
European Journal of Combinatorics 131 (2026) 104243

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 
 
 
 
 

 

Contents lists available at ScienceDirect

European Journal of Combinatorics
journal homepage: https://www.sciencedirect.com/journal/

european-journal-of-combinatorics  

List strong and list normal edge-coloring of 
(sub)cubic graphs
Borut Lužar a,b, Edita Máčajová c, Roman Soták d, 
Diana Švecová d

a Faculty of Information Studies in Novo mesto, Slovenia
b Rudolfovo - Science and Technology Centre Novo mesto, Slovenia
c Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
d Pavol Jozef Šafárik University, Faculty of Science, Košice, Slovakia

a r t i c l e  i n f o

Article history:
Received 17 October 2024
Accepted 1 September 2025
Available online 11 September 2025

 a b s t r a c t

A strong edge-coloring of a graph is a proper edge-coloring, in
which the edges of every path of length 3 receive distinct colors;
in other words, every pair of edges at distance at most 2 must
be colored differently. The least number of colors needed for a
strong edge-coloring of a graph is the strong chromatic index. We
consider the list version of the coloring and prove that the list
strong chromatic index of graphs with maximum degree 3 is at
most 10. This bound is tight and improves the previous bound
of 11 colors.

We also consider the question whether the strong chromatic
index and the list strong chromatic index always coincide. We
answer it in negative by presenting an infinite family of graphs
for which the two invariants differ. For the special case of the
Petersen graph, we show that its list strong chromatic index
equals 7, while its strong chromatic index is 5. Up to our best
knowledge, this is the first known edge-coloring for which there
are graphs with distinct values of the chromatic index and its list
version.

In relation to the above, we also initiate the study of the
list version of the normal edge-coloring. A normal edge-coloring
of a cubic graph is a proper edge-coloring, in which every
edge is adjacent to edges colored with 4 distinct colors or to
edges colored with 2 distinct colors. It is conjectured that 5
colors suffice for a normal edge-coloring of any bridgeless cubic
graph and this statement is equivalent to the Petersen Coloring
Conjecture.
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It turns out that similarly to strong edge-coloring, list normal

edge-coloring is much more restrictive and consequently for
many graphs the list normal chromatic index is greater than the
normal chromatic index. In particular, we show that there are
cubic graphs with list normal chromatic index at least 9, there
are bridgeless cubic graphs with its value at least 8, and there
are cyclically 4-edge-connected cubic graphs with value at least
7.

© 2025 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A strong edge-coloring of a graph G is a proper edge-coloring in which the edges at distance at 
most 2 receive distinct colors. Here, we define the distance between two edges in a graph G, as the 
distance between their corresponding vertices in the line graph of G; thus, two adjacent edges are 
at distance 1, and two non-adjacent edges, which are adjacent to a common edge, are at distance 2. 
The least number of colors for which G admits a strong edge-coloring is called the strong chromatic 
index, and is denoted by χ ′

s(G).
In 1985, Erdős and Nešetřil [6] proposed the following conjecture; in 1990, it was updated to its 

current form by Faudree et al. [8], in order to fit the graphs with an even or odd maximum degree.

Conjecture 1.1 (Erdős, Nešetřil [6]).  The strong chromatic index of an arbitrary graph G satisfies

χ ′

s(G) ≤

{ 5
4∆(G)2 , if ∆(G) is even

1
4 (5∆(G)2 − 2∆(G) + 1) , if ∆(G) is odd.

We are still far from resolving the conjecture in general as the best known upper bound is 
1.772∆(G)2 (provided that ∆(G) is large enough) due to Hurley et al. [16]. However, when limited 
to graphs of small maximum degree, we know a bit more; e.g., for graphs with maximum degree 
3 (we refer to them as to subcubic graphs), the tight upper bound is established. 

Theorem 1.2 (Andersen [2]; Horák, Qing, and Trotter [14]). For any subcubic graph G, it holds that
χ ′

s(G) ≤ 10.
There are only two known connected bridgeless subcubic graphs that need 10 colors for a strong 

edge-coloring: the Wagner graph (the left graph in Fig.  10) and the complete bipartite graph K3,3
with one subdivided edge. Moreover, there is also no known connected bridgeless subcubic graph 
on more than 12 vertices with the strong chromatic index more than 8, and based on that also the 
following, stronger conjecture was proposed. 

Conjecture 1.3 (Lužar, Máčajová, Škoviera, and Soták [25]).  For any connected bridgeless subcubic 
graph G on at least 13 vertices, it holds that

χ ′

s(G) ≤ 8.
On the other hand, the lower bound of 5 colors for the strong chromatic index of cubic graphs 

(i.e., 3-regular graphs) is attained precisely by the covers of the Petersen graph [25].

1.1. List strong edge-coloring

Our research reported in this paper revolves about the list version of the strong edge-coloring 
of subcubic graphs. We say that L is a list assignment for a graph G if it assigns a list L(e) of possible 
colors to each edge e of G. If G admits a strong edge-coloring ϕ such that ϕ(e) ∈ L(e) for all edges 
2
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in E(G), then we say that G is strong L-edge-colorable or that ϕ is a strong L-edge-coloring of G. The 
graph G is strong k-edge-choosable if it is strong L-edge-colorable for every list assignment L, where 
|L(e)| ≥ k for every e ∈ E(G). The list strong chromatic index χ ′

s,l(G) of G is the least k such that G is 
strong k-edge-choosable.

For graphs with small maximum degrees, a number of results are already known. Horňák and 
Woźniak [15] showed that for any cycle, its list strong chromatic index and its strong chromatic 
index coincide. Dai et al. [5] proved that the list strong chromatic index of subcubic graphs is at 
most 11, and at most 10 in the case of subcubic planar graphs. The latter result was later extended 
to toroidal graphs by Pang et al. [28]. For graphs of maximum degree 4 it was shown that the list 
strong chromatic index is at most 22 [32], and at most 19 in the case of planar graphs [4].

In this paper, we generalize the results from [5,28] by establishing a tight upper bound for 
subcubic graphs. 

Theorem 1.4.  For any subcubic graph G, it holds that
χ ′

s,l(G) ≤ 10.
As in the non-list version, only the Wagner graph and the complete bipartite graph K3,3 with 

one subdivided edge are known to attain the upper bound.
The second question regarding the list strong edge-coloring is whether the values of the list 

strong chromatic index and the strong chromatic index of subcubic graphs coincide. In particular, 
we are interested in a special case of the question proposed by Dai et al. [5]. 

Question 1.5 (Dai, Wang, Yang, and Yu [5], Question 4.1).  Is it true that for any graph G, it holds that
χ ′

s,l(G) = χ ′

s(G) ?
The motivation for the question comes from the List (Edge) Coloring Conjecture stating that the 

values of the chromatic index and the list chromatic index of any graph coincide. The conjecture 
was stated independently by several researchers (see [20, Problem 12.20] for more details) and in 
general it is still widely open; cf., e.g., [3] for a short survey.

