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ARTICLE INFO ABSTRACT
Keywords: Cambium phenology is a crucial process in wood production and carbon sequestration of forest ecosystems.
Cambium phenology Although cambium phenology has been widely studied, research specifically focusing on the cessation of wood

Ecophysiological models
Xylem formation

Climate change

Global warming

Northern hemisphere forests

formation remains limited. To better understand the influence of environmental and intrinsic factors on the
cessation of wood formation, we built and compared three ecophysiological models (temperature sum model,
photoperiod-influenced temperature sum model and soil moisture- and photoperiod-influenced temperature sum model)
in their ability to predict the date of cessation of xylem cell enlargement (cE) in three major Northern Hemi-
sphere conifer species (Black spruce, Norway spruce and Scots pine). We developed these models based on
xylogenesis data collected for 130 site-years across Europe and Canada. Our results demonstrate that the
photoperiod-influenced temperature sum model is well-supported by data across all conifer species, with a RMSE of
9.2 days, suggesting that both temperature and photoperiod are critical drivers of wood growth cessation.
However, incorporating soil moisture effects does not improve model performance. Our model effectively cap-
tures the inter-site variability in cE across a wide environmental gradient, with a fair model efficiency (ME =
0.51 + 0.22), but performed less well for annual anomalies (ME = 0.10 + 0.09). Additionally, we found that the
total ring cell number also affected prediction accuracy. Using this model, we reconstructed historical trends in
cE over the past six decades and found a trend to delayed cessation dates. This delay varied geographically, with
slower shifts at higher latitudes and elevations, likely due to constrained cambial responses and conservative
growth strategies in colder regions. Our model framework offers a simple yet accurate approach for predicting

* Corresponding author.
E-mail address: jianhong.lin@universite-paris-saclay.fr (J. Lin).

https://doi.org/10.1016/j.agrformet.2026.111056

Received 30 June 2025; Received in revised form 9 December 2025; Accepted 29 January 2026

Available online 4 February 2026

0168-1923/© 2026 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://orcid.org/0000-0002-5675-8035
https://orcid.org/0000-0002-5675-8035
mailto:jianhong.lin@universite-paris-saclay.fr
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2026.111056
https://doi.org/10.1016/j.agrformet.2026.111056
http://creativecommons.org/licenses/by/4.0/

J. Lin et al.

Agricultural and Forest Meteorology 379 (2026) 111056

wood growth cessation at large spatial scales, providing a basis for integrating cambium phenology into land
surface models and forest productivity assessments.

1. Introduction

Cambium phenology is crucial for plant functioning and ecosystem
services (Cabon et al., 2020; Chen et al., 2022; Huang et al., 2023; Rossi
et al., 2011). Changes in cambium phenology, such as the onset, cessa-
tion, or duration of wood formation, can significantly impact the amount
of carbon sequestrated by trees under changing climate conditions
(Chen et al., 2022; Delpierre et al., 2019; Eckes-Shephard et al., 2022).
Despite its importance, cambium phenology has been relatively under-
studied compared to leaf phenology (Delpierre et al., 2016; Dox et al.,
2022). Similarly to the autumnal phases of leaf phenology, the cessation
of wood formation remains less studied than its onset in spring, probably
due to the complex interplay between environmental and intrinsic fac-
tors influencing it (Cuny et al., 2019; Dox et al., 2020; Rossi et al., 2016).
Furthermore, tracking the cessation of wood formation is inherently
more challenging than its beginning, as it involves subtler, slower, and
less visible processes (Rathgeber et al., 2016). While ecophysiological
models exist for predicting the onset of wood formation (Delpierre et al.,
2019), models for its cessation are notably lacking. This represents a
critical research gap, as the timing of cessation of wood formation is
rarely represented in terrestrial ecosystem models (TEMs), although
influencing the simulated productivity (Delpierre et al., 2016; Friend
et al. 2019). In this context, developing robust ecophysiological models
for simulating the seasonal cessation of wood formation is essential.

In the process of wood formation, the cessation of xylem radial
growth typically occurs in summer or earlier under unfavourable tem-
perature or water deficit conditions (Saderi et al. 2019). This process
follows a sequential pattern: first, cambium cell division ceases, fol-
lowed by the cessation of xylem cell enlargement, with a time lag
varying among species (Rossi et al., 2006b), marked by the end of radial
expansion of xylem cells. Several weeks later, the cessation of cell wall
thickening marks the completion of wood formation and the end of
carbon sequestration (Cuny et al., 2015).

