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1. Introduction

Let G = (V, E) be a graph with the vertex set V = V(G) and the edge set E = E(G). Unless explicitly stated otherwise,
all graphs in this paper are assumed to be simple and finite. The degree dg(v) of a vertex v € V(G) is defined to be the
number of neighbors of v in G. For a pair of vertices u, v € V(G), by dg(u, v) we denote the distance of these two vertices,
i.e. the length of a shortest path connecting them. If the graph G is clear from context, we omit the subscript G. A graph
G is regular if all its vertices have a same degree, otherwise it is said to be irregular. The concept of irregularity has been
widely researched within various scientific fields such as chemistry and network theory [6,8-10,12,17,18].

One of the well-known irregularity measures of a graph G is the Albertson irregularity [4] denoted by irr(G) and defined
as follows

irr(G) = ) lde(u) — dg(v)]-
uvekE(G)

This index received considerable attention from the scientific community, we refer here to a selection of relevant
studies [1,2,4,5,12,14].
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A downside of the Albertson irregularity is the inherent need to calculate absolute values, hence it is natural to propose
a similar index, the so-called o -irregularity, defined for a graph G by

a(G)= ) (dgu) — dg(v)).

uveE(G)

Some fundamental properties of the o -irregularity were given by Gutman et al. in [ 13], such as the following basic relation

0(G) = F(G) — 2My(G), (1)
where F(G) denotes the forgotten index defined by

FG) =) dw),

ueV(G)

while M;(G) denotes the second Zagreb index defined by
Ma(G)= Y d(u)d(v).

uveE(G)

In [3], a characterization of graphs with the maximum value of o -irregularity is provided, and also some lower bounds
on the o-irregularity. In [3,13], the inverse problem for o-irregularity is solved, i.e., the problem of establishing the
existence of a graph with the o-irregularity equal to a given non-negative integer. The research of the relation of o-
irregularity with some other well-known irregularity measures is conducted by Réti in [16]. Also, in a recent paper [7]
the characterization of graphs with a prescribed degree sequence having extremal o -irregularity is given. The so called
total o -irregularity, which is a variant of o -irregularity, has also recently been studied [11,15].

A graph G is said to be chemical if the maximum vertex degree in G is 4. A tree is a connected acyclic graph. Among the
(chemical) trees explored in [3], the path graph is shown to have the smallest o -irregularity. In [19], the characterization
of chemical trees with maximal o -irregularity was provided. Here, we extend this outcome by giving several properties
of trees with prescribed maximum degree A exhibiting maximal o -irregularity. The application of these properties to the
case A =5 yields a characterization of maximal trees.

Before delving into properties of maximal trees with respect to o -irregularity, we introduce the necessary additional
notation and preliminaries. In a tree T, a k-vertex is a vertex of degree k. Particularly, a leaf is a vertex of degree 1. A
vertex of a tree T is an internal leaf if it has precisely one neighbor with a degree greater than 1. Notice that an internal
leaf of T is a leaf in the tree T’ obtained from T by removing all leaves, hence the name. A vertex with degree at least 3
will be called a big vertex. The number of vertices in T of degree i is denoted by n;, where i ranges from 1 to A. Similarly,
the number of edges in T with end-vertices of degrees i and j, for 1 < i < j < A, is denoted by m;;. If T is a tree with
maximal o -irregularity on a given number of vertices n, we refer to it as a maximal tree.

The present paper is organized as follows. In the next section we give several properties of maximal trees with
prescribed maximum degree A, for any A > 3. In the third section, these properties are applied to the case A = 5
for which the characterization of maximal trees is obtained.

2. Properties of maximal trees for general A

In this section we will establish several properties of maximal trees with the maximum degree A, which hold for any
A > 3. We start with the following proposition which will be a useful tool in proving further properties of maximal trees
and it stems from a simple tree transformation.

Proposition 1. Let T be a maximal tree with the maximum degree A, and P = ux---yv a path in T. If d(u) > d(v), then
d(x) < d(y). Also, if d(x) > d(y), then d(u) < d(v).

Proof. To prove the first claim of the proposition, suppose that d(u) > d(v). If d(u,v) = 1, then x = vand y = u, so
d(x) = d(v) < d(u) = d(y), and the claim holds. Next, if d(u, v) = 2, then x = y which implies d(x) = d(y), so the claim
also holds. Hence, let us assume that d(u, v) > 3. Assume to the contrary that d(x) > d(y). Let T’ be the tree obtained
from T by removing edges ux and yv, and adding edges uy and xv instead. Notice that

a(T') = o(T) = (d(u) — d¥))* — (d(u) — d(x)}* + (d(v) — X))’ — (d(v) — d(¥))*
= 2(d(u) — d(v))(d(x) — d(y)) > 0,

which contradicts to T being maximal.
Now, let us prove the second claim of the proposition. Suppose that d(x) > d(y), which is only possible if x # y. Assume
to the contrary that d(u) > d(v). Then again for the tree T = T — ux — yv + yu + xv we have

o(T") — o(T) = 2(d(u) — d(v))(d(x) — d(y)) > 0,
a contradiction. MW
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Fig. 1. Trees T of maximal-degree A on n= A+ 2 and n = A + 3 vertices.

The next property we wish to establish is that all internal leaves of maximal trees have maximum degree A. The
property holds provided that the number of vertices in a tree is sufficiently large, and it will be extensively used in the
next section where we will establish maximal trees for A = 5.

To arrive at this result, we need the following three lemmas.

Lemma 2. Let T be a maximal tree with maximum degree A > 3. If T contains at least two big vertices, then my 1 = 0.