In other words, the List Coloring Conjecture states that the chromatic number of any line-
graph is equal to its list chromatic number, which is not true for graphs in general. Therefore, 
it seems that the structural properties of line-graphs are the ones that guarantee the equality of 
the two invariants. One can thus ask what are other structural properties of graphs that would 
also guarantee equality. In this sense, Kostochka and Woodall [24] conjectured that the chromatic 
number and the list chromatic number are equal for every square graph, where the square graph G2

is obtained from a graph G by connecting all pairs of vertices at distance 2. The conjecture was 
refuted in general by Kim and Park [23], but it is open for specific graph classes; for example, 
whether the two chromatic numbers are equal for the squares of line graphs. Since a (list) strong 
edge-coloring of a graph G is exactly a (list) coloring of vertices of the square of the line graph of G, 
Question  1.5 asks exactly that. We answer it in negative by presenting an infinite family of graphs 
G for which χ ′

s,l(G) > χ ′
s(G). 

Theorem 1.6.  There is an infinite family of connected cubic graphs G with

χ ′

s(G) = 5 and χ ′

s,l(G) > 5.
Interestingly, there are also some planar graphs (e.g., the dodecahedron) and bipartite graphs 

(e.g., the generalized Petersen graph GP(10, 3)) among the graphs with different values for the two 
invariants. Note that the above results are independently obtained also by Hasanvand [13].

Finally, for the case of the Petersen graph, we prove the exact value of the list strong chromatic 
index. 

Theorem 1.7.  For the Petersen graph P, it holds that
χ ′

s,l(P) = 7.
3
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After publishing the preprint of this paper, we were notified by M. Hasanvand that the result of 
Theorem  1.7 follows also from the result of Kierstead on complete multipartite graphs [22].

1.2. List normal edge-coloring

The second part of this paper is dedicated to initiating the study of the list version of the normal 
edge-coloring of cubic graphs.

A normal edge-coloring of a cubic graph is a proper edge-coloring, in which every edge is adjacent 
to edges colored with four distinct colors (such edges are called rich) or to edges colored with two 
distinct colors (such edges are called poor). If at most k colors are used, we call the coloring a normal 
k-edge-coloring. The smallest k, for which a graph G admits a normal k-edge-coloring is the normal 
chromatic index, denoted by χ ′

n(G). Clearly, every strong edge-coloring is also a normal edge-coloring, 
since every edge is rich. On the other hand, if a cubic graph admits a proper edge-coloring with 3
colors, then every edge is poor, and hence the coloring is also normal.

The normal edge-coloring was defined by Jaeger [17] as an equivalent way of formulating the 
Petersen Coloring Conjecture [19], which asserts that the edges of every bridgeless cubic graph G can 
be colored by using the edges of the Petersen graph P as colors in such a way that adjacent edges 
of G are colored by adjacent edges of P; in particular, a bridgeless cubic graph admits a normal 
5-edge-coloring if and only if it admits a Petersen coloring. 

Conjecture 1.8 (Jaeger [17]).  For any bridgeless cubic graph G, it holds that
χ ′

n(G) ≤ 5.

Resolving Conjecture  1.8 would have a huge impact to the theory as it implies two famous con-
jectures; namely, the Cycle Double Cover Conjecture [18] and the Berge–Fulkerson Conjecture [10]; 
cf. [21] for more details.

In general, it is known that every cubic graph (with the bridgeless condition omitted) admits 
a normal 7-edge-coloring [27], and the bound is tight, e.g., by any cubic graph that contains as a 
subgraph the complete graph K4 with one edge subdivided. When considering only bridgeless cubic 
graphs, Mazzuoccolo and Mkrtchyan [26] proved that all claw-free cubic graphs, tree-like snarks, 
and permutation snarks [26] admit a normal 6-edge-coloring; the latter result was generalized to 
bridgeless cubic graphs of oddness 2 by Fabrici et al. [7]. With at most 5 colors available, only 
very particular graphs are known to admit a normal edge-coloring, see, e.g., [9,11,29,30]. Hence, 
Conjecture  1.8 remains widely open in general.

In this paper, in relation to the list strong edge-colorings, we also study the properties of the 
list version of the normal edge-coloring. For a cubic graph G, list normal edge-coloring and the list 
normal chromatic index, χ ′

n,l(G), are defined analogously to the list strong variants.
Clearly, the upper bound for the list normal chromatic index of cubic graphs is implied by 

Theorem  1.4. 

Corollary 1.9.  For any subcubic graph G, it holds that
χ ′

n,l(G) ≤ 10.

We show that, similarly to the list strong edge-coloring, also in the list normal edge-coloring 
there are graphs G with χ ′

n,l(G) > χ ′
n(G). In particular, there is an infinite family of cubic graphs with 

list normal chromatic index at least 9, there are bridgeless cubic graphs with list normal chromatic 
index at least 8, and there is an infinite family of cyclically 4-edge-connected cubic graphs with list 
normal chromatic index at least 7. Interestingly, our examples of bridgeless graphs for the above 
results are all from class I, and therefore they all have the normal chromatic index equal to 3.

The paper is structured as follows. In Section 2, we introduce notation, terminology, and auxiliary 
results. In Sections 3 and 4, we prove results regarding the list strong chromatic index, and in 
Section 5, we present constructions of graphs with distinct normal and list normal chromatic 
indices. We conclude the paper with some open problems in Section 6.
4
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2. Preliminaries

In this section, we introduce the terminology and auxiliary results used in the paper.
As usual, for a sequence of consecutive integers, we use the abbreviation [i, j] = {i, i + 1, . . . , j}. 

We call a cycle of length k a k-cycle. The edge-neighborhood N(e) of an edge e is the set of edges 
adjacent to e, and the 2-edge-neighborhood N2(e) is the set of edges at distance 1 or 2 from e. An 
induced matching is a set of edges M such that any pair of edges in M is at distance at least 3; 
i.e., the graph induced on the endvertices of the edges of M is a matching.

For a given list assignment L, a partial strong L-edge-coloring ϕ of a graph G is a strong edge-
coloring of a subset of edges of G such that any pair of colored edges e and f ; i.e., we have ϕ(e) ∈ L(e), 
ϕ(f ) ∈ L(f ) and ϕ(e) ̸= ϕ(f ) if e and f  are at distance at most 2 in G.

Given a list assignment L and a partial strong L-edge-coloring, we say that a color c ∈ L(e) is 
available for the edge e if no edge in N2(e) is colored with c. We denote the set of all available 
colors for an edge e with A(e). Clearly, A(e) ⊆ L(e).

In our proofs, we use the following application of Hall’s Marriage Theorem [12]. 

Theorem 2.1.  Let G be a graph and ϕ a partial (strong) edge-coloring of G. Let X = {e1, . . . , ek} be 
the set of non-colored edges of G. Let F = {A(e1), . . . , A(ek)}. If for every subset X ⊆ F it holds that

|X | ≤

⏐⏐⏐ ⋃
X∈X

X
⏐⏐⏐,

then one can choose an available color for every edge in X such that all the edges receive distinct colors.
One of the strongest tools for determining whether colors from the sets of available colors can 

always be found such that the given conditions are satisfied is the following result due to Alon [1]. 

