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A B S T R A C T

Cambium phenology is a crucial process in wood production and carbon sequestration of forest ecosystems. 
Although cambium phenology has been widely studied, research specifically focusing on the cessation of wood 
formation remains limited. To better understand the influence of environmental and intrinsic factors on the 
cessation of wood formation, we built and compared three ecophysiological models (temperature sum model, 
photoperiod-influenced temperature sum model and soil moisture- and photoperiod-influenced temperature sum model) 
in their ability to predict the date of cessation of xylem cell enlargement (cE) in three major Northern Hemi
sphere conifer species (Black spruce, Norway spruce and Scots pine). We developed these models based on 
xylogenesis data collected for 130 site-years across Europe and Canada. Our results demonstrate that the 
photoperiod-influenced temperature sum model is well-supported by data across all conifer species, with a RMSE of 
9.2 days, suggesting that both temperature and photoperiod are critical drivers of wood growth cessation. 
However, incorporating soil moisture effects does not improve model performance. Our model effectively cap
tures the inter-site variability in cE across a wide environmental gradient, with a fair model efficiency (ME =
0.51 ± 0.22), but performed less well for annual anomalies (ME = 0.10 ± 0.09). Additionally, we found that the 
total ring cell number also affected prediction accuracy. Using this model, we reconstructed historical trends in 
cE over the past six decades and found a trend to delayed cessation dates. This delay varied geographically, with 
slower shifts at higher latitudes and elevations, likely due to constrained cambial responses and conservative 
growth strategies in colder regions. Our model framework offers a simple yet accurate approach for predicting 
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wood growth cessation at large spatial scales, providing a basis for integrating cambium phenology into land 
surface models and forest productivity assessments.

1. Introduction

Cambium phenology is crucial for plant functioning and ecosystem 
services (Cabon et al., 2020; Chen et al., 2022; Huang et al., 2023; Rossi 
et al., 2011). Changes in cambium phenology, such as the onset, cessa
tion, or duration of wood formation, can significantly impact the amount 
of carbon sequestrated by trees under changing climate conditions 
(Chen et al., 2022; Delpierre et al., 2019; Eckes-Shephard et al., 2022). 
Despite its importance, cambium phenology has been relatively under
studied compared to leaf phenology (Delpierre et al., 2016; Dox et al., 
2022). Similarly to the autumnal phases of leaf phenology, the cessation 
of wood formation remains less studied than its onset in spring, probably 
due to the complex interplay between environmental and intrinsic fac
tors influencing it (Cuny et al., 2019; Dox et al., 2020; Rossi et al., 2016). 
Furthermore, tracking the cessation of wood formation is inherently 
more challenging than its beginning, as it involves subtler, slower, and 
less visible processes (Rathgeber et al., 2016). While ecophysiological 
models exist for predicting the onset of wood formation (Delpierre et al., 
2019), models for its cessation are notably lacking. This represents a 
critical research gap, as the timing of cessation of wood formation is 
rarely represented in terrestrial ecosystem models (TEMs), although 
influencing the simulated productivity (Delpierre et al., 2016; Friend 
et al. 2019). In this context, developing robust ecophysiological models 
for simulating the seasonal cessation of wood formation is essential.

In the process of wood formation, the cessation of xylem radial 
growth typically occurs in summer or earlier under unfavourable tem
perature or water deficit conditions (Saderi et al. 2019). This process 
follows a sequential pattern: first, cambium cell division ceases, fol
lowed by the cessation of xylem cell enlargement, with a time lag 
varying among species (Rossi et al., 2006b), marked by the end of radial 
expansion of xylem cells. Several weeks later, the cessation of cell wall 
thickening marks the completion of wood formation and the end of 
carbon sequestration (Cuny et al., 2015).

The seasonality of wood formation results from a complex interplay 
between environmental and intrinsic factors (Aloni, 2013; Delpierre 
et al., 2016; Rossi et al., 2016). Temperature, a key environmental 
factor, directly influences wood formation by affecting cell structure 
(Cuny and Rathgeber, 2016; Friend et al., 2022; Rathgeber et al., 2016) 
and regulating processes such as cambial cell division, hormones 
metabolism and activity (Rathgeber et al., 2016; Schrader et al., 2003). 
Manipulative experiments show that locally-cooled stem sections stop 
cambial cell division earlier than non-cooled sections, confirming that 
low temperatures induce cambial dormancy (Begum et al., 2016; Begum 
et al., 2018; Gričar et al., 2006). Beyond temperature, soil moisture and 
photoperiod also influence cambium phenology. Reduced soil water 
availability can halt cambial activity and xylem cell enlargement (Cabon 
et al., 2020; Gričar and Čufar, 2008; Traversari et al., 2018), while 
photoperiod regulates peak growth rates and influences the cessation of 
wood formation in temperate and boreal forests (Cuny et al., 2015; 
Jackson, 2009; Rossi et al., 2006c). In addition to environmental in
fluences, ontogenetic factors modulate cambium phenology, with 
younger and taller trees exhibiting longer periods of xylogenesis 
(Rathgeber et al., 2011a; Rossi et al., 2008; Zeng et al., 2017). Moreover, 
the onset of cambial activity determines the number of radial cells 
produced, which in turn influences the timing of the cessation of wood 
formation (Deslauriers et al., 2008; Gričar et al., 2005; Lupi et al., 2010; 
Rossi et al., 2012). In this context, disentangling the roles of environ
mental and tree internal factors is critical for developing robust pre
dictive models of wood formation cessation.

