

Remarks on proper conflict-free degree-choosability of graphs with prescribed degeneracy

Masaki Kashima ^a, Riste Škrekovski ^{b,*}, Rongxing Xu ^c

^a Faculty of Science and Technology, Keio University, Yokohama, Japan

^b Faculty of Mathematics and Physics, University of Ljubljana, Faculty of Information Studies in Novo Mesto, and Rudolfovo - Science and Technology Centre Novo Mesto, Slovenia

^c School of Mathematical and Science, Zhejiang Normal University, Jinhua, China

ARTICLE INFO

Article history:

Received 19 June 2025

Received in revised form 11 December 2025

Accepted 9 January 2026

Available online xxxx

Keywords:

Proper conflict-free coloring

List coloring

Degree-choosability

Degeneracy

ABSTRACT

A proper coloring ϕ of G is called a proper conflict-free coloring of G if for every non-isolated vertex v of G , there is a color c such that $|\phi^{-1}(c) \cap N_G(v)| = 1$. As an analogy of degree-choosability of graphs, we introduced the notion of proper conflict-free $(\text{degree} + k)$ -choosability of graphs. For a non-negative integer k , a graph G is proper conflict-free $(\text{degree} + k)$ -choosable if for any list assignment L of G with $|L(v)| \geq d_G(v) + k$ for every vertex $v \in V(G)$, G admits a proper conflict-free coloring ϕ such that $\phi(v) \in L(v)$ for every vertex $v \in V(G)$. In this note, we first remark if a graph G is d -degenerate, then G is proper conflict-free $(\text{degree} + d + 1)$ -choosable. Furthermore, when $d = 1$, we can reduce the number of colors by showing that every tree is proper conflict-free $(\text{degree} + 1)$ -choosable. This motivates us to state a question.

© 2026 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

1. Introduction

Throughout the paper, we only consider simple, finite, and undirected graphs. Let \mathbb{N} be the set of positive integers. For a positive integer k , let $[k]$ denote the set of integers $\{1, 2, \dots, k\}$.

For a graph G , a mapping ϕ from $V(G)$ to \mathbb{N} is called a *proper coloring* of G if $\phi(u) \neq \phi(v)$ for every edge $uv \in E(G)$. A proper coloring of a graph G in which every vertex of G maps to an integer in $[k]$ is called a proper k -coloring of G .

Recently, Fabrici, Lužar, Rindošová, and Soták [6] introduced a new variation of coloring named proper conflict-free coloring of graphs. For a graph G , a mapping ϕ from $V(G)$ to \mathbb{N} is called a *proper conflict-free coloring* of G if ϕ is a proper coloring of G and every non-isolated vertex $v \in V(G)$ has a color c such that $|\phi^{-1}(c) \cap N_G(v)| = 1$, where $N_G(v)$ is the (open) neighborhood of v . A proper conflict-free coloring of a graph G such that every vertex of G maps to an integer in $[k]$ is called a *proper conflict-free k -coloring* of G . For a (partial) coloring ϕ of G and a vertex $v \in V(G)$, let $\mathcal{U}_\phi(v, G)$ denote the set of colors that appear exactly once in the neighborhood of v . Using this notation, a proper conflict-free coloring ϕ of G is a proper coloring ϕ of G such that $\mathcal{U}_\phi(v, G) \neq \emptyset$ for every non-isolated vertex $v \in V(G)$. The *proper conflict-free chromatic number* of a graph G , denoted by $\chi_{\text{pcf}}(G)$, is the least integer k such that G admits a proper conflict-free k -coloring.

One major problem in proper conflict-free coloring is the following Brooks-type conjecture, which was posed by Caro, Petruševski, and Škrekovski [2].

* Corresponding author.

E-mail addresses: masaki.kashima10@gmail.com (M. Kashima), skrekovski@gmail.com (R. Škrekovski), xurongxing@zjnu.edu.cn (R. Xu).

