Densa* Planch. In a Pampasic Stream." *Hydrobiologia* 341: 21–26. <https://doi.org/10.1007/BF00012299>.

Finne, E. A., Ø. Varpe, J. M. Durant, G. W. Gabrielsen, and A. E. Poste. 2024. "Nutrient Fluxes From an Arctic Seabird Colony to the Adjacent Coastal Marine Ecosystem." *Polar Biology* 47: 859–872. <https://doi.org/10.1007/s00300-022-03024-5>.

Fogelman, K. J., J. A. Stoeckel, H. A. Abdelrahman, and B. S. Helms. 2022. "The Relative Importance of Suspended Versus Benthic Food Resources to Freshwater Mussels in Central Texas, U.S.A." *Freshwater Biology* 67: 1063–1078. <https://doi.org/10.1111/fwb.13901>.

Fritz, K. A., and M. R. Whiles. 2018. "Amphibian-Mediated Nutrient Fluxes across Aquatic–Terrestrial Boundaries of Temporary Wetlands." *Freshwater Biology* 63: 1250–1259. <https://doi.org/10.1111/fwb.13130>.

Gaiser, E., and F. Tobias. 2023. "Periphyton Biomass Accumulation from the Shark River and Taylor Sloughs, Everglades National Park (FCE LTER), South Florida, USA, January 2003–Ongoing." <https://doi.org/10.6073/PASTA/FDA2ABF8COC081843917328DEEEAB17A>.

Gao, X., H. Chen, B. Gu, E. Jeppesen, Y. Xue, and J. Yang. 2021. "Particulate Organic Matter as Causative Factor to Eutrophication of Subtropical Deep Freshwater: Role of Typhoon (Tropical Cyclone) in the Nutrient Cycling." *Water Research* 188: 116470. <https://doi.org/10.1016/j.watres.2020.116470>.

Gao, X., W. Wang, J. C. Ndayishimiye, et al. 2022. "Invasive and Toxic Cyanobacteria Regulate Allochthonous Resource Use and Community Niche Width of Reservoir Zooplankton." *Freshwater Biology* 67: 1344–1356. <https://doi.org/10.1111/fwb.13921>.

Georgia Coastal Ecosystems LTER Project, and M. Alber. 2015. "October 2001 Water Column Particulate Carbon and Nitrogen Concentrations for Georgia Coastal Ecosystems LTER Sampling Sites." <https://doi.org/10.6073/PASTA/819D1CD195D4EA6F900D68FD024A7235>.

Georgia Coastal Ecosystems LTER Project, and M. Alber. 2021. "Long-Term Water Quality Monitoring in the Altamaha, Doboy and Sapelo Sounds and the Duplin River Near Sapelo Island, Georgia From November 2013 to December 2018." <https://doi.org/10.6073/PASTA/483E5D21EF01FD56DF911388C4406280>.

Giling, D. P., P. Reich, and R. M. Thompson. 2012. "Riparian Vegetation Removal Alters Consumer—Resource Stoichiometry in an Australian Lowland Stream." *Marine and Freshwater Research* 63: 1. <https://doi.org/10.1071/MF11092>.

Gladyshev, M. I., L. A. Glushchenko, E. S. Kravchuk, et al. 2020. "Isotope Composition of Nitrogen and Stoichiometric Ratios of Elements in Biomass of Spirogyra in Lake Baikal Doklady." *Biochemistry and Biophysics* 491: 70–72. <https://doi.org/10.1134/S1607672920020088>.

Gladyshev, M. I., O. V. Kolmakova, A. P. Tolomeev, et al. 2015. "Differences in Organic Matter and Bacterioplankton between Sections of the Largest Arctic River: Mosaic or Continuum?" *Limnology and Oceanography* 60: 1314–1331. <https://doi.org/10.1002/lno.10097>.

Gladyshev, M. I., N. N. Sushchik, A. A. Kolmakova, et al. 2007. "Seasonal Correlations of Elemental and ω_3 PUFA Composition of Seston and Dominant Phytoplankton Species in a Eutrophic Siberian Reservoir." *Aquatic Ecology* 41: 9–23. <https://doi.org/10.1007/s10452-006-9040-8>.

Goetz, E. M., and D. S. Johnson. 2022. "Comparison of High-Marsh and Ghost-Forest Invertebrates in Virginia, 2020." <https://doi.org/10.6073/PASTA/859252320B7300EB78215663820F8466>.

González, A. L., O. Dézerald, P. A. Marquet, G. Q. Romero, and D. S. Srivastava. 2017. "The Multidimensional Stoichiometric Niche." *Frontiers in Ecology and Evolution* 5: 110. <https://doi.org/10.3389/fevo.2017.00110>.

González, A. L., J. M. Fariña, R. Pinto, et al. 2011. "Bromeliad Growth and Stoichiometry: Responses to Atmospheric Nutrient Supply in Fog-Dependent Ecosystems of the Hyper-Arid Atacama Desert, Chile." *Oecologia* 167: 835–845. <https://doi.org/10.1007/s00442-011-2032-y>.

González, A. L., J. Merder, K. Andraczek, et al. 2025. "StoichLife: A Global Dataset of Plant and Animal Elemental Content." *Scientific Data* 12: 569. <https://doi.org/10.1038/s41597-025-04852-w>.

Goodman, K., N. Catolico, and M. Fitzgerald. 2025. *AOS Protocol and Procedure: SWC—Water Chemistry Sampling in Surface Waters and Groundwater*. NEON.DOC.002905. National Ecological Observatory Network.

Gotelli, N., and A. Ellison. 2023. "Stoichiometry of Bogs and Bog Plants in Massachusetts and Vermont 2002." <https://doi.org/10.6073/PASTA/E2AF5F5A31F26D4989B2AB86228AE78E>.

Halvorson, H. M., S. N. Francoeur, R. H. Findlay, and K. A. Kuehn. 2019. "Algal-Mediated Priming Effects on the Ecological Stoichiometry of Leaf Litter Decomposition: A Meta-Analysis." *Frontiers in Earth Science* 7: 76. <https://doi.org/10.3389/feart.2019.00076>.

Halvorson, H. M., C. Fuller, S. A. Entrekin, and M. A. Evans-White. 2015a. "Dietary Influences on Production, Stoichiometry and Decomposition of Particulate Wastes from Shredders." *Freshwater Biology* 60: 466–478. <https://doi.org/10.1111/fwb.12462>.

Halvorson, H. M., C. L. Fuller, S. A. Entrekin, J. T. Scott, and M. A. Evans-White. 2018. "Detrital Nutrient Content and Leaf Species Differentially Affect Growth and Nutritional Regulation of Detritivores." *Oikos* 127: 1471–1481. <https://doi.org/10.1111/oik.05201>.