Existing process based wood growth models can simulate xylem 
growth cessation (Cabon et al., 2020; Schiestl-Aalto et al., 2015; Vaga
nov et al., 2006), but they generally rely on bottom-up, cell-level 
frameworks and focus on intra-annual dynamics. Despite their mecha
nistic detail, these models often perform poorly in capturing growth 
cessation (e.g., the Vaganov–Shashkin model (Buttò et al., 2020; 
Tumajer et al., 2021)). Furthermore, the validation of such models has 
typically been restricted to narrow temporal and spatial scales (Cabon 
et al., 2020; Schiestl-Aalto et al., 2015). Similarly, statistical models of 
cambium phenology are often limited to case studies. A key example is 
the temperature-threshold model developed by Rossi et al. (2011), 
which, despite projecting delayed cessation of cell-wall thickening 
under warming, was calibrated using only a seven-year black spruce 
dataset and its applicability was restricted to a single species and region. 
These limitations underscore the urgent need for ecophysiological 
models capable of integrating multiple environmental drivers to 
robustly simulate wood formation cessation across broader geographic 
gradients, extended time periods, and diverse species.

Here we developed three ecophysiological models to predict the 
cessation of xylem cell enlargement in three conifer species (Pinus syl
vestris, Picea abies and Picea mariana) across Europe and Canada. The 
models were parameterized and evaluated using direct observations of 
the date of cessation of xylem cell enlargement from the GloboXylo 
database. We tested the hypotheses that (a) all ecophysiological models 
can effectively capture the cessation of xylem cell enlargement (cE in the 
following), with the most accurate prediction coming from the model 
incorporating temperature, photoperiod, and soil moisture as environ
mental drivers; (b) tree characteristics, including total ring cell number 
(RCN), age, height, and diameter at breast height (DBH), also influence 
cE; and (c) retrospective model simulations would reveal a trend toward 
later cessation dates of xylem cell enlargement over the past six decades, 
but the magnitude of the delay differs by region. To test these hypoth
eses, we aimed to: (1) assess whether the interannual and inter-site 
variability of cE could be explained by (a) temperature alone, (b) the 
combined effects of temperature and photoperiod, or (c) the combined 
effects of temperature, photoperiod, and soil moisture; (2) evaluate the 
influence of tree characteristics (e.g., RCN, age, height, and DBH) on cE; 
and (3) identify long-term trends in cE and quantify the spatial vari
ability in the magnitude of these trends.

2. Material and methods

2.1. Study sites

We used wood formation data from 34 sites across the Northern 
Hemisphere, covering a broad range of temperature and photoperiod 
conditions (40.0◦N to 67.5◦N, 79.2◦W to 26.4◦E) and elevations from 30 
m to 2,156 m asl (Fig. 1, Supporting Information Table 1). These data 
were collated in the GloboXylo database (https://appgeodb-preprod. 
nancy.inrae.fr/globoxylo/en/) and include wood formation and mete
orological records collected by multiple research teams from 2002 to 
2013 (Table 1, Supplementary Table 1). For this work, we focused on 
three coniferous species well-represented in the database, namely Scots 
pine (Pinus sylvestris L.), Norway spruce (Picea abies Karst.) and black 
spruce (Picea mariana Mill.). In total, we analyzed 718 observations of 
the date of the cessation of xylem cell enlargement across 130 site-years. 
All sampled trees were dominant individuals, with an average (± SD) 
age of 119 ± 56 years, a diameter at breast height (DBH) of 31.4 ± 14.6 
cm, and a tree height of 20.0 ± 7.8 m (Supplementary Table 1).
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2.2. Wood formation data

To observe wood formation phenology, 5 ± 2 trees were selected per 
study site and sampled every 1 or 2 weeks from May to October during 
2002-2013, depending on local climate conditions. Microcore collection 
and processing followed established protocols (Prislan et al., 2022; 
Rathgeber et al., 2011b; Rossi et al., 2006a; Rossi et al., 2006b). At least 
three radial files were examined per tree. In this work we focused on the 
cessation of xylem cell enlargement (cE). cE was defined as the day of 
year (DoY) when less than 50% of the observed radial files contained one 
(or more) enlarging xylem cell, characterized by a wide lumen and thin 
primary walls (Rathgeber et al., 2011b). Observations from different 
research teams were systematically verified, standardized, and analysed 
using the R package CAVIAR (Rathgeber et al., 2011b, 2018), which 
applies logistic regressions and visualization tools to estimate the timing 
of key xylogenesis phases, such as the cessation of xylem cell 
enlargement.

2.3. Temperature and photoperiod data

Temperature data were monitored at the study sites (Fig. 1). How
ever, some temperature records from local weather stations contained 
missing values. To fill these gaps, we used the EWEMBI gridded mete
orological dataset (grid resolution = 0.5◦, http://doi.org/10.5880/pik 
.2019.004, Frieler et al., 2017), and established linear regressions be
tween the local observations and corresponding EWEMBI values. The 
correlation between overlapping local and EWEMBI temperature time 
series ranged from 0.95 to 0.99, ensuring high consistency. Day length 
was calculated daily as a function of latitude, using R package insol 
(Corripio, 2019). Soil moisture data (m3 m− 3) was obtained from 
ERA5-Land reanalysis dataset provided by the European Center for 
Medium-Range Weather Forecast, with a grid resolution of 0.25◦

(Hersbach, 2023). For this study, we used soil moisture data from a 
depth range of 0–289 cm.