Proof. Assume to the contrary, that T does contain an edge uv with d(u) = 2 and d(v) = 1. Let x be the big vertex closest
to u, and let y be the neighbor of x which is not a leaf, such that the path P connecting y and v contains x, i.e.,, P = yx - - - uv.
Notice that such a vertex y must exist, since T contains at least two big vertices, and there is no big vertex on the path
connecting x and v. Since d(v) < d(y), Proposition 1 implies d(u) > d(x), a contradiction. M

There is only one tree T of maximum degree A with n = A + 1 vertices, obviously the star; and also one such T on
n = A + 2 vertices, see Fig. 1(a). f n = A + 3, we have three non-isomorphic trees, shown in Fig. 1(b)-(d), and the
maximum of o (-) is attained by the tree in (c).

Let us show that a maximal tree T with the sufficiently many vertices does have at least two big vertices. This is
established by the following lemma.

Lemma 3. Let T be a maximal tree on n vertices with maximum degree A > 3. If n > A + 4, then T contains at least two
big vertices.

Proof. Assume to the contrary that T does not contain two big vertices. Then T has precisely one vertex u of degree A,
and so it consists of A pending paths attached to u.
First suppose that one of these pending paths has length at least 4, say

P=u---v3vuivg, d(vo) =1, d(v) = d(v2) = d(v3) = 2.
If we modify T by deleting the edge vov; and adding vov,, we obtain a new tree
T' =T — vovy + vov3.

In T’, the degree of v, increases from 2 to 3, while v; decreases from 2 to 1. Thus, o(T’) > o(T), contradicting the
maximality of T. Hence no pending path may have length at least 4.
Next, suppose there are two distinct pending paths, each of length 2 or 3, say

VoVU1 -+ - U, uvy - - - vs3,

with d(v1) = d(v2) = 2 and d(vp) = d(v3) = 1. Applying Proposition 1 on the subpath vgv; - - - uv, we obtain that vertex
v7 has to be big, a contradiction.

From the above, it follows that T has at most one pending path of length 3 and all others are of length 1, and
consequently

n < A+43.
This contradicts the assumption n > A + 4, which establishes the claim. =

An immediate consequence of Lemmas 2 and 3 is the following corollary.

Corollary 4. Let T be a maximal tree on n vertices with maximum degree A > 3. Ifn > A + 4, then m;, = 0.

The next important step towards the result we aim at, is the following lemma in which we establish that almost all
internal vertices of a maximal tree have the degree A.
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Lemma 5. Let T be a maximal tree on n vertices with maximum degree A > 3. If n > A + 4, then at most one internal leaf
of T has the degree smaller than A.

Proof. The assumption n > A + 4 implies that T contains at least two distinct internal leaves. Assume to the contrary,
that at least two internal leaves have the degree less than A. Let u and v be two such internal leaves at the maximum
possible distance, and we may assume d(u) > d(v). If u and v are neighbors, then u and v are the only non-leaf vertices of
T. Since the maximum degree of T is A, at least one of u and v must have the degree A, say u. So, v is the only internal
leaf of T which may have the degree smaller than A, which proves the claim in this case.

Assume next that u and v are not neighbors, i.e., d(u, v) > 2. Denote the neighbors of u by u;, fori = 1, ..., d(u), so
that u; is a leaf for i > 2. Similarly, let the neighbors of v be denoted by v;, for i = 1, ..., d(v), so that v; is a leaf for
i > 2.Since n > A + 4, Lemma 3 implies that T contains at least two big vertices. Lemma 2 further implies that every
leaf of T is a neighbor of a vertex of degree at least three. This means that d(u) > 3 and d(v) > 3. Recall that we assumed
d(u) > d(v). If d(u) > d(v), then Proposition 1 implies d(u;) < d(v). If d(u) = d(v) and d(u;) > d(v1), then we swap labels
of u and v, and also u; and v; for every i. Either way, we obtain d(u) > d(v) and d(u;) < d(vq). Let T" = T — vv, + uv,,
and notice that o(T") — o(T) = o1 + 03 + o3 where

oy = (d(v) — 2)((d(v) — 1 — 1) — (d(v) — 1)*)

+ (d(u) — 1)((d(u) + 1= 1> = (d(u) — 1)),
oy = (d(u)+1— 1) — (d(v) — 1)%,
o3 = (d(v) — 1= d(v1))* — (d(v) — d(v1))?

+ (d(u) + 1 — d(ur))* — (d(u) — d(uy))>.

Notice that oy = (d(u) — d(v) + 1) (2d(u) + 2d(v) — 5), so d(u) > d(v) > 3 implies o7 > 0. Notice further that due to
d(u) > d(v) it holds that o, > 0. Finally, it holds that o3 = 2d(u) — 2d(v) + 2d(v1) — 2d(u;) + 2, where d(u) > d(v) and
d(vq) > d(u,) implies o3 > 0. This amounts to o(T’) — o(T) > 0, a contradiction with T being maximal. ®

A tree T with only one internal leaf has n = A + 1 vertices, so a tree T on n > A + 4 vertices must have at least two
internal leaves. On the other hand, a tree T on n < 2A — 1 vertices cannot have two vertices of degree A. Hence, the
result of Lemma 5 is the best possible for maximal trees on n vertices, where A+4 < n < 2A — 1. In the next theorem we
show that the presence of this one internal leaf with the degree less than A is only due to the small number of vertices,
i.e. that for n > 2 A all internal leaves in a maximal tree are of degree A.

Theorem 6. Let T be a maximal tree with maximum degree A. If n > 7, for A =3 and n > 2A, for A > 4, then all internal
leaves of T are of degree A.

Proof. Notice that n > A + 4 for each A > 3.

Assume to the contrary that there exists an internal leaf u of T with d(u) < A. Lemma 5 implies that all other internal
leaves of T are of degree A. A vertex of T which is neither a leaf nor an internal leaf will be called a core vertex of T.
Notice that n > 2A and d(u) < A imply that T contains at least one core vertex.

