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Inelastic dark matter models that have two dark matter particles and a massive dark photon can reproduce
the observed relic dark matter density without violating cosmological limits. The mass splitting between
the two dark matter particles χ1 and χ2, with mðχ2Þ > mðχ1Þ, is induced by a dark Higgs field and a
corresponding dark Higgs boson h0. We present a search for dark matter in events with two vertices, at least
one of which must be displaced from the interaction region, and missing energy. Using a 365 fb−1 data
sample collected at Belle II, which operates at the SuperKEKB eþe− collider, we observe no evidence for a
signal. We set upper limits on the product of the production cross section σðeþe− → h0χ1χ2Þ, and the
product of branching fractions Bðχ2 → χ1eþe−Þ × Bðh0 → xþx−Þ, where xþx− indicates μþμ−; πþπ−, or
KþK−, as functions of h0 mass and lifetime at the level of 10−1 fb. We set model-dependent upper limits on
the dark Higgs mixing angle at the level of 10−5 and on the dark photon kinetic mixing parameter at the
level of 10−3. This is the first search for dark Higgs bosons in association with inelastic dark matter.

DOI: 10.1103/37w5-glpp

Despite clear observations of the gravitational effects of
dark matter (DM) [1,2], the mass of dark matter particles is
unknown, and they have not yet been shown to interact with
standard model (SM) particles. Direct detection experi-
ments are sensitive to elastically scattering DM particles
with masses typically in the GeV to TeV range [3–6]. At
colliders, searches for particles mediating interactions with
dark sector particles are sensitive to mediator masses in the
MeV to TeV range [7,8]. These searches cover both
promptly decaying and long-lived mediators decaying after
a macroscopically large distance. A nonminimal class of
models introduces inelastic DM (iDM), where DM couples
inelastically to SM states, depending on the mass difference
Δm ¼ mðχ2Þ −mðχ1Þ between the two DM mass eigen-
states χ1 and χ2 [9]. The simplest iDMmodels introduce the
inelastic coupling via a massive dark photon A0 that couples
off diagonally to the two DM states. The A0 kinetically
mixes with SM photons via a mixing parameter ϵ [10–12]
and decays predominantly via A0 → χ1χ2. A small Δm or
small coupling to the A0 makes the heavier state χ2 long
lived before it decays into a pair of SM particles and the
lighter state χ1. The relic DM candidate χ1, which

contributes to the DM abundance observed today, is stable
and escapes detection [10]. These models can be extended
to explain the mass splitting Δm and the A0 mass by
introducing an additional dark Higgs boson h0 [13]. The h0
would mix with the SM Higgs boson through a mixing
angle θ [14,15]. In total, the model has seven free
parameters: the masses mðh0), mðA0), mðχ1), and the mass
splitting Δm; the mixing angle θ; the kinetic mixing
parameter ϵ; and the coupling gD ¼ ffiffiffiffiffiffiffiffiffiffiffi

4παD
p

between
DM and the A0. The coupling k ≈ gDΔm=mðA0Þ between
DM and the h0 is fixed by the other parameters [13].
We restrict the search to parameter combinations that
correspond to the perturbative regime and that evade
existing constraints from observations of the cosmic
microwave background by Planck [1] by requiring
mðh0Þ < mðχ1Þ < mðA0Þ. In this scenario, the DM relic
density would be predominantly determined by the process
χ1χ1 → h0h0. The h0 lifetime increases for decreasing values
of θ, making the h0 long-lived at small θ.
This model is already constrained by searches for h0 or A0

mediators without specific assumptions about an iDM
model. Searches for scalars exclude sin θ larger than
10−3 to 10−4 for h0 masses up to about 5 GeV=c2 (see
Ref. [16] for a review) for mðh0Þ < 2mðχ1Þ, while for
higher h0 masses the limits are considerably weaker. For the
direct production of an A0 through kinetic mixing with a
photon and subsequent decay into iDM, the CMS experi-
ment excludes y ¼ ϵ2αDðmðχ1Þ=mðA0ÞÞ4 larger than 10−7