2.4. Model description

We designed and evaluated three ecophysiological models to predict 
cE in the three conifer species of interest (Table 2). The first model as
sumes that cumulative temperature is the main driver of cE, based on its 
strong correlation with xylem formation timing across climate gradients 
(Rossi et al., 2016) and that low temperature can induce the cessation of 
cambium activity (Begum et al., 2018; Gričar et al., 2006). The second 
model adds photoperiod as a co-regulator, reflecting its established role 
in growth cessation. This formulation parallels prior models for 
autumnal leaf senescence (Delpierre et al., 2009). The third model ex
tends the second by incorporating soil moisture, following Wu et al. 

(2022), to simulate earlier cE under drought conditions. This addition 
accounts for the role of water availability in limiting turgor-driven cell 
expansion.

2.4.1. Temperature sum (Ts) model
To represent the influence of decreasing temperatures on cE, we built 

upon the model of Delpierre et al. (2009), who proposed a model of leaf 
senescence based on cooling degree-days.

In this model (Ts model in the following), we assume that cE occurs 
when temperature accumulation (below a specific threshold) reaches a 
critical value.

The model is based on a temperature-dependent accumulation rate 
Rc(t), defined as: 

Rc(t) =
{

0, T(t) > Tb
(Tb − T(t))x

, T(t) ≤ Tb
(1) 

where T(t) is the daily mean air temperature on day t, Tb is the maximum 
temperature threshold below which temperature influences cE (◦C), x is 
a dummy parameter that can take values (0, 1, 2) to represent absent, 
proportional, or more-than-proportional temperature effects (Delpierre 
et al., 2009). Higher (up to three) and continuous (non-discrete) values 
of the x were tested in preliminary simulations, but they did not improve 
the model’s fit.

The temperature accumulation S(t) is computed as the cumulative 
sum of Rc from a defined starting date Dstart until day t: 

S(t) =
∑t

Dstart
Rc (2) 

The day of wood formation cessation, cE, is then identified as the first 
day t when the accumulated temperature S(t) reaches the required 
temperature accumulation Ycrit (in degree-days): 

cE = (t) such that S(t) ≥ Ycrit (3) 

2.4.2. Photoperiod-influenced temperature sum (PiTs) model
In the photoperiod-influenced temperature sum (PiTs) model, we 

also assumed that cE occurs when a given accumulation of temperature 
is reached. However, unlike the Ts model, the rate of temperature 
accumulation is modified by night length. This adjustment accounts for 
the role of photoperiod in influencing the cessation of xylem enlarge
ment (Mu et al., 2023). The temperature accumulation rate Rc(t) is 
calculated as follows: 

Rc(t) =
{

0, T(t) > Tb
(Tb − T(t))x

× f [P(t)]y, T(t) ≤ Tb
(4) 

where P(t) is the night length on the day t, f[P(t)] is a photoperiod 

Fig. 1. Distribution of the study sites.
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function defined as: 

f [P(t)] = P(t) − NLmin (5) 

where NLmin is the minimum night length at each site (i.e. occurring at 
summer solstice). Since our dataset span a wide latitudinal gradient, we 
accounted for site-to-site variability in absolute night length by 
considering relative night length, subtracting the minimum night length 
at each site. In Eq. (4), the dummy parameter y may take discrete values 
(0, 1, 2) to allow for any absent, proportional, or more than proportional 
effects of photoperiod (Delpierre et al., 2009). Preliminary tests with 
higher (up to three) and continuous (non-discrete) values of the y did not 
improve model performance.

2.4.3. Soil moisture- and photoperiod-influenced temperature sum 
(SMPiTs) model

Building upon the PiTs model, we developed a third variant, the soil 
moisture- and photoperiod-influenced temperature sum model (SMPiTs 
model), to account for the influence of soil moisture on cE. Consistent 
with assumptions of the two other models, we posit that cE occurs when 
the accumulated temperature surpasses a critical threshold Ycrit. How
ever, we further hypothesized that Ycrit is modulated by pre-season soil 
moisture (PreSM, in m³ m⁻³) considered during the month preceding the 
average cE date across all populations of a given tree species. This 
approach draws on the methodology proposed by Wu et al. (2022), 
which examined the effects of soil moisture on leaf senescence. In 
SMPiTs, we calculate Ycrit as follows: 

Ycrit = a + b × PreSM + c × PreSM2 (6) 

where a, b, c are model parameters quantifying the effect of soil moisture 
on Ycrit.

The calculation of Rc remains consistent with the PiTs model (Eqs. 
(4) and (5)). cE is determined using Eqs. (2), (3), and Ycrit from Eq. (6).

