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It turns out that similarly to strong edge-coloring, list normal
edge-coloring is much more restrictive and consequently for
many graphs the list normal chromatic index is greater than the
normal chromatic index. In particular, we show that there are
cubic graphs with list normal chromatic index at least 9, there
are bridgeless cubic graphs with its value at least 8, and there
are cyclically 4-edge-connected cubic graphs with value at least
7.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open

access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A strong edge-coloring of a graph G is a proper edge-coloring in which the edges at distance at
most 2 receive distinct colors. Here, we define the distance between two edges in a graph G, as the
distance between their corresponding vertices in the line graph of G; thus, two adjacent edges are
at distance 1, and two non-adjacent edges, which are adjacent to a common edge, are at distance 2.
The least number of colors for which G admits a strong edge-coloring is called the strong chromatic
index, and is denoted by x/(G).

In 1985, Erdds and Nesetfil [6] proposed the following conjecture; in 1990, it was updated to its
current form by Faudree et al. [8], in order to fit the graphs with an even or odd maximum degree.

Conjecture 1.1 (Erddés, Nesetril [6]). The strong chromatic index of an arbitrary graph G satisfies

2 A(G), if A(G) is even

1(5A(GY? —2A(G)+ 1), if A(G) is odd.
We are still far from resolving the conjecture in general as the best known upper bound is
1.772A(G)? (provided that A(G) is large enough) due to Hurley et al. [16]. However, when limited

to graphs of small maximum degree, we know a bit more; e.g., for graphs with maximum degree
3 (we refer to them as to subcubic graphs), the tight upper bound is established.

x:(G) < {

Theorem 1.2 (Andersen [2]; Hordk, Qing, and Trotter [14]). For any subcubic graph G, it holds that

x.(G) < 10.

There are only two known connected bridgeless subcubic graphs that need 10 colors for a strong
edge-coloring: the Wagner graph (the left graph in Fig. 10) and the complete bipartite graph K3 3
with one subdivided edge. Moreover, there is also no known connected bridgeless subcubic graph
on more than 12 vertices with the strong chromatic index more than 8, and based on that also the
following, stronger conjecture was proposed.

Conjecture 1.3 (LuZar, Mdcajovd, Skoviera, and Sotdk [25]). For any connected bridgeless subcubic
graph G on at least 13 vertices, it holds that

’
Xxs(G) < 8.
On the other hand, the lower bound of 5 colors for the strong chromatic index of cubic graphs
(i.e., 3-regular graphs) is attained precisely by the covers of the Petersen graph [25].

1.1. List strong edge-coloring

Our research reported in this paper revolves about the list version of the strong edge-coloring
of subcubic graphs. We say that L is a list assignment for a graph G if it assigns a list L(e) of possible
colors to each edge e of G. If G admits a strong edge-coloring ¢ such that ¢(e) € L(e) for all edges
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in E(G), then we say that G is strong L-edge-colorable or that ¢ is a strong L-edge-coloring of G. The
graph G is strong k-edge-choosable if it is strong L-edge-colorable for every list assignment L, where
|L(e)| > k for every e € E(G). The list strong chromatic index Xs/,l(G) of G is the least k such that G is
strong k-edge-choosable.

For graphs with small maximum degrees, a number of results are already known. Horflak and
WoZniak [15] showed that for any cycle, its list strong chromatic index and its strong chromatic
index coincide. Dai et al. [5] proved that the list strong chromatic index of subcubic graphs is at
most 11, and at most 10 in the case of subcubic planar graphs. The latter result was later extended
to toroidal graphs by Pang et al. [28]. For graphs of maximum degree 4 it was shown that the list
strong chromatic index is at most 22 [32], and at most 19 in the case of planar graphs [4].

In this paper, we generalize the results from [5,28] by establishing a tight upper bound for
subcubic graphs.

Theorem 1.4. For any subcubic graph G, it holds that
Xg/,l(G) < 10.

As in the non-list version, only the Wagner graph and the complete bipartite graph Ks 3 with
one subdivided edge are known to attain the upper bound.

The second question regarding the list strong edge-coloring is whether the values of the list
strong chromatic index and the strong chromatic index of subcubic graphs coincide. In particular,
we are interested in a special case of the question proposed by Dai et al. [5].

Question 1.5 (Dai, Wang, Yang, and Yu [5], Question 4.1). Is it true that for any graph G, it holds that

X:.1(G) = x,(G)?

The motivation for the question comes from the List (Edge) Coloring Conjecture stating that the
values of the chromatic index and the list chromatic index of any graph coincide. The conjecture
was stated independently by several researchers (see [20, Problem 12.20] for more details) and in
general it is still widely open; cf,, e.g., [3] for a short survey.

In other words, the List Coloring Conjecture states that the chromatic number of any line-
graph is equal to its list chromatic number, which is not true for graphs in general. Therefore,
it seems that the structural properties of line-graphs are the ones that guarantee the equality of
the two invariants. One can thus ask what are other structural properties of graphs that would
also guarantee equality. In this sense, Kostochka and Woodall [24] conjectured that the chromatic
number and the list chromatic number are equal for every square graph, where the square graph G?
is obtained from a graph G by connecting all pairs of vertices at distance 2. The conjecture was
refuted in general by Kim and Park [23], but it is open for specific graph classes; for example,
whether the two chromatic numbers are equal for the squares of line graphs. Since a (list) strong
edge-coloring of a graph G is exactly a (list) coloring of vertices of the square of the line graph of G,
Question 1.5 asks exactly that. We answer it in negative by presenting an infinite family of graphs
G for which x (G) > x;(G).

Theorem 1.6. There is an infinite family of connected cubic graphs G with
x(G)=5 and x;(G)>5.

Interestingly, there are also some planar graphs (e.g., the dodecahedron) and bipartite graphs
(e.g., the generalized Petersen graph GP(10, 3)) among the graphs with different values for the two
invariants. Note that the above results are independently obtained also by Hasanvand [13].

Finally, for the case of the Petersen graph, we prove the exact value of the list strong chromatic
index.

Theorem 1.7. For the Petersen graph P, it holds that
Xe (P)=1.
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After publishing the preprint of this paper, we were notified by M. Hasanvand that the result of
Theorem 1.7 follows also from the result of Kierstead on complete multipartite graphs [22].

