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Scientific Significance Statement

All living things are made of the same building blocks: elements like carbon, nitrogen, and phosphorus. Based on decades of scien-
tific research, we know that the ability for organisms to get these elements from their environment or their food can have pro-
found impacts on organismal growth, biodiversity, and overall ecosystem production. Yet, much of this earlier work has been done
at the small scale: within a lake or forest in a specific environment. To support studies to understand the larger scale regional and
global constraints of elemental cycles on ecosystems, we have built the Limnology Stoichiometric Traits of Organisms in their
Chemical Habitat (Limno-STOICH) database. The database contains information on the elemental contents of over 50,000 organ-
isms or living material found in lake, river, wetland, and other inland aquatic ecosystems. These data represent all seven continents
and over 190 distinct data sources, complemented by extensive spatial, temporal, taxonomic, and water chemistry information.

Abstract
All organisms contain carbon, nitrogen, and phosphorus in widely ranging amounts and proportions. Integrat-
ing existing datasets enables quantification of this variation at global scales. Such efforts could leverage ecologi-
cal stoichiometry theory, the study of elemental supply and imbalances in ecological interactions, to connect
ecological drivers and taxonomic constraints to ecosystem structure and function. Towards this goal, we devel-
oped the Limnology Stoichiometric Traits of Organisms In their Chemical Habitats (Limno-STOICH) database.
The Limno-STOICH database includes 51,576 observations of organismal elemental stoichiometry from >3100
rivers, lakes, wetlands, and other aquatic ecosystem sites on seven continents, derived from 190+ sources. It
also includes extensive spatial and temporal metadata to link elemental stoichiometry with ecosystem type, tro-
phic status, etc., and information on organismal data (body size, taxonomic classifications, stable isotope com-
position) and water physicochemical parameters. The Limno-STOICH database sets the stage for significant
applications across food web ecology, evolutionary ecology, biogeochemistry, and other disciplines.
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Background and motivation
All organisms require carbon (C), nitrogen (N), phosphorus

(P), and other elements for cellular structures, metabolism,
and growth. Supply of any of these biologically essential ele-
ments can limit process rates from biogeochemical transfor-
mations to organismal growth and reproduction to
community assembly (Urabe and Watanabe 1992; Elser
et al. 2007a; Schade et al. 2011; Tromboni et al. 2018; Liu
et al. 2023). Ecological stoichiometry (ES) theory, the study of
the balance of multiple chemical elements and energy in eco-
logical systems (Sterner and Elser 2002), informs our under-
standing of the drivers and implications of organismal
elemental ratio and supply in ecological systems. The ES
framework links questions across biological levels of organiza-
tion because it characterizes interactions between organisms
and their environment using a common currency
(i.e., chemical elements) grounded in the first principles of
conservation of mass and energy (e.g., Hillebrand et al. 2014).
While ES theory derived from limnology (Hessen et al. 2013),
it has since been applied to study various topics including the
toxicity of marine and freshwater cyanobacterial blooms (Van
De Waal et al. 2014; Wagner et al. 2023), recovery of biogeo-
chemical processes following fires (Butler et al. 2018), large
mammalian control of savannah vegetation dynamics (Sitters
and Olde Venterink 2018), and even tumor growth in human
cancer (Elser et al. 2007b; Kareva 2013). While meta-analyses
have provided greater insight into our mechanistic under-
standing of ES theory (e.g., Hillebrand et al. 2013; Halvorson
et al. 2019; Thomas et al. 2022), our understanding of ecologi-
cal stoichiometric principles at broad spatial scales remains lim-
ited by our ability to coordinate organismal data collection
across regional to continental scales (Van De Waal et al. 2018).

We developed the Limnology Stoichiometric Traits of
Organisms In their Chemical Habitat (hereafter, “Limno-
STOICH”) database to provide a public resource to be used to
understand broad-scale patterns in the ecological
stoichiometry of organisms and their resources in inland
aquatic ecosystems (lakes, rivers, streams, wetlands, etc.). In
building Limno-STOICH, we compiled elemental composition
data for field-collected organisms from inland waters together
with information about different environmental attributes.
Our database complements other synthetic efforts that com-
pile stoichiometric data of basal resources (e.g., living auto-
trophs and/or decomposing organic matter; Robbins
et al. 2023), organismal traits (e.g., stoichiometry of fish excre-
tion; Vanni et al. 2017) or across taxonomic domains
(e.g., stoichiometry of aquatic and terrestrial animals; Gon-
z�alez et al. 2025; or marine plankton; Liu et al. 2025). How-
ever, Limno-STOICH uniquely connects stoichiometric
observations across multiple taxonomic groups and ecosystem
components. Limno-STOICH will expand our capacity to
address macroscale questions about ecological stoichiometry
across biological domains ranging from biogeochemical

properties to food web dynamics to organismal ecology and
evolution.

Data description
Spatial and temporal distribution of Limno-STOICH

The Limno-STOICH database (v.20250910) contains stoi-
chiometric information about 50,696 organisms from 3112
sites across seven continents (Fig. 1). In the database, the wid-
est spatial coverage across longitudinal and latitudinal gradi-
ents and ecosystem types occurs in North America,
representing 74% of all sites (2320) and 86% of all sampling
events (40,123). Over 42% of the organismal samples have
concomitantly collected water chemistry information
(n = 21,835), representing 1706 sites. Notably, Antarctica has
a limited number of unique sites (46) but possesses the
second-highest number of sampling events (4220), primarily
due to the inclusion in the database of extensive time-series
data obtained from eight lakes between 1993 and 2022
(Priscu 2022). In terms of ecosystem types, streams are most
represented, at 32.4% of unique sites and 34% of sampling
events, respectively. Reservoirs, while comprising only 0.9%
of unique sites, are represented in a disproportionately high
number of sampling events (19.7%), attributable to the long-
term monitoring studies in the database (Vanni et al. 2022a).