2.5. Model calibration and validation

The cE data observed at the tree scale were randomly split into 
calibration (70%) and validation (30%) subsets, with calibration per
formed at the site-year level. To ensure comparability, we verified that 
the distributions of the calibration and validation subsets were statisti
cally similar using the Wilcoxon rank-sum test (p>0.50). To address 
potential variability in model fitting and parameter estimation arising 
from the specific calibration subset chosen, the calibration procedure 
was repeated 100 times, each using a new random split of the data at the 
site-year level (Delpierre et al. 2019). Model evaluation results reported 
below are based on the validation subsets (i.e. independent from cali
bration data).

Model parameters were fitted using the ‘optim’ function in R software 
(R Core Team, 2023). The lower and upper bounds used in the param
eter fitting procedure are provided in Supplementary Table 2.

Model performance was evaluated using the root mean square error 
(RMSE), model efficiency (ME), and the corrected Akaike information 
criterion (AICc). Among the three metrics, AICc is primarily used to 
select the best-fitting model, as it balances model accuracy and parsi
mony. The model with the lowest AICc is considered to be the best 
supported by the data. Model comparisons are based on ΔAICc, where a 
difference of less than 2 indicates that models are equivalent (Burnham 

and Anderson, 2002).

2.6. Evaluating the model ability to simulate inter-site and interannual 
variability

We assessed the model ability to simulate the inter-site and inter
annual variability of cE. For this, 1) we compared the predicted and 
observed cE, averaged at the scale of the site; and 2) we compared the 
annual observed and simulated cE anomalies, calculated as the differ
ence between the cE data at the site-year scale and the site average cE 
date, which was established over the observation period.

2.7. Temporal changes of cE

To examine the spatial variability in the temporal changes of cE over 
the past six decades, we reconstructed the timing of cE from 1960 to 
2023 using our modelling approach and temperature data sourced from 
ERA5-Land (gridded dataset, 0.1◦ resolution; Muñoz Sabater et al., 
2024). We established linear regressions between the local observations 
and corresponding ERA5-Land values to remove biases in ERA5-Land 
data. The temporal changes of cE (in days year⁻¹) were calculated for 
each site. A linear model was then used to evaluate the effects of 
elevation and latitude on the temporal changes. Elevation and latitude 
data were standardized using z-scores prior to analysis.

2.8. The effect of ontogenetic factors and individual tree dimensions on cE

To assess the impact of tree “intrinsic factors” on cE, we analysed the 
relationships between tree characteristics (annual ring cell number 
(RCN), age, height, and diameter at breast height (DBH)) and our model 
residuals. Apart from RCN, which is at the tree level, all other intrinsic 
factors are site-level averages. The model residuals are calculated as the 
observed cE minus the predicted cE. We used the “corrplot” function 
from the R package corrplot (Wei and Simko, 2021) to visualize the 
Pearson correlations between tree characteristics and model residuals.

Table 1 
Overview of cambium phenology data for three Northern Hemisphere conifer species. cE is the date (day of year, DoY) of the cessation of xylem cell enlargement. MAT 
refers to mean annual temperature, with standard deviation shown in parentheses.

Species Number of sites Year cE (min/mean/max, DoY) Elevation (min/median/max, m) MAT (sd, ◦C)

Picea abies 19 2004-2005, 2007-2013 207/231/257 30/1350/2085 5.1 (2.4)
Picea mariana 7 2002-2010 196/214/233 271/342/611 0.9 (1.7)
Pinus sylvestris 13 2005-2011, 2013 221/248/277 60/430/1690 8.1 (3.0)

Table 2 
Overview of the tested models and their parameters. Tb is the maximum tem
perature at which the processes leading to the cessation of cell enlargement are 
considered to be effective (◦C). The dummy parameter x, y may take any of the 
(0, 1, 2) discrete values, to allow for any absent/proportional/more than pro
portional effects of temperature to be included (Delpierre et al., 2009). Ycrit is 
the requirement of low temperature accumulation (in degree-days). Dstart is the 
start date of temperature accumulation (DoY). a, b, c are the parameters eval
uating the effect of soil moisture on Ycrit.

Model 
name

Type Environmental 
variables

Fitted 
parameters 
(Number of 
parameters)

Equations

Ts Temperature sum Temperature Tb, x, Ycrit, 
Dstart (4)

(1), (2), 
(3)

PiTs Photoperiod- 
influenced 
temperature sum

Temperature, 
photoperiod

Tb, x, y, Ycrit, 
Dstart (5)

(2), (3), 
(4), (5)

SMPiTs Soil moisture and 
photoperiod- 
influenced 
temperature sum

Temperature, 
photoperiod, soil 
moisture

Tb, x, y, a, b, c, 
Dstart (7)

(2), (3), 
(4), (5), 
(6)
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2.9. The effect of within-population variability of cE on prediction 
accuracy

We tested whether within-population variability in cE affects the 
model prediction accuracy. We quantified the model prediction accu
racy with the RMSE, calculated for each site-year over the observed and 
predicted cE values for individual trees. (Note that our ecophysiological 
models predict one cE date for each site-year, but that cE can vary 
among trees observed in a given site-year.). Population variability in cE 
was represented by the standard deviation of cE across all trees within 
each site-year.

