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1. Introduction

Throughout the paper, we only consider simple, finite, and undirected graphs. Let N be the set of positive integers. For
a positive integer k, let [k] denote the set of integers {1, 2,...,k}.

For a graph G, a mapping ¢ from V(G) to N is called a proper coloring of G if ¢ (u) # ¢ (v) for every edge uv € E(G). A
proper coloring of a graph G in which every vertex of G maps to an integer in [k] is called a proper k-coloring of G.

Recently, Fabrici, LuZar, RindoSov4, and Sotdk [6] introduced a new variation of coloring named proper conflict-free
coloring of graphs. For a graph G, a mapping ¢ from V(G) to N is called a proper conflict-free coloring of G if ¢ is a proper
coloring of G and every non-isolated vertex v € V(G) has a color ¢ such that |¢~1(c) N Ng(v)| = 1, where N¢(v) is the
(open) neighborhood of v. A proper conflict-free coloring of a graph G such that every vertex of G maps to an integer in [k]
is called a proper conflict-free k-coloring of G. For a (partial) coloring ¢ of G and a vertex v € V(G), let Uy (v, G) denote the
set of colors that appear exactly once in the neighborhood of v. Using this notation, a proper conflict-free coloring ¢ of G
is a proper coloring ¢ of G such that U (v, G) # @ for every non-isolated vertex v € V(G). The proper conflict-free chromatic
number of a graph G, denoted by xpc(G), is the least integer k such that G admits a proper conflict-free k-coloring.

One major problem in proper conflict-free coloring is the following Brooks-type conjecture, which was posed by Caro,
PetruSevski, and Skrekovski [2].
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Conjecture 1. For every graph G with the maximum degree A > 3, xpcf(G) < A+ 1.

This conjecture is widely open except for the case A =3 by Liu and Yu [13] and some asymptotic results in the litera-
ture [3,4,7,11,12].

It is well known that the original Brooks’ theorem was generalized to degree-choosability of graphs in Borodin [1] and
Erdés, Rubin, and Taylor [5]. Following the same direction, we introduced the concept of proper conflict-free (degree + k)-
choosability of graphs in [9], as follows.

A list assignment L of a graph G maps each vertex of G to a set of integers. For a mapping f from V(G) to positive
integers, an f-list assignment of G is a list assignment L of G with |L(v)| > f(v) for every vertex v € V(G). In particular, if
f is the constant map from V (G) to a positive integer k, an f-list assignment of G is called a k-list assignment of G.

For a given graph G and a list assignment L of G, a proper conflict-free L-coloring of G is a proper conflict-free coloring
¢ of G such that ¢(v) € L(v) for every vertex v € V(G). For a non-negative integer k, a graph G is proper conflict-free
(degree + k)-choosable if G admits a proper conflict-free L-coloring for any f-list assignment of G, where f(v) =dg(v) +k
for every vertex v € V(G). It is natural to ask whether there is an absolute constant k such that every graph is proper
conflict-free (degree + k)-choosable, but in fact, even the existence of a constant k such that xp(G) < A(G) +k for every
graph G is unknown.

In this note, we focus on the proper conflict-free (degree + k)-choosability of graphs with a given degeneracy. For a
positive integer d, a graph G is d-degenerate if every subgraph H of G satisfies §(H) < d. We first remark the following
simple bound, which states the relationship between the degeneracy and proper conflict-free (degree + k)-choosability of
graphs.

Proposition 2. If G is a d-degenerate graph for some positive integer d, then G is proper conflict-free (degree + d + 1)-choosable.

