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A proper k-coloring of a graph is said to be odd if every non-isolated vertex has a color 
that appears an odd number of times on its neighborhood. Miao et al. (2024) [2] claimed 
that every planar graph without adjacent 3-cycles is odd 7-colorable and every triangle
free planar graph without intersecting 4-cycles is odd 5-colorable. Here, we point out that 
their published proof contains a fundamental flaw which affects the validity of the main 
results.

© 2026 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

All graphs considered in this note are finite, simple, and undirected. We follow the terminology and notation of [1] 
without redefining them here. A proper k-coloring of a graph G is an assignment c : V (G) → {1,2, . . . ,k} such that c(u) ≠
c(v) whenever uv ∈ E(G). The chromatic number, χ(G), of a graph G is the minimum k such that G admits a proper k
coloring. An odd k-coloring of a graph G is a proper k-coloring such that every non-isolated vertex of the graph G has a color 
that appears an odd number of times on its neighborhood. This notion was introduced by Petruševski and Škrekovski [3] in 
2022. The odd chromatic number, χo(G), of a graph G is the minimum k such that G admits an odd k-coloring.

We refer to any vertex of degree d as a d-vertex. Similarly, a vertex of degree at least d (resp. at most d) is a d+-vertex 
(resp. a d−-vertex). Analogous terminology applies to faces with respect to a planar embedding of G . We take V 3+ (G) as 
the set of all 3+-vertices of the graph G . We call a vertex of odd degree an odd vertex. An odd neighbor of a vertex v is a 
neighbor of v with odd degree. Two cycles are adjacent if they share a common edge and two cycles are intersecting if they 
share a common vertex.

In 2024, Miao et al. [2] proved that every planar graph without adjacent 3-cycles is odd 7-colorable and every triangle
free planar graph without intersecting 4-cycles is odd 5-colorable; however, their published proof contains a fundamental 
flaw which affects the validity of both the results mentioned above. In [2], the authors define a graph G1 to be sparser than 
a graph G2 if μ(G1) < μ(G2), where μ(G) = |V 3+ (G)|

|V (G)| . We state the results from [2].

Theorem 1. Every planar graph without adjacent 3-cycles is odd 7-colorable.

Theorem 2. Every triangle-free planar graph without intersecting 4-cycles is odd 5-colorable.
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1.1. A remark on the non-existence of the counterexample with minimum μ

The authors of the paper [2] assumed that there exists a counterexample G to Theorem 1 with minimum μ. However, 
they have not justified the existence of such a counterexample. Let S be the set of all counterexamples to Theorem 1 and 
let M = {μ(G) | G ∈ S}. Since 0 ≤ |V 3+(G)| ≤ |V (G)|, μ(G) ∈Q∩ [0,1].

Observation 1. The set M does not contain 0.

Proof. For the sake of contradiction, assume that the set M contains 0. Then, there exists a counterexample G to Theorem 1
with |V 3+ (G)| = 0. So Δ(G) ≤ 2. This implies that G is either a cycle or a path; thus G is odd 5-colorable. This contradicts 
that G is a counterexample to Theorem 1. □

By Observation 1, M ⊆Q∩ (0,1]. Since the set of finite planar graphs is infinite, the number of possible counterexamples 
is infinite. Therefore, the set M may not attain a minimum. Thus, we cannot guarantee the existence of a counterexample 
to Theorem 1 with minimum μ.

Using the same argument, we can conclude that a counterexample to Theorem 2 with minimum μ may not exist. Thus, 
there is a gap in the argument presented in [2].

In the sequel, we assure that the set M does not attain a minimum by constructing an infinite sequence of counterex
amples with decreasing μ with the help of the following claims.

Claim 1. For every counterexample G to Theorem 1, there exists another counterexample G ′ to Theorem 1 with smaller μ.

Claim 2. For every counterexample G to Theorem 2, there exists another counterexample G ′ to Theorem 2 with smaller μ.