Let us show that the degree of each core vertex of T is at most d(u). For that purpose, let v be a core vertex of T, and
let w be a neighbor of v such that d(w, u) > d(v, u) and w is not a leaf. Such a vertex w must exist in T, since v is not
an internal leaf. If d(v) > d(u), due to Proposition 1, we would have d(w) < 1, a contradiction. Hence, it must hold that
d(v) < d(u).

We now distinguish the following two cases.

Case 1: All core vertices in T have precisely two neighbors with degrees greater than 1. Here, we distinguish two subcases
regarding the degrees of core vertices in T.

Subcase 1.a: All core vertices have the degree 2. Since all core vertices are of degree 2, the tree T contains precisely two
internal leaves u and v, and one of the two internal leaves must have the degree A, say v. Let P be the path in T connecting
u and v, then the core vertices of T are the interior vertices of P.

If T contains precisely one core vertex w, then from n > 2A and d(w) = 2 we conclude d(u) = A — 1. Let
T’ = T — vw + vu, and notice that the contribution of the edges vw and uv taken together to o(T’) — o (T) is 0 — (A — 2)?,
the contribution of the edge uw is (A — 1)*> — (A — 3)?, and the contribution of A — 2 leaves of T attached to u is
(A — 1) — (A — 2)%. Hence, we have

o(T)—o(T)=—(A—2 +(A— 1 —(A—3 +(A-2)(A— 17— (4 -2)})
=A’+A-6>0

for A > 3, a contradiction.
So, let us assume T contains more than one core vertex. This implies that u and v are connected by a path P of the
length > 3, and all internal vertices of P are core vertices which are of degree 2. Let P’ = zwu be the subpath of the
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path connecting u and v. Consider the tree T = T — zw + zu, and notice that the contribution of the edges zw and zu
to o(T’) — o(T) is (d(u) — 2)*> — 0, the contribution of the edge wu is (d(u) — 1) — (d(u) — 2)?, and the contribution of
d(u) — 1 leaves of T attached to u is d(u)? — (d(u) — 1)%. We obtain

o(T') = o(T) = (d(u) — 2)° + (d(u) — 1)* — (d(u) — 2)* + (d(u) — 1)(d(u)* — (du) — 1))
= 3d(u)> — 5d(u)+2 >0
for d(u) > 2, a contradiction.

Subcase 1.b: There exists a core vertex v of T with d(v) > 3. We may assume that v is the core vertex of the degree > 3
closest to u. This implies that every internal vertex of the path P connecting u and v is of degree 2 in T. Due to d(v) > 3
and the assumption that v contains at most two non-leaf vertices, we conclude that there exists a leaf vy of T attached
tov. Let T =T — vyv + vqu and let us consider the difference o(T’) — o(T).

Since v is a core vertex of T, recall that d(v) < d(u). This implies that the contribution of the edges viv and v u to
o(T")—o(T) is strictly positive. This also implies that the sum of the contributions of edges of P to o(T') — o(T) is strictly
positive.

Let v, be the non-leaf neighbor of v not contained on P, and u; a leaf of T attached to u. If d(v;) > d(v) then the
contribution of vv to o(T’) — o(T) is positive, otherwise if d(v,) < d(v) then the contribution of v,v may be negative,
but it is > (d(v) — 2)> — (d(v) — 1)?. Hence, the sum o, of contributions of edges v,v and uu is

o1 > (d(v) — 2)° — (d(v) — 1)* + d(u)® — (d(u) — 1)
=2d(u) — 2d(v) +2 > 0,

since d(u) > d(v).
Let E, be the set of all leaves of T incident to v distinct from viv and E, the set of all leaves incident to u except u;u.
Since d(v) < d(u) and v,v is not a leaf, we conclude |E,| < |E,|. We conclude that

o(T") = o(T) > |E,| ((d(v) = 2)° — (d(v) — 1)*) = |El (d(u)* — (d(u) — 1)°)
> |Ey| (2d(u) — 2d(v) +2) > 0,

a contradiction.

Case 2: There exists a core vertex in T with at least three neighbors with degrees greater than 1. Let v be a core vertex of
T with at least three non-leaf neighbors closest to u. Let P be the subpath of T connecting u and v, and notice that the
choice of v implies that all the internal vertices of P have the degree 2 in T.

Subcase 2.a: All non-leaf neighbors of v are internal leaves of T. This implies that v is the only core vertex of T and uv is
an edge of T, i.e., u and v are neighbors.

Suppose first that there exists a leaf w attached to v in T. Let T" = T — wv + wu and let us consider the difference
o(T’) — o(T). Since d(v) < d(u), the sum of contributions of edges wv and wu to o(T’) — o(T) is strictly positive. For the
same reason, the contribution of the edge uv is also strictly positive. A non-leaf neighbor z of v is an internal leaf of T, so
d(z) = A. This implies that for every such z the contribution of the edge vz to o(T’) — o(T) is strictly positive. It remains
to consider leaves of T incident to v which are distinct from wv, denote the set of such edges by E,. Notice that edges of
E, are the only edges in T with negative contribution to o(T’) — o(T). Denote by E, the set of leaves incident to u. Since
d(v) < d(u) and v has more non-leaf neighbors than u, we conclude |E,| < |E,|. Hence, we obtain

o(T") = o(T) = |Ey| ((d(v) — 2)° — (d(v) — 1)) — |Ey| (d(u)* — (d(u) — 1)?)
> |Ey[(2d(u) — 2d(v) + 2) > 0,
a contradiction.
Suppose now that there are no leaves attached to v in T. Denote by z a leaf of T which is not attached to u. Let
T’ =T — uv + uz, and notice that d(v) < d(u) implies that the sum of contributions of edges uv and uz to o(T') — o(T)
is strictly positive. Hence, we have
o(T') = o(T) > (d(v) = (A = (d(v) = D} = (A = d)P) + (4 =2 = (A - 1)’
=(d(v)—2)(2A —-2d(v)—1) >0,

a contradiction.