Halvorson, H. M., J. T. Scott, A. J. Sanders, and M. A. Evans-White. 2015b. "A Stream Insect Detritivore Violates Common Assumptions of Threshold Elemental Ratio Bioenergetics Models." *Freshwater Science* 34: 508–518. <https://doi.org/10.1086/680724>.

Halvorson, H. M., E. Sperfeld, and M. A. Evans-White. 2017. "Quantity and Quality Limit Detritivore Growth: Mechanisms Revealed by Ecological Stoichiometry and Co-Limitation Theory." *Ecology* 98: 2995–3002. <https://doi.org/10.1002/ecy.2026>.

Hamilton, S. K., S. J. Sippel, and S. E. Bunn. 2005. "Separation of Algae from Detritus for Stable Isotope or Ecological Stoichiometry Studies Using Density Fractionation in Colloidal Silica: Separation of Algae from Detritus." *Limnology and Oceanography: Methods* 3: 149–157. <https://doi.org/10.4319/lom.2005.3.149>.

Hanisch, J. R., W. M. Tonn, C. A. Paszkowski, and G. J. Scrimgeour. 2010. "δ¹³C and δ¹⁵N Signatures in Muscle and Fin Tissues: Nonlethal Sampling Methods for Stable Isotope Analysis of Salmonids." *North American Journal of Fisheries Management* 30: 1–11. <https://doi.org/10.1577/M09-048.1>.

Hanson, N., M. Fogel, D. W. Fong, and S. E. MacAvoy. 2010. "Marine Nutrient Transport: Anadromous Fish Migration Linked to the Freshwater Amphipod *Gammarus fasciatus*." *Canadian Journal of Zoology* 88: 546–552. <https://doi.org/10.1139/Z10-030>.

Harms, T., J. Sabo, and L. Gaines-Sewell. 2022. "Food-Chain Length in Desert Streams of Central and Southern Arizona, USA." <https://doi.org/10.6073/PASTA/EB28AC2A44EA8C17084E229D431D17BD>.

Hendrixson, H. A., R. W. Sterner, and A. D. Kay. 2007. "Elemental Stoichiometry of Freshwater Fishes in Relation to Phylogeny, Allometry and Ecology." *Journal of Fish Biology* 70: 121–140. <https://doi.org/10.1111/j.1095-8649.2006.01280.x>.

Hessen, D. O., J. J. Elser, R. W. Sterner, and J. Urabe. 2013. "Ecological Stoichiometry: An Elementary Approach Using Basic Principles." *Limnology and Oceanography* 58: 2219–2236. <https://doi.org/10.4319/lo.2013.58.6.2219>.

Hillebrand, H., J. M. Cowles, A. Lewandowska, D. B. Van De Waal, and C. Plum. 2014. "Think ratio! A Stoichiometric View on Biodiversity–Ecosystem Functioning Research." *Basic and Applied Ecology* 15: 465–474. <https://doi.org/10.1016/j.baae.2014.06.003>.

Hillebrand, H., G. Steinert, M. Boersma, et al. 2013. "Goldman Revisited: Faster-Growing Phytoplankton Has Lower N : P and Lower Stoichiometric Flexibility." *Limnology and Oceanography* 58: 2076–2088. <https://doi.org/10.4319/lo.2013.58.6.2076>.

Hinchliff, C. E., S. A. Smith, J. F. Allman, et al. 2015. "Synthesis of Phylogeny and Taxonomy into a Comprehensive Tree of Life." *Proceedings of the National Academy of Sciences of the United States of America* 112: 12764–12769. <https://doi.org/10.1073/pnas.1423041112>.

Hossler, K., V. Bouchard, M. S. Fennessy, S. D. Frey, E. Anemaet, and E. Herbert. 2011. "No-Net-Loss Not Met for Nutrient Function in Freshwater Marshes: Recommendations for Wetland Mitigation Policies." *Ecosphere* 2: art82. <https://doi.org/10.1890/ES11-00009.1>.

Hu, J., H. Yu, Y. Li, et al. 2021a. "Variation in Resource Allocation Strategies and Environmental Driving Factors for Different Life Forms of Aquatic Plants in Cold Temperate Zones. 394744 Bytes." <https://doi.org/10.5061/DRYAD.PRR4XGXM8>.

Hu, J., H. Yu, Y. Li, et al. 2021b. "Variation in Resource Allocation Strategies and Environmental Driving Factors for Different Life-Forms of Aquatic Plants in Cold Temperate Zones." *Journal of Ecology* 109: 3046–3059. <https://doi.org/10.1111/1365-2745.13719>.

Isanta Navarro, J., C. Kowarik, M. Wessels, D. Straile, and D. Martin-Creuzburg. 2019. "Resilience to Changes in Lake Trophic State: Nutrient Allocation into Daphnia Resting Eggs." *Ecology and Evolution* 9: 12813–12825. <https://doi.org/10.1002/ece3.5759>.

Isles, P. D. F., A. Jonsson, I. F. Creed, and A.-K. Bergström. 2020. "Does Browning Affect the Identity of Limiting Nutrients in Lakes?" *Aquatic Sciences* 82: 45. <https://doi.org/10.1007/s00027-020-00718-y>.

Jaffe, R., and O. Pisani. 2015. "Biomarker Assessment of Spatial and Temporal Changes in the Composition of Flocculent Material (Floc) in the Subtropical Wetland of the Florida Coastal Everglades (FCE) From May 2007 to December 2009." <https://doi.org/10.6073/PASTA/E84CC609FFBC63BB45BD484810E6746B>.

Jardine, T. D., R. A. Curry, K. S. Heard, and R. A. Cunjak. 2005. "High Fidelity: Isotopic Relationship Between Stream Invertebrates and Their Gut Contents." *Journal of the North American Benthological Society* 24: 290–299. <https://doi.org/10.1899/04-092.1>.

Jardine, T. D., R. J. Hunt, S. J. Faggotter, D. Valdez, M. A. Burford, and S. E. Bunn. 2013. "Carbon from Periphyton Supports Fish Biomass in Waterholes of A Wet–dry Tropical River." *River Research and Applications* 29: 560–573. <https://doi.org/10.1002/rra.2554>.

Jardine, T. D., K. A. Kidd, and J. B. Rasmussen. 2012b. "Aquatic and Terrestrial Organic Matter in the Diet of Stream Consumers: Implications for Mercury Bioaccumulation." *Ecological Applications* 22: 843–855. <https://doi.org/10.1890/11-0874.1>.