1.2. List normal edge-coloring

The second part of this paper is dedicated to initiating the study of the list version of the normal
edge-coloring of cubic graphs.

A normal edge-coloring of a cubic graph is a proper edge-coloring, in which every edge is adjacent
to edges colored with four distinct colors (such edges are called rich) or to edges colored with two
distinct colors (such edges are called poor). If at most k colors are used, we call the coloring a normal
k-edge-coloring. The smallest k, for which a graph G admits a normal k-edge-coloring is the normal
chromatic index, denoted by yx,(G). Clearly, every strong edge-coloring is also a normal edge-coloring,
since every edge is rich. On the other hand, if a cubic graph admits a proper edge-coloring with 3
colors, then every edge is poor, and hence the coloring is also normal.

The normal edge-coloring was defined by Jaeger [17] as an equivalent way of formulating the
Petersen Coloring Conjecture [ 19], which asserts that the edges of every bridgeless cubic graph G can
be colored by using the edges of the Petersen graph P as colors in such a way that adjacent edges
of G are colored by adjacent edges of P; in particular, a bridgeless cubic graph admits a normal
5-edge-coloring if and only if it admits a Petersen coloring.

Conjecture 1.8 (Jaeger [17]). For any bridgeless cubic graph G, it holds that
Xn(G) < 5.

Resolving Conjecture 1.8 would have a huge impact to the theory as it implies two famous con-
jectures; namely, the Cycle Double Cover Conjecture [18] and the Berge-Fulkerson Conjecture [10];
cf. [21] for more details.

In general, it is known that every cubic graph (with the bridgeless condition omitted) admits
a normal 7-edge-coloring [27], and the bound is tight, e.g., by any cubic graph that contains as a
subgraph the complete graph K, with one edge subdivided. When considering only bridgeless cubic
graphs, Mazzuoccolo and Mkrtchyan [26] proved that all claw-free cubic graphs, tree-like snarks,
and permutation snarks [26] admit a normal 6-edge-coloring; the latter result was generalized to
bridgeless cubic graphs of oddness 2 by Fabrici et al. [7]. With at most 5 colors available, only
very particular graphs are known to admit a normal edge-coloring, see, e.g., [9,11,29,30]. Hence,
Conjecture 1.8 remains widely open in general.

In this paper, in relation to the list strong edge-colorings, we also study the properties of the
list version of the normal edge-coloring. For a cubic graph G, list normal edge-coloring and the list
normal chromatic index, x, (G), are defined analogously to the list strong variants.

Clearly, the upper bound for the list normal chromatic index of cubic graphs is implied by
Theorem 1.4.

Corollary 1.9. For any subcubic graph G, it holds that
X,/,,,(G) < 10.

We show that, similarly to the list strong edge-coloring, also in the list normal edge-coloring
there are graphs G with x;, (G) > x,(G). In particular, there is an infinite family of cubic graphs with
list normal chromatic index at least 9, there are bridgeless cubic graphs with list normal chromatic
index at least 8, and there is an infinite family of cyclically 4-edge-connected cubic graphs with list
normal chromatic index at least 7. Interestingly, our examples of bridgeless graphs for the above
results are all from class I, and therefore they all have the normal chromatic index equal to 3.

The paper is structured as follows. In Section 2, we introduce notation, terminology, and auxiliary
results. In Sections 3 and 4, we prove results regarding the list strong chromatic index, and in
Section 5, we present constructions of graphs with distinct normal and list normal chromatic
indices. We conclude the paper with some open problems in Section 6.
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2. Preliminaries

In this section, we introduce the terminology and auxiliary results used in the paper.

As usual, for a sequence of consecutive integers, we use the abbreviation [i,j] = {i,i+ 1, ...,j}.
We call a cycle of length k a k-cycle. The edge-neighborhood N(e) of an edge e is the set of edges
adjacent to e, and the 2-edge-neighborhood N,(e) is the set of edges at distance 1 or 2 from e. An
induced matching is a set of edges M such that any pair of edges in M is at distance at least 3;
i.e,, the graph induced on the endvertices of the edges of M is a matching.

For a given list assignment L, a partial strong L-edge-coloring ¢ of a graph G is a strong edge-
coloring of a subset of edges of G such that any pair of colored edges e and f; i.e., we have ¢(e) € L(e),
o(f) € L(f) and ¢(e) # ¢(f) if e and f are at distance at most 2 in G.

Given a list assignment L and a partial strong L-edge-coloring, we say that a color ¢ € L(e) is
available for the edge e if no edge in N,(e) is colored with c. We denote the set of all available
colors for an edge e with A(e). Clearly, A(e) C L(e).

In our proofs, we use the following application of Hall's Marriage Theorem [12].

Theorem 2.1. Let G be a graph and ¢ a partial (strong) edge-coloring of G. Let X = {eq, ..., ex} be
the set of non-colored edges of G. Let F = {A(ey), ..., A(ex)}. If for every subset X C F it holds that

IXls]UX‘,

XeXx

then one can choose an available color for every edge in X such that all the edges receive distinct colors.

One of the strongest tools for determining whether colors from the sets of available colors can
always be found such that the given conditions are satisfied is the following result due to Alon [1].

Theorem 2.2 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and let P = P(Xq, ..., X)
be a polynomial in F[Xq, ..., X,]. Suppose that the coefficient of the monomial Xfl .. .X,’,‘", where each
k; is a non-negative integer, is non-zero in P and the degree deg(P) of P equals 2?21 k;. If moreover
S1, ..., Sy are any subsets of F with |S;| > k; fori =1, ..., n, then there are s; € Sy, ..., s, € S, such
that P(sq,...,sp) Z 0.

In short, for P; being the graph polynomial of a graph G, if there is a monomial m of Pg with
degree deg(P;) and a non-zero coefficient, and moreover in m the degree of every variable is less
than the number of available colors for the vertex represented by the variable, then there exists a
coloring of G. For a monomial m, we denote the coefficient of m in the polynomial P; by coef(Pg; m).

Usually, we only consider edge-coloring of a subgraph H of a graph G, with some of the other
edges in G already being precolored and hence the lists of available colors for edges in H are
reduced accordingly. In order to apply Theorem 2.2, we construct an auxiliary conflict graph C(H),
in which every vertex represents an edge to be colored, and two vertices are adjacent whenever
the corresponding edges need to be colored with distinct colors. Clearly, the input to Theorem 2.2
is the graph polynomial of C(G), but to avoid this step, we simply say that we consider a conflict
graph polynomial for H.