The earliest records of organismal stoichiometry in the
Limno-STOICH database are C : N ratios from 1915 (Birge and
Juday 2022). Records for organismal N : P and C : P ratios in
Limno-STOICH begin in 1926 (Birge and Juday 2022) and
1992 (Sterner and George 2000; Vanni et al. 2022), respec-
tively; though this is a reflection of data availability at the
time of publication rather than scientific progress per se (see
Baudouin and Ravera 1972; Olsen et al. 1986; Andersen and
Hessen 1991) when observations of organismal N : P and C : P
ratios began to be reported, respectively. Over a third of our
data contributions come from collections during summer
months in the Northern hemisphere (June, July, August).
Other temporal trends include basal resource samples peaking
in the 1920s and again in the 2000s; and consumer samples
peaking in the 1990s and 2000s. More than 100 sites have
organismal data spanning more than 5 yr, with long-term
data available for seston, periphyton, Mollusca, macrophyte,
Insecta, Crustacea, Bryophyte, and detritus for at least one
site. The longest datasets spanned 34 yr for the Emerald Lake
in California, USA (1983–2016; Sadro 2018), followed by 33 yr
for various springs in Florida, USA (since 1989; Briceno 2025),
and 29 yr for Lake Bonney, Antarctica (1993–2022; Priscu 2022).

Organismal representation and stoichiometry
We categorized our organismal samples within Limno-

STOICH first by type (zooplankton, periphyton, etc.) and then
further identified them as either basal resources (living or dead
autotrophs) or consumers (heterotrophs), representing 69%
and 31% of samples, respectively (Figs. 2, 3). Across resource
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and consumer types, stoichiometric values from seston
(n = 14,075), fine particulate organic matter (FPOM,
n = 5633), and Insecta (n = 6667) are most represented in the
database (Fig. 3). Fifty-four taxonomic orders are represented

by more than 25 samples, with Trichoptera (n = 1368), Poales
(n = 1079), and Diptera (n = 1055) most represented. Addi-
tionally, 117 families are represented by more than 25 samples
and 218 genera by more than 10 samples. Dreissena

Fig. 1. Geographic distribution of data included in the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (Limno-STOICH) data-
base. Shading represents the number of organismal samples within each country (darker shading corresponds to more samples), and orange points indi-
cate site locations.

Fig. 2. Sankey diagram describing the diversity of consumers and basal resources across inland water ecosystem types in the Limnology Stoichiometric
Traits of Organisms In their Chemical Habitat (Limno-STOICH) database, with each line representing a single organism type. Line thickness correlates to
the number of samples represented by each group.

Corman et al. Limno-STOICH

4 of 23

 23782242, 2026, 2, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.70105 by Jozef Stefan Institute, W

iley O
nline L

ibrary on [16/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



polymorpha (zebra mussels) and Cyclonaias spp. are represented
by 656 and 371 sample points in Limno-STOICH, respectively,
largely from Naddafi et al. (2012a).

Carbon-to-nitrogen ratios are the most frequent of the
three ratios reported, with 95.6% of organisms in Limno-
STOICH having C : N ratios but only 45.4% or 48.8% having
C : P or N : P ratios, respectively, and 44.7% having all three.
Carbon-to-nitrogen and C : P ratios of consumers tend to be
lower than those of resources, while N : P ratios are more simi-
lar (Fig. 3). Consistent with Cross et al. (2005), across nearly
all types of organisms and stoichiometries, basal resource
ratios are more variable than consumer ratios (Fig. 3).

Reported methods to determine C, N, and P content varied
somewhat. Of 46,838 reported organismal C values, 45.5%
entries specified the method of analysis: 99.9% were measured
using elemental analysis techniques, and the remainder were
measured with alternative methods such as a total organic car-
bon (TOC) analyzer or loss on ignition. Similarly, for 48,722
values reporting organismal N, 43.6% specified a method,
with 99.4% of N values measured using elemental analysis
and the remaining 0.6% determined using a TOC analyzer,
Kjeldahl analysis, or an unspecified digestion method. The
database includes 24,852 values for organismal P content, and
57.6% specified a method for P analysis. We classified the
10 unique methods into colorimetric methods (2.0%), Induc-
tively Coupled Plasma Mass Spectrometry (ICP-MS, 34.2%),
Inductively Coupled Plasma Atomic Emission Spectroscopy/
Optical Emission Spectroscopy (ICP-AES/OES, 0.8%), and
unspecified acid digestion methods (63%, Supporting Infor-
mation Table S5).

Most elemental values were from single organisms, but
some values were pooled from multiple observations: 23.3%
of entries indicated whether the observation was statistically
pooled or not. Among these, 79.8% represent a single inde-
pendent measure of an organismal sample, while the remain-
der summarizes multiple observations.