to 10−8 for mðχ1Þ≳ 3 GeV=c2 [17]. Reinterpretations
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[12,18,19] of searches for invisible decays of A0 at BABAR
[20], and of searches for long-lived A0 decays at NuCal
[21,22], CHARM [23], and NA64 [24] exclude y larger
than about 10−9 for mðχ1Þ≲ 3 GeV=c2 and y larger than
10−12 below 1 GeV=c2.
We present the first search for a dark Higgs boson in

association with iDM. We use events with up to two
displaced vertices and missing energy, produced in eþe−
collisions via eþe− → h0ð→ xþx−ÞA0½→ χ1χ2ð→ χ1eþe−Þ�,
where xþx− indicates μþμ−, πþπ−, or KþK−. The corre-
sponding Feynman diagram is shown in Fig. 1. We search
for the signal as a narrow enhancement in the mðxþx−Þ
distribution. We present our results as model-independent
limits on the product of the production cross section
σprod ¼ σðeþe− → h0χ1χ2Þ and the branching fractions
Bðh0 → xþx−Þ × Bðχ2 → χ1eþe−Þ. In addition to the
model-independent search, we interpret our results as a
model-dependent limit on themixing angle θ as a function of
the h0 mass, and as a limits on y as a function of the χ1 mass.
We use a 365 fb−1 data sample [25] collected at a center-

of-mass (c.m.) energy of
ffiffiffi
s

p ¼ 10.58 GeV by the Belle II
experiment [26] at the SuperKEKB eþe− collider [27]. The
beam energies are 7 GeV for e− and 4 GeV for eþ, resulting
in a boost βγ ¼ 0.28 of the c.m. frame relative to the
laboratory frame.
The Belle II detector consists of a variety of subdetectors

surrounding the interaction point (IP) in a cylindrical
manner. The trajectories of charged particles (tracks) are
reconstructed by a combination of a two-layer silicon-pixel
detector, a four-layer silicon-strip detector, and a central
drift chamber (CDC). The tracking detectors are sur-
rounded by time-of-propagation and aerogel ring-imaging
Cherenkov detectors used for particle identification (PID).
The PID detectors cover an angular region of 14° < θpolar <
124°. Photons are reconstructed by an electromagnetic
calorimeter (ECL) that also serves in the identification
of electrons covering 12° < θpolar < 155°. The ECL is
surrounded by a 1.5 T superconducting solenoid. The

outermost subdetector is a K0
L and muon detector

(KLM) which is installed in the iron flux return of the
solenoid. The longitudinal direction, the transverse plane,
and the polar angle θpolar are defined with respect to the
detector’s solenoidal axis in the direction of the electron
beam. In the following, quantities are defined in the
laboratory frame unless specified otherwise.
We use simulated events to optimize the event selection,

and to determine efficiencies and signal resolutions. Signal
events are generated using a combination of MadGraph5@NLO

[28] and EvtGen [29] taking into account effects of initial
state radiation (ISR) [30]. Furthermore, we consider effects
from electromagnetic final state radiation in the decay of
the h0 using PHOTOS [31,32]. To correct for efficiency
differences caused by different beam background condi-
tions, we generate signal simulations for a variety of
different data-taking conditions using beam-induced back-
grounds sampled from data overlaid with simulated signal
events and find an approximately linear correlation
between background level and signal efficiency. We use
the efficiency obtained from a linear fit at the luminosity-
weighted average beam background level of our dataset.
Motivated by Ref. [13] and a previous search for a similar
model [17], we consider values of mðA0Þ ¼ 3mðχ1Þ and
4mðχ1Þ, Δm ¼ 0.2mðχ1Þ; 0.4mðχ1Þ and 1.0mðχ1Þ, and
αD ¼ 0.1 and 0.5. For all possible combinations of these
values, we generate events for h0 masses between
0.2 GeV=c2 and 3.0 GeV=c2 in about 45 steps of varying
size and various lifetimes 0.1 < cτðh0Þ < 10000 cm in
steps that are approximately equidistant on a logarithmic
scale; we generate events for mðχ1Þ between 0.2 GeV=c2