Conjecture 1. For every graph G with the maximum degree $\Delta \geq 3$, $\chi_{\text{pcf}}(G) \leq \Delta + 1$.

This conjecture is widely open except for the case $\Delta = 3$ by Liu and Yu [13] and some asymptotic results in the literature [3,4,7,11,12].

It is well known that the original Brooks' theorem was generalized to degree-choosability of graphs in Borodin [1] and Erdős, Rubin, and Taylor [5]. Following the same direction, we introduced the concept of proper conflict-free (degree + k)-choosability of graphs in [9], as follows.

A list assignment L of a graph G maps each vertex of G to a set of integers. For a mapping f from $V(G)$ to positive integers, an f -list assignment of G is a list assignment L of G with $|L(v)| \geq f(v)$ for every vertex $v \in V(G)$. In particular, if f is the constant map from $V(G)$ to a positive integer k , an f -list assignment of G is called a k -list assignment of G .

For a given graph G and a list assignment L of G , a *proper conflict-free L -coloring* of G is a proper conflict-free coloring ϕ of G such that $\phi(v) \in L(v)$ for every vertex $v \in V(G)$. For a non-negative integer k , a graph G is *proper conflict-free (degree + k)-choosable* if G admits a proper conflict-free L -coloring for any f -list assignment of G , where $f(v) = d_G(v) + k$ for every vertex $v \in V(G)$. It is natural to ask whether there is an absolute constant k such that every graph is proper conflict-free (degree + k)-choosable, but in fact, even the existence of a constant k such that $\chi_{\text{pcf}}(G) \leq \Delta(G) + k$ for every graph G is unknown.

In this note, we focus on the proper conflict-free (degree + k)-choosability of graphs with a given degeneracy. For a positive integer d , a graph G is d -degenerate if every subgraph H of G satisfies $\delta(H) \leq d$. We first remark the following simple bound, which states the relationship between the degeneracy and proper conflict-free (degree + k)-choosability of graphs.

Proposition 2. If G is a d -degenerate graph for some positive integer d , then G is proper conflict-free (degree + $d + 1$)-choosable.

Proof. Let G be a d -degenerate graph of order n . Let L be a list assignment of G satisfying $|L(v)| \geq d_G(v) + d + 1$ for each vertex $v \in V(G)$. Since G is d -degenerate, we label the vertices of G as v_1, v_2, \dots, v_n so that each vertex has at most d neighbors with smaller indices.

We color the vertices greedily in the order v_1, v_2, \dots, v_n as follows: For each $i \in \{1, 2, \dots, n\}$, we assign v_i a color from $L(v_i)$ that differs from the colors of all smaller-indexed vertices that are either adjacent to v_i or are the smallest-indexed neighbor of a vertex adjacent to v_i . Note that at most d colors are forbidden by the previously colored neighbors and at most $d_G(v_i)$ colors are forbidden by the smallest-indexed neighbors of $N_G(v_i)$, and hence at least one color is available for v_i . It is obvious that the obtained coloring is a proper coloring of G . Furthermore, for each vertex of G , the color of the smallest-indexed neighbor appears exactly once in its neighbors, and hence we obtain a proper conflict-free L coloring of G . \square

This improves a bound from Cranston and Liu [4] of a Brooks-type statement. One may ask whether the bound is best possible. As we saw previously, the 5-cycle is 2-degenerate and not proper conflict-free (degree + 2)-choosable, and hence we cannot improve the bound in Proposition 2 in general. On the other hand, when $d = 1$, we show the following result, that states that the bound can be reduced to (degree + d).

Theorem 3. Every tree is proper conflict-free (degree + 1)-choosable.