Methods: Data components and acquisition
We used three strategies to assemble the data for the

Limno-STOICH database. First, we partnered with the US
National Ecological Observatory Network (hereafter, “NEON”;
Nagy et al. 2021) to build a dataset of the stoichiometry of
benthic macroinvertebrate, resource, and water from ongoing
NEON sampling at aquatic field sites. Briefly, NEON is funded
by the US government to collect ecological data from 24 wade-
able stream sites, three non-wadeable river sites, and seven
lake sites across North America, with sites selected to represent
the full breadth of terrestrial biomes and regions across the
continent. Previous to our project, NEON did not collect ben-
thic macroinvertebrate samples in a manner that permitted
stoichiometric analysis but for 2 yr, they partnered with our
project to collect samples for stoichiometric analysis. Once we
received benthic invertebrate samples from NEON, we

identified, processed, and analyzed them for C, N, and P con-
tent. Information about water, primary producers, and
resources such as seston were acquired directly from NEON.
Second, we conducted a literature review to incorporate rele-
vant stoichiometric data from published manuscripts and
repositories. Finally, we collaborated with stoichiometry
researchers to add unpublished investigator datasets into our
database. The details of our approach for compiling these data
sources follow:

Benthic invertebrate sampling and analysis
Community samples of benthic macroinvertebrates were

collected from the 34 aquatic sites monitored by NEON in
2021 and 2022. At each site, one community sample was col-
lected from the dominant habitat, according to NEON stan-
dard operating procedures (Parker 2023), was frozen and
shipped to Middlebury College (Middlebury, VT, USA) for
identification and stoichiometric analysis. To target taxa not
present at the NEON sites, additional collections occurred in
Vermont and Arizona (USA) following the same procedures as
NEON. Standard benthic invertebrate sampling collection
took place three times per year with some exceptions
(e.g., COVID-19 travel restrictions, lack of surface water to
sample, and natural disasters). Prior to stoichiometric ana-
lyses, samples were thawed, identified to the lowest practical
taxonomic level (typically genus), and dried at 60�C for 48 h.
All identifications were cross-checked against finalized site-
and sampling event-specific taxonomic data from NEON. Dis-
crepancies in identifications were reviewed with specimen
photographs or, if photographs were not available or ambigu-
ous, specimen identifications were left at the lowest agreed
upon taxonomic level. To determine P (body) content, sam-
ples were combusted at 550�C for 4 h, digested in HCl, and
then analyzed using ICP-MS at Middlebury College (Costanza-
Robinson et al. 2025). To determine C and N (body) content,
samples were analyzed using an elemental analyzer at the
University of Wyoming Stable Isotope Facility. When possible,
individual organisms were prepared separately for analysis,
but in many cases, low body mass required pooling multiple
individuals from the same community and sampling event
into a composite sample to achieve minimum detection
limits. A maximum of five replicate samples of each taxon
from each community sample were analyzed for P, C, and N,
but in many cases, insufficient biomass in community sam-
ples limited replicates. This work ultimately generated
984 individual C and N samples and 1483 individual P sam-
ples encompassing 185 genera in 93 families.

Literature review, data repositories, and contributed
datasets

We conducted literature searches to find published stoi-
chiometric data on May 26, 2021 and July 14, 2022 using
Web of Science v. 5.35 with the search terms: TOPIC: (((lake
OR stream OR wetland OR river OR freshwater) AND ((carbon
AND nitrogen) OR (carbon AND phosphorus) OR (nitrogen

Corman et al. Limno-STOICH
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Fig. 3. Variation across basal resource and consumer stoichiometry in carbon to nitrogen (C : N), carbon to phosphorus (C : P), and nitrogen to phos-
phorus (N : P) molar ratios. For each boxplot, the middle line represents the median, the top and bottom of the box correspond to the first and third
quartile values, and the whiskers represent the largest or smallest values, up to 1.5 times the interquartile range, respectively.
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AND phosphorus)) AND (stoichiometr* OR ratio* OR nutri*))).
From these searches, we identified 22,306 publications that
were potentially useful for STOICH. Of these, we surveyed all
publications for inclusion criteria (see “Dataset Inclusion
Criteria” below). A total of 1154 papers (5.2%) were identified
as meeting criteria for the database (see below). Of these,
44 had data available in online repositories or supplemental
materials. Of the remaining papers (1110), all first authors
and/or corresponding authors were contacted to solicit their
raw data. Associated metadata were gained from authors or
the associated publication(s). Plot digitizing software with
manual extraction may be a useful tool for future expansions
of the database (Jelicic Kadic et al. 2016; Aydin and
Yassikaya 2022). Additionally, in May 2023, we searched for pub-
lished repositories associated with online libraries including
Dryad, DataOne, and Environmental Data Initiative (EDI; https://
edirepository.org/) using the search terms “lake carbon nitrogen
ratio” and “aquatic stoichiometry.” These search terms were modi-
fied from the original search terms due to more limited search
tools. After removing duplicate publications, these searches
resulted in 5125 repositories. Of these, we identified 126 repository
datasets as containing data that fit our requirements. In total, we
added 180 published datasets (101 from author contributions and
79 from data repositories) included in data repositories into
Limno-STOICH (Sarnelle 1992; Manca et al. 1994; Feijo�o
et al. 1996; Sterner and George 2000; Brazner et al. 2001; Cloern
et al. 2002; Kiffney et al. 2002; Cross et al. 2003; Volk et al. 2003;
Paszkowski et al. 2004; Steiner 2004; Descy et al. 2005; Hamilton
et al. 2005; Jardine et al. 2005; Gladyshev et al. 2007;
Hendrixson et al. 2007; Kanduč et al. 2007; Köster
et al. 2008; Piola et al. 2008; Cremona et al. 2009;
Elser et al. 2009; Walters et al. 2009; Hanisch et al. 2010;
Hanson et al. 2010; Rachamim et al. 2010; Bode
et al. 2011; Hossler et al. 2011; Sakamaki and Richard-
son 2011; Watson and Barmuta 2011; Giling et al. 2012;
Jardine et al. 2012a, 2012b; Karube et al. 2012; Kohler
et al. 2012; Kominoski et al. 2012; Morse et al. 2012;
Naddafi et al. 2012; North et al. 2012; Spencer et al. 2012;
Theissen et al. 2012; Volk and Kiffney 2012; Bonin 2013;
Jardine et al. 2013; Kling 2013; Koshino et al. 2013;
McKnight 2013; Sakamaki and Richardson 2013; Atkinson
et al. 2014; Bellinger et al. 2014; El-Sabaawi et al. 2014;
Feijo�o et al. 2014; Johnson et al. 2014; Lau et al. 2014;
Milanovich et al. 2014; Mooney et al. 2014; Peipoch
et al. 2014; Zadereev et al. 2014; Georgia Coastal Ecosys-
tems LTER Project and Alber 2015; Gladyshev et al. 2015;
Halvorson et al. 2015a, 2015b; Jaffe and Pisani 2015;
Kaymak et al. 2015; Liu et al. 2015; Mozs�ar et al. 2015;
Mulholland 2015; Ortega-Cisneros and Scharler 2015; Pri-
ngle 2015; Santa Barbara Coastal LTER and Melack 2015;
Wang et al. 2015; Biederman et al. 2016; Corman
et al. 2016; Díaz Villanueva et al. 2016; Kling and
Cory 2016; Kling and Luecke 2016; Knoll et al. 2016;