Subcase 2.b: There exists a non-leaf neighbor of v which is a core vertex of T. Let P be the path connecting u and v in T. Let
uy (resp. vy) be the neighbor of u (resp. v) which belongs to P. If v; is the only neighbor of v which is a core vertex of T,
then v has a non-leaf neighbor v, which is an internal leaf of T. Lemma 5 implies d(v,) = A. Now, since d(u) < A = d(v,),
Proposition 1 implies d(u1) > d(v), a contradiction since d(u;) = 2 and d(v) > 2.

Hence, there exists a core vertex v, # v; which is a neighbor of v. We may assume that among neighbors of v distinct
from v, which are core vertices, v, has the smallest degree. Also, since v, is a core vertex, we have d(v;) < d(u). Let
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v3 # vp be the third non-leaf neighbor of v, and the choice of v, implies d(v;) < d(v3). Let T" = T — vpv 4 v,u, and notice
that the sum of the contributions of edges of the path P to o(T’) — o(T) is strictly positive due to d(v) < d(u).

Denote by u, and us3 a pair of leaves attached to u in T. Also, let o7 be the sum of contributions to ¢ (T’) — o(T) of the
edges vyv, vaU, V3V, UL, usu. It holds that

o1 = (d(v3) — (d(v) — 1))’ — (d(v3) — d(v))* + (d(v2) — (d(u) + 1))’ — (d(v2) — d(v)?)
+ 2(d(u)® — (d(u) — 1))
= (d(u) — d(v2))* + 3d(u) 4 d(v)(d(v) — 2) + 3(d(u) — d(v2)) + 2d(v3).
Since d(u) > d(v,), it follows that o1 > 0. Now, let E, (resp. E,) be the set of edges incident to v (resp. u) in T distinct
from v;v (resp. u;u), for 1 < i < 3. Obviously, |E,| = d(v) — 3 and |E,| = d(u) — 3, so d(v) < d(u) implies |E,| < |E,|. The
contribution of each edge e from E, to o(T') — o(T) is > (d(v) — 2)*> — (d(v) — 1)?, and notice that this contribution may

be negative. On the other hand, the contribution of each edge e of |E,| to o(T’) — o(T) is > d(u)? — (d(u) — 1)*> > 0. Since
o1 > 0 and the contribution of edges of P to o(T') — o(T) is also strictly positive, we conclude that

o(T") = o(T) > |E,| ((d(v) = 2)* — (d(v) = 1)*) + [Eu] (d(u)? — (d(u) — 1)*)
> |E,| ((d(v) = 2)? = (d(v) = 1)* + d(u)? — (d(u) — 1)*)
= |Ey| (2d(u) — 2d(v) + 2) > 0,

a contradiction.

To summarize, in each of the two possible cases we have proved that the assumption that there exists an internal leaf
u of T with d(u) < A leads to contradiction. We conclude that all internal leaves of T must be of the degree A, and we
are done. H

Let us next prove one additional property of maximal trees.
Proposition 7. Let T be a maximal tree with maximum degree A > 3 and n > A + 4. Then my, < 2.

Proof. Assume to the contrary that m,, > 3. Let e; = w;v;, for i € {1, 2, 3}, be three edges of T with d(u;) = d(v;) = 2. If
all three edges e; are pairwise vertex disjoint, denote by w; the other neighbor of v;, fori = 1, 2, 3. Let

T'=T-— U3V3 — V3w3 + Uzws — Uy — VW + Uy Wy
— V1w + VU2 + Vw1 + V3,

and notice that the contribution of edges v;w; and u;w; to the difference o(T’) — o(T) cancels out for i € {1, 2}, while the
contribution of edges u;v; equals zero. The contribution of edges viw and v,w; to the difference also cancels out, so we
have

o(T)=o(T)=(3-2°+(3—-17 >0,

a contradiction.

Assume next that two of the edges e; share an end-vertex, say v; = u,, and the third edge es is vertex disjoint with
e; and e;. Let T' = T — u3v3 — vsws + Usws + v3vq, and let us consider again the difference o(T’) — o(T). Notice that the
contribution of edges v3ws and usws to the difference cancels out, the contribution of usvs equals zero, the contribution
of edges uqv; and uyv, equals (3 — 2)? — 0, so we have

o(T)=o(T)=23-2%+B-1?%>0,

a contradiction.

Assume finally that two pairs of edges e; share an end-vertex, say v; = u; and v, = u3. Let T' = T — u3v3 — vz3ws +
usws + v3vq, and notice that the contribution of the edges vsws and usws to o(T') — o(T) cancels out, the contribution
of the edge u3vs is zero, the contribution of edges u;v; and u,v, is (3 — 2)> — 0, and the contribution of v3v; is (3 — 1)%.
Hence, summing all this we again obtain o(T’) — o(T) > 0, a contradiction. H

3. Case A =5

In this section we will characterize extremal trees with A = 5. In order to do so, we will heavily rely on the property
of maximal trees stated in Theorem 6. For Theorem 6 to apply, we will assume throughout the section that considered
trees have at least 24 = 10 vertices. We first wish to show that an extremal tree with A = 5 does not contain vertices
of degree 3. To arrive to this result, we first need the following two lemmas regarding the edges incident to vertices of
degree 3.

Lemma 8. Let T be a maximal tree on n > 10 vertices with A = 5. Then, m3 3 = 0.
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Proof. Assume to the contrary that T does contain an edge uv with d(u) = d(v) = 3. Denote by u; and u; (resp. v; and
v,) the two remaining neighbors of u (resp. v). Let T = T — uqu — uyu + uyv + upv. Notice that

o(T) — o(T) = (d(u) — 5 — (d(u) — 37 + (d(uz) — 5)* — (d(uz) — 3)?
+ (d(v1) = 5 — (d(v1) — 37 + (d(v2) — 5)* — (d(v;) — 3)?
+(5-1°-(3-3)
= 32 — 4d(u;) — 4d(uz) + 32 — 4d(v,) — 4d(v;) + 16
>32—-4.5-4.5432-4.5-4.5416=0

with equality if and only if each of the vertices uq, u;, vy and v, has the degree 5. If at least one of the vertices
uq, Uy, v1, v has a degree distinct from 5, we have a contradiction with T being maximal. So, let us assume each of
the vertices uq, Uy, v1, v, is of degree 5.