The seasonality of wood formation results from a complex interplay
between environmental and intrinsic factors (Aloni, 2013; Delpierre
et al., 2016; Rossi et al., 2016). Temperature, a key environmental
factor, directly influences wood formation by affecting cell structure
(Cuny and Rathgeber, 2016; Friend et al., 2022; Rathgeber et al., 2016)
and regulating processes such as cambial cell division, hormones
metabolism and activity (Rathgeber et al., 2016; Schrader et al., 2003).
Manipulative experiments show that locally-cooled stem sections stop
cambial cell division earlier than non-cooled sections, confirming that
low temperatures induce cambial dormancy (Begum et al., 2016; Begum
et al., 2018; Gricar et al., 2006). Beyond temperature, soil moisture and
photoperiod also influence cambium phenology. Reduced soil water
availability can halt cambial activity and xylem cell enlargement (Cabon
et al., 2020; Gricar and Cufar, 2008; Traversari et al., 2018), while
photoperiod regulates peak growth rates and influences the cessation of
wood formation in temperate and boreal forests (Cuny et al., 2015;
Jackson, 2009; Rossi et al., 2006¢). In addition to environmental in-
fluences, ontogenetic factors modulate cambium phenology, with
younger and taller trees exhibiting longer periods of xylogenesis
(Rathgeber et al., 2011a; Rossi et al., 2008; Zeng et al., 2017). Moreover,
the onset of cambial activity determines the number of radial cells
produced, which in turn influences the timing of the cessation of wood
formation (Deslauriers et al., 2008; Gricar et al., 2005; Lupi et al., 2010;
Rossi et al., 2012). In this context, disentangling the roles of environ-
mental and tree internal factors is critical for developing robust pre-
dictive models of wood formation cessation.

Existing process based wood growth models can simulate xylem
growth cessation (Cabon et al., 2020; Schiestl-Aalto et al., 2015; Vaga-
nov et al.,, 2006), but they generally rely on bottom-up, cell-level
frameworks and focus on intra-annual dynamics. Despite their mecha-
nistic detail, these models often perform poorly in capturing growth
cessation (e.g., the Vaganov-Shashkin model (Butto et al., 2020;
Tumajer et al., 2021)). Furthermore, the validation of such models has
typically been restricted to narrow temporal and spatial scales (Cabon
et al., 2020; Schiestl-Aalto et al., 2015). Similarly, statistical models of
cambium phenology are often limited to case studies. A key example is
the temperature-threshold model developed by Rossi et al. (2011),
which, despite projecting delayed cessation of cell-wall thickening
under warming, was calibrated using only a seven-year black spruce
dataset and its applicability was restricted to a single species and region.
These limitations underscore the urgent need for ecophysiological
models capable of integrating multiple environmental drivers to
robustly simulate wood formation cessation across broader geographic
gradients, extended time periods, and diverse species.

Here we developed three ecophysiological models to predict the
cessation of xylem cell enlargement in three conifer species (Pinus syl-
vestris, Picea abies and Picea mariana) across Europe and Canada. The
models were parameterized and evaluated using direct observations of
the date of cessation of xylem cell enlargement from the GloboXylo
database. We tested the hypotheses that (a) all ecophysiological models
can effectively capture the cessation of xylem cell enlargement (cE in the
following), with the most accurate prediction coming from the model
incorporating temperature, photoperiod, and soil moisture as environ-
mental drivers; (b) tree characteristics, including total ring cell number
(RCN), age, height, and diameter at breast height (DBH), also influence
cE; and (c) retrospective model simulations would reveal a trend toward
later cessation dates of xylem cell enlargement over the past six decades,
but the magnitude of the delay differs by region. To test these hypoth-
eses, we aimed to: (1) assess whether the interannual and inter-site
variability of cE could be explained by (a) temperature alone, (b) the
combined effects of temperature and photoperiod, or (c) the combined
effects of temperature, photoperiod, and soil moisture; (2) evaluate the
influence of tree characteristics (e.g., RCN, age, height, and DBH) on cE;
and (3) identify long-term trends in cE and quantify the spatial vari-
ability in the magnitude of these trends.

2. Material and methods
2.1. Study sites

We used wood formation data from 34 sites across the Northern
Hemisphere, covering a broad range of temperature and photoperiod
conditions (40.0°N to 67.5°N, 79.2°W to 26.4°E) and elevations from 30
m to 2,156 m asl (Fig. 1, Supporting Information Table 1). These data
were collated in the GloboXylo database (https://appgeodb-preprod.
nancy.inrae.fr/globoxylo/en/) and include wood formation and mete-
orological records collected by multiple research teams from 2002 to
2013 (Table 1, Supplementary Table 1). For this work, we focused on
three coniferous species well-represented in the database, namely Scots
pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and black
spruce (Picea mariana Mill.). In total, we analyzed 718 observations of
the date of the cessation of xylem cell enlargement across 130 site-years.
All sampled trees were dominant individuals, with an average (+ SD)
age of 119 + 56 years, a diameter at breast height (DBH) of 31.4 &+ 14.6
cm, and a tree height of 20.0 + 7.8 m (Supplementary Table 1).
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2.2. Wood formation data