Theorem 2.2 (Combinatorial Nullstellensatz [1]).  Let F be an arbitrary field, and let P = P(X1, . . . , Xn)
be a polynomial in F[X1, . . . , Xn]. Suppose that the coefficient of the monomial Xk1

1 . . . Xkn
n , where each 

ki is a non-negative integer, is non-zero in P and the degree deg(P) of P equals 
∑n

i=1 ki. If moreover 
S1, . . . , Sn are any subsets of F with |Si| > ki for i = 1, . . . , n, then there are s1 ∈ S1, . . . , sn ∈ Sn such 
that P(s1, . . . , sn) ̸= 0.

In short, for PG being the graph polynomial of a graph G, if there is a monomial m of PG with 
degree deg(PG) and a non-zero coefficient, and moreover in m the degree of every variable is less 
than the number of available colors for the vertex represented by the variable, then there exists a 
coloring of G. For a monomial m, we denote the coefficient of m in the polynomial PG by coef(PG; m).

Usually, we only consider edge-coloring of a subgraph H of a graph G, with some of the other 
edges in G already being precolored and hence the lists of available colors for edges in H are 
reduced accordingly. In order to apply Theorem  2.2, we construct an auxiliary conflict graph C(H), 
in which every vertex represents an edge to be colored, and two vertices are adjacent whenever 
the corresponding edges need to be colored with distinct colors. Clearly, the input to Theorem  2.2 
is the graph polynomial of C(G), but to avoid this step, we simply say that we consider a conflict 
graph polynomial for H .

Note that in this paper, every conflict graph polynomial is homogeneous, i.e., it is a sum of 
monomials of the same degree, and therefore the degree condition of Theorem  2.2 for monomials 
is always fulfilled.

3. Upper bound on the list strong chromatic index

In this section, we prove the tight upper bound for the list strong chromatic index.
In the first part of our proof, we follow the proof of the result of Dai et al. [5] that the list strong 

chromatic index of subcubic graphs is at most 11. In particular, they showed that for eliminating 
cycles of length at most 5 from the minimal counterexample, one can even assume lists of length 
10.
5
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Proof of Theorem  1.4.  Suppose the contrary and let G be a minimal counterexample to the 
theorem; i.e., a graph with maximum degree 3, which has the list strong chromatic index greater 
than 10.

Clearly, G is connected. Moreover, from [5], we have the following structural properties of G
(since lists of size 10 are assumed in these lemmas).

Claim 1 ([5, Lemma 2.1]). G is 3-regular. ♦

Claim 2 ([5, Lemma 2.2]). G does not contain any 3-cycle. ♦

Claim 3 ([5, Lemma 2.3]). G does not contain any 4-cycle. ♦

Claim 4 ([5, Lemma 2.4]). G does not contain any 5-cycle. ♦
Next, we reduce cycles of length at least 6.

Claim 5. G does not contain any 6-cycle.

Proof.  Suppose the contrary and let C = v0 . . . v5 be a 6-cycle in G. For every i ∈ {0, . . . , 5}, call 
the edge xi = vivi+1 (indices modulo 6) a cycle edge, and every non-cycle edge yi incident to vi a 
pendant edge (see Fig.  1).

By the minimality of G, there exists a list strong edge-coloring ϕ′ of G′
= G \ {v1, v2, v3, v4, v5}

for any list assignment L with lists of size at least 10. Let ϕ be the coloring of G induced by ϕ′. Then, 
only the edges of C and the pendant edges except y0 are non-colored in ϕ. The edges x0, x1, x4 and 
x5 have at least 5 available colors, the edges x2 and x3 have at least 6, y1 and y5 have at least 3, and 
y2, y3, y4 have at least 4 available colors.

Claims  2–4 imply that no two pendant edges are the same or adjacent; it may however happen 
that the edges y1 and y4 (and similarly, y2 and y5) are connected by an edge; we thus assume 
also these two edges. So, the conflict graph polynomial PC6  created on the non-colored edges with 
conflicts between edges at distance at most 2 is the following (taking indices modulo 6):

PC6 (x0, . . . , x5, y1, . . . , y5) =

[ 5∏
i=0

(xi − xi+1) · (xi − xi+2)
]

· (x0 − y1) · (x0 − y2) · (x0 − y5)
· (x1 − y2) · (x1 − y3) · (x1 − y1)
· (x2 − y3) · (x2 − y4) · (x2 − y2) · (x2 − y1)
· (x3 − y4) · (x3 − y5) · (x3 − y3) · (x3 − y2)
· (x4 − y5) · (x4 − y4) · (x4 − y3)
· (x5 − y1) · (x5 − y5) · (x5 − y4)
· (y1 − y2) · (y2 − y3) · (y3 − y4) · (y4 − y5)
· (y1 − y4) · (y2 − y5)

Using the function Coefficient in Wolfram Mathematica [31], we infer that in PC6 , we have 
the coefficient

coef(PC6; x40 x41 x52 x53 x44 x45 y21 y32 y23 y34 y25) = −2,

which, by Theorem  2.2, means that we can extend the coloring ϕ to all the edges of G, a 
contradiction.♦

We continue by showing that in G any cycle is reducible. 

Claim 6. G does not contain any cycle.

6
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Fig. 1. The hypothetical 6-cycle C in G. The edges y1 and y4 (and also y2 and y5) might be connected by an edge (depicted 
dashed).

Fig. 2. The hypothetical k-cycle C in G.

Proof.  Let C = v0 . . . vk−1 be a shortest cycle in G. For every i ∈ {0, . . . , k − 1}, call the edge 
xi = vivi+1 (indices modulo k) a cycle edge, and every non-cycle edge yi+1 incident to vi a pendant 
edge (see Fig.  2). By Claims  2–5, we have that k ≥ 7. Moreover, since there is no (k − 1)-cycle in G, 
we have that no pair of pendant edges is connected by any edge except by a cycle edge.

Let L be a list assignment for the edges of G with lists of size at least 10 for which G is not 
strongly L-edge-choosable. Let G′ be the graph obtained from G by removing the vertices of C . By 
the minimality, G′ admits a list strong edge-coloring ϕ′ with color of every edge e ∈ E(G′) from 
L(e). Let ϕ be the coloring of G induced by ϕ′, where only the edges incident to the vertices in V (C)
are non-colored. In particular, every cycle edge xi has at least 6 available colors, and every pendant 
edge yi has at least 4. We will show that we can extend ϕ to all the edges of G.

First, let PCk  be the conflict graph polynomial created on the non-colored edges with conflicts 
between edges at distance at most 2; taking indices modulo k, we have the following:

PCk (x0, . . . , xk−1, y0, . . . , yk−1) =

k−1∏
i=0

(xi − xi+1) · (xi − xi+2) · (yi − yi+1) · (xi − yi−1) · (xi − yi) · (xi − yi+1) · (xi − yi+2) .
7
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Next, we prove that

coef(PCk; x40y
3
0 x21y

2
1 x52y

3
2 x53y

3
3 x44y

3
4 x55y

3
5 ·

k−1∏
i=6

x4i y
3
i ) = (−1)k.