and 3.0 GeV=c2 in 30 steps of 0.1 GeV=c2, and various
lifetimes 0.01 < cτðχ2Þ < 1000 cm in variable steps. Since
mðA0Þ > mðχ1Þ þmðχ2Þ, the A0 in the χ2 decay is always
off shell, while the A0 produced in association with the h0
can be either on shell or off shell with A0 masses up to
12 GeV=c2. The lifetime of the A0 is negligible for all
values of ϵ probed in this analysis.
We simulate the following background processes:

eþe− → ϒð4SÞ → BB̄ with EvtGen; eþe− → qq̄ðγÞ, where
q ¼ u, d, s, c with KKMC [33] interfaced with Pythia8 [34]
and EvtGen; eþe− → μþμ−ðγÞ and eþe− → τþτ−ðγÞ with
KKMC; eþe− → eþe−eþe−, eþe− → eþe−μþμ−,
eþe− → μþμ−μþμ−, eþe− → eþe−τþτ−, and eþe− →
μþμ−τþτ− with AAFH [35]; eþe− → τþτ−τþτ− with
KoralW [36]; eþe− → eþe−πþπ−, eþe− → eþe−KþK−,
and eþe− → eþe−pp̄ with TREPS [37]; eþe− → eþe−ðγÞ
and eþe− → γγðγÞwith Babayaga.NLO [38]; eþe− → K0

SK
0
Lγ,

eþe− → πþπ−γ, eþe− → KþK−γ, and eþe− → πþπ−π0γ
with PHOKHARA [39]. Decays of τ leptons are simulated
with TAUOLA [40] for KKMC, and using Pythia8 for all other
event generators. The detector geometry and interactions of
final-state particles with detector material are simulated
using Geant4 [41]. Both experimental and simulated events
are reconstructed and analyzed using the Belle II software

FIG. 1. Feynman diagram depicting the search channel for A0
production in association with a h0 with subsequent decays into
both visible and dark sector states. Here xþx− indicates μþμ−,
πþπ−, or KþK−. Mixing between dark sector and visible states is
indicated by black dots.
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[42,43]. To avoid experimenter’s bias, we examine the
experimental data only after finalizing the analysis selec-
tion. All selection criteria are chosen by iteratively opti-
mizing the figure of merit for a discovery with a
significance of five standard deviations [44]. To avoid
additional complexity of the analysis we chose a single set
of selections for all model parameter combinations.
We use events selected by a calorimeter-only trigger,

which requires the sum of energy depositions in the polar
angle region 22° < θpolar < 128° of the ECL to be above
1 GeV. We require that the total deposited energy in this
angular region exceeds 1.5 GeV, which ensures nearly
100% trigger efficiency for events that pass this selection,
to avoid systematic uncertainties introduced by the trigger
requirement.
We reconstruct h0 and χ2 candidates by combining pairs

of oppositely charged particles reconstructed from tracks.
We require each track to have at least 20 tracking detector
hits. The track pairs are separately constrained by fits to
originate from common vertices. The opening angle
between the two tracks must be greater than 0.1 rad to
suppress background from photon conversions, and the h0
pointing angle Δαx⃗;p⃗ between the h0 momentum p⃗ and
vertex position vectors x⃗ must have Δαx⃗;p⃗ < 3.1°, so the h0

vertex points back to the IP. To reduce promptly decaying
SM backgrounds, at least one of the two vertices must have
a transverse displacement with respect to the IP dv of at
least 0.2 cm. To reject contributions from track-pairs
produced in hadronic interactions in the ECL, both vertices
must have dv < 110 cm.
PID information from all relevant subdetectors is com-

bined to classify final states [45]. At least one track from
the h0 decay must have an extrapolated polar angle
37° < θextpolar < 122°, calculated by extrapolating the track
helix to the KLM inner surface to ensure high muon
identification efficiency. To further reduce the backgrounds
in the final state with h0 → πþπ− decays, all four tracks
must be in the range 18° < θextpolar < 155°. To ensure high
electron PID purity, we require the ratio between the energy
deposition in the calorimeter and the momentum of the
corresponding track to be larger than 0.6.
We reject events with h0 candidates with 0.467 <