Note that in this paper, every conflict graph polynomial is homogeneous, i.e., it is a sum of
monomials of the same degree, and therefore the degree condition of Theorem 2.2 for monomials
is always fulfilled.

3. Upper bound on the list strong chromatic index

In this section, we prove the tight upper bound for the list strong chromatic index.

In the first part of our proof, we follow the proof of the result of Dai et al. [5] that the list strong
chromatic index of subcubic graphs is at most 11. In particular, they showed that for eliminating
cycles of length at most 5 from the minimal counterexample, one can even assume lists of length
10.
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Proof of Theorem 1.4. Suppose the contrary and let G be a minimal counterexample to the
theorem,; i.e., a graph with maximum degree 3, which has the list strong chromatic index greater
than 10.

Clearly, G is connected. Moreover, from [5], we have the following structural properties of G
(since lists of size 10 are assumed in these lemmas).

Claim 1 ([5, Lemma 2.1]). G is 3-regular. ¢
Claim 2 ([5, Lemma 2.2]). G does not contain any 3-cycle. ¢
Claim 3 ([5, Lemma 2.3]). G does not contain any 4-cycle. ¢

Claim 4 ([5, Lemma 2.4]). G does not contain any 5-cycle. ¢

Next, we reduce cycles of length at least 6.
Claim 5. G does not contain any 6-cycle.

Proof. Suppose the contrary and let C = vg...vs be a 6-cycle in G. For every i € {0, ..., 5}, call
the edge x; = vjvi1¢ (indices modulo 6) a cycle edge, and every non-cycle edge y; incident to v; a
pendant edge (see Fig. 1).

By the minimality of G, there exists a list strong edge-coloring ¢’ of G = G\ {v1, v2, v3, V4, Us}
for any list assignment L with lists of size at least 10. Let ¢ be the coloring of G induced by ¢’. Then,
only the edges of C and the pendant edges except y, are non-colored in ¢. The edges x, x1, X4 and
x5 have at least 5 available colors, the edges x, and x3 have at least 6, y; and ys have at least 3, and
V2, Y3, ¥4 have at least 4 available colors.

Claims 2-4 imply that no two pendant edges are the same or adjacent; it may however happen
that the edges y; and y4 (and similarly, y, and ys) are connected by an edge; we thus assume
also these two edges. So, the conflict graph polynomial P¢, created on the non-colored edges with
conflicts between edges at distance at most 2 is the following (taking indices modulo 6):

5
Pes(X0, .-+ X5, Y1, -+ -, Ys) =|:1_[(Xi — Xip1) - (Xi —Xi+2):|

(X0 —y1) - (X0 — ¥2) - (X0 — ¥5)
(X1 = Y2) - (x1 —y3)- (x1 — 1)
(x2 —y3) - (X2 —ya) - (X2 — ¥2) - (%2 — 1)
(X3 —y4) - (x3 —y5) - (x3 —¥3) - (X3 — ¥2)
(Xa —¥5) - (x4 — ya) - (Xa — ¥3)
(X5 —y1) - (xs — ¥5) - (Xs — ya)
V1 =Y2) - V2 —y3) - (¥3 — Ya) - (V4 — ¥s)

(Y1 —Y4)- (2 — ys)

Using the function Coefficient in Wolfram Mathematica [31], we infer that in P¢,, we have
the coefficient

oA A5 05,4 4 02 3.2 3 2y
coef(Peg; Xg X] X5 X3 X4 X5 Y1 Y2 Y3 V2 ¥5) = —2,

which, by Theorem 2.2, means that we can extend the coloring ¢ to all the edges of G, a
contradiction.¢

We continue by showing that in G any cycle is reducible.

Claim 6. G does not contain any cycle.
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Fig. 1. The hypothetical 6-cycle C in G. The edges y; and y4 (and also y, and ys) might be connected by an edge (depicted
dashed).

Fig. 2. The hypothetical k-cycle C in G.

Proof. Let C = wvg...vx_1 be a shortest cycle in G. For every i € {0, ...,k — 1}, call the edge
X; = viviy1 (indices modulo k) a cycle edge, and every non-cycle edge y;. incident to v; a pendant
edge (see Fig. 2). By Claims 2-5, we have that k > 7. Moreover, since there is no (k — 1)-cycle in G,
we have that no pair of pendant edges is connected by any edge except by a cycle edge.

Let L be a list assignment for the edges of G with lists of size at least 10 for which G is not
strongly L-edge-choosable. Let G’ be the graph obtained from G by removing the vertices of C. By
the minimality, G’ admits a list strong edge-coloring ¢’ with color of every edge e € E(G') from
L(e). Let ¢ be the coloring of G induced by ¢’, where only the edges incident to the vertices in V(C)
are non-colored. In particular, every cycle edge x; has at least 6 available colors, and every pendant
edge y; has at least 4. We will show that we can extend ¢ to all the edges of G.

First, let Pc, be the conflict graph polynomial created on the non-colored edges with conflicts
between edges at distance at most 2; taking indices modulo k, we have the following:

Pe(X0s - - s Xk—1, Y05 - - - 5 Y1) =

k=1

[ ] = xis1) - (= xi2) - 0 = yiga) - (i = yica) - (= 91 - (6 = Yien) - (% — Yiga) -
=0
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Next, we prove that

k-1
coef(Pe,: xgyp X1yt 15Y; 8y3 Xy 8ys - [ [ #iv]) = (=)

In order to compute the coefficient in gené?gl, we use Wolfram Mathematica [31]. Due to the
limitations of the software, we need to split our computations into several steps; in particular, we
compute coefficients of selected subpolynomials.

We begin by considering the subpolynomial Pé;“ of P¢,, comprised of all factors containing x;

or y; for i € {2, 3, 4}. The polynomial Pg,;“ has degree 29 and we infer that

2,34, .5.3.5 3.4 3y _ .22 2 2, 2 229 2,02 .2.2.2 222
coef(PCk 5 X3Y2X3Y3XaYa) = XoX5YT + 2XGXsY1Ys — XX5Ys — 2XoX5Y1Y5 + XgY1Y5 — X5Y1Y5-

Here and in several subsequent cases, we slightly abuse the notation as the value of the coefficient is
a polynomial, which appears in the conflict graph polynomial multiplied with the monomial given

as an argument. Note that in the resulting polynomial, no variable from the monomial appears.