To observe wood formation phenology, 5 + 2 trees were selected per
study site and sampled every 1 or 2 weeks from May to October during
2002-2013, depending on local climate conditions. Microcore collection
and processing followed established protocols (Prislan et al., 2022;
Rathgeber et al., 2011b; Rossi et al., 2006a; Rossi et al., 2006b). At least
three radial files were examined per tree. In this work we focused on the
cessation of xylem cell enlargement (cE). cE was defined as the day of
year (DoY) when less than 50% of the observed radial files contained one
(or more) enlarging xylem cell, characterized by a wide lumen and thin
primary walls (Rathgeber et al., 2011b). Observations from different
research teams were systematically verified, standardized, and analysed
using the R package CAVIAR (Rathgeber et al., 2011b, 2018), which
applies logistic regressions and visualization tools to estimate the timing
of key xylogenesis phases, such as the cessation of xylem -cell
enlargement.

2.3. Temperature and photoperiod data

Temperature data were monitored at the study sites (Fig. 1). How-
ever, some temperature records from local weather stations contained
missing values. To fill these gaps, we used the EWEMBI gridded mete-
orological dataset (grid resolution = 0.5°, http://doi.org/10.5880/pik
.2019.004, Frieler et al., 2017), and established linear regressions be-
tween the local observations and corresponding EWEMBI values. The
correlation between overlapping local and EWEMBI temperature time
series ranged from 0.95 to 0.99, ensuring high consistency. Day length
was calculated daily as a function of latitude, using R package insol
(Corripio, 2019). Soil moisture data (m® m~3) was obtained from
ERAS5-Land reanalysis dataset provided by the European Center for
Medium-Range Weather Forecast, with a grid resolution of 0.25°
(Hersbach, 2023). For this study, we used soil moisture data from a
depth range of 0-289 cm.

2.4. Model description

We designed and evaluated three ecophysiological models to predict
cE in the three conifer species of interest (Table 2). The first model as-
sumes that cumulative temperature is the main driver of cE, based on its
strong correlation with xylem formation timing across climate gradients
(Rossi et al., 2016) and that low temperature can induce the cessation of
cambium activity (Begum et al., 2018; Gricar et al., 2006). The second
model adds photoperiod as a co-regulator, reflecting its established role
in growth cessation. This formulation parallels prior models for
autumnal leaf senescence (Delpierre et al., 2009). The third model ex-
tends the second by incorporating soil moisture, following Wu et al.

Species
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(2022), to simulate earlier cE under drought conditions. This addition
accounts for the role of water availability in limiting turgor-driven cell
expansion.

2.4.1. Temperature sum (Ts) model

To represent the influence of decreasing temperatures on cE, we built
upon the model of Delpierre et al. (2009), who proposed a model of leaf
senescence based on cooling degree-days.

In this model (Ts model in the following), we assume that cE occurs
when temperature accumulation (below a specific threshold) reaches a
critical value.

The model is based on a temperature-dependent accumulation rate
Rc(t), defined as:

B 0, T(t) > T
Reft) = { (T, — T, T0) < T, v

where T(t) is the daily mean air temperature on day t, T} is the maximum
temperature threshold below which temperature influences cE (°C), x is
a dummy parameter that can take values (0, 1, 2) to represent absent,
proportional, or more-than-proportional temperature effects (Delpierre
et al., 2009). Higher (up to three) and continuous (non-discrete) values
of the x were tested in preliminary simulations, but they did not improve
the model’s fit.

The temperature accumulation S(t) is computed as the cumulative
sum of Rc from a defined starting date Dstart until day t:

t
S(t)=> Rc @)
Dstart
The day of wood formation cessation, cE, is then identified as the first
day t when the accumulated temperature S(t) reaches the required
temperature accumulation Ycrit (in degree-days):

cE = (t) such that S(t) > Ycrit 3)

2.4.2. Photoperiod-influenced temperature sum (PiTs) model

In the photoperiod-influenced temperature sum (PiTs) model, we
also assumed that cE occurs when a given accumulation of temperature
is reached. However, unlike the Ts model, the rate of temperature
accumulation is modified by night length. This adjustment accounts for
the role of photoperiod in influencing the cessation of xylem enlarge-
ment (Mu et al., 2023). The temperature accumulation rate Rc(t) is
calculated as follows:

0, T(t) >Ty

Re0 ={ 1, 100 P 0 < “

where P(t) is the night length on the day t, f[P(t)] is a photoperiod

¥

* Rex
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Fig. 1. Distribution of the study sites.
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function defined as:

f[P(t)] = P(t) — NLmin (5)

where NLmin is the minimum night length at each site (i.e. occurring at
summer solstice). Since our dataset span a wide latitudinal gradient, we
accounted for site-to-site variability in absolute night length by
considering relative night length, subtracting the minimum night length
at each site. In Eq. (4), the dummy parameter y may take discrete values
(0, 1, 2) to allow for any absent, proportional, or more than proportional
effects of photoperiod (Delpierre et al., 2009). Preliminary tests with
higher (up to three) and continuous (non-discrete) values of the y did not
improve model performance.