Let Ty,,, be the connected component of T — uqu — vyv which contains the edge uv. Since d(u,) =5 > 1, Ty,,, must
contain an internal leaf z of T, so Theorem 6 implies that d(z) = 5. Denote by z; and z, the two neighbors of z in T which
are leaves. Let T' = T — uju — vqv + U121 + v12. Notice that the contribution of the pair of edges u u and uz;, just as the
pair viv and vz, to the difference o(T’) — o(T) equals (9 — 4). The contribution of each of the edges u,u and v,v also
equals (9 — 4), and the contribution each of the edges z;z and z,z equals (9 — 16). Finally, the contribution of the edge
uv is zero, so we have

o(T')—o(T) = 49— 4)+2(9— 16) =6 > 0,
a contradiction with T being maximal. =

After we have eliminated edges with both end-vertices of degree 3, next we wish to do the same with edges such that
one end-vertex is of degree 1 and the other of degree 3.

Lemma 9. Let T be a maximal tree on n > 10 vertices with A = 5. Then, m; 3 = 0.

Proof. Assume to the contrary that T contains an edge uv with d(u) = 1 and d(v) = 3. Let v; and v, denote the other two
neighbors of v, where we may assume d(v{) < d(vp). If d(v{) = 1, then v would be an internal leaf of T with d(v) = 3,
which contradicts Theorem 6. Hence, we may assume d(v;) > 2. Lemma 8 implies 3 ¢ {d(v1), d(v,)}.

If d(vq) = 2, let x denote the neighbor of v; distinct from v. Let T" = T — xv; + xv, and notice that the contribution of
the edge uv to o(T') — o(T) is (9 — 4), the contribution of the edge viv is (9 — 1), so we have

o(T') —o(T) = (9 —4)+ (9 — 1)+ (d(x) — 4)° — (d(x) — 2)* + (d(v2) — 4)* — (d(v2) — 3)
=32 — 4d(x) — 2d(v;) > 2 > 0,
a contradiction with T being maximal.
If d(vq) > 4, let us consider internal leaves of T. If v; and v, are the only two internal leaves of T, then d(v;) = d(v;) = 5.

Let T" = T — vyv + vju, and notice that the sum of contributions of edges v;v and vqu to o(T’) — o(T) is (9 — 4), the
contribution of the edge uv is (0 — 4), and of v,v is (9 — 4). Hence, we obtain

o(T)—o(T)=29—4)+(0—4)=6>0

a contradiction. So, we may assume that there exists an internal leaf z in T distinct from v; and v,.

Let w be the only neighbor of z which is not a leaf. Let T" = T — uv — zw + wu + uz. Notice that each of the edges
viv and vyv contributes to o (T’) — o(T) with at least (4 — 1), and the edges uv and uz taken together contribute at least
(9 — 4). Hence, it holds that

o(T") = o(T) = ((d(w) — 2)° — (d(w) = 5)°) + (9 — 4) + 2(4 — 1)
6d(w)—10>2 >0,

a contradiction with T being maximal, so we are done. W

We are now in a position to prove that a maximal tree with A = 5 does not contain vertices of degree 3.
Lemma 10. Let T be a maximal tree on n > 10 vertices with A = 5. Then, n3 = 0.

Proof. Assume to the contrary that T does contain a vertex u with d(u) = 3. Denote by uy, u; and u3 the three neighbors
of u, and we may assume that d(u;) < d(u;) < d(usz). Lemmas 8 and 9 imply that the degrees of uy, u; and us take their
values from the set {2, 4, 5}.

Assume first that d(uq) = d(u;) = d(u3) = 2. Denote by x the neighbor of u; distinct from u, and let T" = T — xuy + xu.
Notice that the contribution of each of the edges u,u and usu to o(T’) — o(T) is (4 — 1), and the contribution of uju is
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(9 — 1). We obtain

o(T)—o(T)=2(4— 1)+ (9 — 1)+ (d(x) — 4)* — (d(x) — 2)?
=26 —4d(x) > 6 > 0,

a contradiction.

Assume next that d(u;) = d(u;) = 2 and d(u3) > 4. Denote by x and y the neighbor of u; and u,, respectively, distinct
from u. Let T = T — xu; — yu, + xu + yu and consider the difference o(T’) — o(T). Notice that the contribution of each
of the edges uqu and u,u to the difference is (16 — 1), and since d(us) € {4, 5} the contribution of the edge usu is at least
(0 — 4), so we have

o(T") = o(T) = ((d(x) — 5)° — (d(x) — 2)*) + ((d(y) — 5)* — (d(y) — 2)*)
+2(16 — 1)+ (0 — 4)
— 68 — 6d(y) — 6d(x) > 8 > 0,

a contradiction.

Assume further that d(u1) = 2 and d(u;) > 4, which implies d(us) > 4 also. If d(uy) =4, let T" = T — uqu + uquy and
consider the difference o(T’) — o(T). The edges u u and u u, taken together contribute (9 — 1) to the difference, the edge
uu contributes (9 — 1), and the edge usu contributes at least (4 — 1). Also, each of the three edges incident to u, distinct
from u,u contributes at least (0 — 1). We conclude that

o(T)—a(T)> 29— 1)+ (4—1)+3(0—1) = 16 > 0,

a contradiction. On the other hand, if d(u,) = 5, then d(u3) = 5 also. Let z be a leaf of T contained in the same component
of T — uju as u. Let T" = T — uqu + uqz, and notice that each of the edges u,u and uzu contributes to o(T’) — o(T) by
(9 — 4). The pair of edges u;u and u;z taken together contributes (0 — 1), and the edge incident to z in T contributes no
less than (9 — 16). We obtain

o(T)=o(T)>29—4)+(0—-1)+(9—-16)=2> 0,

a contradiction.