In the second step, we create polynomial PSILG, comprised of coef(Pg,;“; Xy35y3xiy;) and

multiplied with all factors containing x; or y; for i € {5, 6}, which were not yet used in ng’“. We
infer that

coef(P®; xyaxtye) = Xoy3(xs + y7).

Therefore, x2y3(x7 +x7) is also the coefficient of the monomial x3y3x3y3x5y3x2y2xgy2 in the subpoly-
nomial of P¢, containing x; or y; for alli € {2, ..., 6}.
Now, we define (again, indices modulo k) an auxiliary polynomial
AilXi, Xig1, Xiv2, Vi, Vi1, Yir2) =X — Xip1)(X — Xi2)(Xi — Yi)-
(% = Yir1)Xi — Yir2)Xir1 — Y — Yir1),
used for defining partial polynomials for each of the remaining pairs x;, y;. Let

PZ,((XO, X7,Xg, X9, Y1, Y7, Y8, Y9) = COEf(Pg,;G§ X§y§X§yé) - A7(X7, X8, X9, Y7, Y8, Ya) -

Then,

coef(PL; xX3y3) = —x2y3(xs + ys).
Finally, for every i, 8 <i <k —1, let

Pék(XO’ Xiv X1, Xig2, Y1 Vio Viets Vie1) = (= 1) - 3306 + yi) - Ai(Xi, Xi1, Xiv2, Vi Vi1, Yie1)s
obtaining

coef(Pe: Xiy7) = (1) Xg¥i(Xi1 + Yinr).

In the last step, we consider the non-used factors with xo, x1, yo, and y1; we have
ng(xm X1,Y0, Y1) = coef(Pé‘,j]; X 1Y)
(X0 — X1)(x0 — Yo)(Xo — ¥1)(X1 — Yo)(X1 — ¥1)(Yo — Y1),

giving us

coef(PS; x3y3) = (—1) - (:3y? — y}).

This means that
k-1
. 43,22 53 53 4.3 5 3 4.3 I
coef(Pq,; Xo¥o X1V1 X2¥3 X3Y3 X4V X5V - Hxiyi )= (=1,
i=6

which implies, by Theorem 2.1, that we can always extend the coloring ¢ to all the edges of G, a
contradiction.4

Since G must be 3-regular by Claim 1, but it does not contain any cycle by Claims 2 to 6, we
obtain a contradiction establishing the theorem. O

8
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Fig. 3. The graph P’ obtained from the Petersen graph by replacing one edge with two pendant edges.

4. Graphs G with x((G) < x; ,(G)

In this section, we give a negative answer to Question 1.5 by proving Theorem 1.6. First, we
recall the result about cubic graphs with strong chromatic index equal to 5. It uses the notion of
covering graphs defined as follows. A surjective graph homomorphism f: G — G is called a covering
projection if for every vertex v of G the set of edges incident with v is bijectively mapped onto the
set of edges incident with f(v). The graph G is usually referred to as the base graph and G as a
covering graph or a lift of G. A graph G covers G if there exists such a covering projection.

Theorem 4.1 (LuZar, Mdcajovd, Skoviera, and Sotdk [25]). The strong chromatic index of a cubic graph
G equals 5 if and only if G covers the Petersen graph.

Let P’ be the graph obtained from the Petersen graph by replacing one edge with two pendant
edges (see Fig. 3). Consider the labeling of its vertices as given in the figure. For 1 <i < 5, we call
the edges u;v; the spokes of P’, the edges u;u; » (indices modulo 5) the inner edges, and the edges
v;viy1 (indices modulo 5 and i = 1 skipped) the outer edges.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let R be a covering graph of the Petersen graph P. By Theorem 4.1, we have
that x/(R) = 5; let gz be a strong 5-edge-coloring of R.

Consider the graph G obtained from R — uv (for some edge uv of R) and P’ by identifying the
vertices u and wi, and v and w;.

We first show that x/(G) = 5. Let = be a strong 5—edge-coloring of P’. with the two pendant
edges having the same color. We obtain a strong 5-edge-coloring ¢ of G by keeping the colors from
¢r on the edges of R — uv, setting p(uvi) = @(vvy) = @g(uv), permuting the colors of 7 such that
or(uv) = m(vywy) and such that the colors on the edges incident to u (v) in ¢g are distinct from
the colors incident to v; (v3) in 7 (this can be done, since the same color c of the two pendant
edges guarantees that c is the only color incident to both vertices v; and v,), and finally setting
¢'(e') = m(e) for every edge €' € E(G) that corresponds to an edge e € E(P’). Note that, by Theorem
4.1, this means that G is also a covering graph of P.

Next, we show that XS”,(G) > 5. Let L be a list assignment for G such that L(e) = {1, 2, 3,4, 5}
for every edge e of G corresponding to an inner edge of P/, L(e) = {1, 2, 3, 4, 6} for every edge e of
G corresponding to a spoke of P/, and L(e) = {1, 2, 3, 5, 6} for the remaining edges of G.

Let G’ be the graph obtained from G by removing all the edges of P’ except uv; and vv,. Clearly,
G’ is the graph R with one edge removed and replaced with two pendant edges, and thus it admits
a strong 5-edge-coloring ¢* induced by the coloring ¢ of R. Note that in ¢, the edges uv, and vv,
receive the same color (the color ¢(uv)). Now, we show that in any strong 5-edge-coloring of G’

9
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these two edges must be colored with the same color. Since the edges of G’ in L have the same lists of
size 5, this will imply that the two edges must receive the same color in any strong L-edge-coloring.

First, observe that in ¢* the only common color the vertices u and v are incident with is color
a = ¢(uv). Let b # a be a color incident with u, and ¢ # a a color incident with v. Let k be the
number of edges of color b in ¢*. Since every edge of color b is adjacent to edges of all other four
colors, the edges of G’ colored with b in ¢* together with their adjacent edges cover all the edges of
G’ (every edge exactly once) except vv,; we denote this (almost) covering Cp. Similarly, the edges
of G’ colored with c in ¢* together with their adjacent edges cover all the edges of G’ (every edge
exactly once) except uvy; we denote this (almost) covering C..