3. Results

3.1. Observations of the cessation of xylem cell enlargement

In our dataset, the observed date of cessation of xylem cell enlarge
ment (cE) varied from 15 July (DoY196) for black spruce (Picea mariana) 
to 3 October (DoY 277) for Scots pine (Pinus sylvestris), spanning 81 days 
(Table 1). In general, black spruce was the earliest species to stop cell 
enlargement, on average on DoY 214 ± 9, followed by Norway spruce 
(Picea abies, DoY 231 ± 12, 2 weeks after) and Scots pine (DoY 248 ±
17, 4 weeks after). cE spanned 37 days for black spruce to 56 days for 
Scots pine (Table 1), reflecting the species-specific differences in data 
collection areas (larger for Scots pine and Norway spruce, lower for 
black spruce, Fig. 1).

3.2. Performance of the models

Among the three models considered (Ts, PiTs, SMPiTs), the PiTs 
model performed best for predicting cE in Norway spruce and black 
spruce, as indicated by the lowest AICc values and highest ME (Table 3). 
For Scots pine, the PiTs and Ts model yielded identical RMSE, with a 
lower AICc for the Ts model (of simpler structure). In the following, we 
will therefore consider PiTs as a reference model for species comparison. 
The PiTs model predicted cE with an average error of 9.2 ± 1.3 days for 
the three species (Fig. 2). A plot of the observed and simulated cE dates 
showed that PiTs model performed reasonably well at both the indi
vidual tree scale (grey dots in Fig. 2) and the site-year scale (colored 
points in Fig. 2), with most data points clustering near the 1:1 line. 
However, the PiTs model performance was lower for black spruce 
compared to Norway spruce and Scots pine despite a relatively low 
RMSE (8 days, Table 3). The SMPiTs model clearly performed worst for 
Norway spruce and Scots pine, with highest ΔAICc and RMSE (Table 3). 
In black spruce, although SMPiTs yielded a slightly lower RMSE than 
PiTs, its higher AICc suggests that the two models performed similarly 

Table 3 
Quality assessment of models for the cessation of xylem cell enlargement (cE). Ts 
model: The model which only considers the effect of temperature, PiTs model: 
The model considers the effect of temperature and photoperiod, SMPiTs model: 
The model considers the effect of temperature, photoperiod and soil moisture. 
Root mean square error (RMSE), model efficiency (ME), corrected Akaike In
formation Criterion (AICc) and ΔAICc are used to evaluate the model perfor
mance. ΔAICc represents the difference between the AICc of each model and the 
minimum AICc value among models for the same species. Bolded rows indicate 
the best-performing model (i.e., lowest AICc) for each species.

Species Model RMSE (days) ME AICc ΔAICc

Picea abies Ts model 9.7 0.30 1045.3 9.4
PiTs model 9.2 0.37 1035.9 0
SMPiTs model 9.8 0.31 1054.9 19.0

Picea mariana Ts model 8.4 0.12 680.2 5.4
PiTs model 8.0 0.20 674.8 0
SMPiTs model 7.8 0.24 676.4 1.6

Pinus sylvestris Ts model 10.5 0.60 441.8 0
PiTs model 10.5 0.60 445.0 3.2
SMPiTs model 11.9 0.49 465.3 23.5

Fig. 2. Photoperiod-influenced low temperature sum (PiTs) model evaluation 
over validation data for three Northern Hemisphere coniferous tree species. The 
colored points establish the correspondence between the observed and pre
dicted cessation of xylem cell enlargement (cE) at site-year scale. The point 
colors depict the mean temperature from May to October (T5-10) for each site- 
year. The gray dots are the observed cE at the tree scale. The one-to-one relation 
is shown as a black dotted line. Root mean square error (RMSE), correlation 
coefficient (r) and model efficiency (ME) are used to illustrate the model 
performance.
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(ΔAICc < 2).

3.3. Parameters of the PiTs model

The fitted parameters of the PiTs model differed among species 
(Table 4). The upper temperature threshold (Tb) was comparable for 
Norway spruce and Scots pine (~23.8◦C) but distinctly higher for black 
spruce (30.0◦C). The temperature accumulation requirement (Ycrit) was 
highest for black spruce at 3105.7 degree-days, followed by Norway 
spruce at 3075.8 degree-days, and notably lower for Scots pine at 2787.9 
degree-days. Regarding environmental drivers, both spruce species 
showed sensitivity to photoperiod (x = 2, y = 1), whereas Scots pine 
responded solely to temperature (x = 2, y = 0). The start date for tem
perature accumulation (Dstart), was similar across all species, with the 
earliest start in July, for black spruce on 9 July (DoY 190) and the latest 
start for both Norway spruce and Scots pine on 19 July (DoY 200). 
Parameter estimates varied across the 100 random calibra
tion–validation splits, yet model performance remained highly consis
tent (Supplementary Fig. 1). Parameter distributions are shown in 
Supplementary Fig. 2.

3.4. Simulating the intersite and interannual variability of cE

The model's predictions for cE were effective at capturing inter-site 
variability, showcasing its strong ability to reflect differences among 
locations (Fig. 3a). The model achieved the lowest RMSE for black 
spruce (4.5 days), followed by Norway spruce (7.6 days), and the highest 
RMSE for Scots pine (8.3 days). This performance was further supported 
by the model efficiency (ME), with Norway spruce achieving ME of 0.38, 
black spruce at 0.39 and Scots pine at 0.76, indicating reasonable per
formance across different locations (Fig. 3). However, the model was 
less effective at capturing annual anomalies, especially for black spruce 
(Fig. 3b). Despite relatively low RMSE values, ME was low. For instance, 
Norway spruce had an RMSE of 6.7 days with a ME of 0.19, Scots pine 
showed an RMSE of 6.4 days but a ME of 0.10, and black spruce had an 
RMSE of 6.5 days with a ME of 0.02. This lower temporal predictive skill 
corresponds with the markedly higher temperature variability observed 
across sites compared to the limited year-to-year fluctuations within 
sites (Supplementary Fig. 3).