MacAvoy et al. 2016; Myers-Smith and Bonanza Creek
LTER 2016; Neres-Lima et al. 2016; Showalter et al. 2016;
Syväranta et al. 2016; Ball 2017; Cabrerizo et al. 2017;
Chodkowski and Bernot 2017; Dionne et al. 2017; Dudley
et al. 2017; Eberts et al. 2017; Gonz�alez et al. 2017; Hal-
vorson et al. 2017; Kristensen et al. 2017; Melvin
et al. 2017; Mischler et al. 2017; Neres-Lima et al. 2017;
Takacs-Vesbach et al. 2017; Zandonà et al. 2017;
Aranguren-Riaño et al. 2018; Diehl et al. 2018; Durston
and El-Sabaawi 2018; Fritz and Whiles 2018; Halvorson
et al. 2018; Johnson et al. 2018; Kohler 2018; Niwot Ridge
LTER and Caine 2018; Sadro 2018; Sterner 2018; Valiela
et al. 2018; Zhang et al. 2018; Крылов et al. 2018; Camilleri and
Ozersky 2019; Díaz Villanueva 2019; Isanta Navarro et al. 2019;
Kristensen et al. 2019; Moody et al. 2019; Pastor et al. 2019;
Pearce et al. 2019; Rugema et al. 2019; Salonen et al. 2019; Wil-
liams 2019; Wollheim et al. 2019; Bergström et al. 2020;
Gladyshev et al. 2020; Isles et al. 2020; Kattel et al. 2020; Pot-
hoven and Vanderploeg 2020; Rojo et al. 2020; Shurin
et al. 2020; Caine 2021a, 2021b, 2021c, 2021d, 2021e; Gao
et al. 2021; Georgia Coastal Ecosystems LTER Project and
Alber 2021; Hu et al. 2021b; Karpowicz et al. 2021; Knapp
et al. 2021; Moe et al. 2021; Nocentini and Kominoski 2021;
Olid et al. 2021; Price et al. 2021; Sadro 2021; Tonin
et al. 2021; Williams 2021a, 2021b; Zandonà et al. 2021; Beck
et al. 2022; Bergström et al. 2022; Briceno 2022; Elser 2022;
Fogelman et al. 2022; Gao et al. 2022; Goetz and Johnson 2022;
Harms et al. 2022; Machado-Silva et al. 2022; Morrison
et al. 2022; Oliveira-Cunha et al. 2022; Priscu 2022; Santa
Barbara Coastal LTER et al. 2022; Swanner et al. 2022; Vanni
et al. 2022; Baruch et al. 2023; Beaufort Lagoon Ecosystems
LTER 2023a, 2023b; Gaiser and Tobias 2023; Gotelli and Elli-
son 2023; Kling 2023; Kohler and McKnight 2023; National
Ecological Observatory Network (NEON) 2023a, 2023b, 2023c;
S�anchez Gonz�alez et al. 2023; Strickland et al. 2023; Yan
et al. 2023; Finne et al. 2024).

Lastly, we solicited contributions of unpublished stoichi-
ometry datasets from stoichiometry researchers. We also
encouraged data contributions during our correspondence
with publication authors during the literature review (see
above) and at scientific workshops and conferences attended
by our group members. These solicitations resulted in 11 addi-
tional unpublished datasets contributed to Limno-STOICH for
a total of 191 datasets.