2.4.3. Soil moisture- and photoperiod-influenced temperature sum
(SMPiTs) model

Building upon the PiTs model, we developed a third variant, the soil
moisture- and photoperiod-influenced temperature sum model (SMPiTs
model), to account for the influence of soil moisture on cE. Consistent
with assumptions of the two other models, we posit that cE occurs when
the accumulated temperature surpasses a critical threshold Ycrit. How-
ever, we further hypothesized that Ycrit is modulated by pre-season soil
moisture (PreSM, in m® m~>) considered during the month preceding the
average cE date across all populations of a given tree species. This
approach draws on the methodology proposed by Wu et al. (2022),
which examined the effects of soil moisture on leaf senescence. In
SMPiTs, we calculate Ycrit as follows:

Ycrit = a +b x PreSM + ¢ x PreSM? (6)

where @, b, c are model parameters quantifying the effect of soil moisture
on Ycrit.

The calculation of Rc remains consistent with the PiTs model (Egs.
(4) and (5)). cE is determined using Eqs. (2), (3), and Ycrit from Eq. (6).

2.5. Model calibration and validation

The cE data observed at the tree scale were randomly split into
calibration (70%) and validation (30%) subsets, with calibration per-
formed at the site-year level. To ensure comparability, we verified that
the distributions of the calibration and validation subsets were statisti-
cally similar using the Wilcoxon rank-sum test (p>0.50). To address
potential variability in model fitting and parameter estimation arising
from the specific calibration subset chosen, the calibration procedure
was repeated 100 times, each using a new random split of the data at the
site-year level (Delpierre et al. 2019). Model evaluation results reported
below are based on the validation subsets (i.e. independent from cali-
bration data).

Model parameters were fitted using the ‘optim’ function in R software
(R Core Team, 2023). The lower and upper bounds used in the param-
eter fitting procedure are provided in Supplementary Table 2.

Model performance was evaluated using the root mean square error
(RMSE), model efficiency (ME), and the corrected Akaike information
criterion (AICc). Among the three metrics, AICc is primarily used to
select the best-fitting model, as it balances model accuracy and parsi-
mony. The model with the lowest AICc is considered to be the best
supported by the data. Model comparisons are based on AAICc, where a
difference of less than 2 indicates that models are equivalent (Burnham

Table 1
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Table 2

Overview of the tested models and their parameters. T} is the maximum tem-
perature at which the processes leading to the cessation of cell enlargement are
considered to be effective (°C). The dummy parameter x, y may take any of the
(0, 1, 2) discrete values, to allow for any absent/proportional/more than pro-
portional effects of temperature to be included (Delpierre et al., 2009). Ycrit is
the requirement of low temperature accumulation (in degree-days). Dstart is the
start date of temperature accumulation (DoY). a, b, c are the parameters eval-
uating the effect of soil moisture on Ycrit.

Model Type Environmental Fitted Equations
name variables parameters
(Number of
parameters)
Ts Temperature sum Temperature Ty, x, Yecrit, ), (2,
Dstart (4) 3)
PiTs Photoperiod- Temperature, Ty, X, y, Yerit, ), (3),
influenced photoperiod Dstart (5) ), (5)
temperature sum
SMPiTs Soil moisture and Temperature, Ty, X, ¥, 4, b, ¢, 2), (3),
photoperiod- photoperiod, soil Dstart (7) @, (5),
influenced moisture 6)

temperature sum

and Anderson, 2002).

2.6. Evaluating the model ability to simulate inter-site and interannual
variability

We assessed the model ability to simulate the inter-site and inter-
annual variability of cE. For this, 1) we compared the predicted and
observed cE, averaged at the scale of the site; and 2) we compared the
annual observed and simulated cE anomalies, calculated as the differ-
ence between the cE data at the site-year scale and the site average cE
date, which was established over the observation period.

2.7. Temporal changes of cE

To examine the spatial variability in the temporal changes of cE over
the past six decades, we reconstructed the timing of cE from 1960 to
2023 using our modelling approach and temperature data sourced from
ERA5-Land (gridded dataset, 0.1° resolution; Munoz Sabater et al.,
2024). We established linear regressions between the local observations
and corresponding ERA5-Land values to remove biases in ERA5-Land
data. The temporal changes of cE (in days year™) were calculated for
each site. A linear model was then used to evaluate the effects of
elevation and latitude on the temporal changes. Elevation and latitude
data were standardized using z-scores prior to analysis.

2.8. The effect of ontogenetic factors and individual tree dimensions on cE

To assess the impact of tree “intrinsic factors” on cE, we analysed the
relationships between tree characteristics (annual ring cell number
(RCN), age, height, and diameter at breast height (DBH)) and our model
residuals. Apart from RCN, which is at the tree level, all other intrinsic
factors are site-level averages. The model residuals are calculated as the
observed cE minus the predicted cE. We used the “corrplot” function
from the R package corrplot (Wei and Simko, 2021) to visualize the
Pearson correlations between tree characteristics and model residuals.