In order to compute the coefficient in general, we use Wolfram Mathematica [31]. Due to the 
limitations of the software, we need to split our computations into several steps; in particular, we 
compute coefficients of selected subpolynomials.

We begin by considering the subpolynomial P2,3,4
Ck

 of PCk , comprised of all factors containing xi
or yi for i ∈ {2, 3, 4}. The polynomial P2,3,4

Ck
 has degree 29 and we infer that

coef(P2,3,4
Ck

; x52y
3
2x

5
3y

3
3x

4
4y

3
4) = x20x

2
5y

2
1 + 2x20x5y

2
1y5 − x20x

2
5y

2
5 − 2x0x25y1y

2
5 + x20y

2
1y

2
5 − x25y

2
1y

2
5.

Here and in several subsequent cases, we slightly abuse the notation as the value of the coefficient is 
a polynomial, which appears in the conflict graph polynomial multiplied with the monomial given 
as an argument. Note that in the resulting polynomial, no variable from the monomial appears.

In the second step, we create polynomial P5,6
Ck

, comprised of coef(P2,3,4
Ck

; x52y
3
2x

5
3y

3
3x

4
4y

3
4) and 

multiplied with all factors containing xi or yi for i ∈ {5, 6}, which were not yet used in P2,3,4
Ck

. We 
infer that

coef(P5,6
Ck

; x55y
3
5x

4
6y

3
6) = x20y

2
1(x7 + y7).

Therefore, x20y21(x7 +x7) is also the coefficient of the monomial x52y32x53y33x44y34x55y35x46y36 in the subpoly-
nomial of PCk  containing xi or yi for all i ∈ {2, . . . , 6}.

Now, we define (again, indices modulo k) an auxiliary polynomial

Ai(xi, xi+1, xi+2, yi, yi+1, yi+2) =(xi − xi+1)(xi − xi+2)(xi − yi)·
· (xi − yi+1)(xi − yi+2)(xi+1 − yi)(yi − yi+1) ,

used for defining partial polynomials for each of the remaining pairs xi, yi. Let
P7
Ck (x0, x7, x8, x9, y1, y7, y8, y9) = coef(P5,6

Ck
; x55y

3
5x

4
6y

3
6) · A7(x7, x8, x9, y7, y8, y9) .

Then,

coef(P7
Ck; x47y

3
7) = −x20y

2
1(x8 + y8).

Finally, for every i, 8 ≤ i ≤ k − 1, let
P i
Ck (x0, xi, xi+1, xi+2, y1, yi, yi+1, yi+1) = (−1)i · x20y

2
1(xi + yi) · Ai(xi, xi+1, xi+2, yi, yi+1, yi+1),

obtaining

coef(P i
Ck; x4i y

3
i ) = (−1)i · x20y

2
1(xi+1 + yi+1).

In the last step, we consider the non-used factors with x0, x1, y0, and y1; we have
P0
Ck (x0, x1, y0, y1) = coef(Pk−1

Ck
; x4k−1y

3
k−1)·

· (x0 − x1)(x0 − y0)(x0 − y1)(x1 − y0)(x1 − y1)(y0 − y1) ,

giving us
coef(P0

Ck; x40y
3
0) = (−1)k · (x21y

2
1 − y41).

This means that

coef(PCk; x40y
3
0 x21y

2
1 x52y

3
2 x53y

3
3 x44y

3
4 x55y

3
5 ·

k−1∏
i=6

x4i y
3
i ) = (−1)k,

which implies, by Theorem  2.1, that we can always extend the coloring ϕ to all the edges of G, a 
contradiction.♦

Since G must be 3-regular by Claim  1, but it does not contain any cycle by Claims  2 to 6, we 
obtain a contradiction establishing the theorem. □
8
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Fig. 3. The graph P ′ obtained from the Petersen graph by replacing one edge with two pendant edges.

4. Graphs G with χ′
s(G) < χ′

s,l(G)

In this section, we give a negative answer to Question  1.5 by proving Theorem  1.6. First, we 
recall the result about cubic graphs with strong chromatic index equal to 5. It uses the notion of 
covering graphs defined as follows. A surjective graph homomorphism f : G̃ → G is called a covering 
projection if for every vertex ṽ of G̃ the set of edges incident with ṽ is bijectively mapped onto the 
set of edges incident with f (ṽ). The graph G is usually referred to as the base graph and G̃ as a 
covering graph or a lift of G. A graph G̃ covers G if there exists such a covering projection.

Theorem 4.1 (Lužar, Máčajová, Škoviera, and Soták [25]).  The strong chromatic index of a cubic graph 
G equals 5 if and only if G covers the Petersen graph.

Let P ′ be the graph obtained from the Petersen graph by replacing one edge with two pendant 
edges (see Fig.  3). Consider the labeling of its vertices as given in the figure. For 1 ≤ i ≤ 5, we call 
the edges uivi the spokes of P ′, the edges uiui+2 (indices modulo 5) the inner edges, and the edges 
vivi+1 (indices modulo 5 and i = 1 skipped) the outer edges.

We are now ready to prove Theorem  1.6.

Proof of Theorem  1.6.  Let R be a covering graph of the Petersen graph P . By Theorem  4.1, we have 
that χ ′

s(R) = 5; let ϕR be a strong 5-edge-coloring of R.
Consider the graph G obtained from R − uv (for some edge uv of R) and P ′ by identifying the 

vertices u and w1, and v and w2.
We first show that χ ′

s(G) = 5. Let π be a strong 5−edge-coloring of P ′. with the two pendant 
edges having the same color. We obtain a strong 5-edge-coloring ϕ of G by keeping the colors from 
ϕR on the edges of R − uv, setting ϕ(uv1) = ϕ(vv2) = ϕR(uv), permuting the colors of π such that 
ϕR(uv) = π (v1w1) and such that the colors on the edges incident to u (v) in ϕR are distinct from 
the colors incident to v1 (v2) in π (this can be done, since the same color c of the two pendant 
edges guarantees that c is the only color incident to both vertices v1 and v2), and finally setting 
ϕ′(e′) = π (e) for every edge e′

∈ E(G) that corresponds to an edge e ∈ E(P ′). Note that, by Theorem 
4.1, this means that G is also a covering graph of P .

Next, we show that χ ′

s,l(G) > 5. Let L be a list assignment for G such that L(e) = {1, 2, 3, 4, 5}
for every edge e of G corresponding to an inner edge of P ′, L(e) = {1, 2, 3, 4, 6} for every edge e of 
G corresponding to a spoke of P ′, and L(e) = {1, 2, 3, 5, 6} for the remaining edges of G.