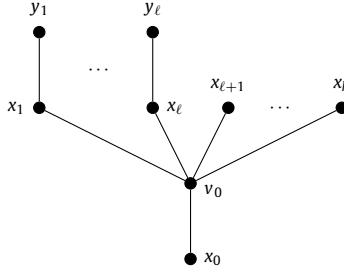
The proof of the above theorem is given in the next section. The bound (degree + 1) cannot be reduced to (degree + 0). Indeed, let us consider a star $K_{1,n-1}$ ($n \geq 3$) with the center v_0 and leaves v_1, v_2, \dots, v_{n-1} , and let L be a list assignment of $K_{1,n-1}$ such that $|L(v_0)| = n - 1$ and $L(v_1) = L(v_2) = \dots = L(v_{n-1}) = \{1\}$. Then the center v_0 must have $n - 1$ neighbors with color 1 no matter what list v_0 has, and hence $K_{1,n-1}$ is not proper conflict-free L -colorable.

Similarly, we can construct a 2-degenerate graph that is not proper conflict-free (degree + 1)-choosable. Let G be a graph obtained by n copies C_1, C_2, \dots, C_n of the 4-cycle ($n \geq 1$) by identifying the vertices v_1, v_2, \dots, v_n into a vertex v , where v_i is a vertex of C_i . Obviously G is 2-degenerate. Let L be a list assignment of G such that $L(v) = \{1, 2, \dots, 2n + 1\}$ and each vertex of $V(C_i) \setminus \{v_i\}$ has a list $\{1, 2i, 2i + 1\}$. Then, by the conflict-free condition of vertices of the i th copy, colors $\{1, 2i, 2i + 1\}$ are forbidden for v , and hence there is no color left for v . Hence, G is not proper conflict-free L -colorable.

Considering Theorem 3 and these constructions, we ask whether the following may hold.

Conjecture 4. If G is a d -degenerate graph for some positive integer d and G is not isomorphic to the 5-cycle, then G is proper conflict-free (degree + d)-choosable.

The above constructions imply that the bound in Conjecture 4 is best possible for $d = 1, 2$. Also, by Theorem 3, Conjecture 4 holds for the case $d = 1$. For other values of d , we know that every connected outerplanar graph other than the 5-cycle is 2-degenerate and proper conflict-free (degree + 2)-choosable [8], and that every planar graph is 5-degenerate and proper conflict-free (degree + 5)-choosable [10], which will appear in separate papers.

Fig. 1. A reducible structure of T .

2. Proof of Theorem 3

Suppose that the statement is false, and let T be a minimum counterexample. Obviously, $|V(T)| \geq 3$. Let L be a list assignment of T such that $|L(v)| = d_T(v) + 1$ for every vertex $v \in V(T)$ and T is not proper conflict-free L -colorable.

Claim 1. Let $v_1 v_2 v_3$ be a path of length 2 of T with $d_T(v_1) = 1$ and $d_T(v_2) = 2$. Then $L(v_1) \subseteq L(v_2)$.

Proof. Assume to the contrary that $L(v_1) \setminus L(v_2) \neq \emptyset$. Take a color $\alpha \in L(v_1) \setminus L(v_2)$. Let $T' = T - \{v_1, v_2\}$ and let L' be a list assignment of T' defined by $L'(v_3) = L(v_3) \setminus \{\alpha\}$ and $L'(v) = L(v)$ for every $v \in V(T') \setminus \{v_3\}$. Note that $|L'(v)| \geq d_{T'}(v) + 1$ for every $v \in V(T')$. By the minimality of T , T' admits a proper conflict-free L' -coloring ϕ . Let $\phi(v_3) = \beta \neq \alpha$ and let γ be a color in $\mathcal{U}_\phi(v_3, T')$. By setting $\phi(v_1) = \alpha$ and choosing $\phi(v_2) \in L(v_2) \setminus \{\beta, \gamma\}$, ϕ can be extended to a proper conflict-free L -coloring of T , a contradiction. \square

Claim 2. T does not have a path $v_1 v_2 v_3 v_4$ of length 3 with $d_T(v_1) = 1$ and $d_T(v_2) = d_T(v_3) = 2$.