Jardine, T. D., B. J. Pusey, S. K. Hamilton, et al. 2012a. "Fish Mediate High Food Web Connectivity in the Lower Reaches of a Tropical Floodplain River." *Oecologia* 168: 829–838. <https://doi.org/10.1007/s00442-011-2148-0>.

Jelicic Kadic, A., K. Vucic, S. Dosenovic, D. Sapunar, and L. Puljak. 2016. "Extracting Data From Figures with Software Was faster, with Higher Interrater Reliability than Manual Extraction." *Journal of Clinical Epidemiology* 74: 119–123. <https://doi.org/10.1016/j.jclinepi.2016.01.002>.

Johnson, C., G. Kling, and A. Giblin. 2014. "Sedimentation Rate, Concentration of Macronutrients and Flux for NE14, Toolik, Dimple, Perched During Summer 2009." <https://doi.org/10.6073/PASTA/E2DB8161BE27BDBDCD398B0290F63F39>.

Johnson, E. R., S. Inamdar, J. Kan, and R. Vargas. 2018. "Particulate Organic Matter Composition in Stream Runoff Following Large Storms: Role of POM Sources, Particle Size, and Event Characteristics." *JGR Biogeosciences* 123: 660–675. <https://doi.org/10.1002/2017JG004249>.

Kanduč, T., N. Ogrinc, and T. Mrak. 2007. "Characteristics of Suspended Matter in the River Sava Watershed, Slovenia." *Isotopes in Environmental and Health Studies* 43: 369–386. <https://doi.org/10.1080/10256010701705112>.

Kareva, I. 2013. "Biological Stoichiometry in Tumor Micro-Environments." *PLoS One* 8: e51844. <https://doi.org/10.1371/journal.pone.0051844>.

Karpowicz, M., I. Feniova, M. I. Gladyshev, et al. 2021. "Transfer Efficiency of Carbon, Nutrients, and Polyunsaturated Fatty Acids in Planktonic Food Webs under Different Environmental Conditions." *Ecology and Evolution* 11: 8201–8214. <https://doi.org/10.1002/ece3.7651>.

Karube, Z., N. Okada, and I. Tayasu. 2012. "Sulfur Stable Isotope Signature Identifies the Source of Reduced Sulfur in Benthic Communities in Macrophyte Zones of Lake Biwa, Japan." *Limnology* 13: 269–280. <https://doi.org/10.1007/s10201-012-0375-7>.

Kattel, G. R., B. D. Eyre, and P. A. Gell. 2020. "Integration of Palaeo-and-Modern Food Webs Reveal Slow Changes in a River Floodplain Wetland Ecosystem." *Scientific Reports* 10: 12955. <https://doi.org/10.1038/s41598-020-69829-8>.

Kaymak, N., K. O. Winemiller, S. Akin, Z. Altuner, F. Polat, and T. Dal. 2015. "Stable Isotope Analysis Reveals Relative Influences of Seasonal Hydrologic Variation and Impoundment on Assimilation of Primary Production Sources by

Fish in the Upper Yesilirmak River, Turkey." *Hydrobiologia* 753: 131–147. <https://doi.org/10.1007/s10750-015-2201-9>.

Kiffney, P., C. Volk, J. Hall, and C. Eberhart. 2002. *Community and Ecosystem Attributes of the Cedar River Watershed Above Landsburg Dam Before the Arrival of Pacific Salmon*. Northwest Fisheries Science Center.

Kling, G. 2013. "Chemistry From Thermokarst Impacted Soils, Lakes, and Streams Near Toolik Lake Alaska, 2008–2011." <https://doi.org/10.6073/PASTA/2E55D1587290E642938AC1A6CAED6EC6>.

Kling, G. 2023. "Biogeochemistry Data Set for Imnavait Creek Weir on the North Slope of Alaska 2002–2022." <https://doi.org/10.6073/PASTA/EB0FC1B37FF66645C62188303FA4584F>.

Kling, G., and R. Cory. 2016. "Biogeochemistry Data Set for NSF Arctic Photochemistry Project on the North Slope of Alaska." <https://doi.org/10.6073/PASTA/22A3A3FC2DC74B7AABE8A10AB9061CF0>.

Kling, G., and C. Luecke. 2016. "Concentration of Dissolved Inorganic Carbon (DIC), Carbon and Nitrogen Concentrations, C:N Ratios and del 13C Isotope Value for Lakes and Rivers on North Slope From Brooks Range to Prudhoe Bay, Arctic LTER 1988 to 2005." <https://doi.org/10.6073/PASTA/6341694E9D7155735D17DA7001014E18>.

Knapp, D. D., L. L. Smith, and C. L. Atkinson. 2021. "Larval Anurans Follow Predictions of Stoichiometric Theory: Implications for Nutrient Storage in Wetlands." *Ecosphere* 12: e03466. <https://doi.org/10.1002/ecs2.3466>.

Knoll, L., A. Morgan, M. Vanni, T. Leach, T. Williamson, and J. Brentrup. 2016. "Quantifying Pelagic Phosphorus Regeneration Using Three Methods in Lakes of Varying Productivity." *Inland Waters* 6: 509–522. <https://doi.org/10.5268/IW-6.4.866>.

Kohler, T. 2018. "McMurdo Dry Valleys Microbial Mat Biomass, Isotopes, and Nutrient Ratios Sampled Over a Longitudinal Gradient of Two McMurdo Dry Valley Streams." <https://doi.org/10.6073/PASTA/C87FFABA606214A37FF3F932B3A0889B>.

Kohler, T. J., T. N. Heatherly II, R. W. El-Sabaawi, et al. 2012. "Flow, Nutrients, and Light Availability Influence Neotropical Epilithon Biomass and Stoichiometry." *Freshwater Science* 31: 1019–1034. <https://doi.org/10.1899/11-141.1>.

Kohler, T., and D. McKnight. 2023. "Biomass, Stoichiometry, and Isotopic Signatures of Stream Microbial Mats, McMurdo Dry Valleys, Antarctica (2012–2013)." <https://doi.org/10.6073/PASTA/B217F5F36D18D149A8F52F17A7823F1D>.

Kominoski, J. S., S. Larrañaga, and J. S. Richardson. 2012. "Invertebrate Feeding and Emergence Timing Vary among Streams along a Gradient of Riparian Forest Composition." *Freshwater Biology* 57: 759–772. <https://doi.org/10.1111/j.1365-2427.2012.02740.x>.

Koshino, Y., H. Kudo, and M. Kaeriyama. 2013. "Stable Isotope Evidence Indicates the Incorporation into Japanese Catchments of Marine-Derived Nutrients Transported by Spawning Pacific Salmon." *Freshwater Biology* 58: 1864–1877. <https://doi.org/10.1111/fwb.12175>.