Overview of cambium phenology data for three Northern Hemisphere conifer species. cE is the date (day of year, DoY) of the cessation of xylem cell enlargement. MAT

refers to mean annual temperature, with standard deviation shown in parentheses.

Species Number of sites Year cE (min/mean/max, DoY) Elevation (min/median/max, m) MAT (sd, °C)
Picea abies 19 2004-2005, 2007-2013 207/231/257 30/1350/2085 5.1 (2.4)
Picea mariana 7 2002-2010 196/214/233 271/342/611 0.9 (1.7)
Pinus sylvestris 13 2005-2011, 2013 221/248/277 60/430/1690 8.1 (3.0)
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2.9. The effect of within-population variability of cE on prediction
accuracy

We tested whether within-population variability in cE affects the
model prediction accuracy. We quantified the model prediction accu-
racy with the RMSE, calculated for each site-year over the observed and
predicted cE values for individual trees. (Note that our ecophysiological
models predict one cE date for each site-year, but that cE can vary
among trees observed in a given site-year.). Population variability in cE
was represented by the standard deviation of cE across all trees within
each site-year.

3. Results
3.1. Observations of the cessation of xylem cell enlargement

In our dataset, the observed date of cessation of xylem cell enlarge-
ment (cE) varied from 15 July (DoY196) for black spruce (Picea mariana)
to 3 October (DoY 277) for Scots pine (Pinus sylvestris), spanning 81 days
(Table 1). In general, black spruce was the earliest species to stop cell
enlargement, on average on DoY 214 + 9, followed by Norway spruce
(Picea abies, DoY 231 + 12, 2 weeks after) and Scots pine (DoY 248 +
17, 4 weeks after). cE spanned 37 days for black spruce to 56 days for
Scots pine (Table 1), reflecting the species-specific differences in data
collection areas (larger for Scots pine and Norway spruce, lower for
black spruce, Fig. 1).

3.2. Performance of the models

Among the three models considered (Ts, PiTs, SMPiTs), the PiTs
model performed best for predicting cE in Norway spruce and black
spruce, as indicated by the lowest AICc values and highest ME (Table 3).
For Scots pine, the PiTs and Ts model yielded identical RMSE, with a
lower AICc for the Ts model (of simpler structure). In the following, we
will therefore consider PiTs as a reference model for species comparison.
The PiTs model predicted cE with an average error of 9.2 + 1.3 days for
the three species (Fig. 2). A plot of the observed and simulated cE dates
showed that PiTs model performed reasonably well at both the indi-
vidual tree scale (grey dots in Fig. 2) and the site-year scale (colored
points in Fig. 2), with most data points clustering near the 1:1 line.
However, the PiTs model performance was lower for black spruce
compared to Norway spruce and Scots pine despite a relatively low
RMSE (8 days, Table 3). The SMPiTs model clearly performed worst for
Norway spruce and Scots pine, with highest AAICc and RMSE (Table 3).
In black spruce, although SMPiTs yielded a slightly lower RMSE than
PiTs, its higher AICc suggests that the two models performed similarly

Table 3

Quality assessment of models for the cessation of xylem cell enlargement (cE). Ts
model: The model which only considers the effect of temperature, PiTs model:
The model considers the effect of temperature and photoperiod, SMPiTs model:
The model considers the effect of temperature, photoperiod and soil moisture.
Root mean square error (RMSE), model efficiency (ME), corrected Akaike In-
formation Criterion (AICc) and AAICc are used to evaluate the model perfor-
mance. AAICc represents the difference between the AICc of each model and the
minimum AICc value among models for the same species. Bolded rows indicate
the best-performing model (i.e., lowest AICc) for each species.

Species Model RMSE (days) ME AlCc AAICc
Picea abies Ts model 9.7 0.30 1045.3 9.4
PiTs model 9.2 0.37 1035.9 0
SMPiTs model 9.8 0.31 1054.9 19.0
Picea mariana Ts model 8.4 0.12 680.2 5.4
PiTs model 8.0 0.20 674.8 0
SMPiTs model 7.8 0.24 676.4 1.6
Pinus sylvestris Ts model 10.5 0.60 441.8 0
PiTs model 10.5 0.60 445.0 3.2

SMPiTs model 11.9 0.49 465.3 23.5
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Fig. 2. Photoperiod-influenced low temperature sum (PiTs) model evaluation
over validation data for three Northern Hemisphere coniferous tree species. The
colored points establish the correspondence between the observed and pre-
dicted cessation of xylem cell enlargement (cE) at site-year scale. The point
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Table 4

Parameters of PiTs model. T}, is the threshold of low temperature accumulation
(°C), below which temperature can be accumulated. Ycrit is the requirement of
low temperature accumulation. Dstart is the start date for low temperature
accumulation (DoY). The dummy parameters x and y may take any of the {0, 1,
2} discrete values.