Proof. Assume to the contrary that T has such a path $v_1 v_2 v_3 v_4$. By Claim 1, we know that $L(v_1) \subseteq L(v_2)$. As $|L(v_1)| = 2$ and $|L(v_2)| = 3$, let α be a color in $L(v_2) \setminus L(v_1)$. Let $T' = T - \{v_1, v_2, v_3\}$ and let L' be a list assignment of T' defined by $L'(v_4) = L(v_4) \setminus \{\alpha\}$ and $L'(v) = L(v)$ for every $v \in V(T') \setminus \{v_4\}$. By the minimality of T , T' admits a proper conflict-free L' -coloring ϕ . Let $\phi(v_4) = \beta \neq \alpha$ and let γ be a color in $\mathcal{U}_\phi(v_4, T')$. Note that it is possible that $\gamma = \alpha$. We choose $\phi(v_3) \in L(v_3) \setminus \{\beta, \gamma\}$. We let $\phi(v_2) = \alpha$ if $\phi(v_3) \neq \alpha$, and let $\phi(v_2)$ be a color in $L(v_2) \setminus \{\phi(v_3), \beta\}$ otherwise. In either case, one of v_2 and v_3 is colored with α , which is not in $L(v_1)$. Since $|L(v_1) \setminus \{\phi(v_2), \phi(v_3)\}| \geq 1$, we can choose $\phi(v_1) \in L(v_1) \setminus \{\phi(v_2), \phi(v_3)\}$, and hence ϕ can be extended to a proper conflict-free L -coloring of T , a contradiction. \square

By Claim 2, T has a vertex v_0 of degree at least 3 such that each component of $T - v_0$ except one component is isomorphic to K_1 or K_2 . Let $N_T(v_0) = \{x_0, x_1, \dots, x_k\}$. Note that $k = d_T(v_0) - 1 \geq 2$. For each $i \in \{0, 1, \dots, k\}$, let T_i denote the component of $T - v_0$ that contains x_i . Without loss of generality, we may assume that T_i is isomorphic to K_2 for every $i \in \{1, 2, \dots, \ell\}$ and T_i is isomorphic to K_1 for every $i \in \{\ell + 1, \ell + 2, \dots, k\}$, where ℓ is a positive integer at most k . For each $i \in \{1, 2, \dots, \ell\}$, let $V(T_i) = \{x_i, y_i\}$ (Fig. 1).

By Claim 1, we have $L(y_i) \subseteq L(x_i)$ for each $i \in \{1, 2, \dots, \ell\}$. Thus, we let $L(x_i) = \{\alpha_i, \beta_i, \gamma_i\}$ and $L(y_i) = \{\beta_i, \gamma_i\}$ for each $i \in \{1, 2, \dots, \ell\}$, and let $L(x_i) = \{\alpha_i, \beta_i\}$ for each $i \in \{\ell + 1, \ell + 2, \dots, k\}$.

In the rest of the proof, we take a proper conflict-free coloring of $T' := T - \left(\bigcup_{i=1}^k V(T_i) \cup \{v_0\}\right)$ and extend it to T .

We first consider relatively simple three cases. In the following three cases, let ϕ be a proper conflict-free L -coloring of T' . Let $\alpha = \phi(x_0)$ and let β be a color in $\mathcal{U}_\phi(x_0, T')$.

Case 1. $k = 2$.

Note that $d_T(v_0) = 3$ in this case. If $\ell = 0$, then we let $\phi(x_2) \in L(x_2) \setminus \{\alpha\}$, $\phi(v_0) \in L(v_0) \setminus \{\alpha, \beta, \phi(x_2)\}$, and $\phi(x_1) \in L(x_1) \setminus \{\phi(v_0)\}$. If $\ell = 1$, then we let $\phi(x_2) \in L(x_2) \setminus \{\alpha\}$, $\phi(v_0) \in L(v_0) \setminus \{\alpha, \beta, \phi(x_2)\}$, $\phi(y_1) \in L(y_1) \setminus \{\phi(v_0)\}$, and $\phi(x_1) \in L(x_1) \setminus \{\phi(v_0), \phi(y_1)\}$. In either case, since $d_T(v_0) = 3$ and at least two colors appear in the neighbors of v_0 , we have $\mathcal{U}_\phi(v_0, T) \neq \emptyset$. Thus, we obtain a proper conflict-free L -coloring of T , a contradiction.