Köster, D., R. I. Hall, and J. Marty. 2008. "Influence of Floods on the Food-Web Structure of Two Freshwater Delta Lakes as Determined by Carbon and Nitrogen Stable Isotopes." *SIL Proceedings, 1922–2010* 30: 497–500. <https://doi.org/10.1080/03680770.2008.11902174>.

Kristensen, E., S. Y. Lee, P. Mangion, C. O. Quintana, and T. Valdemarsen. 2017. "Trophic Discrimination of Stable Isotopes and Potential Food Source Partitioning by Leaf-Eating Crabs in Mangrove Environments." *Limnology and Oceanography* 62: 2097–2112. <https://doi.org/10.1002/limo.10553>.

Kristensen, E., C. O. Quintana, and T. Valdemarsen. 2019. "Stable C and N Isotope Composition of Primary Producers and Consumers along an Estuarine Salinity Gradient: Tracing Mixing Patterns and Trophic Discrimination." *Estuaries and Coasts* 42: 144–156. <https://doi.org/10.1007/s12237-018-0460-1>.

Lafaver, Z. 2023. *AOS Protocol and Procedure: APL—Aquatic Plant, Bryophyte, Lichen and Macroalgae Sampling*. NEON. DOC.003039. National Ecological Observatory Network.

Lau, D. C. P., I. Sundh, T. Vrede, J. Pickova, and W. Goedkoop. 2014. "Autochthonous Resources Are the Main Driver of Consumer Production in Dystrophic Boreal Lakes." *Ecology* 95: 1506–1519. <https://doi.org/10.1890/13-1141.1>.

Lehner, B., M. L. Messager, M. C. Korver, and S. Linke. 2022. "Global Hydro-Environmental Lake Characteristics at High Spatial Resolution." *Scientific Data* 9: 351. <https://doi.org/10.1038/s41597-022-01425-z>.

Linke, S., B. Lehner, C. Ouellet Dallaire, et al. 2019. "Global Hydro-Environmental Sub-Basin and River Reach Characteristics at High Spatial Resolution." *Scientific Data* 6: 283. <https://doi.org/10.1038/s41597-019-0300-6>.

Liu, F., Y. Liu, G. Wang, et al. 2015. "Seasonal Variations of C: N: P Stoichiometry and their Trade-Offs in Different Organs of *Suaeda salsa* in Coastal Wetland of Yellow River Delta, China." *PLoS One* 10: e0138169. <https://doi.org/10.1371/journal.pone.0138169>.

Liu, J., H. Wang, J. Mou, et al. 2025. "Global-Scale Shifts in Marine Ecological Stoichiometry Over the Past 50 Years." *Nature Geoscience* 18: 769–777. <https://doi.org/10.1038/s41561-025-01735-y>.

Liu, X., Z. Wang, X. Li, W. Bao, and K. Rousk. 2023. "The C: N: P Stoichiometry in Bryophytes: Relationships with Habitat, Climate and Growth Form." *National Science Review* 10: nwad060. <https://doi.org/10.1093/nsr/nwad060>.

MacAvoy, S. E., A. Braciszewski, E. Tengi, and D. W. Fong. 2016. "Trophic Plasticity among Spring Vs. Cave Populations of *Gammarus minus*: Examining Functional Niches Using Stable Isotopes and C/N Ratios." *Ecological Research* 31: 589–595. <https://doi.org/10.1007/s11284-016-1359-6>.

Machado-Silva, F., V. Neres-Lima, A. F. Oliveira, and T. P. Moulton. 2022. "Forest Cover Controls the Nitrogen and Carbon Stable Isotopes of Rivers." *Science of the Total Environment* 817: 152784. <https://doi.org/10.1016/j.scitotenv.2021.152784>.

Manca, M., T. Spagnuolo, and P. Comoli. 1994. "Variations in Carbon and Nitrogen Content with Body Length of *Daphnia hyalina-galeata* s.l." *Journal of Plankton Research* 16: 1303–1314. <https://doi.org/10.1093/plankt/16.10.1303>.

McKnight, D. 2013. "Stream Algal and Moss Biomass." <https://doi.org/10.6073/PASTA/7F85120F025E3B57AD3E14F43715B189>.

Melvin, A. M., M. C. Mack, and Bonanza Creek LTER. 2017. "Foliar Nutrient Concentrations for Murphy Dome Study Site." <https://doi.org/10.6073/PASTA/53A2A5C98AE954FEC72B94A2AFB7D4A8>.

Milanovich, J. R., A. Berland, and M. E. Hopton. 2014. "Influence of Catchment Land Cover on Stoichiometry and Stable Isotope Compositions of Basal Resources and Macroinvertebrate Consumers in Headwater Streams." *Journal of Freshwater Ecology* 29: 565–578. <https://doi.org/10.1080/02705060.2014.933450>.

Mischler, J., P. T. J. Johnson, V. J. McKenzie, and A. R. Townsend. 2017. "Data From: Parasite Infection Alters Nitrogen Cycling at the Ecosystem Scale. 224737 Bytes." <https://doi.org/10.5061/DRYAD.MT240>.

Moe, T. F., D. O. Hessen, and B. O. L. Demars. 2021. "Juncus Bulbosus Tissue Nutrient Concentrations and Stoichiometry in Oligotrophic Ecosystems: Variability with Seasons, Growth Forms, Organs and Habitats." *Plants* 10: 441. <https://doi.org/10.3390/plants10030441>.

Moody, E. K., K. Anania, K. S. Boersma, et al. 2025. "Linking Functional Responses and Effects with Stoichiometric Traits." *Ecology* 106: e70080. <https://doi.org/10.1002/ecy.70080>.

Moody, E. K., E. W. Carson, J. R. Corman, et al. 2019. "Data From: Consumption Explains Intraspecific Variation in Nutrient Recycling Stoichiometry in a Desert Fish. 57972 Bytes." <https://doi.org/10.5061/DRYAD.7F753F0>.

Mooney, R. J., E. A. Strauss, and R. J. Haro. 2014. "Nutrient Recycling by Caddisflies Alleviates Phosphorus Limitation in Case Periphyton." *Freshwater Science* 33: 1086–1092. <https://doi.org/10.1086/677806>.

Morrison, E. S., et al. 2022. "Sediment, Crab, and Vegetation Data From Sapelo Island, Georgia: 2017–2019." <https://doi.org/10.6073/PASTA/9F4F43B8BF95C28896FCB1D8EF5F020B>.