Proof. Let G be a d-degenerate graph of order n. Let L be a list assignment of G satisfying |L(v)| > d¢(v) +d + 1 for each

vertex v € V(G). Since G is d-degenerate, we label the vertices of G as vi,Va,..., Vv, so that each vertex has at most d
neighbors with smaller indices.
We color the vertices greedily in the order vi, va,..., v, as follows: For each i € {1,2,...,n}, we assign v; a color from

L(vj) that differs from the colors of all smaller-indexed vertices that are either adjacent to v; or are the smallest-indexed
neighbor of a vertex adjacent to v;. Note that at most d colors are forbidden by the previously colored neighbors and at
most dg(v) colors are forbidden by the smallest-indexed neighbors of N¢(v;), and hence at least one color is available for
vi. It is obvious that the obtained coloring is a proper coloring of G. Furthermore, for each vertex of G, the color of the
smallest-indexed neighbor appears exactly once in its neighbors, and hence we obtain a proper conflict-free L coloring of
G. O

This improves a bound from Cranston and Liu [4] of a Brooks-type statement. One may ask whether the bound is best
possible. As we saw previously, the 5-cycle is 2-degenerate and not proper conflict-free (degree + 2)-choosable, and hence
we cannot improve the bound in Proposition 2 in general. On the other hand, when d =1, we show the following result,
that states that the bound can be reduced to (degree + d).

Theorem 3. Every tree is proper conflict-free (degree + 1)-choosable.

The proof of the above theorem is given in the next section. The bound (degree + 1) cannot be reduced to (degree + 0).
Indeed, let us consider a star Kq,,—1 (n > 3) with the center vo and leaves vy, vy,...,vy—1, and let L be a list assignment
of Ky pn—1 such that |L(vg)]=n—1 and L(vq{) =L(vy) =---=L(vy—1) = {1}. Then the center vy must have n — 1 neighbors
with color 1 no matter what list vy has, and hence K; ,_1 is not proper conflict-free L-colorable.

Similarly, we can construct a 2-degenerate graph that is not proper conflict-free (degree + 1)-choosable. Let G be a graph
obtained by n copies Cq,Cy, ..., Cy of the 4-cycle (n > 1) by identifying the vertices v, v,,..., v, into a vertex v, where
v; is a vertex of C;. Obviously G is 2-degenerate. Let L be a list assignment of G such that L(v) =({1,2,...,2n+ 1} and
each vertex of V(C;) \ {v;} has a list {1, 2i,2i 4+ 1}. Then, by the conflict-free condition of vertices of the ith copy, colors
{1, 21, 2i + 1} are forbidden for v, and hence there is no color left for v. Hence, G is not proper conflict-free L-colorable.

Considering Theorem 3 and these constructions, we ask whether the following may hold.

Conjecture 4. If G is a d-degenerate graph for some positive integer d and G is not isomorphic to the 5-cycle, then G is proper conflict-
free (degree + d)-choosable.

The above constructions imply that the bound in Conjecture 4 is best possible for d =1, 2. Also, by Theorem 3, Con-
jecture 4 holds for the case d = 1. For other values of d, we know that every connected outerplanar graph other than the
5-cycle is 2-degenerate and proper conflict-free (degree + 2)-choosable [8], and that every planar graph is 5-degenerate and
proper conflict-free (degree + 5)-choosable [10], which will appear in separate papers.
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Fig. 1. A reducible structure of T.

2. Proof of Theorem 3

Suppose that the statement is false, and let T be a minimum counterexample. Obviously, |V (T)| > 3. Let L be a list
assignment of T such that |L(v)| =dr(v) + 1 for every vertex v € V(T) and T is not proper conflict-free L-colorable.

Claim 1. Let v v V3 be a path of length 2 of T with dr(v1) =1 and dt(v2) = 2. Then L(vq) C L(v3).

Proof. Assume to the contrary that L(v{)\ L(v3) # @. Take a color @ € L(vy) \ L(v3). Let T" =T —{vq, v3} and let L’ be a list
assignment of T’ defined by L'(v3) = L(v3) \ {a} and L'(v) = L(v) for every v € V(T’) \ {v3}. Note that |L'(v)| > dr/(v) + 1
for every v € V(T’). By the minimality of T, T’ admits a proper conflict-free L’-coloring ¢. Let ¢(v3) = 8 # « and let y be
a color in Ugy(v3, T'). By setting ¢ (vi) = and choosing ¢ (v2) € L(v2) \ {8, v}, ¢ can be extended to a proper conflict-free
L-coloring of T, a contradiction. 0O

Claim 2. T does not have a path v{vv3vg4 of length 3 withdr(vq) =1 and dr(vy) =dr(v3) = 2.