Now, let o be a strong 5-edge-coloring of G'. On the edges of Cy,, every color appears k times, so
together with the edge vv,, the color o(vv,) appears k + 1 times. Similarly we deduce that using
the covering C., the color o(uv,) appears on k + 1 edges, and so o(uv;) = o(vv,). Hence, in every
strong 5-edge-coloring of G’ the edges uv, and vv, must be colored with the same color.

Similarly, we can show that around the vertices u and v in G, all five colors appear (i.e., the only
common incident color is the color of the edges uv; and vv,). Observe that the edges of G’ colored
with a in ¢* (except the edges uv; and vv,) together with their adjacent edges cover all the edges
of G’ (every edge exactly once) except the edges incident with u and v; we denote this covering
C,. Again, in every strong 5-edge-coloring of G, on the edges of C, every color appears k — 1 times,
while in the whole graph every color appears on k edges, except the color of uv; and vv,, which
appears k + 1 times. This means, that u and v together are incident with edges of all five colors.

Now consider the coloring of the edges of P'. Clearly, in any strong L-edge-coloring, all the five
colors from {1, 2, 3, 4, 5} appear on the inner edges of P’. Similarly, since every spoke edge of P’
sees 4 distinct colors on the inner edges of P’, every spoke edge can be colored with precisely one
of the colors from {1, 2, 3, 4} or color 6, except for the spoke edge that does not have color 5 in its
2-edge-neighborhood—that edge must be colored with 6. Moreover, the edges vyw; and v,w, must
be colored with the same color, so that we can combine the colorings of G’ and P'.

There are three non-isomorphic possibilities on which inner edge color 5 appears. First, suppose
that uquy is colored with 5. Then, usvs must be colored with 6 and therefore v,v3 is the only outer
edge of P’ which can be colored with 5 or 6. Therefore the colors 1, 2, and 3 must be used on the
remaining outer edges, and consequently vyw; and v,w, must also both be colored with either 5
or 6. This is not possible, since vyw; has both colors in it<s 2-edge-neighborhood.

Second, suppose that usus is colored with 5. Then, u4v4 must be colored with 6 and thus no outer
edge of P’ can have color 6. Since every outer edge of P’ also has color 5 in the 2-edge-neighborhood,
it follows that the remaining four outer edges must be colored with colors 1, 2, and 3. This means
that vivs and v, v3 receive the same color, say 1. But then, color 1 cannot be incident with u and v,
and consequently, u and v together will not be incident with all five colors, which is not possible
by the argument above.

So, we may assume that uqus is colored with 5. Then, u,v, must be colored with 6, and vyw;
and v,w, must both be colored with the same color as usus, which cannot be 4—say it is 1. Then,
the outer edges of P’ must be colored with colors from {2, 3, 5, 6}. Since only v4vs can be colored
with 5, it follows that v{vs must have color 6. Therefore, u,v, and vqvs both have color 6, which
means that, since uv; and vv, both have color 1, some color, different 1, must be incident with u
and v. As we showed above, this is not possible, and therefore a strong L-edge-coloring of G does
not exist. O

As already mentioned, there are planar graphs and bipartite graphs with different values of the
strong chromatic index and the list strong chromatic index. Two representative examples are the
dodecahedron and the generalized Petersen graph GP(10, 3) (see Fig. 4). Both graphs cover the
Petersen graph and thus their strong chromatic indices are 5, while neither of them is colorable
from the list assignment assigning the list {1, 2, 3, 4, 5} to the solid edges, the list {1, 2, 3, 4, 6} to
the dotted edges, and the list {1, 2, 3, 5, 6} to the dashed edges, as they are depicted in the figure.
We omit the proof.

Theorem 1.6 guarantees the difference between the strong chromatic index and its list version,
but it is not clear what is the exact value of the latter. For the special case of the Petersen graph,
we are able to prove the exact bound.

10
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Fig. 4. The dodecahedron (left) and the generalized Petersen graph GP(10, 3) (right).

Proof of Theorem 1.7. We first prove that the list strong chromatic index of the Petersen graph
P is at least 7. Consider the drawing of P in Fig. 5. Let L be the list assignment assigning the list
{1,2,4,5,7, 8} to the outer cycle (the dashed edges), the list {1, 3, 4, 6,7, 9} to the spokes (the
dotted edges), and the list {2, 3, 5, 6, 8, 9} to the inner cycle (the solid edges). Recall that every
maximum induced matching in P is of size 3 and it contains precisely one edge of the outer cycle,
one spoke, and one edge of the inner cycle (in Fig. 5, we depict one with bolder edges). Moreover,
any pair of edges at distance 3 belongs to exactly one maximum induced matching. Since there are
five disjoint maximum induced matchings in P, one color can appear only on the edges of the same
matching, but on at most two of its edges. Hence, we need at least 5 colors to color at most 10
edges, and at least 5 other colors to color the remaining 5 edges. However, we only have 9 distinct
colors in the union of lists of L, thus we cannot color the edges of P from L.

Now, we show that the list strong chromatic index of the Petersen graph P is at most 7. Let
M; denote the five disjoint maximum induced matchings in P induced by the edges ki, k,, k3, for
k € {a, b, c, d, e}, with the labeling of the edges as shown in Fig. 6.

In what follows, we will analyze the conflict graph polynomial Pp of the Petersen graph. We first
define an auxiliary polynomial (representing a conflict graph polynomial of two maximum induced
matchings)

3 3
C(x1, X2, X3, Y1, Y2, ¥3) = HH(Xi - ¥j).

i=1 j=1
Next, observe that only the edges of a particular matching can be colored by the same color, and
therefore each edge needs to receive a color distinct from colors of all other edges (from the other
matchings). Hence, we have that

Pp(ai, az, as, by, ..., e, e3) = C(ay, az, as, by, by, b3) - C(ay, az, as, ¢q, 2, €3)

- C(ay, ap, a3, dy, dy, d3) - C(ay, az, as, ey, €3, €3)
- C(by, by, b3, ¢1, €2, ¢3) - C(by, by, b3, d1, da, d3)
- C(by
- C(c1, €2, €3, €1, €2, €3) - C(dy, do, d3, €1, €3, €3).