Morse, N. B., W. M. Wollheim, J. P. Benstead, and W. H. McDowell. 2012. "Effects of Suburbanization on Foodweb Stoichiometry of Detritus-Based Streams." *Freshwater Science* 31: 1202–1213. <https://doi.org/10.1899/12-004.1>.

Mozsár, A., G. Boros, P. Sály, L. Antal, and S. A. Nagy. 2015. "Relationship Between Fulton's Condition Factor and Proximate Body Composition in Three Freshwater Fish Species." *Journal of Applied Ichthyology* 31: 315–320. <https://doi.org/10.1111/jai.12658>.

Mulholland, P. J. 2015. "Lotic Intersite Nitrogen eXperiment II (LINX II): A Cross-Site Study of the Effects of Anthropogenic Land Use Change on Nitrate Uptake and Retention in 72 Streams Across 8 Different Biomes (2003–2006)." <https://doi.org/10.6073/PASTA/EAC34B6C1CFB0268DD76EF68A7A90BFC>.

Myers-Smith, I., and Bonanza Creek LTER. 2016. "Biomass, % N, and %C Data for the BBC Collapse Scar for 2003 and 2004." <https://doi.org/10.6073/PASTA/B12BF58B5A1093D5D86D50F80C605E2B>.

Naddafi, R., W. Goedkoop, U. Grandin, and P. Eklöv. 2012. "Variation in Tissue Stoichiometry and Condition Index of Zebra Mussels in Invaded Swedish Lakes." *Biological Invasions* 14: 2117–2131. <https://doi.org/10.1007/s10530-012-0218-9>.

Nagy, R. C., J. K. Balch, E. K. Bissell, et al. 2021. "Harnessing the NEON Data Revolution to Advance Open Environmental Science with a Diverse and Data-Capable Community." *Ecosphere* 12: e03833. <https://doi.org/10.1002/ecs2.3833>.

National Ecological Observatory Network (NEON). 2023a. "Aquatic Plant Bryophyte Chemical Properties (DP1.20063.001): RELEASE-2023. 358.4 MB." <https://doi.org/10.48443/F1F5-RQ28>.

National Ecological Observatory Network (NEON). 2023b. "Chemical Properties of Surface Water (DP1.20093.001): RELEASE-2023. 90.7 MB." <https://doi.org/10.48443/WF2D-H925>.

National Ecological Observatory Network (NEON). 2023c. "Periphyton, Seston, and Phytoplankton Chemical Properties (DP1.20163.001): RELEASE-2023. 1.7 GB." <https://doi.org/10.48443/J0K0-CV96>.

Neres-Lima, V., E. F. Brito, F. A. M. Krsulović, A. M. Detweiler, A. E. Hershey, and T. P. Moulton. 2016. "High Importance of Autochthonous Basal Food Source for the Food Web of a Brazilian Tropical Stream Regardless of Shading." *International Review of Hydrobiology* 101: 132–142. <https://doi.org/10.1002/iroh.201601851>.

Neres-Lima, V., F. Machado-Silva, D. F. Baptista, et al. 2017. "Allochthonous and Autochthonous Carbon Flows in Food Webs of Tropical Forest Streams." *Freshwater Biology* 62: 1012–1023. <https://doi.org/10.1111/fwb.12921>.

Niwot Ridge LTER, and T. N. Caine. 2018. "Stream Water Chemistry Data for Green Lake 1, 1985–2010." <https://doi.org/10.6073/PASTA/EA17637406C07CD69B8DE8CA263799CA>.

Nocentini, A., and J. S. Kominoski. 2021. "Biogeochemical Data Collected in the Eastern Marl Prairies of the Everglades (Florida, USA) Before and After Fire, Between the Years 2018 and 2021." <https://doi.org/10.6073/PASTA/B202C11DB7C64943F6B4ED9F8C17FB25>.

North, R. L., R. E. H. Smith, R. E. Hecky, et al. 2012. "Distribution of Seston and Nutrient Concentrations in the Eastern

Basin of Lake Erie Pre- and Post-Dreissenid Mussel Invasion.” *Journal of Great Lakes Research* 38: 463–476. <https://doi.org/10.1016/j.jglr.2012.06.012>.

Olid, C., A. Zannella, and D. C. P. Lau. 2021. “The Role of Methane Transport from the Active Layer in Sustaining Methane Emissions and Food Chains in Subarctic Ponds.” *JGR Biogeosciences* 126: e2020JG005810. <https://doi.org/10.1029/2020JG005810>.

Oliveira-Cunha, P., P. B. McIntyre, V. Neres-Lima, A. Caliman, B. Moreira-Ferreira, and E. Zandonà. 2022. “Body Size Has Primacy over Stoichiometric Variables in Nutrient Excretion by a Tropical Stream Fish Community.” *Scientific Reports* 12: 14844. <https://doi.org/10.1038/s41598-022-149-w>.

Olsen, Y., A. Jensen, H. Reinertsen, K. Y. BØrsheim, M. Heldal, and A. Langeland. 1986. “Dependence of the Rate of Release of Phosphorus by Zooplankton on the P: C Ratio in the Food Supply, as Calculated by a Recycling Model.” *Limnology and Oceanography* 31: 34–44. <https://doi.org/10.4319/lo.1986.31.1.0034>.

Olson, D. M., et al. 2001. “Terrestrial Ecoregions of the World: A New Map of Life on Earth.” *Bioscience* 51: 933. [https://doi.org/10.1641/0006-3568\(2001\)051%5B0933:TEOTWA%5D2.0.CO;2](https://doi.org/10.1641/0006-3568(2001)051%5B0933:TEOTWA%5D2.0.CO;2).

Ortega-Cisneros, K., and U. M. Scharler. 2015. “Nutrient Dynamics of Estuarine Invertebrates Are Shaped by Feeding Guild Rather than Seasonal River Flow.” *PLoS One* 10: e0137417. <https://doi.org/10.1371/journal.pone.0137417>.

Parker, S. 2021. *AOS Protocol and Procedure: DEP—Secchi Disk and Depth Profile Sampling in Lakes and Non-Wadeable Streams*. NEON.DOC.002792. National Ecological Observatory Network.

Parker, S. 2023. *AOS Protocol and Procedure: INV—Aquatic Macroinvertebrate Sampling*. Back NEON.DOC.003046. National Ecological Observatory Network.

Parker, S. 2024. *AOS Protocol and Procedure: ZOO—Zooplankton Sampling in Lakes*. NEON.DOC.001194. National Ecological Observatory Network.

Parker, S. 2025. *AOS Protocol and Procedure: ALG—Periphyton and Phytoplankton Sampling*. NEON.DOC.003045. National Ecological Observatory Network.