Let G′ be the graph obtained from G by removing all the edges of P ′ except uv1 and vv2. Clearly, 
G′ is the graph R with one edge removed and replaced with two pendant edges, and thus it admits 
a strong 5-edge-coloring ϕ∗ induced by the coloring ϕ of R. Note that in ϕ, the edges uv1 and vv2
receive the same color (the color ϕ(uv)). Now, we show that in any strong 5-edge-coloring of G′
9
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these two edges must be colored with the same color. Since the edges of G′ in L have the same lists of 
size 5, this will imply that the two edges must receive the same color in any strong L-edge-coloring.

First, observe that in ϕ∗ the only common color the vertices u and v are incident with is color 
a = ϕ(uv). Let b ̸= a be a color incident with u, and c ̸= a a color incident with v. Let k be the 
number of edges of color b in ϕ∗. Since every edge of color b is adjacent to edges of all other four 
colors, the edges of G′ colored with b in ϕ∗ together with their adjacent edges cover all the edges of 
G′ (every edge exactly once) except vv2; we denote this (almost) covering Cb. Similarly, the edges 
of G′ colored with c in ϕ∗ together with their adjacent edges cover all the edges of G′ (every edge 
exactly once) except uv1; we denote this (almost) covering Cc .

Now, let σ  be a strong 5-edge-coloring of G′. On the edges of Cb, every color appears k times, so 
together with the edge vv2, the color σ (vv2) appears k + 1 times. Similarly we deduce that using 
the covering Cc , the color σ (uv1) appears on k + 1 edges, and so σ (uv1) = σ (vv2). Hence, in every 
strong 5-edge-coloring of G′ the edges uv1 and vv2 must be colored with the same color.

Similarly, we can show that around the vertices u and v in G, all five colors appear (i.e., the only 
common incident color is the color of the edges uv1 and vv2). Observe that the edges of G′ colored 
with a in ϕ∗ (except the edges uv1 and vv2) together with their adjacent edges cover all the edges 
of G′ (every edge exactly once) except the edges incident with u and v; we denote this covering 
Ca. Again, in every strong 5-edge-coloring of G′, on the edges of Ca every color appears k− 1 times, 
while in the whole graph every color appears on k edges, except the color of uv1 and vv2, which 
appears k + 1 times. This means, that u and v together are incident with edges of all five colors.

Now consider the coloring of the edges of P ′. Clearly, in any strong L-edge-coloring, all the five 
colors from {1, 2, 3, 4, 5} appear on the inner edges of P ′. Similarly, since every spoke edge of P ′

sees 4 distinct colors on the inner edges of P ′, every spoke edge can be colored with precisely one 
of the colors from {1, 2, 3, 4} or color 6, except for the spoke edge that does not have color 5 in its 
2-edge-neighborhood—that edge must be colored with 6. Moreover, the edges v1w1 and v2w2 must 
be colored with the same color, so that we can combine the colorings of G′ and P ′.

There are three non-isomorphic possibilities on which inner edge color 5 appears. First, suppose 
that u1u4 is colored with 5. Then, u5v5 must be colored with 6 and therefore v2v3 is the only outer 
edge of P ′ which can be colored with 5 or 6. Therefore the colors 1, 2, and 3 must be used on the 
remaining outer edges, and consequently v1w1 and v2w2 must also both be colored with either 5
or 6. This is not possible, since v1w1 has both colors in it<s 2-edge-neighborhood.

Second, suppose that u3u5 is colored with 5. Then, u4v4 must be colored with 6 and thus no outer 
edge of P ′ can have color 6. Since every outer edge of P ′ also has color 5 in the 2-edge-neighborhood, 
it follows that the remaining four outer edges must be colored with colors 1, 2, and 3. This means 
that v1v5 and v2v3 receive the same color, say 1. But then, color 1 cannot be incident with u and v, 
and consequently, u and v together will not be incident with all five colors, which is not possible 
by the argument above.

So, we may assume that u1u3 is colored with 5. Then, u2v2 must be colored with 6, and v1w1
and v2w2 must both be colored with the same color as u3u5, which cannot be 4—say it is 1. Then, 
the outer edges of P ′ must be colored with colors from {2, 3, 5, 6}. Since only v4v5 can be colored 
with 5, it follows that v1v5 must have color 6. Therefore, u2v2 and v1v5 both have color 6, which 
means that, since uv1 and vv2 both have color 1, some color, different 1, must be incident with u
and v. As we showed above, this is not possible, and therefore a strong L-edge-coloring of G does 
not exist. □

As already mentioned, there are planar graphs and bipartite graphs with different values of the 
strong chromatic index and the list strong chromatic index. Two representative examples are the 
dodecahedron and the generalized Petersen graph GP(10, 3) (see Fig.  4). Both graphs cover the 
Petersen graph and thus their strong chromatic indices are 5, while neither of them is colorable 
from the list assignment assigning the list {1, 2, 3, 4, 5} to the solid edges, the list {1, 2, 3, 4, 6} to 
the dotted edges, and the list {1, 2, 3, 5, 6} to the dashed edges, as they are depicted in the figure. 
We omit the proof.

Theorem  1.6 guarantees the difference between the strong chromatic index and its list version, 
but it is not clear what is the exact value of the latter. For the special case of the Petersen graph, 
we are able to prove the exact bound.
10
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Fig. 4. The dodecahedron (left) and the generalized Petersen graph GP(10, 3) (right).

Proof of Theorem  1.7.  We first prove that the list strong chromatic index of the Petersen graph 
P is at least 7. Consider the drawing of P in Fig.  5. Let L be the list assignment assigning the list 
{1, 2, 4, 5, 7, 8} to the outer cycle (the dashed edges), the list {1, 3, 4, 6, 7, 9} to the spokes (the 
dotted edges), and the list {2, 3, 5, 6, 8, 9} to the inner cycle (the solid edges). Recall that every 
maximum induced matching in P is of size 3 and it contains precisely one edge of the outer cycle, 
one spoke, and one edge of the inner cycle (in Fig.  5, we depict one with bolder edges). Moreover, 
any pair of edges at distance 3 belongs to exactly one maximum induced matching. Since there are 
five disjoint maximum induced matchings in P , one color can appear only on the edges of the same 
matching, but on at most two of its edges. Hence, we need at least 5 colors to color at most 10
edges, and at least 5 other colors to color the remaining 5 edges. However, we only have 9 distinct 
colors in the union of lists of L, thus we cannot color the edges of P from L.

Now, we show that the list strong chromatic index of the Petersen graph P is at most 7. Let 
Mk denote the five disjoint maximum induced matchings in P induced by the edges k1, k2, k3, for 
k ∈ {a, b, c, d, e}, with the labeling of the edges as shown in Fig.  6.

In what follows, we will analyze the conflict graph polynomial PP  of the Petersen graph. We first 
define an auxiliary polynomial (representing a conflict graph polynomial of two maximum induced 
matchings)

C(x1, x2, x3, y1, y2, y3) =

3∏
i=1

3∏
j=1

(xi − yj).