. by, b3, e, e, e3) - C(cy, 2, €3, dy, dp, d3)

Now, we consider several cases regarding the possible colorings of the maximum induced
matchings. Note that throughout the process of coloring the edges, as soon as some color is picked
for an edge e € M;, this color is removed from the lists of the edges which are in conflict with e,
i.e,, the edges of the maximum induced matchings different from M;.

11
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Fig. 5. The Petersen graph P.

€1 ai
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Fig. 6. Five maximum induced matchings of the Petersen graph P.

Case 1. Suppose that one maximum induced matching can be colored monochromatically.

First, we color the edges of M,, say by color 1. We distinguish three possible subcases regarding
the coloring of the remaining maximum induced matchings.

Case 1.1. Suppose that one another maximum induced matching, say Mp, can be colored monochro-
matically (by color different from 1).

Without loss of generality, we color M}, by 2. The remaining nine edges of P have each at least 5
colors available. Now, for the non-colored edges, we have the following conflict graph polynomial:

Pp—2(cqy, €2, ..., €2, €3) = C(cq, €2, €3, dy, da, d3) - C(c1, €2, C3, €1, €2, €3)
C(dy, dy, d3, eq, ez, 3).
In P,—2, we have coefficient
coef(Pp2; cicicidididielelel) = 94,

which means, by Theorem 2.2, that it is possible to color the edges c1, c3, c3, dq, d3, d3, €1, €2, €3
using the remaining colors of their lists.

12
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Case 1.2. Suppose that no maximum induced matching except M, can be colored monochro-
matically, and at least one maximum induced matching, say My, can be colored using exactly two
colors.

Without loss of generality, we may assume that M, is colored by colors 2 and 3. Since it is not
possible to color any other maximum induced matching except M, with just one color (different
from 1), among the remaining edges, there is at least one such edge whose list does not contain
both colors 2 and 3. It follows that all edges have lists of size at least 4, and at least one edge, say
c1, has list of size at least 5. For the non-colored edges, we again use the conflict graph polynomial
as in Case 1, containing the coefficient

coef(Pp-2; cicicidididielelel) = 94,

which means that it is possible to color the non-colored edges using the colors from their lists.

Case 1.3. Suppose that no maximum induced matching except M, can be colored monochromati-
cally, and no other maximum induced matching is colorable by 2 colors.

From now on we consider only the edges not included in M,. Each of the remaining maximum
induced matchings consists of three edges with pairwise disjoint lists of colors of size at least 6.
This means that the union of lists of any two edges of a maximum induced matching is of size at
least 12, and the union of lists of three edges of a maximum induced matching is of size at least 18.
Consequently, for every set of at most 4 edges it holds that the union of their color lists is of size
at least 6; for every set of 5 to 8 edges it holds that the union of their color lists is of size at least
12; and for every set of 9 to 12 edges it holds that the union of their color lists is of size at least
18. Hence, we can apply Theorem 2.1, according to which it is possible to color all the remaining
edges.

Case 2. Suppose that none of the maximum induced matchings can be colored by either 1 or 2
colors.

Thus, each of the maximum induced matchings consists of three edges with pairwise disjoint
lists of colors of size 7. This means that the union of lists of any two edges of a maximum induced
matching is of size 14, and the union of lists of three edges of a maximum induced matching is of
size 21. Therefore, for every set of at most five edges it holds that the union of their color lists is of
size at least 7; for every set of 6 to 10 edges it holds that the union of their color lists is of size at
least 14; and for every set of 11 to 15 edges it holds that the union of their color lists is of size at
least 21. It follows that we can apply Theorem 2.1, and hence color all the edges by different colors.

Case 3. Suppose that one maximum induced matching can be colored using 2 colors (and none of
them can be colored monochromatically).

We color Mg, say by colors 1 and 2. We consider two possible subcases regarding the coloring
of the maximum induced matchings different from M,.

Case 3.1. Suppose that none of the remaining maximum induced matchings can be colored using
2 colors.

From now on, we only consider the edges not included in M,. Regarding any two (three) edges
of any other maximum induced matching, we infer that the union of their color lists contains at
least 10 (15) colors.

Therefore, for every set of at most 4 edges it holds that the union of their color lists is of size at
least 5; for every set of 5 to 8 edges it holds that the union of their color lists is of size at least 10;
and for every set of 9 to 12 edges it holds that the union of their color lists is of size at least 15. It
follows that we can apply Theorem 2.1, and hence color all the remaining edges by different colors.

Case 3.2. Suppose that we can color at least one other maximum induced matching using 2 colors.

Without loss of generality, we may assume that M}, is colored by colors 3 and 4. Note that all
these four colors can occur in the lists of other edges, but at most twice per maximum induced
matching. Regarding the setup of these colors, it follows that lists of edges of any particular
maximum induced matching are of size: at least 3, at least 3, and at least 7; or at least 3, at least
4, and at least 6; or at least 3, at least 5, and at least 5; or at least 4, at least 4, and at least 5. Note
that these color lists may not be disjoint.
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As above, for the non-colored edges we have the following conflict graph polynomial:

Pp—2(cq, Ca, ..., €2, €3) = C(cq, €2, €3, dy, da, d3) - C(c1, €2, C3, €1, €2, €3)
-C(dy, dy, d3, €1, ez, €3).

We consider the four cases regarding the sizes of the lists of the edges of maximum induced
matchings as listed in the previous paragraph.

First, suppose there exists a maximum induced matching with lists of colors of the edges of sizes
at least 3, at least 3, and at least 7. Then, in Pp—2, we have the coefficients

coef(Pp2; cicicSdididselese;) = —14,
and
coef(Pp2; c2cicSdidsdseiese;) = —6,

regarding the monomials fitting the possible sizes of the lists of remaining maximum induced
matchings. Therefore, by Theorem 2.2, it is possible to color the remaining edges.

If there is no maximum induced matching with the properties as in the previous case, then
suppose that there is one with lists of colors of sizes at least 3, at least 5, and at least 5. Then, in
Pp—2, we have the coefficient

coef(Pp—2; cicjcidididselese;) = 60,

which means that it is possible to color the remaining edges.