Proof. Assume to the contrary that T has such a path v{v,v3v4. By Claim 1, we know that L(vi) C L(v3). As |L(vy)| =2
and |L(vy)| =3, let & be a color in L(vy) \ L(vy). Let T" =T — {vq, v2, v3} and let L’ be a list assignment of T’ defined
by L'(v4) = L(vq) \ {&} and L'(v) = L(v) for every v € V(T’) \ {v4}. By the minimality of T, T’ admits a proper conflict-
free L’-coloring ¢. Let ¢(v4) = B # « and let y be a color in Uy(v4, T'). Note that it is possible that y = . We choose
¢(v3) € L(v3) \ {B, y}. We let ¢(v2) =« if ¢(v3) # «, and let ¢(vy) be a color in L(vy) \ {¢(v3), B} otherwise. In either
case, one of vy and vs is colored with «, which is not in L(vy). Since |[L(v1) \ {¢(v2), #(v3)}| > 1, we can choose ¢(v1) €
L(v1) \ {¢(v2), #(v3)}, and hence ¢ can be extended to a proper conflict-free L-coloring of T, a contradiction. 0O

By Claim 2, T has a vertex vy of degree at least 3 such that each component of T — vg except one component is
isomorphic to Ky or K;. Let N7 (vg) = {0, X1, ..., Xx}. Note that k =dy(vg) —1> 2. For each i € {0, 1, ...,k}, let T; denote
the component of T — v¢ that contains x;. Without loss of generality, we may assume that T; is isomorphic to K, for every
ie{1,2,...,¢} and T; is isomorphic to Ky for every i€ {£+1,¢+2,...,k}, where £ is a positive integer at most k. For each
ief{1,2,...,¢}, let V(T;) = {x;, y;} (Fig. 1).

By Claim 1, we have L(y;) € L(x;) for each i € {1,2, ..., ¢}. Thus, we let L(x;) = {«;, Bi, yi} and L(y;) = {Bi, y;} for each
ie{l1,2,...,¢}, and let L(x;) = {cj, Bi} foreachie {¢+1,£+2,...,k}.

In the rest of the proof, we take a proper conflict-free coloring of T" :=T — (Ui-‘:1 V(T U {v0}> and extend it to T.

We first consider relatively simple three cases. In the following three cases, let ¢ be a proper conflict-free L-coloring of
T’. Let @ = ¢(xp) and let B be a color in Uy (xo, T').

Case1l. k=2.

Note that dr(vg) = 3 in this case. If £ =0, then we let ¢(x2) € L(x2) \ {&}, ¢(vo) € L(vo) \ {&, B,d(x2)}, and ¢ (x1) €
L(x1) \ {¢(vo)}. If £=1, then we let ¢(x2) € L(x2) \ {at}, ¢ (vo) € L(vo) \ {e, B, #(x2)}, #(¥1) € L(¥1) \ {¢(vo)}, and ¢ (x1) €
L(x1) \ {¢(vo),®»(¥1)}. In either case, since dr(vp) =3 and at least two colors appear in the neighbors of vg, we have
Uy (vo, T) # @. Thus, we obtain a proper conflict-free L-coloring of T, a contradiction.

Now assume that ¢ = 2. We consider another list assignment L’ of T’. If &y = 3, then let L’ be a list assignment of
T’ defined by L'(xg) = L(xo) \ {1} and L'(v) = L(v) for every v € V(T’) \ {xo}. Otherwise, let L’ = L. Note that |L'(v)| >
dr/(v) + 1 for every v € V(T’). By the minimality of T, T’ admits a proper conflict-free L’-coloring ¢’. Let ¢'(xp) = o’
and let B’ be a color in Uy (xo, T'). By the definition of L', either oy # &’ or oy # ' holds. Without loss of generality,
we may assume that aq # «’. Then let ¢'(x1) = a1, ¢'(vg) € L(vo) \ {&’, B, a1}, &' (yi) € L(yi) \ {¢'(vo)} for i =1,2, and
@' (x2) € L(x2) \ {¢'(vo), ¢’ (¥2)}. It is easy to verify that ¢’ is a proper conflict-free L-coloring of T, a contradiction.