Species Tp Yerit Dstart x y

Picea abies 23.8 3075.8 200 2 1

Picea mariana 30.0 3105.7 190 2 1

Pinus sylvestris 23.7 2787.9 200 2 0
(AAICc < 2).

3.3. Parameters of the PiTs model

The fitted parameters of the PiTs model differed among species
(Table 4). The upper temperature threshold (Th) was comparable for
Norway spruce and Scots pine (~23.8°C) but distinctly higher for black
spruce (30.0°C). The temperature accumulation requirement (Ycrit) was
highest for black spruce at 3105.7 degree-days, followed by Norway
spruce at 3075.8 degree-days, and notably lower for Scots pine at 2787.9
degree-days. Regarding environmental drivers, both spruce species
showed sensitivity to photoperiod (x = 2, y = 1), whereas Scots pine
responded solely to temperature (x = 2, y = 0). The start date for tem-
perature accumulation (Dstart), was similar across all species, with the
earliest start in July, for black spruce on 9 July (DoY 190) and the latest
start for both Norway spruce and Scots pine on 19 July (DoY 200).
Parameter estimates varied across the 100 random calibra-
tion—validation splits, yet model performance remained highly consis-
tent (Supplementary Fig. 1). Parameter distributions are shown in
Supplementary Fig. 2.

3.4. Simulating the intersite and interannual variability of cE

The model's predictions for cE were effective at capturing inter-site
variability, showcasing its strong ability to reflect differences among
locations (Fig. 3a). The model achieved the lowest RMSE for black
spruce (4.5 days), followed by Norway spruce (7.6 days), and the highest
RMSE for Scots pine (8.3 days). This performance was further supported
by the model efficiency (ME), with Norway spruce achieving ME of 0.38,
black spruce at 0.39 and Scots pine at 0.76, indicating reasonable per-
formance across different locations (Fig. 3). However, the model was
less effective at capturing annual anomalies, especially for black spruce
(Fig. 3b). Despite relatively low RMSE values, ME was low. For instance,
Norway spruce had an RMSE of 6.7 days with a ME of 0.19, Scots pine
showed an RMSE of 6.4 days but a ME of 0.10, and black spruce had an
RMSE of 6.5 days with a ME of 0.02. This lower temporal predictive skill
corresponds with the markedly higher temperature variability observed
across sites compared to the limited year-to-year fluctuations within
sites (Supplementary Fig. 3).

3.5. Geographic variability of the temporal changes of cE

Using the PiTs model, we reconstructed cE timing from 1960 to 2023
and quantified site-level linear trends. A significant delay in cE was
detected across the past six decades, although the magnitude varied
among species and regions (Fig. 4). Scots pine showed the largest delay
(0.15 + 0.09 days yr), followed by Norway spruce (0.07 + 0.05 days
yr™1) and black spruce (0.02 + 0.01 days yr!). Variation among sites was
greatest for Scots pine, consistent with its broad geographic range
(Fig. 4a). Patterns in delay rate were further explained by elevation and
latitude (Fig. 4b). For Norway spruce, both elevation and latitude had
significant negative effects on the delay rate (p < 0.001), based on a
multiple regression model including both predictors (R g = 0.90). For
black spruce, latitude explained the variation in delay rate (p < 0.1),
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while elevation had no significant effect (p > 0.1; R? adj = 0.65). In Scots
pine, latitude exerted a strong negative effect (p < 0.001), while
elevation had a weaker but still significant influence (p < 0.01; R%qj =
0.84).

3.6. The effect of tree characteristics on the cessation of xylem cell
enlargement

We examined model residuals to evaluate whether tree characteris-
tics contributed to systematic prediction error. Tree diameter at breast
height (DBH) and height showed significant positive relation with model
residuals for Scots pine (p < 0.01, Fig. 5a). Notably, the total ring cell
number (RCN) was also positively correlated with the model residuals in
black spruce (p < 0.01), Norway spruce (p = 0.05) and Scots pine (p =
0.1, Fig. 5a, Supplementary Fig. 4). In contrast, tree age did not signif-
icantly affect residuals in any species (Fig. 5a). Beyond tree character-
istics, the prediction error at the site-year level was significantly affected
by the inter-tree variability in cE within each site-year. The model error
(RMSE) was higher in site-years of higher inter-tree variability (p <
0.01, Fig. 5b).

4. Discussion

This study advances our understanding of phenological phases of
wood formation in temperate coniferous species by identifying factors
affecting the cessation of xylem cell enlargement (cE), which marks the
end of stem radial growth. We examined the roles of temperature,
photoperiod and soil moisture by developing three ecophysiological
models that integrate these drivers. Among them, the PiTs model, which
combines temperature and photoperiod, proved applicable across all
three species. Overall, the PiTs model showed strong predictive accu-
racy, with a cross-species RMSE of 9.2 £ 1.3 days. This performance is
consistent with the temporal resolution typically reported in xylogenesis
monitoring studies, where the timing of cE is generally captured within a
7- to 14-day observational window.