If Theorem 1 does not hold, then there exists a counterexample, say G . Using Claim 1 repeatedly, we get an infinite 
sequence of counterexamples to Theorem 1 with decreasing μ. Thus, there is no counterexample to Theorem 1 with mini
mum μ. Similarly, we argue for Theorem 2.

2. Properties of the possible counterexamples

Now we show some properties of the possible counterexamples.

Proposition 1. Every planar graph G without adjacent 3-cycles contains:

(a) adjacent odd vertices, or
(b) a 3−-vertex, or
(c) a 4-vertex with either two or more odd neighbors or an odd neighbor and a 4-neighbor, or
(d) a 3-face f incident to at least two 4-vertices, say v and x, such that v has a 4-neighbor w / ∈ V ( f ).

Proof. Let G be a planar graph without adjacent 3-cycles. For the sake of contradiction, assume that G does not 
contain any of the mentioned structures. We assign the initial charge ch0 to all the vertices and faces such that 
ch0(v) = d(v)− 6 for every vertex v ∈ V (G) and ch0( f ) = 2d( f )− 6 for every face f ∈ F (G). Using Euler’s formula, we have ∑︁

v∈V (G) ch0(v) + ∑︁
f ∈F (G) ch0( f ) = −12. Therefore, the total sum of the initial charge assigned to all the vertices and faces 

is negative.
We apply the following discharging rules, which are same as the discharging rules used in the proof of Theorem 1.3 in 

[2]:

(R1) Every face f ∈ F (G) sends 2d( f )−6
d( f ) to each vertex that is incident with f .

(R2) For uv ∈ E(G) with d(u) = 5 and d(v) = 4, if uv is incident with a 3-face in G , then u sends 1
4 to v .

(R3) Let uv be an edge in G with d(u) ≥ 6 and d(v) = 4.
(R3.1) If the edge uv is incident to two 4+-faces, then u sends 1

4 to v .
(R3.2) If uv w is a 3-face, then u sends 1

4 to v if w is a 4-vertex and 1
2 otherwise.

We obtain the final charge of every vertex and every face, denoted by ch.

Claim 3 (Claims 5--7, [2]). The following hold.

(a) The final charge of every 6+-vertex in G is non-negative.
(b) The final charge of every 5-vertex in G is non-negative.
(c) The final charge of every 4-vertex in G is non-negative.

2 



D. Pradhan, V. Sharma and R. Škrekovski Discrete Mathematics 349 (2026) 115014 

By Claim 3, the final charge of every vertex is non-negative. Since every face donates charge 2d( f )−6
d( f ) to each vertex 

incident with f , the final charge of the face f is ch( f ) = ch0( f ) − 2d( f )−6
d( f ) · d( f ) = 2d( f ) − 6 − (2d( f ) − 6) = 0. Therefore, 

the final charge of every face is non-negative. Note that the total charge is preserved in the discharging procedure. This is a 
contradiction to the fact that the total initial charge is negative. This completes the proof of Proposition 1. □

Proposition 2. Every triangle-free planar graph G without intersecting 4-cycles contains:

(a) a 2−-vertex, or
(b) adjacent odd vertices.

Proof. Let G be a triangle-free planar graph without intersecting 4-cycles. For the sake of contradiction, assume that G
contains neither two adjacent odd vertices nor a 2−-vertex.

We assign initial charge ch0 to all the vertices and faces such that ch0(v) = 2d(v) − 6 for every vertex v ∈ V (G) and 
ch0( f ) = d( f ) − 6 for every face f ∈ F (G). Using Euler’s formula, we have 

∑︁
v∈V (G) ch0(v) + ∑︁

f ∈F (G) ch0( f ) = −12. There
fore, the total sum of the initial charge assigned to all the vertices and faces is negative.