3.5. Geographic variability of the temporal changes of cE

Using the PiTs model, we reconstructed cE timing from 1960 to 2023 
and quantified site-level linear trends. A significant delay in cE was 
detected across the past six decades, although the magnitude varied 
among species and regions (Fig. 4). Scots pine showed the largest delay 
(0.15 ± 0.09 days yr⁻¹), followed by Norway spruce (0.07 ± 0.05 days 
yr⁻¹) and black spruce (0.02 ± 0.01 days yr⁻¹). Variation among sites was 
greatest for Scots pine, consistent with its broad geographic range 
(Fig. 4a). Patterns in delay rate were further explained by elevation and 
latitude (Fig. 4b). For Norway spruce, both elevation and latitude had 
significant negative effects on the delay rate (p < 0.001), based on a 
multiple regression model including both predictors (R² adj = 0.90). For 
black spruce, latitude explained the variation in delay rate (p < 0.1), 

while elevation had no significant effect (p > 0.1; R² adj = 0.65). In Scots 
pine, latitude exerted a strong negative effect (p < 0.001), while 
elevation had a weaker but still significant influence (p < 0.01; R²adj =

0.84).

3.6. The effect of tree characteristics on the cessation of xylem cell 
enlargement

We examined model residuals to evaluate whether tree characteris
tics contributed to systematic prediction error. Tree diameter at breast 
height (DBH) and height showed significant positive relation with model 
residuals for Scots pine (p < 0.01, Fig. 5a). Notably, the total ring cell 
number (RCN) was also positively correlated with the model residuals in 
black spruce (p < 0.01), Norway spruce (p = 0.05) and Scots pine (p =
0.1, Fig. 5a, Supplementary Fig. 4). In contrast, tree age did not signif
icantly affect residuals in any species (Fig. 5a). Beyond tree character
istics, the prediction error at the site-year level was significantly affected 
by the inter-tree variability in cE within each site-year. The model error 
(RMSE) was higher in site-years of higher inter-tree variability (p <
0.01, Fig. 5b).

4. Discussion

This study advances our understanding of phenological phases of 
wood formation in temperate coniferous species by identifying factors 
affecting the cessation of xylem cell enlargement (cE), which marks the 
end of stem radial growth. We examined the roles of temperature, 
photoperiod and soil moisture by developing three ecophysiological 
models that integrate these drivers. Among them, the PiTs model, which 
combines temperature and photoperiod, proved applicable across all 
three species. Overall, the PiTs model showed strong predictive accu
racy, with a cross-species RMSE of 9.2 ± 1.3 days. This performance is 
consistent with the temporal resolution typically reported in xylogenesis 
monitoring studies, where the timing of cE is generally captured within a 
7- to 14-day observational window.

4.1. Temperature and photoperiod control of cE

The PiTs model, supported by the majority of our data, emphasizes 
the critical roles of temperature and photoperiod in regulating cE across 
extensive geographical gradients. Previous research has demonstrated 
that low temperatures (approximately 10◦C in experiments) are essen
tial for controlling cambial activity and xylem cell differentiation 
(Begum et al., 2016; Begum et al., 2018; Gričar et al., 2006). Expanding 
on these findings, our results indicate that accumulated temperature 
plays a key role in driving cE. Although the fitted base temperature (Tb) 
in the PiTs model (24–30◦C; Supplementary Fig. 2) appears relatively 
high, our critical values show strong agreement with leaf senescence 
models (25–29◦C) (Archetti et al., 2013; Delpierre et al., 2009; Yang 
et al., 2012), providing a reference range in the absence of established 
thresholds. Furthermore, assessing the contributions of temperature 
ranges to the required temperature accumulation (Ycrit) revealed that 
accumulation is mainly driven by low-to-moderate temperatures, 
despite high fitted Tb (Supplementary Fig. 6). This dependence, ampli
fied by the non-linear parameter (x = 2), highlights that "temperature 
decline", rather than absolute low temperature, is the primary driver of 
cE. Interestingly, the critical temperature sums estimated by the model 
are also consistent with those required to halt cambial activity in Gričar 
et al.’s stem-chilling experiments (the argument holds for Norway 
spruce, see Supplementary Fig. 5, Gričar et al., 2006), supporting the 
plausibility of our fitted thresholds. This broader understanding en
hances our perspective on how temperature influences the cessation of 
wood formation.

Photoperiod signals the cessation of radial growth (Cuny et al., 2015; 
Saderi et al., 2019), a response that is particularly pronounced in trees at 
higher latitudes (Ekberg et al., 2010). In this study, we assumed that 

Table 4 
Parameters of PiTs model. Tb is the threshold of low temperature accumulation 
(◦C), below which temperature can be accumulated. Ycrit is the requirement of 
low temperature accumulation. Dstart is the start date for low temperature 
accumulation (DoY). The dummy parameters x and y may take any of the {0, 1, 
2} discrete values.