4.1. Temperature and photoperiod control of cE

The PiTs model, supported by the majority of our data, emphasizes
the critical roles of temperature and photoperiod in regulating cE across
extensive geographical gradients. Previous research has demonstrated
that low temperatures (approximately 10°C in experiments) are essen-
tial for controlling cambial activity and xylem cell differentiation
(Begum et al., 2016; Begum et al., 2018; Gricar et al., 2006). Expanding
on these findings, our results indicate that accumulated temperature
plays a key role in driving cE. Although the fitted base temperature (Tb)
in the PiTs model (24-30°C; Supplementary Fig. 2) appears relatively
high, our critical values show strong agreement with leaf senescence
models (25-29°C) (Archetti et al., 2013; Delpierre et al., 2009; Yang
et al., 2012), providing a reference range in the absence of established
thresholds. Furthermore, assessing the contributions of temperature
ranges to the required temperature accumulation (Ycrit) revealed that
accumulation is mainly driven by low-to-moderate temperatures,
despite high fitted Tb (Supplementary Fig. 6). This dependence, ampli-
fied by the non-linear parameter (x = 2), highlights that "temperature
decline", rather than absolute low temperature, is the primary driver of
cE. Interestingly, the critical temperature sums estimated by the model
are also consistent with those required to halt cambial activity in Gricar
et al.’s stem-chilling experiments (the argument holds for Norway
spruce, see Supplementary Fig. 5, Gricar et al., 2006), supporting the
plausibility of our fitted thresholds. This broader understanding en-
hances our perspective on how temperature influences the cessation of
wood formation.

Photoperiod signals the cessation of radial growth (Cuny et al., 2015;
Saderi et al., 2019), a response that is particularly pronounced in trees at
higher latitudes (Ekberg et al., 2010). In this study, we assumed that
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photoperiod influences cE by modulating temperature accumulation,
referencing previous models used for simulating leaf senescence
(Archetti et al., 2013; Delpierre et al., 2009; Liu et al., 2019; Yang et al.,
2012). Although temperature strongly influenced cE in all species (x =
2), incorporating photoperiod significantly improved model perfor-
mance for Norway and black spruce (y = 1), but not for Scots pine (y =
0). This species-specific insensitivity aligns with experimental observa-
tions that Scots pine shoot growth ceases despite continued light expo-
sure (Ekberg et al., 2010), and that its radial growth shows a weaker
correlation with photoperiod compared to Norway spruce (Cuny et al.,
2015).

4.2. Spatial variability and model limitations

The PiTs model robustly captured spatial variability in cE across the
broad environmental gradient, reflecting geographic differences in
temperature accumulation influenced by photoperiod (Supplementary
Fig. 7). This performance suggests that environmental drivers dominate
over local adaptation (Perrin et al., 2017). However, the model’s limited
ability to reproduce inter-annual variability highlights a challenge
linked to our dataset structure. Characterized by high spatial but low
temporal variance (3 + 2 years per site), this dataset hampers the
detection of temporal drivers (Butto et al., 2020). We therefore tested
whether incorporating soil moisture could resolve these unexplained

inter-annual fluctuations. Contrary to expectations, this inclusion did
not enhance model performance regardless of the integration window or
depth. While Cabon et al. (2020) successfully linked inter-annual vari-
ations to water potential, a direct proxy for turgor pressure, our reliance
on gridded soil moisture likely provided an incomplete representation of
water stress. This limitation is particularly relevant in mountainous re-
gions where gridded estimates lack precision, and at high-latitude sites,
such as those in Canada (Butto et al., 2020), that rarely experience
significant moisture limitations. Consequently, although the PiTs model
effectively captures the primary thermal and photoperiodic controls,
future refinements should prioritize precise, site-specific water potential
data to better resolve inter-annual dynamics.