Now assume that $\ell = 2$. We consider another list assignment L' of T' . If $\alpha_1 = \alpha_2$, then let L' be a list assignment of T' defined by $L'(x_0) = L(x_0) \setminus \{\alpha_1\}$ and $L'(v) = L(v)$ for every $v \in V(T') \setminus \{x_0\}$. Otherwise, let $L' = L$. Note that $|L'(v)| \geq d_{T'}(v) + 1$ for every $v \in V(T')$. By the minimality of T , T' admits a proper conflict-free L' -coloring ϕ' . Let $\phi'(x_0) = \alpha'$ and let β' be a color in $\mathcal{U}_{\phi'}(x_0, T')$. By the definition of L' , either $\alpha_1 \neq \alpha'$ or $\alpha_2 \neq \alpha'$ holds. Without loss of generality, we may assume that $\alpha_1 \neq \alpha'$. Then let $\phi'(x_1) = \alpha_1$, $\phi'(v_0) \in L(v_0) \setminus \{\alpha', \beta', \alpha_1\}$, $\phi'(y_1) \in L(y_1) \setminus \{\phi'(v_0)\}$ for $i = 1, 2$, and $\phi'(x_2) \in L(x_2) \setminus \{\phi'(v_0), \phi'(y_2)\}$. It is easy to verify that ϕ' is a proper conflict-free L -coloring of T , a contradiction.

Case 2. $k \geq 3$ and $\ell = k$.

For each color $c \in L(v_0) \setminus \{\alpha, \beta\}$, let $I_c = \{i \mid 1 \leq i \leq \ell, c \in L(x_i)\}$. Since $|L(v_0) \setminus \{\alpha, \beta\}| \geq k$ and $\sum_{c \in L(v_0) \setminus \{\alpha, \beta\}} |I_c| \leq \sum_{i=1}^{\ell} |L(y_i)| = 2\ell$, there is a color $\gamma \in L(v_0) \setminus \{\alpha, \beta\}$ such that $|I_\gamma| \leq \frac{2\ell}{k} = 2$. Set $\phi(v_0) = \gamma$. For each $i \in I_\gamma$, let $\phi(y_i) \in L(y_i) \setminus \{\gamma\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\gamma, \phi(y_i)\}$. Since $|I_\gamma| \leq 2 < \ell$, we may assume that $1 \notin I_\gamma$.

Now we color remaining vertices. Since there are at most three colored neighbors of v_0 including x_0 , either (a) there is a color α' that appears exactly once in the colored neighbors of v_0 , or (b) all neighbors of v_0 are colored by α . For each case, we color the neighbors of v_i in the following manner:

- If (a), then let $\phi(x_i) \in L(x_i) \setminus \{\gamma, \alpha'\}$ for each $i \in \{1, 2, \dots, \ell\} \setminus I_\gamma$.
- If (b), then let $\phi(x_1) \in L(x_1) \setminus \{\gamma, \alpha\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\gamma, \phi(x_1)\}$ for each $i \in \{2, 3, \dots, \ell\} \setminus I_\gamma$.

Then, we have $\alpha' \in \mathcal{U}_\phi(v_0, G)$ if (a), and $\phi(x_1) \in \mathcal{U}_\phi(v_0, G)$ if (b). Finally, for each $i \in \{1, 2, \dots, \ell\} \setminus I_\gamma$, we choose $\phi(y_i) \in L(y_i) \setminus \{\phi(x_i)\}$. Since $\gamma \notin L(y_i)$ for each $i \in \{1, 2, \dots, \ell\} \setminus I_\gamma$, we know that $\phi(y_i) \neq \gamma = \phi(v_0)$ and hence $\gamma \in \mathcal{U}_\phi(x_i, G)$. Thus, ϕ is a proper conflict-free L -coloring of T , a contradiction.