Case2. k>3 and ¢ =k.
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For each color c € L(vp) \ {a, B8}, let I ={i|1<i<¢ceL(yy}. Since |L(vo) \ {, B} >k and ZCGL(VO)\{aﬁm e <
Zf:1 [L(yi)| = 2¢, there is a color y € L(vo) \ {@, B} such that |I,| < 2% = 2. Set ¢(vg) = y. For each i eI, let
o(yi) € L(y) \ {y} and let ¢(x;) € L(x;)) \ {y, ¢ (yi)}. Since |I,| <2 < £, we may assume that 1¢1,.

Now we color remaining vertices. Since there are at most three colored neighbors of vg including xo, either (a) there is
a color o that appears exactly once in the colored neighbors of vg, or (b) all neighbors of v are colored by «. For each
case, we color the neighbors of v; in the following manner:

e If (a), then let ¢ (x;) € L(x;)) \ {y, o’} for each i € {1,2,..., €} \I,.
o If (b), then let ¢(x1) € L(x1) \ {y, o} and let ¢(x;) € L(x;)) \ {y, ¢ (x1)} for each i e (2,3,...,£}\ 1.

Then, we have o’ € Uy (vo, G) if (a), and ¢ (x1) € Uy(vo, G) if (b). Finally, for each i e (1,2,...,£}\ I,,, we choose ¢(y;) €
L(yi) \ {¢(x))}. Since y ¢ L(y;) for eachie (1,2,...,£}\I,, we know that ¢ (y;) # ¥ = ¢(vo) and hence y € Uy(x;, G). Thus,
¢ is a proper conflict-free L-coloring of T, a contradiction.

Case3. k>3 and £ =k —1.

We define the color y and the set I,, similarly to Case 2. Note that the colors in L(x) are not considered when we define

y and I, in this case. By the assumption of this case and the choice of the color y, we know that |, | < LZ—‘J = 1. Note

k
that d¢(x¢) =1 and dg(x;j) =2 for eachi <k —1.

Set ¢(vo) =y. We let ¢(y;) € L(yi) \ {y} and ¢(xi) € L(x;) \ {y, ¢ (yi)} for i € I/, and let ¢ (x,) € L(x) \ {y}. Then, the
number of colored neighbors of v is equal to |I,, U {xo, x¢}| = |I),| + 2 < 3. Therefore, by a similar argument as in Case 2,
we can extend ¢ to a proper conflict-free L-coloring of T, a contradiction.

By the above three cases, we may assume that k >3 and £ <k —2. We set X = {x1,x2,..., X} Let L(X) = (Uyex L(¥) and
let L(vg) = L(vo) \ L(X). We consider two cases depending on whether |i(v0)| > 2 or not.

Case4. |L(vo)| > 2.

By Claim 1, L(vg) N L(y;) = L(vo) N L(x;) = @ for every i € {1,2,...,£}. We fix a color y € L(vg), and let L’ be a list
assignment of T’ defined by L'(xo) = L(xp) \ {y'} and L’(v) = L(v) for every v € V(T’) \ {Xo}. By the minimality of T, T’
admits a proper conflict-free L’-coloring ¢. Let ¢ (xo) =« and let 8 be a color in Ugs(xo, T'). Note that it is possible that

= ]/,

If L(vo) \ {a, B} # @, then let ¢(vg) € L(vo) \ {a, B}, let ¢(x;) € L(x;) \ {a} for each i € {1,2,...,k} and let ¢(y;) €
L(yi) \ {¢(xj)} for each i € {1, 2, ..., £}. This extends ¢ to a proper conflict-free L-coloring of T, a contradiction.

Thus, we infer that L(vg) \ {o, B} = @, which implies that « € L(vg) and B = y. Then we choose ¢(vg) € L(vop) \ {c, B}
arbitrarily, let ¢ (yi) € L(¥i) \ {¢(vo)} and let ¢ (x;) € L(xi) \ {¢(vp), @ (y;)} for each i € {1,2,...,¢}, and let ¢ (x;) € L(x;) \
{¢(vo)} for each ie {£+1,£+2,...,k}. Since a ¢ L(X), we have o € Uy(vo, T) and hence ¢ is a proper conflict-free
L-coloring of T, a contradiction.