Assume finally that d(uq) > 4. Let z be a leaf of T contained in the same component of T—uju as u. Let T' = T—uju+u;z
and notice that each of the edges u;u, given that d(u;) € {4, 5} contributes to o (T")—o(T) either (4— 1) or (9—4). Similarly,
the edge incident to z in T contributes no less than (9 — 16). Assuming the smallest possible contribution of edges u;u,
which is the worst case, we still have

o(T)—o(T)>3(4—1)+(9-16)=2 >0,
a contradiction, so we are done. M

Next, we wish to establish that a maximal tree T with A does not contain a vertex of degree 4 either. Again, we will
arrive to this result through the following two lemmas regarding the edges incident to a vertex of degree 4.

Lemma 11. Let T be a maximal tree on n > 10 vertices with A = 5. Then, my 4 = 0.

Proof. Assume to the contrary that T contains an edge uv with d(u) = 2 and d(v) = 4. Denote by u; the only neighbor
of u distinct from v. Also, denote by vq, v, and v3 the three neighbors of v distinct from u. Let T" = T — uqu + uqv, and
notice that the contribution of the edge uv to o(T’) — o(T) is 16 — 4. Also, considering all the possible degrees of u, the
contribution of the edges u u and u;v taken together is no less than (0 —9). Similarly, considering all the possible degrees
of v;, the contribution of each edge v;v is no less than (0 — 1). We obtain

o(T)—o(T)>(16—-4)+(0—9)+3(0—-1)=0

with equality if and only if d(u;) = d(v1) = d(vy) = d(v3) = A. If at least one of these degrees is not equal to A, then we
have a contradiction with T being maximal. So, let us assume that all these degrees are indeed equal to A.

Let T, be the connected component of T — viv — v,v which contains v. Since d(v3) = A, there exists an internal leaf z
in the connected component of T — v{v — v,v which contains vs. By Theorem 6 we know d(z) = A. Let z; and z; be two
leaves attached to z in T. Now, let T" = T — vyv — v,V + v1Z; + v22; and notice that the contribution to o(T’) — o(T) of
the pair of edges vjv and v;z; taken together is (9 — 1), for i € {1, 2}, since d(v;) = 5. The contribution of the edge uv is
(0 — 4), the contribution of the edge vsv is (9 — 1), and the contribution of each of the edges z;z, for i € {1, 2}, is (9 — 16).
Therefore, it holds that

o(T)Y—o(T)=29—-1)+(0—-4)+(9—1)+2(9—-16)=6 > 0,
so we again have a contradiction. W
We next wish to show that a maximal tree cannot contain an edge with one end-vertex of degree 1 and the other 4.
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Lemma 12. Let T be a maximal tree on n > 14 vertices with A = 5. Then, m; 4 = 0.

Proof. Assume to the contrary that T contains an edge uv with d(u) = 1 and d(v) = 4. Denote by vy, v, and v3 the three
neighbors of v distinct from u, where we may assume d(v;) < d(v;) < d(v3). Notice that d(v,) = 1 would imply d(v;) = 1
also, so v would be an internal leaf of T with d(v) = 4 < A, a contradiction with Theorem 6. Hence, we may assume
d(vp) > 2. Lemmas 10 and 11 imply 4 < d(v;) < d(v3). The same two lemmas imply that d(v{) = 1 or d(v{) > 4.

Assume first that d(v{) = 1. If d(vy) = d(v3) = 4, let T = T — uv — v{v + uv, + vyv3, and notice that the contribution
of the pair uv and uv, taken together to o(T’) — o(T) is (16 — 9). The same holds for the pair v;v and viv3. Each of the
edges vjv, for i € {2, 3}, contributes to the difference by (9 — 0). Finally, each of the remaining six edges incident to v,
and v3 contributes no less than (0 — 1). We conclude that

o(T) — o(T) = 2(16 — 9) +2(9 — 0) + 6(0 — 1) = 26 > 0,

a contradiction.

If d(v;) = 4 and d(v3) = 5, then let T" = T — vqv + vv,. The contribution to o(T") — o(T) of the pair viv + viv, taken
together is (16 — 9), of uv is (4 — 9), of v,v is (4 — 0) and of vsv is (4 — 1). Also, the contribution of the remaining three
edges incident to v; is no less than (0 — 1), which yields

o(T)—o(T)>(16—-9)+(4—9)+(4-0)+(4—1)+3(0-1)=6 >0,

again a contradiction.

Finally, if d(v,) = d(v3) = 5, notice that n > 14 implies that T contains an internal leaf w distinct from v, and vs.
Denote by z the non-leaf neighbor of w. Lemma 10 implies d(z) # 3.

Let us first assume d(z) > 4. Let T = T — uv — wz + wu + uz, and notice that the contribution to o(T') — o(T) of the
pair uv and uw taken together is 0. Considering all the possible values of z, the contribution of the pair wz and uz is no
less than (4 — 1). The contribution of vqv is (4 — 9), and the contribution of each of v, and vs is (4 — 1). We obtain

o(T)—o(T)= (4= 1)+ (4 -9 +24-1)=4>0,

a contradiction. So, we may assume d(z) < 3.

Ifd(z) = 3,let T = T —uv—v v+uz+v;z, and notice that the pair uv and uz taken together contributes to o(T')—o (T)
by (16 — 9). The same holds for the pair vyv and vqz. Each of the edges v,v and vsv contributes (9 — 1). The edge zw
contributes (0 — 4), and the two remaining edges incident to z contribute no less than (0 — 4). Hence, we have

o(T) — o(T) > 2(16 — 9) +2(9 — 1) + (0 — 4) + 2(0 — 4) = 18 > 0,

a contradiction.