Dataset inclusion criteria
Data included in the Limno-STOICH database had to meet

several basic criteria. First, organisms must have been collected
from inland aquatic ecosystems, including tidally influenced
waters not extending beyond the coastline. We also included
water-filled pools in plants, for example, tank bromeliads, as
inland aquatic ecosystems because these pools are aquatic
and host multiple trophic levels (Gonz�alez et al. 2011;
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Benavides-Gordillo et al. 2019). Second, the organism
must have been collected from the field, so any organisms
that had been artificially manipulated in the field or spent
significant time in a laboratory were excluded. Third, we
only included samples of entire organisms; targeted tis-
sues or muscle plugs were excluded. Basal food resources
that were sampled as communities were included regard-
less if living (e.g., phytoplankton or periphyton) or non-
living (e.g., leaf litter), if the sample was composed
primarily of organic material (e.g., benthic sediments
were excluded). Fourth, the samples must include organis-
mal tissue measurements from at least two of the follow-
ing three elements: C, N, or P. Finally, we only accepted
datasets from primary sources to avoid duplication.
Datasets meeting all these criteria were entered into the
Limno-STOICH data template by a trained project techni-
cian and were included in the database (Supporting Infor-
mation Table S1).

Methods: Database assembly
The Limno-STOICH database consists of seven tables: data

entry information (InputFile), data source information
(Contact and Source tables), Site, environmental
information (SampleEvent and WaterChemistry tables), and
OrganismStoichiometry (Fig. 4). The data template includes
general information about each column within the tables
(Supporting Information Table S2). The data were ingested
into an SQL Server and exported into a comma-separated

value (csv) file format. Each table uses a unique Id to identify
and link entries in related tables.

InputFile Table
The InputFile table exists for data provenance purposes by

tracking the status of the data transfer and if any updates to
the data template were made during technical validation. The
data templates were stored in a Google Drive during database
construction, and this table ensures we can track updates from
the Google Drive into the database.

Contact and Source Tables
The Contact and Source tables contain the list of all sources

of data used to build Limno-STOICH with an associated
unique identification code (“Id”) for each data source. The
Contact table includes the name and email of the data pro-
vider; most often the communicating author of the publica-
tion, but in some cases was another author or data curator.
For the published NEON datasets, the contributor was listed
as the Limno-STOICH data manager due to the work to pre-
pare the datasets for ingestion and continual efforts to keep
them updated in the Limno-STOICH database. The Source
table includes information on whether the data were derived
directly from a paper or data repository, contributed by the
author, or unpublished. Associated bibliographic information
(Title, First Author, Journal, Publication Year; Supporting
Information Table S2) is included for published papers. In
cases where data came from a repository or other source, iden-
tifying information is included about the Publisher or URL. If

Fig. 4. General structure of the Limnology Stoichiometric Traits of Organisms In their Chemical Habitat (Limno-STOICH) database and connections
between its seven tables. Data entry began with entering information about each data source and generating a unique shared Contact and Source Id. A
separate table, InputFile, was also generated to track data provenance. Site information for each site within a data source was then entered into the Site
table, and each site was given a unique SiteId. SiteIds and SourceIds were carried over into the SampleEvent, where information about the sampling
event was entered and a SampleEventId was generated. Information about organismal stoichiometry and water chemistry characterization, along with
any supporting data, was then entered into the OrganismStoichiometry or WaterChemistry table, respectively, linked by the Source Id and
SampleEventId.
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unpublished data were provided, the source is designated
using the data curator’s name or research group/lab as the
author and either the year the data were received or the year
the data were entered into the Limno-STOICH template for
inclusion in the database.

SampleEvent Table
The SampleEvent table includes specific timing, location,

and habitat information and condition for each observation.
Sample dates were included in the Sample_Start_Date column
when a single date was provided. When a date range was pro-
vided for a sample event, we used the Sample_Start_Date and
Sample_End_Date columns to indicate the date range.
Habitat_type and Depth_m columns further specify the habi-
tat sampled, allowing us to distinguish sample events occur-
ring on the same date. When pelagic samples were collected
over a range of depths and numerical values were included,
we included the average depth. When pelagic samples were
taken at multiple depths, but numerical depth values
were not included, sample events were characterized by the
layer from which they were sampled (“Pelagic—epilimnion”,
for example). Air_temp, Water_temp, Cloud_cover, Can-
opy_cover, and Light columns were included to better charac-
terize a sample event when provided. In instances when
multiple water temperatures were provided for the same water
chemistry or organismal chemistry data, these water tempera-
tures were averaged. Only sample event rows with links to
organismal stoichiometry or water chemistry observations
were included in STOICH. However, in some instances, water
chemistry observations were not collected on the same day as
or were collected more frequently than the organismal stoichi-
ometry data. In these scenarios, water chemistry observations
were retained.

OrganismStoichiometry Table
The OrganismStoichiometry table includes metadata about

organism taxonomy, body size and life stage, and elemental
contents and ratios. First, we classified all organisms by their
type which encompasses broad taxonomy- or origin-based
classifications of Fish, Insecta, Mollusca, Annelida, Amphib-
ian, Crustacean, Periphyton, Seston, Detritus (FPOM), Detritus
(CPOM), Detritus (Other), Macrophyte, Bryophyte, Zooplank-
ton, Invertebrates (Other), Vertebrates (Other), or Microbial
(Other), where FPOM and CPOM denote fine or coarse partic-
ulate organic matter, respectively. We developed decision
criteria to assist in applying these categorizations (Supporting
Information Table S3). Next, to increase the spatial accuracy
of each organism sampled within a given site, we designated
the organism origin as Benthic, Sestonic, Epiphytic, Epixylic,
Epipsammic, Epipelic, Epilithic, or Epizootic when such infor-
mation was available. Then, we included an open entry for
trophic mode for each organism. Finally, we included taxo-
nomic levels of Kingdom, Order, Family, Genus, and Species.
We did not include Phylum or Class to simplify our data sub-
mission process as these can be determined by the other

taxonomic information provided. When taxonomic
information was not provided (for example, to add Order
identification when only Family and Genus were included),
we used the National Center for Biotechnology Information
(NCBI) taxonomy database, via the R package taxize
(Chamberlain et al. 2012), to back-fill taxonomic information
at higher levels. We also included annotations of “sp.” and
“spp.” for species when provided by data sources, but we listed
“NA” when the species was unknown.