4.3. Intrinsic constraints on prediction accuracy

Predicting the cessation of wood formation is inherently more
challenging than its spring resumption due to multifactorial constraints
(Cuny et al., 2019; Dox et al., 2020; Rossi et al., 2016). For example, the
chilling-influenced heat-sum model predicts the beginning of cell
enlargement (bE) with an accuracy better than 7 days (Delpierre et al.,
2019), whereas the mean RMSE for cE in our study is 9.2 days. This
lower accuracy reflects not only complex autumnal drivers but also the
strong influence of intrinsic factors on growth cessation (Rathgeber
et al., 2016; Rathgeber et al., 2011a). The total ring cell number (RCN),
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which is influenced by both environmental factors and hormones, affects
the timing of cE because producing more cells prolongs the enlargement
period (Rossi et al., 2012). Consistent with this mechanism, all three
species showed positive associations between RCN and model residuals.
Tree size, particularly diameter at breast height (DBH) and height, also
influenced residuals in the Scots pine, whereas no such effect was
detected in the spruces. This pattern is consistent with the lack of
consensus in previous studies, where some species show size-related
extensions of the growing season (e.g., Abies alba; Rathgeber et al.,
2011a) while others do not (e.g., Juniperus przewalskii; Zeng et al., 2017).
Age had no significant effect across species (p > 0.05), consistent with
Rossi et al. (2008), who reported similar cE timing across age classes in
Norway spruce. These findings support our second hypothesis by
demonstrating that tree-specific characteristics, particularly RCN, can
influence cE, and thereby affect model accuracy.

Additionally, each site's RMSE increased with within-population
variability in cE (p < 0.05), indicating that high population-level vari-
ability reduces prediction accuracy (Rathgeber et al., 2016). This also
helps explain why cE is harder to model than bE, since cE exhibits
markedly higher within-population variability (Supplementary Fig. 8).
Finally, although observations followed a standardized protocol
(Rathgeber et al., 2011b; Rossi et al., 2016), cE is inherently more
difficult to determine than bE (Rathgeber et al., 2018), which lowers
measurement precision and further contributes to reduced model per-
formance. These results underscore the importance of incorporating
intrinsic and environmental factors to enhance the predictive perfor-
mance of cambium phenology models.

4.4. Physiological mechanisms underlying the model

The predictive success of the PiTs model likely stems from the fact
that its environmental drivers, temperature and photoperiod, act as
primary proxies for the complex physiological cascades regulating
xylem differentiation. Current evidence indicates that these environ-
mental cues act upstream of interconnected hormonal and metabolic
pathways that ultimately suppress cambial activity. Specifically, short-
ening photoperiods and declining temperatures signal the down-
regulation of auxin (IAA) and gibberellins (GAs), reducing the division
potential of cambial initials and the enlargement capacity of differen-
tiating xylem cells (Butto et al., 2019; Eriksson et al., 2000; Immanen
et al., 2016). Concomitantly, metabolic constraints arise as lower tem-
peratures suppress the activity of key enzymes involved in cell-wall
loosening and sucrose hydrolysis, thereby limiting turgor-driven
expansion (Deslauriers et al., 2016; Immanen et al., 2016; Simard
et al., 2013). Furthermore, seasonal shifts in carbohydrate allocation,
characterized by the redirection of soluble sugars towards cold accli-
mation rather than structural growth, provide an additional
carbon-based signal contributing to cessation (Simard et al., 2013). By
integrating temperature and photoperiod, the PiTs model implicitly
captures these coordinated physiological shutdowns, although explicitly
incorporating such mechanistic links remains a frontier for improving
model realism under future climate scenarios.

4.5. Warming-driven shifts in cE across regions and species

By incorporating photoperiod and temperature, our model success-
fully captures regional patterns of wood formation cessation. Using this
framework to reconstruct cE over the past six decades, we found a
widespread delay in cessation, with clear geographic variation that
supports our third hypothesis. For Norway spruce and Scots pine, delay
rates declined with increasing latitude and elevation, reflecting the
limited capacity of trees in colder environments to extend the enlarge-
ment period (Rossi et al., 2006¢; Rossi et al., 2011). In black spruce, the
latitudinal pattern was weak and only marginally significant (p < 0.1),
likely due to its narrower geographic range compared to the other
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species. Photoperiod further modulated these trends (Luo et al., 2018),
as strong daylength constraints at high latitudes restricted the
warming-driven delay in Norway spruce (Supplementary Fig. 7), while
at low latitudes, longer early-autumn daylength slowed temperature
accumulation and therefore postponed cE (Cuny et al., 2015; Jyske
et al., 2014; Saderi et al., 2019). These results highlight the need to
consider both geographic context and species-specific sensitivities when
evaluating warming effects on wood formation.

5. Conclusion

Our study establishes the PiTs model as a robust ecophysiological
framework for predicting cE in temperate conifers. We identified tem-
perature decline, modulated by photoperiod, as the primary driver of
growth cessation, revealing distinct species-specific sensitivities,
particularly the lower photoperiodic responsiveness of Scots pine. By
applying this model across extensive climate gradients, we quantified
warming-induced delays in cessation, providing a scalable tool to
enhance the realism of growing season dynamics in global carbon cycle
models (Delpierre et al., 2016; Eckes-Shephard et al., 2022; Friend et al.,
2019, 2022). While the model effectively captures spatial variability,
challenges remain in reproducing inter-annual fluctuations, largely due
to the limited temporal resolution of current datasets and the lack of
site-specific water potential measurements. Future research should pri-
oritize long-term monitoring to further refine these temporal dynamics
and improve forest productivity simulations under climate change.
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