Pastor, A., A. Freixa, L. J. Skovsholt, N. Wu, A. M. Romaní, and T. Riis. 2019. “Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls.” *Microbial Ecology* 78: 539–554. <https://doi.org/10.1007/s00248-019-01330-w>.

Paszkowski, C. A., B. A. Gingras, K. Wilcox, P. H. Klatt, and W. M. Tonn. 2004. “Trophic Relations of the Red-Necked Grebe on Lakes in the Western Boreal Forest: A Stable-Isotope Analysis.” *The Condor* 106: 638–651. <https://doi.org/10.1093/condor/106.3.638>.

Pearce, J. L., K. E. Smokorowski, J. Brush, E. Timusk, J. Marty, and M. Power. 2019. “Unrestricted Ramping Rates and Long-Term Trends in the Food Web Metrics of a Boreal River.” *River Research and Applications* 35: 1575–1589. <https://doi.org/10.1002/rra.3516>.

Peipoch, M., E. Gacia, A. Pastor, et al. 2014. “Intrinsic and Extrinsic Drivers of Autotrophic Nitrogen Cycling in Stream Ecosystems: Results from a Translocation Experiment.” *Limnology and Oceanography* 59: 1973–1986. <https://doi.org/10.4319/lo.2014.59.6.1973>.

Petersen, C. 2025. stoichUtilities: User Tools for Accessing the STOICH Project Database.

Piola, R. F., I. M. Suthers, and D. Rissik. 2008. “Carbon and Nitrogen Stable Isotope Analysis Indicates Freshwater Shrimp *Paratya australiensis* Kemp, 1917 (Atyidae) Assimilate Cyanobacterial Accumulations.” *Hydrobiologia* 608: 121–132. <https://doi.org/10.1007/s10750-008-9374-4>.

Pothoven, S. A., and H. A. Vanderploeg. 2020. “Seasonal Patterns for Secchi Depth, Chlorophyll a, Total Phosphorus, and Nutrient Limitation Differ between Nearshore and Offshore in Lake Michigan.” *Journal of Great Lakes Research* 46: 519–527. <https://doi.org/10.1016/j.jglr.2020.03.013>.

Price, T. L., J. Harper, S. N. Francoeur, H. M. Halvorson, and K. A. Kuehn. 2021. “Brown Meets Green: Light and Nutrients Alter Detritivore Assimilation of Microbial Nutrients From Leaf Litter.” *Ecology* 102: e03358. <https://doi.org/10.1002/ecy.3358>.

Pringle, C. 2015. “Effects of a Tropical Stream Poisoning: Do They Reflect Effects of Small-Scale Experiments?” <https://doi.org/10.6073/PASTA/495D2981989AB3CADA41D79030957591>.

Priscu, J. 2022. “Particulate Organic Carbon (POC) and Nitrogen (PON) Concentrations in Discrete Water Column Samples Collected From Lakes in the McMurdo Dry Valleys, Antarctica (1993–2022, Ongoing).” <https://doi.org/10.6073/PASTA/6D6BBD2E6F348F8237F06AFC603D818E>.

Rabosky, D. L., J. Chang, P. O. Title, et al. 2018. “An Inverse Latitudinal Gradient in Speciation Rate for Marine Fishes.” *Nature* 559: 392–395. <https://doi.org/10.1038/s41586-018-0273-1>.

Rachamim, T., N. Stambler, T. Zohary, I. Berman-Frank, and G. Gal. 2010. “Zooplankton Contribution to the Particulate N and P in Lake Kinneret, Israel, under Changing Water Levels.” *Hydrobiologia* 655: 121–135. <https://doi.org/10.1007/s10750-010-0413-6>.

Robbins, C. J., D. W. P. Manning, H. M. Halvorson, et al. 2023. “Nutrient and Stoichiometry Dynamics of Decomposing Litter in Stream Ecosystems: A Global Synthesis.” *Ecology* 104: e4060. <https://doi.org/10.1002/ecy.4060>.

Rojo, C., S. Sánchez-Carrillo, M. A. Rodrigo, E. Puche, S. Cirujano, and M. Álvarez-Cobelas. 2020. “Charophyte Stoichiometry in Temperate Waters.” *Aquatic Botany* 161: 103182. <https://doi.org/10.1016/j.aquabot.2019.103182>.

Rugema, E., F. Darchambeau, H. Sarmento, et al. 2019. “Long-Term Change of Phytoplankton in Lake Kivu: The Rise of

the Greens." *Freshwater Biology* 64: 1940–1955. <https://doi.org/10.1111/fwb.13383>.

Sadro, S. 2018. "Analytical Dataset: Effects of Climate Variability on Snowmelt and Implications for Organic Matter in a High Elevation Lake." <https://doi.org/10.6073/PASTA/B369D54886079AFDF30C3B27A8E44847>.

Sadro, S. 2021. "Chemistry and Isotopic Composition of Resource Pools in Lakes of the Sierra Nevada, CA." <https://doi.org/10.6073/PASTA/6222E47F2EACA962C922F39E3FC2711A>.

Sakamaki, T., and J. S. Richardson. 2011. "Biogeochemical Properties of Fine Particulate Organic Matter as an Indicator of Local and Catchment Impacts on Forested Streams." *Journal of Applied Ecology* 48: 1462–1471. <https://doi.org/10.1111/j.1365-2664.2011.02038.x>.

Sakamaki, T., and J. S. Richardson. 2013. "Nonlinear Variation of Stream–Forest Linkage along a Stream-Size Gradient: An Assessment Using Biogeochemical Proxies of in-Stream Fine Particulate Organic Matter." *Journal of Applied Ecology* 50: 1019–1027. <https://doi.org/10.1111/1365-2664.12099>.

Salonen, J. K., M. Hiltunen, K. Figueiredo, et al. 2019. "Population Structure, Life Cycle, and Trophic Niche of the Glacial Relict Amphipod, *Gammaracanthus lacustris*, in a Large Boreal Lake." *Freshwater Biology* 64: 2176–2188. <https://doi.org/10.1111/fwb.13404>.

Sánchez González, I., G. W. Hopper, J. R. Bucholz, M. E. Kubala, J. D. Lozier, and C. L. Atkinson. 2023. "Niche Specialization and Community Niche Space Increase with Species Richness in Filter-Feeder Assemblages." *Ecosphere* 14: e4495. <https://doi.org/10.1002/ecs2.4495>.

Santa Barbara Coastal LTER, and J. M. Melack. 2015. "SBC LTER: Land: Stream Chemistry in the Santa Barbara Coastal Drainage Area, Ongoing Since 2000." <https://doi.org/10.6073/PASTA/6D015C56B343ADF6B8003E9D82A35F70>.