Species Tb Ycrit Dstart x y

Picea abies 23.8 3075.8 200 2 1
Picea mariana 30.0 3105.7 190 2 1
Pinus sylvestris 23.7 2787.9 200 2 0
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Fig. 3. Model evaluation for the cessation of xylem cell enlargement (cE) using the PiTs model in three Northern Hemisphere conifer species. (a) Model performance 
evaluated on validation data aggregated at the site level. Each point represents the mean predicted and observed cE date at a site; error bars indicate the standard 
deviation across years, reflecting interannual variability. (b) Model performance evaluated for annual anomalies at the site-year level. For calculating annual 
anomalies, we first aggregated the data at the site-year scale and then subtracted the average cE date, established along the observation period. In both panels, the 
one-to-one relationship is shown as a black dotted line. Model performance metrics include root mean square error (RMSE), correlation coefficient (r), and model 
efficiency (ME). Point colors represent mean temperature from May to October (T5-10), either averaged per site (a) or per site-year (b).

J. Lin et al.                                                                                                                                                                                                                                       Agricultural and Forest Meteorology 379 (2026) 111056 

7 



photoperiod influences cE by modulating temperature accumulation, 
referencing previous models used for simulating leaf senescence 
(Archetti et al., 2013; Delpierre et al., 2009; Liu et al., 2019; Yang et al., 
2012). Although temperature strongly influenced cE in all species (x =
2), incorporating photoperiod significantly improved model perfor
mance for Norway and black spruce (y = 1), but not for Scots pine (y =
0). This species-specific insensitivity aligns with experimental observa
tions that Scots pine shoot growth ceases despite continued light expo
sure (Ekberg et al., 2010), and that its radial growth shows a weaker 
correlation with photoperiod compared to Norway spruce (Cuny et al., 
2015).

4.2. Spatial variability and model limitations

The PiTs model robustly captured spatial variability in cE across the 
broad environmental gradient, reflecting geographic differences in 
temperature accumulation influenced by photoperiod (Supplementary 
Fig. 7). This performance suggests that environmental drivers dominate 
over local adaptation (Perrin et al., 2017). However, the model’s limited 
ability to reproduce inter-annual variability highlights a challenge 
linked to our dataset structure. Characterized by high spatial but low 
temporal variance (3 ± 2 years per site), this dataset hampers the 
detection of temporal drivers (Buttò et al., 2020). We therefore tested 
whether incorporating soil moisture could resolve these unexplained 

inter-annual fluctuations. Contrary to expectations, this inclusion did 
not enhance model performance regardless of the integration window or 
depth. While Cabon et al. (2020) successfully linked inter-annual vari
ations to water potential, a direct proxy for turgor pressure, our reliance 
on gridded soil moisture likely provided an incomplete representation of 
water stress. This limitation is particularly relevant in mountainous re
gions where gridded estimates lack precision, and at high-latitude sites, 
such as those in Canada (Buttò et al., 2020), that rarely experience 
significant moisture limitations. Consequently, although the PiTs model 
effectively captures the primary thermal and photoperiodic controls, 
future refinements should prioritize precise, site-specific water potential 
data to better resolve inter-annual dynamics.

4.3. Intrinsic constraints on prediction accuracy

Predicting the cessation of wood formation is inherently more 
challenging than its spring resumption due to multifactorial constraints 
(Cuny et al., 2019; Dox et al., 2020; Rossi et al., 2016). For example, the 
chilling-influenced heat-sum model predicts the beginning of cell 
enlargement (bE) with an accuracy better than 7 days (Delpierre et al., 
2019), whereas the mean RMSE for cE in our study is 9.2 days. This 
lower accuracy reflects not only complex autumnal drivers but also the 
strong influence of intrinsic factors on growth cessation (Rathgeber 
et al., 2016; Rathgeber et al., 2011a). The total ring cell number (RCN), 

Fig. 4. Spatial variability in the temporal trend of the cessation of cell enlargement (cE) in relation to elevation and latitude for three Northern Hemisphere 
coniferous tree species. Plot (a) illustrates the temporal trend of cE across species, with error bars representing the standard deviation. Plot (b) illustrates the 
proportion of variance in the temporal trend explained by elevation and latitude for each species (adjusted R²). Temporal trends were established over 1960 to 2023. 
Significance markers indicate whether elevation and latitude have a statistically significant linear effect on the delay rate. Elevation and latitude data were stan
dardized using z-scores. ***: p<0.001, **: p<0.01, *: p<0.1, ns: p>0.1.