Now, we may assume that there exists no maximum induced matching which satisfies properties
of previous cases. Suppose that there is one maximum induced matching with lists of colors of sizes
at least 3, at least 4, and at least 6. Then, in P2, there is the coefficient

. (203054203042 0 4y
coef(Pp—2; cicyc3didydzetese;) = 33,

which means that it is possible to color the remaining edges.
Lastly, suppose that all of the remaining maximum induced matchings have lists of colors of the
edges of sizes at least 4, at least 4, and at least 5. Then, in Pp-2, we have the coefficient

coef(Pp—2; cicicidididselese;) = 36,

which again means that it is possible to color the remaining edges.
Thus, the list strong chromatic index of P is 7. O

5. Graphs G with x;(G) < x;,,(G)

In this section, we consider the results on list normal edge-coloring. As already mentioned, lists
of size at least 10 are always enough to find a normal list edge-coloring of a cubic graph. We do not
know whether this bound is tight; currently, there are only examples of graphs with list normal
chromatic index equal to 9.

Theorem 5.1. There is an infinite family of cubic graphs with list normal chromatic index at least 9.

Proof. In order to prove the theorem, we will show that if a cubic graph G contains the configuration
H; depicted in Fig. 7, then there is a list assignment for the edges of Hj, for which G does not admit
a list normal edge-coloring. We use the labeling of the vertices as given in the figure.

Let L be a list assignment for G such that for every edge e of H;, except vivg and v;vg, we
have L(e) = [1, 8]. For the two special edges, we use L(vivg) = [9, 16] and L(v;vg) = [17, 24].
Without loss of generality, we may assume that vjvg is colored by 9, and v;vg with 17. There are
nine remaining (thin) edges, which can altogether receive the eight distinct colors from [1, 8], so
at least one pair must receive the same color. We will show that this is not possible. Note that the
edges adjacent to the edges v,vg and v;vg must all be rich, since they are adjacent to an edge with
a unique color.
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U1 U3 U5
(%rd Us
V2 Vg Ve

Fig. 7. The configuration H; which is not list normal 8-colorable if the two bold edges each receive a list disjoint from
all other lists in a given list assignment.

First, without loss of generality, we color the edge v{v; by 1. Since v,v4 must be rich, the edges
v3v4 and v4vs must be colored differently, with colors distinct from 1, say with 2 and 3, respectively.
Suppose now that the edge vsvg also receives color 1. Then, the edge v,vs must be poor, meaning
that the edges viv4 and vgv; receive the same color, say 4. Similarly, the edge v,v3 must be poor,
and so the edges v,vs and v3vy must be colored the same, which means that v,vs also receives
color 2. But now v4vs must be poor, and thus vsv; must be colored with 4, which is not possible.

Next, suppose that v3vg is colored with 3. Then v3v, must be poor and so the edges vyv4 and
vyv3 must receive the same color, which is not possible, since vyv- is rich.

So, we may assume that vsvg is colored with, say, 4. Suppose first that vivy is colored with 4.
Then, vsvy is poor and v,vs is colored with 3. But now both vvs and vqvg must be poor, meaning
that both vsv; and vgv; must be colored with 1, a contradiction. Therefore, we may assume that
v1v4 is colored with a new color, say 5, and consequently that v3v, is rich, giving that v,v3 receives
a new color, say 6. Since vyv, and v,vs are rich, a new color is given also to v,vs, say 7. Finally,
note that the edges adjacent to vsv; are all rich and consequently it must be colored with 8, which
means that there is no available color for vgv;. Thus, for the given L, the graph G does not admit a
list normal edge-coloring, and therefore X,/I,,(G) >8. O

In the above described family, every graph contains a bridge. As Conjecture 1.8 considers
bridgeless cubic graphs only, it is natural to ask whether there are graphs with the list normal
chromatic index greater than 5. The next example shows that even lists of size 7 in the list
assignment are sometimes not sufficient.

Theorem 5.2. There are bridgeless cubic graphs with list normal chromatic index at least 8.

Proof. As an example of a bridgeless cubic graph with the list normal chromatic index at least 8,
we use the graph G depicted in Fig. 8. We will present a list assignment for the edges of G, for which
G does not admit a list normal 7-edge-coloring. We use the labeling of the vertices as given in the
figure.

Let L be a list assignment for G such that every edge e of G, except vsvg, vsus, and u4ls, has
L(e) = [1,7]. The three special edges have L(v3vg) = [8, 14], L(vsus) = [15, 21], and L(usus) =
[22, 28]. Note that this setting implies that all the edges adjacent to these three edges must be rich.

First, we color the three special edges; without loss of generality, we color v3vg with 8, vsus
with 15, and u4us with 22. Next, we color the edges vqvy, vivs, and vivg with, say, 1, 2, and 3,
respectively.

Now, the edge v4vs cannot receive color 1, since the edge v,vs must be rich. If we color v4vs with
3, then vyv4 must be poor and vs3v4 colored with 1, which is not possible, since v,v3 must be rich.
So, we assign to v4vs color 4. Next, the edge v3v4 cannot receive any color from {1, 2, 3, 4} (since
v1vq must be rich), and thus we color it with 5. Since v3v4 must be rich, v,v3 cannot be colored
with 2, and since v4vs must be rich, v,vs cannot be colored with 2. This means that v{v, must be
rich and consequently, v,v3 and v,vs cannot receive any color from the set {1, 2, 3, 4, 5}. Therefore,
we assign, say, color 6 to v,v3 and color 7 to vyvs.
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Fig. 8. A bridgeless cubic graph which is not list normal 7-colorable if the three bold edges each receive lists disjoint
from all other lists.

At this point, the only possible colors the edge vt can receive are 4 and 7. Note that these are
exactly the colors already assigned to the edges adjacent to vsus.

Now consider the other non-colored edges of the graph. Let {a, b, c,d, e, f,g} = [1,7]. We can
color the edges uqu,, uquy, and uqug by three distinct colors, say a, b, and c, respectively. Since
uju4 must be rich, usu, must be colored with a color distinct from the previous three, say with d.
Since the edges usuy and u4us are rich, none of the edges u,u3 and u,us can be colored with b, and
therefore the edge uiu, must be rich. Moreover, u,us cannot receive color d, since u4us must be
rich. Therefore, we color u,us3 by e and u,us by f. The edge usug cannot receive any color from the
set {a, b, c, d, e, f} (since uus; and usu, must be rich), so we must color it with the only remaining
color g. Finally observe that the only possible color the edge vsug can receive is f, which is the same
color as the color of uyus. This means that two of the edges adjacent to vsus (which must be rich)
must receive the same color, this contradicts the fact that vsus must be rich. O

The graph in the proof of Theorem 5.2 has a 2-edge-cut. So, again a question arises whether
there are cubic graphs with high list normal chromatic index and high connectivity. We focused on
cyclically 4-edge-connected cubic graphs and surprisingly there are such graphs with list normal
chromatic index at least 7.