Santa Barbara Coastal LTER, H. M. Page, H. Lowman, J. M. Melack, J. M. Smith, and D. C. Reed. 2022. "SBC LTER: OCEAN: Particulate Organic Matter Content and Composition of Stream, Estuarine, and Marine Sediments." <https://doi.org/10.6073/PASTA/C9C8F3CD147ACA98EF5226EC7EEB57BD>.

Sarnelle, O. 1992. "Contrasting Effects of Daphnia on Ratios of Nitrogen to Phosphorus in a Eutrophic, Hard-Water Lake." *Limnology and Oceanography* 37: 1527–1542. <https://doi.org/10.4319/lo.1992.37.7.1527>.

Schade, J. D., et al. 2011. "The Stoichiometry of Nitrogen and Phosphorus Spiralling in Heterotrophic and Autotrophic Streams." *Freshwater Biology* 56: 424–436. <https://doi.org/10.1111/j.1365-2427.2010.02509.x>.

Showalter, A. M., M. J. Vanni, and M. J. González. 2016. "Ontogenetic Diet Shifts Produce Trade-Offs in Elemental Imbalance in Bluegill Sunfish." *Freshwater Biology* 61: 800–813. <https://doi.org/10.1111/fwb.12751>.

Shurin, J. B., N. Aranguren-Riaño, D. Duque Negro, et al. 2020. "Ecosystem Effects of the world's Largest Invasive Animal." *Ecology* 101: e02991. <https://doi.org/10.1002/ecy.2991>.

Sitters, J., and H. Olde Venterink. 2018. "A Stoichiometric Perspective of the Effect of Herbivore Dung on Ecosystem Functioning." *Ecology and Evolution* 8: 1043–1046. <https://doi.org/10.1002/ece3.3666>.

Spencer, R. G. M., P. J. Hernes, A. K. Aufdenkampe, et al. 2012. "An Initial Investigation into the Organic Matter Biogeochemistry of the Congo River." *Geochimica et Cosmochimica Acta* 84: 614–627. <https://doi.org/10.1016/j.gca.2012.01.013>.

Steiner, C. F. 2004. "Daphnia Dominance and Zooplankton Community Structure in Fishless Ponds." *Journal of Plankton Research* 26: 799–810. <https://doi.org/10.1093/plankt/fbh067>.

Sternier, R. 2018. "Surface Water Chemistry: Scale Dependent Nutrient Interactions Among Lacustrine Communities." <https://doi.org/10.6073/PASTA/3BA5F4FB429ECFB31575527E0BBE1225>.

Sternier, R. W., and J. J. Elser. 2002. *Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere*. Princeton University Press.

Sternier, R. W., and N. B. George. 2000. "Carbon, Nitrogen, and Phosphorus Stoichiometry of Cyprinid Fishes." *Ecology* 81: 127–140. [https://doi.org/10.1890/0012-9658\(2000\)081%5B0127:CNAPSO%5D2.0.CO;2](https://doi.org/10.1890/0012-9658(2000)081%5B0127:CNAPSO%5D2.0.CO;2).

Stow, C. A., K. E. Webster, T. Wagner, N. Lottig, P. A. Soranno, and Y. Cha. 2018. "Small Values in Big Data: The Continuing Need for Appropriate Metadata." *Ecological Informatics* 45: 26–30. <https://doi.org/10.1016/j.ecoinf.2018.03.002>.

Strickland, B., J. Trexler, and P. Flood. 2023. "Alligator Pond Food-Web Sampling in Shark River Slough and Taylor Slough, Everglades National Park, Florida, USA, 2018–2019." <https://doi.org/10.6073/PASTA/3B303590E5F6834661CF9002EC2594F4>.

Swanner, E. D., N. Lambrecht, C. Wittkop, S. Katsev, G. Ledesma, and T. Leung. 2022. "Water Properties of Brownie Lake, MN and Canyon Lake, MI From 2015–2019." <https://doi.org/10.6073/PASTA/9084185D9F0281249BB2221CA4224CDD>.

Syyränta, J., K. Scharnweber, M. Brauns, S. Hilt, and T. Mehner. 2016. "Assessing the Utility of Hydrogen, Carbon and Nitrogen Stable Isotopes in Estimating Consumer Autotrophy in Two Shallow Eutrophic Lakes." *PLoS One* 11: e0155562. <https://doi.org/10.1371/journal.pone.0155562>.

Takacs-Vesbach, C., P. Doran, and J. Priscu. 2017. "McMurdo Dry Valleys Lake Bonney Autonomous Lake Profiler and Samplers (ALPS): Particulate Organic Carbon and Nitrogen Concentrations." <https://doi.org/10.6073/PASTA/0043C1728B4E51879970D59F2D0CE575>.

Theissen, K. M., W. O. Hobbs, J. M. R. Hobbs, et al. 2012. "The Altered Ecology of Lake Christina: A Record of Regime Shifts, Land-Use Change, and Management from a

Temperate Shallow Lake." *Science of the Total Environment* 433: 336–346. <https://doi.org/10.1016/j.scitotenv.2012.06.068>.

Thomas, P. K., C. Kunze, D. B. Van De Waal, H. Hillebrand, and M. Striebel. 2022. "Elemental and Biochemical Nutrient Limitation of Zooplankton: A Meta-Analysis." *Ecology Letters* 25: 2776–2792. <https://doi.org/10.1111/ele.14125>.

Tonin, A. M., L. S. Lima, P. Bambi, M. L. Figueiredo, R. S. Rezende, and J. F. Gonçalves. 2021. "Litterfall Chemistry Is Modulated by Wet-dry Seasonality and Leaf Phenology of Dominant Species in the Tropics." *Frontiers in Forests and Global Change* 4: 666116. <https://doi.org/10.3389/ffgc.2021.666116>.

Tromboni, F., S. A. Thomas, B. Gücker, et al. 2018. "Nutrient Limitation and the Stoichiometry of Nutrient Uptake in a Tropical Rain Forest Stream." *Journal of Geophysical Research: Biogeosciences* 123: 2154–2167. <https://doi.org/10.1029/2018JG004538>.

Tumolo, B. B., C. R. Olson, E. I. Larson, et al. 2025. "Nonlinear Thinking in Ecology and Evolution: Applying the Threshold Elemental Ratio Across Levels of Ecological Organization." *Oecologia* 208, no. 1: 10. <https://doi.org/10.1007/s00442-025-05842-w>.

Urabe, J., and Y. Watanabe. 1992. "Possibility of N or P Limitation for Planktonic Cladocerans: An Experimental Test." *Limnology and Oceanography* 37: 244–251. <https://doi.org/10.4319/lo.1992.37.2.0244>.