Mðπþπ−Þ < 0.529 GeV=c2 to reduce background from
K0

S decays; we remove events in the h0 → πþπ− final state
with 1.06 < Mðpπ−Þ < 1.15 GeV=c2 to reduce back-
ground from Λ-baryon decays; we also remove events in
the h0 → KþK− final state with 0.977 < MðKþK−Þ <
1.061 GeV=c2 to reduce background from ϕ decays
produced in eþe− → ϕð→ KþK−Þγð→ eþe−Þ. The total
missing energy in the c.m. frame, calculated from the
momenta of the four charged particles and the known
initial eþe− kinematics, must be greater than 0.4 GeV
which is twice the minimal χ1 mass we consider. The
missing momentum direction must be separated from any
energy deposition in the KLM detector by at least 0.5 rad to

reject neutral hadron backgrounds. To reduce backgrounds
from nonreconstructed particles, the missing momentum
direction must point into a more restrictive tracking region
(23° < θmiss

polar < 149°) to avoid the CDC edges where data-
simulation agreement is less reliable. The reconstructed
electron pair mass from the χ2 → χ1eþe− decay must be
less than 2.5 GeV=c2, which corresponds to the maximal
Δm for which we provide model-dependent interpretations.
We require that no other tracks are reconstructed, and that
the total deposited energy in the calorimeter not matched to
tracks satisfies Eextra < 1.0 GeV. We require that the
opening angle of the tracks from the h0 vertex be less than
3.0 rad to suppress background from cosmic muons
crossing the detector that are incorrectly reconstructed as
two back-to-back tracks.
If multiple signal candidates in the same event pass the

selections, which occurs in less than 3% of events, we
choose the candidate with the smallest h0 pointing angle.
The overall signal selection efficiency is typically a few

percent up to 20%. It is generally higher for large Δm and
small displacements of the h0.
We determine the signal mass resolution by fitting a

double-sided Crystal Ball (DSCB) function [46,47] to
simulated mðh0Þ distributions. The resolution σDSCBsig
increases smoothly from about 1 MeV=c2 for a light h0

to about 7 MeV=c2 for a heavy h0 and depends only
slightly on the h0 lifetime or final state. Mass hypotheses
that lack a simulation sample are interpolated from adjacent
simulated samples.
We extract the signal yield by counting events in narrow

windows of Mðxþx−Þ with a width of �2σDSCBsig in steps of
σDSCBsig =2. Based on studies with simulated samples, we
assume a uniform background as a reasonable approxima-
tion given the size of our sample. We determine the
background level from data by counting all events in
Mðxþx−Þ sidebands (SBs). In the KþK− and μþμ− final
state the SB is the full mass range excluding the respective
signal window; for the πþπ− final state we split the mass
region at 1 GeV=c2 and determine different uniform back-
ground levels below and above this value.
We evaluate systematic uncertainties affecting selection

efficiency, integrated luminosity, the limited number of
simulated events, and the background model. The dominant
systematic uncertainties are associated with the signal
efficiency, and depend on combinations of the h0 and χ2
masses and lifetimes. Relative uncertainties are typically
around 4% for most parameter configurations, but can
reach 10% for the lightest h0 masses and large displace-
ments. For large displacements, the dominant systematic
uncertainty on the signal efficiency arises from data-
simulation differences in track finding for displaced tracks.
We correct for this with an auxiliary measurement using K0

S
decays from the process D�þ → D0ð→ K0

Sπ
þπ−Þπþ, and

assign an uncertainty obtained by varying the nominal
correction within the total uncertainty on the correction. For
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tracks close to the IP we instead correct for momentum-
dependent efficiency differences between data and simu-
lation, resulting in uncertainties at the level of 0.5% [48].
The uncertainties arising from PID are evaluated using the
processes eþe− → eþe−eþe−, eþe− → eþe−μþμ−, and
eþe− → μþμ−γ, as well as decays of K0