Case 3. $k \geq 3$ and $\ell = k - 1$.

We define the color γ and the set I_γ similarly to Case 2. Note that the colors in $L(x_k)$ are not considered when we define γ and I_γ in this case. By the assumption of this case and the choice of the color γ , we know that $|I_\gamma| \leq \left\lfloor \frac{2\ell}{k} \right\rfloor = 1$. Note that $d_G(x_k) = 1$ and $d_G(x_i) = 2$ for each $i \leq k - 1$.

Set $\phi(v_0) = \gamma$. We let $\phi(y_i) \in L(y_i) \setminus \{\gamma\}$ and $\phi(x_i) \in L(x_i) \setminus \{\gamma, \phi(y_i)\}$ for $i \in I_\gamma$, and let $\phi(x_k) \in L(x_k) \setminus \{\gamma\}$. Then, the number of colored neighbors of v_0 is equal to $|I_\gamma \cup \{x_0, x_k\}| = |I_\gamma| + 2 \leq 3$. Therefore, by a similar argument as in Case 2, we can extend ϕ to a proper conflict-free L -coloring of T , a contradiction.

By the above three cases, we may assume that $k \geq 3$ and $\ell \leq k - 2$. We set $X = \{x_1, x_2, \dots, x_k\}$. Let $L(X) = \bigcup_{x \in X} L(x)$ and let $\tilde{L}(v_0) = L(v_0) \setminus L(X)$. We consider two cases depending on whether $|\tilde{L}(v_0)| \geq 2$ or not.

Case 4. $|\tilde{L}(v_0)| \geq 2$.

By Claim 1, $\tilde{L}(v_0) \cap L(y_i) = \tilde{L}(v_0) \cap L(x_i) = \emptyset$ for every $i \in \{1, 2, \dots, \ell\}$. We fix a color $\gamma \in \tilde{L}(v_0)$, and let L' be a list assignment of T' defined by $L'(x_0) = L(x_0) \setminus \{\gamma\}$ and $L'(v) = L(v)$ for every $v \in V(T') \setminus \{x_0\}$. By the minimality of T , T' admits a proper conflict-free L' -coloring ϕ . Let $\phi(x_0) = \alpha$ and let β be a color in $\mathcal{U}_\phi(x_0, T')$. Note that it is possible that $\beta = \gamma$.

If $\tilde{L}(v_0) \setminus \{\alpha, \beta\} \neq \emptyset$, then let $\phi(v_0) \in \tilde{L}(v_0) \setminus \{\alpha, \beta\}$, let $\phi(x_i) \in L(x_i) \setminus \{\alpha\}$ for each $i \in \{1, 2, \dots, k\}$ and let $\phi(y_i) \in L(y_i) \setminus \{\phi(x_i)\}$ for each $i \in \{1, 2, \dots, \ell\}$. This extends ϕ to a proper conflict-free L -coloring of T , a contradiction.

Thus, we infer that $\tilde{L}(v_0) \setminus \{\alpha, \beta\} = \emptyset$, which implies that $\alpha \in \tilde{L}(v_0)$ and $\beta = \gamma$. Then we choose $\phi(v_0) \in L(v_0) \setminus \{\alpha, \beta\}$ arbitrarily, let $\phi(y_i) \in L(y_i) \setminus \{\phi(v_0)\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0), \phi(y_i)\}$ for each $i \in \{1, 2, \dots, \ell\}$, and let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0)\}$ for each $i \in \{\ell + 1, \ell + 2, \dots, k\}$. Since $\alpha \notin L(X)$, we have $\alpha \in \mathcal{U}_\phi(v_0, T)$ and hence ϕ is a proper conflict-free L -coloring of T , a contradiction.

Case 5. $|\tilde{L}(v_0)| \leq 1$.