Next, observe that only the edges of a particular matching can be colored by the same color, and 
therefore each edge needs to receive a color distinct from colors of all other edges (from the other 
matchings). Hence, we have that

PP (a1, a2, a3, b1, . . . , e2, e3) = C(a1, a2, a3, b1, b2, b3) · C(a1, a2, a3, c1, c2, c3)
· C(a1, a2, a3, d1, d2, d3) · C(a1, a2, a3, e1, e2, e3)
· C(b1, b2, b3, c1, c2, c3) · C(b1, b2, b3, d1, d2, d3)
· C(b1, b2, b3, e1, e2, e3) · C(c1, c2, c3, d1, d2, d3)
· C(c1, c2, c3, e1, e2, e3) · C(d1, d2, d3, e1, e2, e3) .

Now, we consider several cases regarding the possible colorings of the maximum induced 
matchings. Note that throughout the process of coloring the edges, as soon as some color is picked 
for an edge e ∈ Mi, this color is removed from the lists of the edges which are in conflict with e, 
i.e., the edges of the maximum induced matchings different from M .
i

11
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Fig. 5. The Petersen graph P .

Fig. 6. Five maximum induced matchings of the Petersen graph P .

Case 1.  Suppose that one maximum induced matching can be colored monochromatically.
First, we color the edges of Ma, say by color 1. We distinguish three possible subcases regarding 

the coloring of the remaining maximum induced matchings.
Case 1.1.  Suppose that one another maximum induced matching, say Mb, can be colored monochro-

matically (by color different from 1).
Without loss of generality, we color Mb by 2. The remaining nine edges of P have each at least 5

colors available. Now, for the non-colored edges, we have the following conflict graph polynomial:

PP−2 (c1, c2, . . . , e2, e3) = C(c1, c2, c3, d1, d2, d3) · C(c1, c2, c3, e1, e2, e3)

· C(d1, d2, d3, e1, e2, e3) .

In PP−2 , we have coefficient

coef(PP−2; c41c
3
2c

3
3d

3
1d

3
2d

3
3e

3
1e

3
2e

2
3) = 94,

which means, by Theorem  2.2, that it is possible to color the edges c1, c2, c3, d1, d2, d3, e1, e2, e3
using the remaining colors of their lists.
12
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Case 1.2.  Suppose that no maximum induced matching except Ma can be colored monochro-
matically, and at least one maximum induced matching, say Mb, can be colored using exactly two 
colors.

Without loss of generality, we may assume that Mb is colored by colors 2 and 3. Since it is not 
possible to color any other maximum induced matching except Ma with just one color (different 
from 1), among the remaining edges, there is at least one such edge whose list does not contain 
both colors 2 and 3. It follows that all edges have lists of size at least 4, and at least one edge, say 
c1, has list of size at least 5. For the non-colored edges, we again use the conflict graph polynomial 
as in Case 1, containing the coefficient

coef(PP−2; c41c
3
2c

3
3d

3
1d

3
2d

3
3e

3
1e

3
2e

2
3) = 94,

which means that it is possible to color the non-colored edges using the colors from their lists.
Case 1.3.  Suppose that no maximum induced matching except Ma can be colored monochromati-

cally, and no other maximum induced matching is colorable by 2 colors.
From now on we consider only the edges not included in Ma. Each of the remaining maximum 

induced matchings consists of three edges with pairwise disjoint lists of colors of size at least 6. 
This means that the union of lists of any two edges of a maximum induced matching is of size at 
least 12, and the union of lists of three edges of a maximum induced matching is of size at least 18. 
Consequently, for every set of at most 4 edges it holds that the union of their color lists is of size 
at least 6; for every set of 5 to 8 edges it holds that the union of their color lists is of size at least 
12; and for every set of 9 to 12 edges it holds that the union of their color lists is of size at least 
18. Hence, we can apply Theorem  2.1, according to which it is possible to color all the remaining 
edges.

Case 2.  Suppose that none of the maximum induced matchings can be colored by either 1 or 2
colors.

Thus, each of the maximum induced matchings consists of three edges with pairwise disjoint 
lists of colors of size 7. This means that the union of lists of any two edges of a maximum induced 
matching is of size 14, and the union of lists of three edges of a maximum induced matching is of 
size 21. Therefore, for every set of at most five edges it holds that the union of their color lists is of 
size at least 7; for every set of 6 to 10 edges it holds that the union of their color lists is of size at 
least 14; and for every set of 11 to 15 edges it holds that the union of their color lists is of size at 
least 21. It follows that we can apply Theorem  2.1, and hence color all the edges by different colors.

Case 3.  Suppose that one maximum induced matching can be colored using 2 colors (and none of 
them can be colored monochromatically).

We color Ma, say by colors 1 and 2. We consider two possible subcases regarding the coloring 
of the maximum induced matchings different from Ma.

Case 3.1.  Suppose that none of the remaining maximum induced matchings can be colored using 
2 colors.

From now on, we only consider the edges not included in Ma. Regarding any two (three) edges 
of any other maximum induced matching, we infer that the union of their color lists contains at 
least 10 (15) colors.

Therefore, for every set of at most 4 edges it holds that the union of their color lists is of size at 
least 5; for every set of 5 to 8 edges it holds that the union of their color lists is of size at least 10; 
and for every set of 9 to 12 edges it holds that the union of their color lists is of size at least 15. It 
follows that we can apply Theorem  2.1, and hence color all the remaining edges by different colors.

Case 3.2.  Suppose that we can color at least one other maximum induced matching using 2 colors.
Without loss of generality, we may assume that Mb is colored by colors 3 and 4. Note that all 

these four colors can occur in the lists of other edges, but at most twice per maximum induced 
matching. Regarding the setup of these colors, it follows that lists of edges of any particular 
maximum induced matching are of size: at least 3, at least 3, and at least 7; or at least 3, at least 
4, and at least 6; or at least 3, at least 5, and at least 5; or at least 4, at least 4, and at least 5. Note 
that these color lists may not be disjoint.
13
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As above, for the non-colored edges we have the following conflict graph polynomial:

PP−2 (c1, c2, . . . , e2, e3) = C(c1, c2, c3, d1, d2, d3) · C(c1, c2, c3, e1, e2, e3)
· C(d1, d2, d3, e1, e2, e3) .

We consider the four cases regarding the sizes of the lists of the edges of maximum induced 
matchings as listed in the previous paragraph.

First, suppose there exists a maximum induced matching with lists of colors of the edges of sizes 
at least 3, at least 3, and at least 7. Then, in PP−2 , we have the coefficients

coef(PP−2; c21c
2
2c

6
3d

2
1d

2
2d

4
3e

2
1e

3
2e

4
3) = −14,

and

coef(PP−2; c21c
2
2c

6
3d

2
1d

2
2d

4
3e

2
1e

2
2e

5
3) = −6,

regarding the monomials fitting the possible sizes of the lists of remaining maximum induced 
matchings. Therefore, by Theorem  2.2, it is possible to color the remaining edges.