Fig. 5. The effect of intrinsic factors on the cessation of xylem cell enlargement (cE) for three Northern Hemisphere conifer species. Plot (a) is the correlation 
between the intrinsic factors (number of radial cell number (RCN), averaged at site-year scale; tree age, diameter at breast height (DBH) and height, averaged at site 
scale) and model residuals which were calculated as the difference between observed and predicted cE (using the PiTs model). The size of the dots and depth of color 
indicate the correlation coefficient. Plot (b) is the relation between variability of cE in the population (i.e. the inter-tree variability) and root mean square error 
(RMSE) for each site-year. One point represents one site-year. RMSE of each site-year was calculated based on predictions at the tree scale. Variability of cE is the 
standard deviation of cE, established across individual trees, in each site-year. ***: p<0.001, **: p<0.01, *: p<0.1.
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which is influenced by both environmental factors and hormones, affects 
the timing of cE because producing more cells prolongs the enlargement 
period (Rossi et al., 2012). Consistent with this mechanism, all three 
species showed positive associations between RCN and model residuals. 
Tree size, particularly diameter at breast height (DBH) and height, also 
influenced residuals in the Scots pine, whereas no such effect was 
detected in the spruces. This pattern is consistent with the lack of 
consensus in previous studies, where some species show size-related 
extensions of the growing season (e.g., Abies alba; Rathgeber et al., 
2011a) while others do not (e.g., Juniperus przewalskii; Zeng et al., 2017). 
Age had no significant effect across species (p > 0.05), consistent with 
Rossi et al. (2008), who reported similar cE timing across age classes in 
Norway spruce. These findings support our second hypothesis by 
demonstrating that tree-specific characteristics, particularly RCN, can 
influence cE, and thereby affect model accuracy.

Additionally, each site's RMSE increased with within-population 
variability in cE (p < 0.05), indicating that high population-level vari
ability reduces prediction accuracy (Rathgeber et al., 2016). This also 
helps explain why cE is harder to model than bE, since cE exhibits 
markedly higher within-population variability (Supplementary Fig. 8). 
Finally, although observations followed a standardized protocol 
(Rathgeber et al., 2011b; Rossi et al., 2016), cE is inherently more 
difficult to determine than bE (Rathgeber et al., 2018), which lowers 
measurement precision and further contributes to reduced model per
formance. These results underscore the importance of incorporating 
intrinsic and environmental factors to enhance the predictive perfor
mance of cambium phenology models.

4.4. Physiological mechanisms underlying the model

The predictive success of the PiTs model likely stems from the fact 
that its environmental drivers, temperature and photoperiod, act as 
primary proxies for the complex physiological cascades regulating 
xylem differentiation. Current evidence indicates that these environ
mental cues act upstream of interconnected hormonal and metabolic 
pathways that ultimately suppress cambial activity. Specifically, short
ening photoperiods and declining temperatures signal the down
regulation of auxin (IAA) and gibberellins (GAs), reducing the division 
potential of cambial initials and the enlargement capacity of differen
tiating xylem cells (Buttò et al., 2019; Eriksson et al., 2000; Immanen 
et al., 2016). Concomitantly, metabolic constraints arise as lower tem
peratures suppress the activity of key enzymes involved in cell-wall 
loosening and sucrose hydrolysis, thereby limiting turgor-driven 
expansion (Deslauriers et al., 2016; Immanen et al., 2016; Simard 
et al., 2013). Furthermore, seasonal shifts in carbohydrate allocation, 
characterized by the redirection of soluble sugars towards cold accli
mation rather than structural growth, provide an additional 
carbon-based signal contributing to cessation (Simard et al., 2013). By 
integrating temperature and photoperiod, the PiTs model implicitly 
captures these coordinated physiological shutdowns, although explicitly 
incorporating such mechanistic links remains a frontier for improving 
model realism under future climate scenarios.

4.5. Warming-driven shifts in cE across regions and species

By incorporating photoperiod and temperature, our model success
fully captures regional patterns of wood formation cessation. Using this 
framework to reconstruct cE over the past six decades, we found a 
widespread delay in cessation, with clear geographic variation that 
supports our third hypothesis. For Norway spruce and Scots pine, delay 
rates declined with increasing latitude and elevation, reflecting the 
limited capacity of trees in colder environments to extend the enlarge
ment period (Rossi et al., 2006c; Rossi et al., 2011). In black spruce, the 
latitudinal pattern was weak and only marginally significant (p < 0.1), 
likely due to its narrower geographic range compared to the other 

species. Photoperiod further modulated these trends (Luo et al., 2018), 
as strong daylength constraints at high latitudes restricted the 
warming-driven delay in Norway spruce (Supplementary Fig. 7), while 
at low latitudes, longer early-autumn daylength slowed temperature 
accumulation and therefore postponed cE (Cuny et al., 2015; Jyske 
et al., 2014; Saderi et al., 2019). These results highlight the need to 
consider both geographic context and species-specific sensitivities when 
evaluating warming effects on wood formation.

5. Conclusion

Our study establishes the PiTs model as a robust ecophysiological 
framework for predicting cE in temperate conifers. We identified tem
perature decline, modulated by photoperiod, as the primary driver of 
growth cessation, revealing distinct species-specific sensitivities, 
particularly the lower photoperiodic responsiveness of Scots pine. By 
applying this model across extensive climate gradients, we quantified 
warming-induced delays in cessation, providing a scalable tool to 
enhance the realism of growing season dynamics in global carbon cycle 
models (Delpierre et al., 2016; Eckes-Shephard et al., 2022; Friend et al., 
2019, 2022). While the model effectively captures spatial variability, 
challenges remain in reproducing inter-annual fluctuations, largely due 
to the limited temporal resolution of current datasets and the lack of 
site-specific water potential measurements. Future research should pri
oritize long-term monitoring to further refine these temporal dynamics 
and improve forest productivity simulations under climate change.
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