For each organismal sample, we recorded whether the data
provided represented a Single Individual, Multiple Individuals,
or Subsample of a Composite (e.g., homogenized tissues). We
also recorded whether a given observation represented an
Independent measurement or an Aggregate of multiple sam-
ples, in which case we provided the sample size. We included
sample sizes as interpreted and contributed by the source
author, which typically entailed either the statistical sample
number contributing to a mean or the number of individuals
homogenized and included within a sample. If a range in the
number of individuals was reported, the lowest value was
included. We included annotations about developmental
stage (open entry) and gut clearance (Cleared or Gut
Removed) for each organism sample. We included measure-
ments of organism mass with units. While we required whole
organismal data for inclusion in STOICH, we did accept
organismal data that represented the entirety of the organism
but analyzed in parts, as for macrophytes. These samples are
denoted Partial Organism and only represent above ground
and below ground measurements. We also interpreted snails
or mollusks with the shell removed as Whole Organisms given
current conventions in the field. We included information on
life stage, if provided; only about a fifth (20.8%) of
macroinvertebrate samples contained this information. Even
for those macroinvertebrate samples without this informa-
tion, we expect that most will be in the juvenile stage as the
aquatic stage is their juvenile life stage (some exceptions
would be insects with aquatic adult life stages, like whirligig
or riffle beetles).

Finally, for C, N, or P contents of each organism, we
recorded the measurement of elemental content and its units
(where we converted values into the following units when
possible: percent, μg, μg L�1, μg cm�2), standard deviation of
the measurement (when provided), and the method of mea-
surement with supporting notes and links to method descrip-
tions, when available. When the units of elemental contents
were unclear, we excluded the data from the database. If ele-
mental content was available for at least two of the elements,
but the third element was below detection limit, the data that
were below detection were coded as �999,999,999 (< 0.7% of
all entries). We also report elemental molar ratios as provided
by the data contributor. When not provided, we calculated
them from individual elemental data. When provided, we
reported the δ13C and δ15N isotopic composition and standard
deviation (Supporting Information Text S1) and any
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measurement of chlorophyll and its units. We also annotated
(Yes or No) if some measurement of quantity as standing
stocks was associated with the organismal sample; whether
other elemental data (beyond C, N, or P) were reported for
that sample (designated as Yes or No); and any additional
notes from the data provider.

Site Table
The Site table contains information about the location

from which samples were taken. Each site was given a “Site
Name,” which the data contributor provided. Because of the
individualistic nature of naming a location, Site Names may
be unique to data sources and may not be associated with
other sites within the same body of water. For example, both
Toolik Lake (Kling 2013b; Johnson et al. 2014b) and Lake
Superior (Bellinger et al. 2014; Camilleri and Ozersky 2019b)
had multiple contributors. While we realize this decision may
present certain challenges in using the database, it is a parsi-
monious way to synthesize many disparate data sources.
When a site name was not provided, we entered one based on
the latitude and longitude: “UNK_lat_long” using the decimal
format.

Each site also includes information on latitude, longitude,
elevation, country, state/province, and ecosystem type. If lati-
tude and longitude were not available either from the source
or provided by the authors, and if it was not possible to deter-
mine the sampling location from the source information,
then the dataset was dropped. In some instances, location
information was acquired using Google Earth based on study
site information or figures. There were several instances in
which data repositories used a bounding box; in this case, the
coordinates of the centroid were entered. In both instances,
the modification was noted or the rough coordinates were
provided in the “Note_SampleLocation” column.

Ecosystem types provided by the researcher were standard-
ized to the following list: Coastal, Lake, Pond, Reservoir, River,
Stream, Tank Bromeliads, and Wetland. Generally, we did not
provide quantitative distinctions among categories and
defaulted to what was provided by the author contributor.
When ecosystem type was not provided, we developed deci-
sion criteria to assist in applying these categorizations
(Supporting Information Table S4). And, while we did not
intentionally seek out coastal ecosystems (e.g., estuaries,
marshes, tidal rivers), we did receive or encounter datasets
with sites that were potentially marine. If the site was at least
partly influenced by inland waters and/or resided at the eco-
tone on inland waters and marine waters, we retained this
bycatch and categorized the ecosystem type as Coastal. How-
ever, database users interested in coastal or oceanic ecosys-
tems should be aware that these ecosystems were not
included in search terms and therefore are anticipated to be
poorly represented in Limno-STOICH. For one dataset
(i.e., Hu et al. 2021a), sites were reported collectively as “lakes,
streams, rivers, or ponds.” We assigned specific ecosystem

types (pond, river, reservoir, stream, or wetland) to these
251 sites in northeastern China using their reported coordi-
nates and a visual inspection of the ecosystem using Google
Earth. Criteria included size, natural vs. man-made origin, alti-
tude, and stream order. Notes about these site assignments
were recorded in the “Notes” column. Users may want to con-
sider carefully what is defined as a “Lake” or “Pond”, or a
“River” or “Stream” if the divisions are of interest.