S or J=Ψ. For
electrons these uncertainties are typically at the level of 3%,
while uncertainties for μ, π, and K are below 1%. We
account for a lifetime-dependent effect on PID by intro-
ducing an additional systematic uncertainty, evaluated
using K0

S and Λ decays. For very displaced vertices, these
uncertainties can reach up to 10%. The uncertainty on the
luminosity is 0.47% [25]. The limited number of simulated
events for each signal configuration introduces systematic
uncertainties at the level of 1%–2% for most parameter
configurations but can reach up to 10% for very long
lifetimes. We verify that our interpolation procedure
between simulated mass points does not introduce a
significant additional uncertainty. We estimate the uncer-
tainty introduced by splitting the mass region in the πþπ−

final state by varying the split point to 0.9 GeV=c2

and 1.2 GeV=c2, respectively, and take the maximum
deviation from the nominal background level as the
uncertainty δ.
We find no events in the μþμ− final state, 8 events in the

πþπ− final state, and one event in the KþK− final state. The
Mðπþπ−Þ distribution in the h0 → πþπ− final state is shown
in Fig. 2, while the distributions for h0 → μþμ− and h0 →
KþK− are shown in the Supplemental Material [49]. The
statistical model used to compute the signal significances
and p values is discussed in Appendix A. The largest local
significance for the model-independent search is 2.9σ,
including systematic uncertainties, found near mðh0Þ ¼
0.531 GeV=c2 for the πþπ− final state for a lifetime of
cτ ¼ 1.0 cm. Taking into account the look-elsewhere effect
[50], this excess has a global significance of 1.1σ.

With the method described in Appendix B, we compute
95% Bayesian credibility level upper limits on σsig ¼
σprod × Bðχ2 → χ1eþe−Þ × Bðh0 → xþx−Þ using the
Bayesian Analysis Toolkit software package [51,52]. The
observed upper limits, including systematic uncertainties,
are shown in Supplemental Material [49]. Using a Jeffreys
prior [53] would decrease the upper limits on σsig by up to
30% with respect to the uniform prior. The systematic
uncertainties weaken the limits, with the largest increase of
2.5% occurring for heavy h0 with small lifetimes.
For the model-dependent interpretations, we multiply the

p values in all relevant and kinematically accessible
analysis channels, again separately for various lifetimes.
For the calculation of the model-dependent upper limits

on σprod × Bðχ2 → χ1eþe−Þ we multiply the individual
likelihoods weighted by the theoretical h0 branching
fractions from Ref. [54]. For each h0 mass value, we
determine the value of sin θ such that the resulting predicted
value of σprod × Bðχ2 → χ1eþe−Þ equals the 95% excluded
σprod × Bðχ2 → χ1eþe−Þ. To calculate the prediction, we
fix σprod and the χ2 branching fractions to the theoretical
values from Ref. [13] taking into account ISR. Figure 3
shows the observed upper limit on sin θ for one specific
choice of model parameters. Similarly, for each mðχ1Þ, we
determine the value of y such that the resulting predicted
value of σprod × Bðχ2 → χ1eþe−Þ, equals the 95% excluded
σprod × Bðχ2 → χ1eþe−Þ. Figure 4 shows the observed
upper limit on y for a specific choice of model parameters.

FIG. 2. Distribution of Mðπþπ−Þ together with the stacked
contributions from the various simulated SM background sam-
ples for h0 → πþπ− candidates. Simulation is normalized to a
luminosity of 365 fb−1.