Valiela, I., J. Pascual, A. Giblin, et al. 2018. "External and Local Controls on Land-Sea Coupling Assessed by Stable Isotopic Signatures of Mangrove Producers in Estuaries of Pacific Panama." *Marine Environmental Research* 137: 133–144. <https://doi.org/10.1016/j.marenvres.2018.03.003>.

Van De Waal, D. B., J. J. Elser, A. C. Martiny, R. W. Sterner, and J. B. Cotner. 2018. "Editorial: Progress in Ecological Stoichiometry." *Frontiers in Microbiology* 9: 1957. <https://doi.org/10.3389/fmicb.2018.01957>.

Van De Waal, D. B., V. H. Smith, S. A. J. Declerck, E. C. M. Stam, and J. J. Elser. 2014. "Stoichiometric Regulation of Phytoplankton Toxins." *Ecology Letters* 17: 736–742. <https://doi.org/10.1111/ele.12280>.

Vanni, M. J., M. J. Gonzalez, and W. H. Renwick. 2022. "Long Term Limnological Measures in Acton Lake, a Southwest Ohio Reservoir, and Its Inflow Streams: 1992–2017." <https://doi.org/10.6073/PASTA/EE64F2C8284AE3488D3DC763058B9365>.

Vanni, M. J., P. B. McIntyre, D. Allen, et al. 2017. "A Global Database of Nitrogen and Phosphorus Excretion Rates of Aquatic Animals." *Ecology* 98: 1475. <https://doi.org/10.1002/ecy.1792>.

Volk, C. J., P. M. Kiffney, and R. L. Edmonds. 2003. "Role of Riparian Red Alder in the Nutrient Dynamics of Coastal Streams of the Olympic Peninsula, Washington, USA." *American Fisheries Society Symposium* 34: 213–225. <https://doi.org/10.47886/9781888569445.ch15>.

Volk, C., and P. Kiffney. 2012. "Comparison of Fatty Acids and Elemental Nutrients in Periphyton, Invertebrates, and Cutthroat Trout (*Oncorhynchus clarki*) in Conifer and Alder Streams of Western Washington State." *Aquatic Ecology* 46: 85–99. <https://doi.org/10.1007/s10452-011-9383-7>.

Wagner, N. D., F. S. Osburn, R. B. Taylor, et al. 2023. "Diazotrophy Modulates Cyanobacteria Stoichiometry through Functional Traits that Determine Bloom Magnitude and Toxin Production." *Limnology and Oceanography* 68: 348–360. <https://doi.org/10.1002/lno.12273>.

Walters, A. W., R. T. Barnes, and D. M. Post. 2009. "Anadromous Alewives (*Alosa pseudoharengus*) Contribute Marine-Derived Nutrients to Coastal Stream Food Webs." *Canadian Journal of Fisheries and Aquatic Sciences* 66: 439–448. <https://doi.org/10.1139/F09-008>.

Wang, W.-Q., C. Wang, J. Sardans, C.-S. Zeng, C. Tong, and J. Peñuelas. 2015. "Plant Invasive Success Associated with Higher N-Use Efficiency and Stoichiometric Shifts in the Soil-Plant System in the Minjiang River Tidal Estuarine Wetlands of China." *Wetlands Ecology and Management* 23: 865–880. <https://doi.org/10.1007/s11273-015-9425-3>.

Watson, A., and L. A. Barmuta. 2011. "Feeding-Preference Trials Confirm Unexpected Stable Isotope Analysis Results: Freshwater Macroinvertebrates Do Consume Macrophytes." *Marine and Freshwater Research* 62: 1248. <https://doi.org/10.1071/MF10298>.

Williams, M. 2019. "Stream Water Chemistry Data for Soddie stream, 1999–2013." <https://doi.org/10.6073/PASTA/49ACE263067CAF02C0B27C8B6A877683>.

Williams, M. 2021a. "Stream Water Chemistry Data for Como Creek, 1998–2013." <https://doi.org/10.6073/PASTA/203DAF080EAE3403E1F900292C4FD0FB>.

Williams, M. 2021b. "Stream Water Chemistry Data for Saddle Stream (007), 1994–Ongoing." <https://doi.org/10.6073/PASTA/D8A48465249F41936816A5D0D1D22E87>.

Wollheim, W., C. Hopkinson, and Plum Island Ecosystems LTER. 2019. "PIE LTER Dissolved Nutrient and Particulate Concentrations of Freshwater Inputs to the Plum Island Estuarine System, Massachusetts, Taken Approximately Monthly." <https://doi.org/10.6073/PASTA/C0B5810B932A7933ABEE0CAAFCB16318B>.

Yan, Z., T. Lv, Y. Liu, et al. 2023. "Responses of Soil Phosphorus Cycling and Bioavailability to Plant Invasion in River-Lake Ecotones." *Ecological Applications* 33: e2843. <https://doi.org/10.1002/eaap.2843>.

Zadereev, E. S., A. P. Tolomeev, A. V. Drobotov, and A. A. Kolmakova. 2014. "Impact of Weather Variability on Spatial and Seasonal Dynamics of Dissolved and Suspended Nutrients in Water Column of Meromictic Lake Shira." *Contemporary Problems of Ecology* 7: 384–396. <https://doi.org/10.1134/S199542551404012X>.

Zandonà, E., C. M. Dalton, R. W. El-Sabaawi, et al. 2017. "Population Variation in the Trophic Niche of the Trinidadian

Guppy from Different Predation Regimes.” *Scientific Reports* 7: 5770. <https://doi.org/10.1038/s41598-017-06163-6>.

Zandonà, E., M. Moraes, V. Neres-Lima, C. M. Dalton, A. S. Flecker, and R. Mazzoni. 2021. “Differences in Nutrient Mineralisation Between Native and Invasive Grazing Catfish during the Invasion Process.” *Austral Ecology* 46: 290–302. <https://doi.org/10.1111/aec.12978>.

Zhang, X., R. Mao, C. Song, Y. Liu, and Z. Ren. 2018. “Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?” *Chinese Geographical Science* 28: 1038–1047. <https://doi.org/10.1007/s11769-018-1000-4>.

Крылов, А. В., О. Н. Махутова, Е. Г. Сахарова, et al. 2018. “Неоднозначное влияние поселений околоводных птиц на биохимический состав сестона, планктона, организмов и молоди рыб равнинного водохранилища.” *Zhurnal Obshchei*

Biologii 79: 449–460. <https://doi.org/10.1134/S0044459618060052>.

Supporting Information

Additional Supporting Information may be found in the online version of this article.

Submitted 23 September 2025

Revised 09 January 2026

Accepted 13 January 2026