WaterChemistry Table
The WaterChemistry table includes physical or chemical

variables associated with the aquatic ecosystem from which
the associated organismal sample(s) were collected
(Supporting Information Table S2). This table includes non-
particulate variables only, as seston, FPOM, and other particu-
lates are considered basal resources and categorized in the
OrganismStoichiometry table. Availability of these data varied
widely among data sources. These data were either extracted
from tables within data sources, data repositories, or provided
by data contributors. Whenever possible, data were only
entered as values for the sites and days that corresponded to
the organismal collections. When multiple measurements
were collected on the same day, data were averaged and input-
ted as a single value for each day. Multiple measurements over
depth were only included if there was associated organismal
data for those depths; otherwise, data not associated with an
organismal collection were excluded. Information about statis-
tical pooling, whether performed by data technicians or by
data providers, is reported in the “Statistical_Pooling_Water”
and “Sample_size_water” columns.

In some instances, water chemistry data were included at a
site with dates prior to the organismal collections. However,
we generally avoided this inclusion and encourage readers to
link to more robust water chemical databases for this type of
information (e.g., Water Quality Portal—Environmental Pro-
tection Agency and United States Geological Survey 2013;
Waterbase—European Environment Agency 2024). The one
exception of this is the NEON-derived data. NEON seldom
collected aquatic organisms on the same day as water chemis-
try collections, sometimes up to 2 weeks apart. Depending on
the interests of the data user, this time period may or may not
be reasonable, so we left the data “unlinked” in Limno-
STOICH. A function for linking these data is available in
stoichUtilities Application Programming Interface (API; see
below).

Water chemistry data were submitted in the reporting units
and converted upon database inclusion to the standard
units of μM C, N, or P, μg L�1 (dissolved oxygen), unitless
(pH), or μS cm�1 (specific conductivity). If other variables were
reported in the data source or repository, we included a com-
ment in the “Other_elements_water” column. Some datasets
reported nitrate concentrations as nitrate + nitrite; given the
negligible concentrations of nitrite compared to nitrate in
most surface waters, these concentrations were assumed to be
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primarily nitrate and reported as nitrate in Limno-STOICH. As
decisions about handling records including negative values,
zeros, or below detection limits (BDL) can lead to bias due to
inconsistency in detection limits and reporting practices
(Stow et al. 2018), we erred towards reporting data how they
were reported in the original dataset. Hence, negative or zero
values were entered without modification. If a BDL or non-
detect was reported with no corresponding value, the concen-
tration was entered as �999,999,999. If a value was reported,
but flagged by the data contributor as a BDL, the value was
entered without modification, but the BDL flag was noted in
the “Notes_Water” column.

Technical validation
We employed manual and automatic checks in our techni-

cal validation of the Limno-STOICH database for quality
assurance and quality control (QA/QC). After initial entry into
the data template, a second trained project technician
reviewed the data to ensure correct formatting, correct tem-
plate version, and data completeness and accuracy. As
described above, missing taxonomic data (e.g., Kingdom,
Order, Class) were populated using the R package taxize. Then,
a taxonomic expert assisted in correcting spelling errors and
standardizing taxonomic classification (i.e., due to outdated
classification). Taxonomic revisions can be found in
Supporting Information Table S6.

Once the dataset passed this initial inspection, the dataset
was reviewed through an automated check. The automated
check first verified file contents for required columns, units,
and proper case in text. Next, numeric values were converted
to standardized units. Then, these values were automatically
reviewed for expected or valid ranges and flags were created if
values fell out of this range (Supporting Information
Table S2). Expected ranges for organismal stoichiometry were
also examined during this stage. We flagged samples with C
or N contents below or above certain thresholds that were
deemed out of the range of likelihood. Lower thresholds
were C below 20% and N below 4% for animal tissues and C
below 0.1% and N below 0.1% for resource samples. This
QA/QC resulted in 1040 observations of C or N values being
converted to �999,999,999. Upper thresholds were C above
80%C or samples where %C plus %N was greater than 90% or
samples where %C plus %N plus %P was greater than 100%.
All samples for P content were retained, but samples below
the reported detection limit were recorded as �999,999,999.
This QA/QC resulted in dropping 1.4% of samples (734 sam-
ples were removed representing 207 consumer and
527 resource entries) because they no longer included data
from at least two elements after QA/QC.

If a dataset contained organismal C, N, and P contents in
addition to C : N, C : P, and N : P ratios, the ratios contributed
in the dataset were checked against the ratios derived from
the contributed C, N, and P contents. While some differences

between contributed and calculated C : N, C : P, and N : P
ratios were expected (e.g., due to calculation of means, round-
ing errors, or differences in sample sizes in each reported ele-
mental content), any difference greater than 9% was flagged
to catch common errors (e.g., mass ratios mistakenly reported
as molar ratios). Once numeric checks were complete, we
reviewed the logs and either corrected minor issues with for-
matting or conducted further review, including contact with
the original dataset author for data verification, cleaning, or
rejection.

We conducted a final review of each dataset by examining
distribution plots of numeric data, which allowed us to iden-
tify inconsistent units or auto-increments due to errors during
copying and to check for missing data. Once a dataset was
technically validated, a final check was done to ensure that
the data were not duplicates of an existing entry. If multiple
reports of sampling event information or water chemical char-
acterization were found, individual values are stored in the
“sample event” or “water chemistry” notes columns and aver-
ages are calculated in the data columns.