The assumption of this case implies that $|L(X)| \geq |L(v_0)| - 1 \geq k + 1$. For each color $c \in L(X)$, let $J_c = \{i \mid 1 \leq i \leq k, c \in L(x_i)\}$. Note that $J_c \neq \emptyset$ for any color $c \in L(X)$. Let γ be a color in $L(X)$ such that $|J_\gamma|$ is the smallest among all colors in $L(X)$. Since $|L(X)| \geq k + 1$ and $\sum_{c \in L(X)} |J_c| = \sum_{i=1}^k |L(x_i)| = 2k + \ell$, we have $|J_\gamma| \leq \left\lfloor \frac{2k+\ell}{k+1} \right\rfloor \leq 2$. In particular, if $\ell \leq 1$, then $|J_\gamma| = 1$. Let L' be a list assignment of T' defined by $L'(x_0) = L(x_0) \setminus \{\gamma\}$ and $L'(v) = L(v)$ for every $v \in V(T') \setminus \{x_0\}$. By the minimality of T , T' admits a proper conflict-free L' -coloring ϕ . Let $\alpha = \phi(x_0)$ and let β be a color in $\mathcal{U}_\phi(x_0, T')$.

Subcase 5.1. $\ell \leq 1$.

Let $J_\gamma = \{p\}$. We set $\phi(x_p) = \gamma$ and let $\phi(y_p) \in L(y_p) \setminus \{\phi(x_p)\}$ if y_p exists. Since $|L(v_0)| = k + 2 \geq 5$, we choose $\phi(v_0) \in L(v_0) \setminus \{\alpha, \beta, \gamma, \phi(y_p)\}$. For $i \in \{1, 2, \dots, \ell\} \setminus \{p\}$, we let $\phi(y_i) \in L(y_i) \setminus \{\phi(v_0)\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0), \phi(y_i)\}$. For $i \in \{\ell + 1, \ell + 2, \dots, k\} \setminus \{p\}$, let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0)\}$. Since $\gamma \in \mathcal{U}_\phi(v_0, T)$, ϕ is a proper conflict-free L -coloring of T , a contradiction.

Subcase 5.2. $\ell \geq 2$.

The assumption of the subcase, together with the assumption $\ell \leq k - 2$, implies that $k \geq \ell + 2 \geq 4$. If there is a color $c \in L(X)$ with $|J_c| \leq 1$, then we argue in a similar way as in the previous Subcase 5.1. We may now assume that $|J_c| \geq 2$ for every color $c \in L(X)$, and in particular we know that $|J_\gamma| = 2$. Let $J_\gamma = \{p, q\}$ for some $1 \leq p < q \leq k$.

Suppose first that $k \geq 5$. We let $\phi(x_p) = \gamma$, $\phi(x_q) \in L(x_q) \setminus \{\gamma\}$, and for each $i \in \{p, q\}$, let $\phi(y_i) \in L(y_i) \setminus \{\phi(x_i)\}$ if y_i exists. Since $|L(v_0)| = k + 2 \geq 7$, we choose $\phi(v_0) \in L(v_0)$ distinct from $\alpha, \beta, \gamma, \phi(x_q)$, and also distinct from $\phi(y_p)$ and $\phi(y_q)$ in case they are defined. For $i \in \{1, 2, \dots, \ell\} \setminus \{p, q\}$, we let $\phi(y_i) \in L(y_i) \setminus \{\phi(v_0)\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0), \phi(y_i)\}$. For $i \in \{\ell + 1, \ell + 2, \dots, k\} \setminus \{p, q\}$, let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0)\}$. Since $\gamma \in \mathcal{U}_\phi(v_0, T)$, ϕ is a proper conflict-free L -coloring of T , a contradiction.