If there is no maximum induced matching with the properties as in the previous case, then 
suppose that there is one with lists of colors of sizes at least 3, at least 5, and at least 5. Then, in 
PP−2 , we have the coefficient

coef(PP−2; c21c
4
2c

4
3d

2
1d

3
2d

4
3e

2
1e

2
2e

4
3) = 60,

which means that it is possible to color the remaining edges.
Now, we may assume that there exists no maximum induced matching which satisfies properties 

of previous cases. Suppose that there is one maximum induced matching with lists of colors of sizes 
at least 3, at least 4, and at least 6. Then, in PP−2 , there is the coefficient

coef(PP−2; c21c
3
2c

5
3d

2
1d

3
2d

4
3e

2
1e

2
2e

4
3) = 33,

which means that it is possible to color the remaining edges.
Lastly, suppose that all of the remaining maximum induced matchings have lists of colors of the 

edges of sizes at least 4, at least 4, and at least 5. Then, in PP−2 , we have the coefficient
coef(PP−2; c31c

3
2c

4
3d

2
1d

3
2d

4
3e

1
1e

3
2e

4
3) = 36,

which again means that it is possible to color the remaining edges.
Thus, the list strong chromatic index of P is 7. □

5. Graphs G with χ′
n(G) < χ′

n,l(G)

In this section, we consider the results on list normal edge-coloring. As already mentioned, lists 
of size at least 10 are always enough to find a normal list edge-coloring of a cubic graph. We do not 
know whether this bound is tight; currently, there are only examples of graphs with list normal 
chromatic index equal to 9.

Theorem 5.1.  There is an infinite family of cubic graphs with list normal chromatic index at least 9.

Proof.  In order to prove the theorem, we will show that if a cubic graph G contains the configuration 
HI depicted in Fig.  7, then there is a list assignment for the edges of HI , for which G does not admit 
a list normal edge-coloring. We use the labeling of the vertices as given in the figure.

Let L be a list assignment for G such that for every edge e of HI , except v1v6 and v7v8, we 
have L(e) = [1, 8]. For the two special edges, we use L(v1v6) = [9, 16] and L(v7v8) = [17, 24]. 
Without loss of generality, we may assume that v1v6 is colored by 9, and v7v8 with 17. There are 
nine remaining (thin) edges, which can altogether receive the eight distinct colors from [1, 8], so 
at least one pair must receive the same color. We will show that this is not possible. Note that the 
edges adjacent to the edges v1v6 and v7v8 must all be rich, since they are adjacent to an edge with 
a unique color.
14
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Fig. 7. The configuration HI which is not list normal 8-colorable if the two bold edges each receive a list disjoint from 
all other lists in a given list assignment.

First, without loss of generality, we color the edge v1v2 by 1. Since v1v4 must be rich, the edges 
v3v4 and v4v5 must be colored differently, with colors distinct from 1, say with 2 and 3, respectively.

Suppose now that the edge v3v6 also receives color 1. Then, the edge v1v6 must be poor, meaning 
that the edges v1v4 and v6v7 receive the same color, say 4. Similarly, the edge v2v3 must be poor, 
and so the edges v2v5 and v3v4 must be colored the same, which means that v2v5 also receives 
color 2. But now v4v5 must be poor, and thus v5v7 must be colored with 4, which is not possible.

Next, suppose that v3v6 is colored with 3. Then v3v4 must be poor and so the edges v1v4 and 
v2v3 must receive the same color, which is not possible, since v1v2 is rich.

So, we may assume that v3v6 is colored with, say, 4. Suppose first that v1v4 is colored with 4. 
Then, v3v4 is poor and v2v3 is colored with 3. But now both v2v5 and v1v6 must be poor, meaning 
that both v5v7 and v6v7 must be colored with 1, a contradiction. Therefore, we may assume that 
v1v4 is colored with a new color, say 5, and consequently that v3v4 is rich, giving that v2v3 receives 
a new color, say 6. Since v1v2 and v2v3 are rich, a new color is given also to v2v5, say 7. Finally, 
note that the edges adjacent to v5v7 are all rich and consequently it must be colored with 8, which 
means that there is no available color for v6v7. Thus, for the given L, the graph G does not admit a 
list normal edge-coloring, and therefore χ ′

n,l(G) > 8. □

In the above described family, every graph contains a bridge. As Conjecture  1.8 considers 
bridgeless cubic graphs only, it is natural to ask whether there are graphs with the list normal 
chromatic index greater than 5. The next example shows that even lists of size 7 in the list 
assignment are sometimes not sufficient.

Theorem 5.2.  There are bridgeless cubic graphs with list normal chromatic index at least 8.

Proof.  As an example of a bridgeless cubic graph with the list normal chromatic index at least 8, 
we use the graph G depicted in Fig.  8. We will present a list assignment for the edges of G, for which 
G does not admit a list normal 7-edge-coloring. We use the labeling of the vertices as given in the 
figure.

Let L be a list assignment for G such that every edge e of G, except v3v6, v5u5, and u4u5, has 
L(e) = [1, 7]. The three special edges have L(v3v6) = [8, 14], L(v5u5) = [15, 21], and L(u4u5) =

[22, 28]. Note that this setting implies that all the edges adjacent to these three edges must be rich.
First, we color the three special edges; without loss of generality, we color v3v6 with 8, v5u5

with 15, and u4u5 with 22. Next, we color the edges v1v2, v1v4, and v1v6 with, say, 1, 2, and 3, 
respectively.

Now, the edge v4v5 cannot receive color 1, since the edge v2v5 must be rich. If we color v4v5 with 
3, then v1v4 must be poor and v3v4 colored with 1, which is not possible, since v2v3 must be rich. 
So, we assign to v4v5 color 4. Next, the edge v3v4 cannot receive any color from {1, 2, 3, 4} (since 
v1v4 must be rich), and thus we color it with 5. Since v3v4 must be rich, v2v3 cannot be colored 
with 2, and since v4v5 must be rich, v2v5 cannot be colored with 2. This means that v1v2 must be 
rich and consequently, v2v3 and v2v5 cannot receive any color from the set {1, 2, 3, 4, 5}. Therefore, 
we assign, say, color 6 to v v  and color 7 to v v .
2 3 2 5
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Fig. 8. A bridgeless cubic graph which is not list normal 7-colorable if the three bold edges each receive lists disjoint 
from all other lists.

At this point, the only possible colors the edge v6u6 can receive are 4 and 7. Note that these are 
exactly the colors already assigned to the edges adjacent to v5u5.

Now consider the other non-colored edges of the graph. Let {a, b, c, d, e, f , g} = [1, 7]. We can 
color the edges u1u2, u1u4, and u1u6 by three distinct colors, say a, b, and c , respectively. Since 
u1u4 must be rich, u3u4 must be colored with a color distinct from the previous three, say with d. 
Since the edges u3u4 and u4u5 are rich, none of the edges u2u3 and u2u5 can be colored with b, and 
therefore the edge u1u2 must be rich. Moreover, u2u5 cannot receive color d, since u4u5 must be 
rich. Therefore, we color u2u3 by e and u2u5 by f . The edge u3u6 cannot receive any color from the 
set {a, b, c, d, e, f } (since u2u3 and u3u4 must be rich), so we must color it with the only remaining 
color g . Finally observe that the only possible color the edge v6u6 can receive is f , which is the same 
color as the color of u2u5. This means that two of the edges adjacent to v5u5 (which must be rich) 
must receive the same color, this contradicts the fact that v5u5 must be rich. □

The graph in the proof of Theorem  5.2 has a 2-edge-cut. So, again a question arises whether 
there are cubic graphs with high list normal chromatic index and high connectivity. We focused on 
cyclically 4-edge-connected cubic graphs and surprisingly there are such graphs with list normal 
chromatic index at least 7. 