We apply the following discharging rules, which are same as the discharging rules used in the proof of Theorem 1.4 in 
[2]:

(R1) Every 4+-vertex sends 1
2 to each incident face.

(R2) Every 5+-face sends 1
4 to each its adjacent face.

We obtain the final charge of every vertex and every face, denoted by ch.

Claim 4 (Claims 10--12, [2]). The following hold.

(a) The final charge of every vertex in G is non-negative.
(b) The final charge of every 4-face in G is non-negative.
(c) The final charge of every 5+-face in G is non-negative.

By Claim 4, the final charge of every vertex and every face is non-negative. Note that the total charge is preserved in the 
discharging procedure. This is a contradiction to the fact that the total initial charge is negative. This completes the proof of 
Proposition 2. □

3. Proof of Claim 1

Let G be a counterexample to Theorem 1. By Proposition 1, G contains:

(a) adjacent odd vertices, or
(b) a 3−-vertex, or
(c) a 4-vertex with either two or more odd neighbors or an odd neighbor and a 4-neighbor, or
(d) a 3-face f incident to at least two 4-vertices, say v and x, such that v has a 4-neighbor w / ∈ V ( f ).

Construct a sparser graph G1 from G as obtained in the proof of Claims 1--4 in [2]. For an illustration, see Figs. 1, 2, 
and 3. Fig. 1(a) refers to the case when there exist adjacent odd vertices u and v in G . Fig. 1(b) refers to the case when 
there exists a 1-vertex v in G . Fig. 1(c)--(e) refers to the different cases when there exists a 2-vertex v; in particular (c) 
corresponds to the case when v has a 2-neighbor v1; (d) corresponds to the case when the neighbors of v have a common 
2-neighbor w ′; and (e) corresponds to the case when v has no 2-neighbor and its neighbors does not have a common 
2-neighbor. Fig. 1(f) refers to the case when there exists a 3-vertex v in G . Fig. 2 refers to the case when there exists a 
4-vertex v with either two or more odd neighbors or an odd neighbor and a 4-neighbor and Fig. 3 refers to the case when 
there exists a 3-face f incident to at least two 4-vertices v and x such that v has a 4-neighbor w / ∈ V ( f ).

Next, we show that G1 is a counterexample to Theorem 1. For the sake of contradiction, assume that G1 is not a 
counterexample. Thus, G1 admits an odd 7-coloring, say c. We obtain an odd 7-coloring of G using c as obtained in the 
proof of Claims 1--4 in [2]. This is a contradiction to the fact that G is a counterexample. Thus, G1 is a counterexample 
which is sparser than G .

Thus, for every counterexample G to Theorem 1, there exists another counterexample G ′ to Theorem 1 with μ(G ′) <

μ(G). This completes the proof of Claim 1.
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Fig. 1. Construction of the graph G1 from G . 

Fig. 2. Construction of the graph G1 from G . Dashed edges and gray vertices represent deleted edges and vertices, respectively. 

Fig. 3. Construction of the graph G1 from G . Dashed edges and gray vertices represent deleted edges and vertices, respectively. 

4. Proof of Claim 2

Let G be a counterexample to Theorem 2. By Proposition 2, G contains a 2−-vertex or adjacent odd vertices. Construct a 
sparser graph G1 from G as obtained in the proof of Claims 8--9 in [2]. For an illustration, see Fig. 1(a)--(e).

Next, we show that G1 is a counterexample to Theorem 2. For the sake of contradiction, assume that G1 is not a 
counterexample. Thus, G1 admits an odd 7-coloring, say c. We obtain an odd 7-coloring of G using c as obtained in the 
proof of Claims 8--9 in [2]. This is a contradiction to the fact that G is a counterexample. Thus, G1 is a counterexample 
which is sparser than G .

Thus, for every counterexample G to Theorem 2, there exists another counterexample G ′ to Theorem 2 with μ(G ′) <

μ(G). This completes the proof of Claim 2.
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