Theorem 5.3. There is an infinite family of cyclically 4-edge-connected cubic graphs with list normal
chromatic index at least 7.

Proof. We will show that for a cubic graph Ly, depicted in Fig. 9 and any k > 5, there is a list
assignment for the edges of Ly, for which Ly, does not admit a list normal edge-coloring. Clearly,
Ly is cyclically 4-edge-connected. We use the labeling of the vertices as given in the figure.

Let L be a list assignment for Ly, such that for its every edge e, except viv3 and vyv4, we have
L(e) = [1, 6]. For the two special edges, we use L(viv3) = [7, 12] and L(vv4) = [13, 18]. Without
loss of generality, we may assume that vvs is colored by 7, and v,v4 with 13.

Without loss of generality, we can assign colors 1, 2, and 3 to the edges v3vs, v4vs, and vsvy,
respectively. Since the edges adjacent to the edges vivs and v,v4 must all be rich, the edges v4vg
and v3vg must obtain colors that were not used yet, say 4 and 5, respectively. Now, we consider
two cases regarding the color of vgvs.

Suppose first that vgvg is colored with 3. Then the edge v;vg must be poor, and consequently
v7v9 and vgvyo must receive the same color. Now, following an analogous argument for coloring the
remaining edges v;vi;1, vivit2, and vi1vits, fori € {9, 11, ..., 2k — 1}, we infer that also usu, and
uiu, must be poor and thus ujv; and u;v, must receive the same color. This is not possible, since
v1v, must be rich.

So, vgvg must be colored with color 6 (the only color not used yet). Then, v;vg must be rich and
by the symmetry, we may assume that v;vg is colored with 1. It follows that v;vg is colored with
2, and vgvg must be colored with 4 or 5. But this is not possible, since vgvg must be rich. This
completes the proof. O
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Fig. 9. A cyclically 4-edge-connected cubic graph Ly, which is not list normal 6-colorable if the two bold edges receive
lists disjoint from all other lists.

6. Conclusion

One of the main results of this paper is the tight upper bound of 10 colors for the strong
chromatic index of subcubic graphs. However, since this bound is only known to be attained by
the Wagner graph and graph containing the K3 3 with a subdivided edge as a subgraph, one may
ask whether there are other examples of such graphs, perhaps with smaller chromatic index.

Question 6.1. Is it true that for any subcubic graph G with x, (G) = 10, it holds that x/(G) = 10?7

As the second main result, we proved that the strong chromatic index and the list strong
chromatic index differ for some graphs; we provided an infinite family of such graphs, but the
family only contains graphs with the minimum possible value of the strong chromatic index, and it
does not seem likely that for graphs with strong chromatic index closer to the general upper bound
of 10 colors, their list strong chromatic index will be different. Therefore, we propose a rather bold
statement, which is in line with Conjecture 1.3.

Conjecture 6.2. For any connected bridgeless subcubic graph G on at least 13 vertices, it holds that
xs.(G) < 8.

The first step towards proving this conjecture would be proving that the list strong chromatic
index of any connected bridgeless subcubic graph, not isomorphic to the Wagner graph, is at most
9. Or even more specifically, finding the exact upper bounds for the list strong chromatic indices of
special graph families such as planar graphs and bipartite graphs would also give a relevant insight
into the topic.

On the other hand, we do believe that there are cubic graphs with strong chromatic index 6 and
greater list strong chromatic index.

Problem 6.3. Find an infinite family of cubic graphs G with x;(G) = 6 and
X5.1(G) > x,(G).

Also, we are confident that Theorem 1.6 can be extended to all cubic graphs with strong
chromatic index equal to 5.

Conjecture 6.4. For every cubic graph G with x/(G) = 5 we have that Xs,, (G) > 5.

The strong edge-coloring is an important concept; the study of (sub)cubic graphs is popular as
these graphs are somewhat easier to handle than general graphs. The properties of list strong edge-
coloring for general graphs are thus also of interest. In [25], it was shown that k-regular graphs
attaining the lowest possible value 2k — 1 of the strong chromatic index are precisely the covers
of the Kneser graphs K(2k — 1, k). It seems that Theorem 1.6, with some additional effort, could be
extended to regular graphs of greater degree. Along these lines, we suggest the following question.
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K o

Fig. 10. Two bridgeless cubic graphs with list strong chromatic index at least 8. If the bold edges receive unique lists of
seven colors and all the other edges the same lists of seven colors, then one cannot realize a list normal edge-coloring.

Question 6.5. Is it true that for a given integer k > 4, there is an infinite family of graphs G of maximum
degree k such that

Xs.1(G) > x5(G)?
In the case of list normal edge-coloring, we have the upper bound given by Theorem 1.4, but we
do not have an example of a graph attaining the bound; in fact, we do not believe one exists.

Conjecture 6.6. For any cubic graph G, it holds that
Xni(G) < 9.

Conjecture 1.8 assumes only bridgeless cubic graphs. We showed in Theorem 5.2 that in the
list version, there are bridgeless cubic graphs with list normal chromatic index at least 8. In the
proof of the theorem, we only provided one graph of order 12. However, we are only aware of two
other graphs with list normal chromatic index at least 8; namely the Wagner graph and the graph
obtained from K3 3 in which one vertex is truncated (see Fig. 10). We also remark here without a
proof that with some additional effort, one can show that the list normal chromatic index of the
Wagner graph is equal to 8.

Based on our results and additional computer tests on small graphs, we confidently propose also
the following.

Conjecture 6.7. For any connected bridgeless cubic graph G on at least 14 vertices, it holds that
Xy/l,[(c) <7

As opposed to the normal edge-coloring, in its list version, the property of being a class I graph
does not resolve the problem trivially. In fact, it seems that the following are highly non-trivial
questions.

Question 6.8. What is the tight upper bound for the list normal chromatic index of a cubic graph, which
is:

(a) (bridgeless) planar;

(b) class I;

(c) bipartite;

(d) with girth at least C, for some large enough constant C;
(e) cyclically k-edge-connected, for some integer k?
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