Theorem 5.3.  There is an infinite family of cyclically 4-edge-connected cubic graphs with list normal 
chromatic index at least 7.

Proof.  We will show that for a cubic graph L2k depicted in Fig.  9 and any k ≥ 5, there is a list 
assignment for the edges of L2k, for which L2k does not admit a list normal edge-coloring. Clearly, 
L2k is cyclically 4-edge-connected. We use the labeling of the vertices as given in the figure.

Let L be a list assignment for L2k such that for its every edge e, except v1v3 and v2v4, we have 
L(e) = [1, 6]. For the two special edges, we use L(v1v3) = [7, 12] and L(v2v4) = [13, 18]. Without 
loss of generality, we may assume that v1v3 is colored by 7, and v2v4 with 13.

Without loss of generality, we can assign colors 1, 2, and 3 to the edges v3v5, v4v5, and v5v7, 
respectively. Since the edges adjacent to the edges v1v3 and v2v4 must all be rich, the edges v4v6
and v3v6 must obtain colors that were not used yet, say 4 and 5, respectively. Now, we consider 
two cases regarding the color of v6v8.

Suppose first that v6v8 is colored with 3. Then the edge v7v8 must be poor, and consequently 
v7v9 and v8v10 must receive the same color. Now, following an analogous argument for coloring the 
remaining edges vivi+1, vivi+2, and vi+1vi+3, for i ∈ {9, 11, . . . , 2k − 1}, we infer that also u3u4 and 
u1u2 must be poor and thus u1v1 and u2v2 must receive the same color. This is not possible, since 
v1v2 must be rich.

So, v6v8 must be colored with color 6 (the only color not used yet). Then, v7v8 must be rich and 
by the symmetry, we may assume that v7v8 is colored with 1. It follows that v7v9 is colored with 
2, and v8v10 must be colored with 4 or 5. But this is not possible, since v6v8 must be rich. This 
completes the proof. □
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Fig. 9. A cyclically 4-edge-connected cubic graph L2k which is not list normal 6-colorable if the two bold edges receive 
lists disjoint from all other lists.

6. Conclusion

One of the main results of this paper is the tight upper bound of 10 colors for the strong 
chromatic index of subcubic graphs. However, since this bound is only known to be attained by 
the Wagner graph and graph containing the K3,3 with a subdivided edge as a subgraph, one may 
ask whether there are other examples of such graphs, perhaps with smaller chromatic index. 

Question 6.1.  Is it true that for any subcubic graph G with χ ′

s,l(G) = 10, it holds that χ ′
s(G) = 10?

As the second main result, we proved that the strong chromatic index and the list strong 
chromatic index differ for some graphs; we provided an infinite family of such graphs, but the 
family only contains graphs with the minimum possible value of the strong chromatic index, and it 
does not seem likely that for graphs with strong chromatic index closer to the general upper bound 
of 10 colors, their list strong chromatic index will be different. Therefore, we propose a rather bold 
statement, which is in line with Conjecture  1.3. 

Conjecture 6.2.  For any connected bridgeless subcubic graph G on at least 13 vertices, it holds that
χ ′

s,l(G) ≤ 8.

The first step towards proving this conjecture would be proving that the list strong chromatic 
index of any connected bridgeless subcubic graph, not isomorphic to the Wagner graph, is at most 
9. Or even more specifically, finding the exact upper bounds for the list strong chromatic indices of 
special graph families such as planar graphs and bipartite graphs would also give a relevant insight 
into the topic.

On the other hand, we do believe that there are cubic graphs with strong chromatic index 6 and 
greater list strong chromatic index. 

Problem 6.3.  Find an infinite family of cubic graphs G with χ ′
s(G) = 6 and

χ ′

s,l(G) > χ ′

s(G).

Also, we are confident that Theorem  1.6 can be extended to all cubic graphs with strong 
chromatic index equal to 5. 

Conjecture 6.4.  For every cubic graph G with χ ′
s(G) = 5 we have that χ ′

s,l(G) > 5.

The strong edge-coloring is an important concept; the study of (sub)cubic graphs is popular as 
these graphs are somewhat easier to handle than general graphs. The properties of list strong edge-
coloring for general graphs are thus also of interest. In [25], it was shown that k-regular graphs 
attaining the lowest possible value 2k − 1 of the strong chromatic index are precisely the covers 
of the Kneser graphs K (2k− 1, k). It seems that Theorem  1.6, with some additional effort, could be 
extended to regular graphs of greater degree. Along these lines, we suggest the following question. 
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Fig. 10. Two bridgeless cubic graphs with list strong chromatic index at least 8. If the bold edges receive unique lists of 
seven colors and all the other edges the same lists of seven colors, then one cannot realize a list normal edge-coloring.

Question 6.5.  Is it true that for a given integer k ≥ 4, there is an infinite family of graphs G of maximum 
degree k such that

χ ′

s,l(G) > χ ′

s(G) ?

In the case of list normal edge-coloring, we have the upper bound given by Theorem  1.4, but we 
do not have an example of a graph attaining the bound; in fact, we do not believe one exists. 

Conjecture 6.6.  For any cubic graph G, it holds that
χ ′

n,l(G) ≤ 9.

Conjecture  1.8 assumes only bridgeless cubic graphs. We showed in Theorem  5.2 that in the 
list version, there are bridgeless cubic graphs with list normal chromatic index at least 8. In the 
proof of the theorem, we only provided one graph of order 12. However, we are only aware of two 
other graphs with list normal chromatic index at least 8; namely the Wagner graph and the graph 
obtained from K3,3 in which one vertex is truncated (see Fig.  10). We also remark here without a 
proof that with some additional effort, one can show that the list normal chromatic index of the 
Wagner graph is equal to 8.

Based on our results and additional computer tests on small graphs, we confidently propose also 
the following. 

Conjecture 6.7.  For any connected bridgeless cubic graph G on at least 14 vertices, it holds that
χ ′

n,l(G) ≤ 7.

As opposed to the normal edge-coloring, in its list version, the property of being a class I graph 
does not resolve the problem trivially. In fact, it seems that the following are highly non-trivial 
questions. 

Question 6.8.  What is the tight upper bound for the list normal chromatic index of a cubic graph, which 
is:

(a) (bridgeless) planar;
(b) class I;
(c) bipartite;
(d) with girth at least C, for some large enough constant C;
(e) cyclically k-edge-connected, for some integer k?
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