FIG. 3. Exclusion regions at 95% credibility level in the plane
of the sine of the mixing angle θ and dark Higgs massmðh0Þ from
this work (teal) together with existing constraints at 90% con-
fidence level from PS191 [55], E949 [56], NA62 [57,58], KOTO
[16,59], KTeV [60], and BABAR [54,61], and at 95% confidence
level from MicroBooNE [16,62,63], L3 [16,64], CHARM
[54,65], LHCb [54,66,67], Belle II [68], and CMS [69] for
αD ¼ 0.1, mðA0Þ ¼ 3mðχ1Þ, Δm ¼ 0.4mðχ1Þ, ϵ ¼ 1.5 × 10−3,
and mðχ1Þ ¼ 2.5 GeV=c2. Constraints colored in gray with
dashed outline are reinterpretations not performed by the ex-
perimental collaborations. All constraints except for the one from
this work do not require the presence of a dark photon or iDM.
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In general, σprod increases with ϵ2, the lifetime of the h0

increases with 1=ðsin θÞ2, and the lifetime of the χ2
increases with 1=ϵ2. Additional plots and detailed numeri-
cal results for many more parameter combinations can be
found in Supplemental Material [49].
In conclusion, we report the first search for a dark Higgs

in association with inelastic DM, using 365 fb−1 of Belle II
eþe− data. We do not observe a significant excess above the
background. We set 95% credibility level upper limits on
σðeþe− → h0χ1χ2Þ × Bðχ2 → χ1eþe−Þ × Bðh0 → xþx−Þ.
Depending on the combination of model parameters, the
limits improve over existing searches by up to 2 orders of
magnitude.
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End Matter

Appendix A: Signal extraction—In the hypothesis of
uniform background, the expected number of
background events in the signal window is μ=f, where
the nuisance parameter μ is the expected number of
background events in the SB and f the ratio between
the widths of the SB and the signal window. The
likelihood for observing n events in the signal window
with the background-only hypothesis is

Lðn; μÞ ¼ ðμ=fÞn
n!

e−ðμ=fÞ ×
μN

SB
obs

NSB
obs!

e−μ; ðA1Þ

with NSB
obs being the number of observed events in the

sideband. Equation (A1) incorporates all the relevant
statistical fluctuations through Poissonian priors. For the
πþπ− final state, we include the additional systematic
uncertainty of the background model by substituting
μ → μð1þ xδÞ, with the nuisance parameter x, that is
constrained by an additional Gaussian prior. The
dependency on the nuisance parameters μ and x is
removed by marginalization of L

LðnÞ ¼
Z

∞

0

dμ
Z

∞

−∞
dxLðn; μ; xÞ: ðA2Þ

We calculate the p value, which describes the
probability of observing at least Nobs events in the signal
window given the background expectation, as

p0 ¼
X∞

n¼Nobs

LðnÞ: ðA3Þ

In the case of multiple final states, as in the
background-only hypothesis the final states are
independent of each other, for each scan point the
combined p value is given by the product of the
individual p values. From the p value the significance Z
is calculated via

Z ¼ Φ−1ð1 − p0Þ; ðA4Þ

where Φ−1 is the quantile of the standard Gaussian.

Appendix B: Upper limit calculation—In the presence
of signal, the likelihood of observing Nobs events in the
signal window with a background expectation is given
by

Lðnsig; μÞ ¼
ðnsig þ μ=fÞNobs

Nobs!
e−ðnsigþμ=fÞ ×

μN
SB
obs

NSB
obs!

e−μ:

ðB1Þ

The number of signal events nsig can be expressed in
terms of the signal cross section σsig via

nsig ¼ σsigϵsigL ðB2Þ
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with the signal efficiency ϵsig and the integrated
luminosity L. Systematic uncertainties on ϵsig and L are
incorporated into the likelihood by adding additional
nuisance parameters y and z, respectively. These
nuisance parameters are again constrained by Gaussian
priors. The dependence on all nuisance parameters μ and
θ⃗ ¼ ðx; y; zÞ is removed by marginalization

LðσsigÞ ¼
Z

∞

0

dμ
Z

∞

−∞
dθ⃗Lðσsig; μ; θ⃗Þ: ðB3Þ

Using this marginalized likelihood we compute α ¼ 95%
CL upper limits on σsig via

α ¼
Z

σupsig

0

dσsigLðσsigÞΘðσsigÞ ðB4Þ

with a uniform prior ΘðσsigÞ on the cross section.
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