Ifdz)=2,letT" =T — uv — v1v — V¥ — V3V + VU3 + UZ + vZ + v12. Let x be the neighbor of z distinct from w, and
notice that the edge zx contributes to o(T) by no less than (1 — 9). As for the other edges, notice that all edges incident
to v in T contribute to o(T) by 14+ 149 + 9, also zw contributes to o(T) by 9. In T’, all edges incident to z except xz
contribute to o(T") by 16 + 16 + 16 + 0, and the edge v,v3 contributes to o(T’) by 0. We conclude

o(T)—o(T)>(1—9)+(16+ 16+ 16+ 0) — (1+ 149 +9) = 20 > 0,

a contradiction.

Assume now that d(v;) > 4. Denote by z an internal leaf of T distinct from vy, v, and vs, if such a vertex z exists. Let x
be the only neighbor of z which is not a leaf and by y a neighbor of z which is a leaf. Let T' = T —uv—xz—uv;+xu+uz—+uvy
and notice that

o(T)—o(T)>(9—0)+(0—0)+(4—0)+(9— 16)+2(4—0) = 14 > 0,

so we have a contradiction.

It remains to consider the case of d(vi) > 4 when vy, v, and vs3 are the only internal leaves of T. If d(v;) = 4, let
T’ = T — uv + uvy. Notice that the contribution of the edges uv and uv; considered together to o(T’') — o(T) is 16 — 9,
the contribution of all the remaining edges is non-negative, so o(T') — o(T) > 0.If d(v;) = 5, let T' = T — vyv + uv;. The
contribution to o(T’) — o(T) of the edges v{v and uv; taken together is 9 — 1, of the edge uv is 1 — 9, and for each of the
edges vv and vsv is 4 — 1. We conclude

o(M)=o(M)=(9-1)+(1-9)+24—-1)=6>0,
a contradiction. M
Using the above two lemmas we can now establish that a maximal tree T does not contain a vertex of degree 4 either.

Lemma 13. Let T be a maximal tree on n > 14 vertices with A = 5. Then, ng = 0.
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Proof. Assume to the contrary that T does contain a vertex u with d(u) = 4. Denote by u;, fori = 1, ..., 4, the four
neighbors of u. We may assume that d(uq) < d(uy) < d(us) < d(us). Lemmas 10-12 imply d(u;) > 4. Since all internal
leaves of T are of degree 5 and a vertex of degree 4 can only be neighbor to vertices of degree 4 or 5, we may assume
d(uy) = 5. Let z be an internal leaf of T contained in the same connected component of T — uju — uu as u. Theorem 6
implies that d(z) = 5. Denote by x and y two leaves attached to z. Let T' = T — uju — uyu + u1Xx + u,y and notice that

o(T)—o(T)>(4—-0)+(9—1)+2(4—-0)+2(9—16) =6 > 0,
so we obtain a contradiction with T being maximal. H

Lemmas 10 and 13 imply the following corollary.

Corollary 14. Let T be a maximal tree on n > 14 vertices with A = 5. Then T contains only vertices of degrees 1, 2 and A.

In order to fully characterize extremal trees with A = 5, we need the following lemmas regarding the number and
the position of vertices of the degree 2 in extremal trees.

Lemma 15. Let T be a maximal tree on n > 14 vertices with A = 5. Then, my, < 1. Moreover, if my 5 = 1, then my o = 0.

Proof. Assume to the contrary that m,, > 2. Suppose first that all edges with both end-vertices of degree two are vertex
disjoint. Denote by uv and ab a pair of edges with d(u) = d(v) = d(a) = d(b) = 2. Let uy, vy, a; and by be the neighbors of
u, v, a and b, respectively, which is not contained in {u, v, a, b}. Since all edges with both end-vertices of degree two are
vertex disjoint, we conclude that d(u;) = d(vq) = d(a;) = d(b;) = 5. Let z be an internal leaf in T, and z; a leaf attached
to z. Theorem 6 implies d(z) = 5. Denote by T’ the tree obtained from T by removing all edges incident to vertices u, v, a
and b, and then adding edges uqvq, a;bq, uzq, vz, az; and bz,. Notice that

o(T')—o(T) > 4(16 — 9) 4 (0 — 16) = 12 > 0,

and we have a contradiction.
Suppose next that not all such edges are vertex disjoint, i.e. that there exist two edges uv and vw in T with d(u) =
d(v) = d(w) = 2. Denote by u; and w; the neighbor of u and w, respectively, which is not contained in {u, v, w}.
Assume first that there exists a vertex z ¢ {u, v, w} in T of degree 2. Denote by z; and z, its two neighbors, and let
x be a leaf in T. Let T’ be the tree obtained from T by removing all edges incident to vertices u, v, w, z and then adding
edges uqw1, 2122, Xu, Xv, Xz and xw. Notice that

o(T)) = o(T) = (0 — 9) + (16 — 9) + (0 — 0) + (16 — 0) + 2(16 — 9) = 28 > 0,

a contradiction.

Assume next that {u, v, w} are all vertices of T of degree 2. Since n > 14, there exists a non-leaf vertex in T
not contained in {u, v, w, uy, wi}. Hence, Corollary 14 implies that T contains an edge xy with d(x) = d(y) = 5. Let
T'=T — uv — vw — Xy + uw + xv + yv and notice that

o(T)—o(T)>2(9—-0)>0,

a contradiction. Hence, we have established that T contains at most one edge with both end-vertices of degree 2.