To conduct further QA/QC on the compiled database, we
organized a remote beta testing program (recruiting partici-
pants from professional networks) along with five in-person
workshops. These beta testing stages involved input from
approximately 100 individuals. For the remote beta testing
program, participants were challenged with various standard-
ized and freeform activities related to database use through
email communication. Additionally, we provided asynchro-
nous instructions through video tutorials and instructional
documentation with examples posted on a dedicated webpage
and synchronous assistance through weekly office hours
hosted by the Database Manager (C. Petersen). The workshops
involved 10–25 individuals who tested example code,
explored potential applications of the database, and assisted
with targeted QA/QC. Beta testers and workshop participants
reported issues directly to project PI’s and database staff using
a Google Form feedback tool. Over 40 submissions for errors
and feedback were made, including typos, purported data
errors, and R package documentation clarification. Rec-
ommended edits were brought to the database metadata com-
mittee and incorporated into subsequent beta versions of
Limno-STOICH.

Associated API: STOICH-utilities
To facilitate the use of the Limno-STOICH Database, we

created an application programming interface (API) in R called
stoichUtilities. This package provides functions for loading, fil-
tering, and joining tables in the Limno-STOICH Database
(Petersen 2025). These functions allow users to load
database tables and filter and join the tables using the Id
for each table, reducing the burden for users by eliminat-
ing data type errors while loading and filtering data. The
stoichUtilities package links to the most updated version of
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the Limno-STOICH Database (available from https://snr-
stoich.unl.edu/get_data.htm).

Data use and recommendations for reuse
We anticipate that the Limno-STOICH database will be lev-

eraged to address a wide variety of ecological and evolutionary
questions and conservation or management concerns. In par-
ticular, the Limno-STOICH database can be used to study spa-
tiotemporal scales of stoichiometric variation across levels of
biological organization and determine when and where stoi-
chiometric mismatches across trophic levels exist. Of course,
any investigation into trophic mismatches will need to con-
sider whether basal resources actually represent what are
being consumed; the isotopic data within Limno-STOICH
may help with this endeavor (Supporting Information
Text S1). To help guide research inquiries, our group has
developed a framework for investigating how stoichiometric
diversity varies over time and space in biological communities
(Moody et al. 2025) and explored how scaling-up ecological
stoichiometry affects our understanding of ecological thresh-
olds across space, time, and levels of biological organization
with attention to patterns of freshwater biodiversity and evo-
lution (Tumolo et al. 2025). And, while we attempted to be
comprehensive in the information included in Limno-
STOICH, we understand that all details may not have been
addressed. For these scenarios, users are encouraged to dive
into the source material (found in the Contact and Source
tables) if there are aspects of the Limno-STOICH data that
would be important to the questions they are asking but are
not annotated within the database.

We also anticipate that linking Limno-STOICH to other
existing databases and resources will further increase its
impact. For instance, by linking Limno-STOICH to phyloge-
netic information from resources such as the Fish Tree of Life
(Rabosky et al. 2018) or Open Tree of Life (Hinchliff
et al. 2015), one can explore the extent to which stoichiomet-
ric traits are constrained by phylogeny, how much they evo-
lve in different communities, and the relationships among
community phylogenetic diversity, stoichiometric diversity,
and basal resource stoichiometry. Additionally, by linking
Limno-STOICH to existing databases on climate, land
use/land cover, and other geographic variables (e.g., terrestrial
ecoregions, Olson et al. 2001; HydroATLAS, Linke et al. 2019;
Lehner et al. 2022), one can explore how ecosystem stoichi-
ometries vary along climate, land use, and productivity gradi-
ents, how landscape alterations are reflected in stoichiometric
changes of key species or communities, and how stoichiomet-
ric traits may interact with or mediate effects of climate
change or other anthropogenic influences.

Our project would not have been possible without substan-
tial funding. Specifically, our project employed a full-time
database manager and a full-time database technician for most
of the grant’s duration, with additional full-time support staff

hired to assist on a seasonal basis as needed. We also
employed 45 undergraduate students across several institu-
tions to conduct literature surveys, help add data into the
database, and perform stoichiometric analysis of NEON sam-
ples, supplemented by graduate student support. Project fac-
ulty and graduate students served on database and metadata
committees that discussed issues and solutions related to deal-
ing with complex data syntheses and discussed ways to use
the data in future papers.

We have made efforts to automate our data contribution
processes for future datasets that could be included in Limno-
STOICH in the hope that there will be future database
updates. Future database updates will be critical for research
and management of inland waters in the face of global
change. We recognize that there are current gaps in the geo-
graphic, biome, and taxonomic coverage in the database
(Figs. 1, 2). Furthermore, we acknowledge variation across
methods used to collect and analyze samples (e.g., P analytical
methods; Costanza-Robinson et al. 2025) and the temporal
mismatch between water chemistry and organismal sampling
at some field sites. To support the ease of database updates,
we recommend standard protocols from NEON to those who
may be collecting data that might be incorporated into
Limno-STOICH. NEON provides extensive details on methods
for sampling aquatic organisms and chemistry in lakes and
streams. Among their protocols are details on sampling
periphyton and phytoplankton (Parker 2025); aquatic
macroinvertebrates (Parker 2023); aquatic plants, bryophytes,
lichen, and macroalgae (Lafaver 2023); zooplankton
(Parker 2024); and fish (Del Priore 2025). The protocols also
include sampling surface waters for chemistry (Goodman
et al. 2025) and depth profile sampling (Parker 2021). Stan-
dardized data collection, along with an eye towards data for-
matting previously described (Supporting Information
Tables S1 and S2), will help ensure more useful, tractable, and
timely updates to Limno-STOICH into the future.
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