Case5. |[L(vo)| < 1.

The assumption of this case implies that |L(X)| > [L(vo)| —1 > k+ 1. For each color c € L(X), let Jc={i|1<i<k,ceL(x)}.
Note that J. # @ for any color ¢ € L(X). Let y be a color in L(X) such that |],| is the smallest among all colors in L(X).

Since [L(X)| > k+1 and 3 cjx)lJcl = 21;1 [L(x;)| = 2k + ¢, we have |],| < H’;—*fj < 2. In particular, if £ < 1, then

|Jyl=1.Let L’ be a list assignment of T’ defined by L’(xo) = L(xp) \ {y} and L'(v) = L(v) for every v € V(T’) \ {xo}. By the
minimality of T, T’ admits a proper conflict-free L’-coloring ¢. Let @ = ¢(xo) and let B be a color in Uy (xg, T').

Subcase 5.1. ¢ < 1.

Let J, ={p}. We set ¢(xp) =y and let ¢(yp) € L(yp) \ {¢(xp)} if yp exists. Since |L(vg)| =k+ 2> 5, we choose ¢(vo) €
Lvo)\ {a, B, v, ¢ (yp)}. For i€ {1,2,....¢}\ {p}, we let ¢(yi) € L(yi) \ {¢(vo)} and let ¢(xi) € L(xi) \ {$#(vo), #(yi)}. For
ie{t+1,0+2,....k}\ {p}, let ¢(x;) € L(xi) \ {#(vo)}. Since y € Uy(vo, T), ¢ is a proper conflict-free L-coloring of T, a
contradiction.

Subcase 5.2. ¢ > 2.

The assumption of the subcase, together with the assumption ¢ <k —2, implies that k > £+ 2 > 4. If there is a color c € L(X)
with |J¢| <1, then we argue in a similar way as in the previous Subcase 5.1. We may now assume that | J.| > 2 for every
color ¢ € L(X), and in particular we know that | J,|=2. Let J, ={p,q} for some 1 <p <q <k.

Suppose first that k > 5. We let ¢(xp) =y, ¢(xg) € L(xg) \ {y}, and for each i e {p,q}, let ¢(yi) € L(yi) \ {p(x;)} if
yi exists. Since |L(vg)| =k 42> 7, we choose ¢ (vg) € L(vp) distinct from o, 8, ¥, ¢ (xq), and also distinct from ¢(yp) and
¢(yq) in case they are defined. Fori € {1,2,...,£}\{p, q}, we let ¢ (y;) € L(yi) \ {¢ (vo)} and let ¢ (x;) € L(x)) \{¢(vo), d (¥i)}.
Forie{¢4+1,£4+2,....k}\{p.q}, let (x;) € L(x;) \ {¢(vo)}. Since y € Uy(vo, T), ¢ is a proper conflict-free L-coloring of T,
a contradiction.
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Now we may assume that k =4. Since £ <k—2=2 and 2(k+ 1) < ch(x) [Jel = Zf-‘:1 |L(x;)| = 2k + £, we infer that
¢=2 and |J;| =2 for every c € L(X). Thus, without loss of generality, we may assume that g = 4, which implies that
dr(xq) = 1. Then we let ¢ (xq) =y, ¢ (xp) € L(xp) \ {y}, and let ¢ (yp) € L(yp) \ {9 (xp)} if yp exists. Since |[L(vo)| =k+2 =6,
we choose ¢ (vo) € L(vo) distinct from «, B, ¥, ¢(xp), and also distinct from ¢(y,) in case it is defined. For i € {1, 2} \ {p},
we let ¢(yi) € L(yi) \ {#(vo)} and let ¢(xi) € L(xi) \ {¢(vo), ¢(¥i)}. For i € {3,4}\ {p,q}, let ¢(xi) € L(xi) \ {¢#(vo)}. Since
y €Uy(vo, T), ¢ is a proper conflict-free L-coloring of T, a contradiction.

This completes the proof of Theorem 3.
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