Finally, let us assume that T contains an edge with both end-vertices of the degree 2, denote them by u and v. We wish
to establish that in such a case T does not contain an edge with both end-vertices of degree A. Assume to the contrary that
T does contain such an edge xy. Denote by u; the neighbor of u distinct from v, and let T’ = T —uju—uv—xy+uqv+xu-+uv.
Notice that edges u u and uyv contribute to o(T’) — o(T) by (9 — 9), the edges uv and ux by (9 — 0), and the edges xy and
xu by (9 — 0), so we have

o(T)—o(T)>(9—-9)+2(9—-0) >0,

a contradiction. M
Lemma 16. Let T be a maximal tree on n > 14 vertices with A = 5. Then, my 5 < 3.

Proof. Assume to the contrary that m, 4 > 4. Suppose first that every internal leaf of T is adjacent to a vertex of degree
2. Let u be an internal vertex of T, v its neighbor of degree 2 and w the other neighbor of v. Let xy be an edge of T with
d(x) = d(y) = A. For the tree T' = T — uv — vw — Xy + uw + xv + vy it obviously holds that (T’) = o(T). Hence, we
may consider only trees T in which at least one internal leaf is adjacent to a vertex of degree A.

Let u be an internal leaf of T and v its neighbor of degree A. Denote by u;, for i = 1, 2, 3, 4, a leaf attached to u. Assume
first that T contains precisely four edges with both end-vertices of the degree A. Denote by a; and b;, for i = 1, 2, 3, the
six vertices of T distinct from u such that d(a;) = d(b;) = A and a;b; is the edge of T. We define the following two sets of
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edges
E™ :{u,»u:i:l,...,4}U{a,-bi:i:1,2,3};
EY = {au, uib; : i = 1,2} U {asus, usug, ugbs}.

Let " = T — E~ + E* and notice that T’ must be a tree, since the removed edges u;u are incident to leaves, and the
removed edges a;b; are replaced by subpaths connecting a; and b; which contain vertices u;. Now, each of the edges u;u
contributes to o(T') — o(T) by —16, the fifth edge incident to u by 16, each of the edges a;b; by 0, each of the edges a;u;
and u;b; by 9, and the edge usu4 by 0. So, we obtain

o(T)—o(T)=4-(—-16)+16+6-9 =6 > 0,

a contradiction.
Assume next that T contains at least five edges with both end-vertices of the degree A. We assume that one of them

is incident to an internal leaf u, and let u; be a leaf attached to u fori = 1, ..., 4. Denote by g; and b;, fori =1, ..., 4,
the vertices of T with d(a;) = d(b;) = A such that a;b; is an edge of T. We again define sets

E-={uu:i=1,...,4 U{ab;:i=1,...,4}

EJr = {ajui, ll,'b,‘ = 1,.. .,4}.

Let T =T — E~ + E™ and notice that each of the edges u;u contributes to o(T') — o(T) by —16, the fifth edge incident
to u by 16, each of the edges a;b; by 0, and each of the edges a;u; and u;b; by 9. Hence,

o(T)—o(T)=4-(—16)+16+8-9=24> 0,
a contradiction. M
All the above lemmas yield that a maximal tree T with A =5 and n > 14 has the following properties:
T contains only vertices of degrees 1, 2 and A;
all internal leaves of T are of degree A;

ma A = 3 and my ) < 1;
if mp, = 1, then MaA = 0.

N
— — — —

Denote by 7, 4 the family of all trees on n > 8 vertices with maximum degree A = 5 which satisfy the properties
(P1)-(P4). In the next theorem we establish that all trees of 7, 4 are maximal.

Theorem 17. Let T be a tree with A =5 and n > 14. The tree T is maximal if and only if T belongs to Ty 4.

Proof. If T is maximal, then T has all the properties (P;)-(P4), so T belongs to 7, a. Conversely, if T belongs to 7, » we
wish to prove that T is maximal. It is sufficient to show that all trees from 7; o have the same value of o-irregularity. Let
T be a tree from 7, 4. Denote by n; the number of vertices of degree i in T. Property (P;) implies n; 4+ n, +ns = n. Due to
Handshaking lemma, we also have 5ns + 2n, + n; = 2(n — 1). Next, consider the tree T’ obtained from T by consecutive
suppressions of vertices of degree 2 until there are no such vertices left. Notice that mu A(T")—3 < ny(T) < mu A(T")+1,
which implies that in T we haven, =ns —4+jfor0<j<4=A-—1.

Taking all the equations together, we have obtained a system of three linear equations in terms of ny, n, and ns with
the solution

1 1 1
n = E(Bn —3j4+16), m= E(" +4—18), ns = g(" —j+2)

In order for ny, n; and ns to be integers, it must hold j = (n — 2) mod 5. Since 0 <j < 4 = A — 1, we conclude that the
value of j is determined by the value of n. This further implies that ny, n, and n3 are also determined by the value of n,
i.e. the values of ny, ny and n3 do not depend on a tree T. Further, for a tree T it holds that m; » = n; and

m _ 2n, if mpo, = 0;
2,4 2”2—1 ifmzqz =1.

Since my, = 1 if and only if j = 4, this implies that m; » and m; , are determined by the value of n. Notice that the
property (P,) implies m; , = 0, while ms o may be greater than zero, but the contribution of such edges to o(T) equals
zero. We conclude that o(T) = my (A — 1)% + my 4(A — 2)?, which implies that the value of o(T) is determined by n
and it does not dependonT. W

The above theorem yields the following corollary (see Fig. 2).

Corollary 18. Let T be a maximal tree with A =5 and n = Ak — 2 +j > 14, where 0 <j < A — 1. Then,
1Bn—3j+16)(A— 12+ 2(n+4— 18 (A -2  ifj#4
%(3n—3j+ 16)(A — 1)2+%(8j+2n—41)(A —2Y ifj=4.
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n=14 n=15 n =16 n =17
n=18 n=19 n =20
n =21 n =22 n =23
n =24 n =25 n =26
n =27 n =28 n =29
n =30 n =31 n =32
n =33 n =34

Fig. 2. Maximal trees T on n vertices with A =5, for 14 < n < 34. (Mind that the list is not complete.).
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