Now we may assume that $k = 4$. Since $\ell \leq k - 2 = 2$ and $2(k + 1) \leq \sum_{c \in L(X)} |J_c| = \sum_{i=1}^k |L(x_i)| = 2k + \ell$, we infer that $\ell = 2$ and $|J_c| = 2$ for every $c \in L(X)$. Thus, without loss of generality, we may assume that $q = 4$, which implies that $d_T(x_q) = 1$. Then we let $\phi(x_q) = \gamma$, $\phi(x_p) \in L(x_p) \setminus \{\gamma\}$, and let $\phi(y_p) \in L(y_p) \setminus \{\phi(x_p)\}$ if y_p exists. Since $|L(v_0)| = k + 2 = 6$, we choose $\phi(v_0) \in L(v_0)$ distinct from $\alpha, \beta, \gamma, \phi(x_p)$, and also distinct from $\phi(y_p)$ in case it is defined. For $i \in \{1, 2\} \setminus \{p\}$, we let $\phi(y_i) \in L(y_i) \setminus \{\phi(v_0)\}$ and let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0), \phi(y_i)\}$. For $i \in \{3, 4\} \setminus \{p, q\}$, let $\phi(x_i) \in L(x_i) \setminus \{\phi(v_0)\}$. Since $\gamma \in \mathcal{U}_\phi(v_0, T)$, ϕ is a proper conflict-free L -coloring of T , a contradiction.

This completes the proof of Theorem 3.

Declaration of competing interest

There is no competing interest.

Acknowledgement

M. Kashima has been supported by JSPS KAKENHI Grant No. 25KJ2077. R. Škrekovski has been partially supported by the Slovenian Research Agency and Innovation (ARIS) program P1-0383, project J1-3002, and the annual work program of Rudolfovo. R. Xu has been supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQN25A010011, and National Science Foundation for Young Scientists of China under Grant No. 12401472.

Data availability

No data was used for the research described in the article.

References

- [1] O.V. Borodin, Criterion of chromaticity of a degree prescription, in: *Abstracts of IV All-Union Conf. on Th. Cybernetics*, 1977, pp. 127–128 (in Russian).
- [2] Y. Caro, M. Petruševski, R. Škrekovski, Remarks on proper conflict-free colorings of graphs, *Discrete Math.* 346 (2023) 113221.
- [3] E.-K. Cho, I. Choi, H. Kwon, B. Park, Brooks-type theorems for relaxations of square colorings, *Discrete Math.* 348 (2025) 114233.
- [4] D.W. Cranston, C.H. Liu, Proper conflict-free coloring of graphs with large maximum degree, *SIAM J. Discrete Math.* 38 (4) (2024) 3004–3027.
- [5] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, in: *Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing*, Humboldt State Univ., Arcata, Calif., 1979.
- [6] I. Fabrici, B. Lužar, S. Rindošová, R. Soták, Proper conflict-free and unique-maximum colorings of planar graphs with respect to neighborhoods, *Discrete Appl. Math.* 324 (2023) 80–92.
- [7] M. Kamyczura, J. Przybylo, On conflict-free proper colourings of graphs without small degree vertices, *Discrete Math.* 347 (2024) 113712.
- [8] M. Kashima, R. Škrekovski, R. Xu, Proper conflict-free degree-choosability of outerplanar graphs, *Discrete Math.* 349 (2026) 114800.
- [9] M. Kashima, R. Škrekovski, R. Xu, Results on proper conflict-free list coloring of graphs, arXiv:2508.20521.
- [10] M. Kashima, R. Škrekovski, R. Xu, Degree-choosability of proper conflict-free list coloring of planar graphs, manuscript.
- [11] C.-H. Liu, Proper conflict-free list-coloring, odd minors subdivisions, and layered treewidth, *Discrete Math.* 347 (2024) 113668.
- [12] C.-H. Liu, B. Reed, Asymptotically optimal proper conflict-free coloring, *Random Struct. Algorithms* 66 (3) (2025) e21285.
- [13] C.-H. Liu, G. Yu, Linear colorings of subcubic graphs, *Eur. J. Comb.* 34 (2013) 1040–1050.