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 a b s t r a c t

The σ -irregularity, a variant of the well-established Albertson irregularity, is a topolog-
ical invariant defined for a graph G = (V , E) as σ (G) =

∑
uv∈E (d(u) − d(v))2, where

d(u) and d(v) denote the degrees of vertices u and v, respectively. Recent research
has successfully characterized chemical trees with the maximum σ -irregularity. In this
paper, we expand upon this research by establishing several structural properties of
maximal trees with prescribed maximum degree ∆. Application of these properties
enables us to characterize maximal trees with ∆ = 5. We establish that extremal trees
contain only vertices of degrees 1, 2 and ∆. Moreover, the number of edges with both
end-vertices having the degree 2 or ∆ is very small, so almost all edges have the (second)
maximum possible contribution to σ -irregularity. We believe this property or similar
should extend to maximal trees for any value of ∆, so this is an interesting direction
for further research.

© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G = (V , E) be a graph with the vertex set V = V (G) and the edge set E = E(G). Unless explicitly stated otherwise, 
all graphs in this paper are assumed to be simple and finite. The degree dG(v) of a vertex v ∈ V (G) is defined to be the 
number of neighbors of v in G. For a pair of vertices u, v ∈ V (G), by dG(u, v) we denote the distance of these two vertices, 
i.e. the length of a shortest path connecting them. If the graph G is clear from context, we omit the subscript G. A graph 
G is regular if all its vertices have a same degree, otherwise it is said to be irregular. The concept of irregularity has been 
widely researched within various scientific fields such as chemistry and network theory [6,8–10,12,17,18].

One of the well-known irregularity measures of a graph G is the Albertson irregularity [4] denoted by irr(G) and defined 
as follows

irr(G) =

∑
uv∈E(G)

|dG(u) − dG(v)|.

This index received considerable attention from the scientific community, we refer here to a selection of relevant 
studies [1,2,4,5,12,14].
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A downside of the Albertson irregularity is the inherent need to calculate absolute values, hence it is natural to propose 
a similar index, the so-called σ -irregularity, defined for a graph G by

σ (G) =

∑
uv∈E(G)

(dG(u) − dG(v))2.

Some fundamental properties of the σ -irregularity were given by Gutman et al. in [13], such as the following basic relation 

σ (G) = F (G) − 2M2(G), (1)

where F (G) denotes the forgotten index defined by

F (G) =

∑
u∈V (G)

d(u)3,

while M2(G) denotes the second Zagreb index defined by

M2(G) =

∑
uv∈E(G)

d(u)d(v).

In [3], a characterization of graphs with the maximum value of σ -irregularity is provided, and also some lower bounds 
on the σ -irregularity. In [3,13], the inverse problem for σ -irregularity is solved, i.e., the problem of establishing the 
existence of a graph with the σ -irregularity equal to a given non-negative integer. The research of the relation of σ -
irregularity with some other well-known irregularity measures is conducted by Réti in [16]. Also, in a recent paper [7] 
the characterization of graphs with a prescribed degree sequence having extremal σ -irregularity is given. The so called 
total σ -irregularity, which is a variant of σ -irregularity, has also recently been studied [11,15].

A graph G is said to be chemical if the maximum vertex degree in G is 4. A tree is a connected acyclic graph. Among the 
(chemical) trees explored in [3], the path graph is shown to have the smallest σ -irregularity. In [19], the characterization 
of chemical trees with maximal σ -irregularity was provided. Here, we extend this outcome by giving several properties 
of trees with prescribed maximum degree ∆ exhibiting maximal σ -irregularity. The application of these properties to the 
case ∆ = 5 yields a characterization of maximal trees.

Before delving into properties of maximal trees with respect to σ -irregularity, we introduce the necessary additional 
notation and preliminaries. In a tree T , a k-vertex is a vertex of degree k. Particularly, a leaf  is a vertex of degree 1. A 
vertex of a tree T  is an internal leaf  if it has precisely one neighbor with a degree greater than 1. Notice that an internal 
leaf of T  is a leaf in the tree T ′ obtained from T  by removing all leaves, hence the name. A vertex with degree at least 3 
will be called a big vertex. The number of vertices in T  of degree i is denoted by ni, where i ranges from 1 to ∆. Similarly, 
the number of edges in T  with end-vertices of degrees i and j, for 1 ≤ i ≤ j ≤ ∆, is denoted by mi,j. If T  is a tree with 
maximal σ -irregularity on a given number of vertices n, we refer to it as a maximal tree.

The present paper is organized as follows. In the next section we give several properties of maximal trees with 
prescribed maximum degree ∆, for any ∆ ≥ 3. In the third section, these properties are applied to the case ∆ = 5
for which the characterization of maximal trees is obtained.

2. Properties of maximal trees for general ∆

In this section we will establish several properties of maximal trees with the maximum degree ∆, which hold for any 
∆ ≥ 3. We start with the following proposition which will be a useful tool in proving further properties of maximal trees 
and it stems from a simple tree transformation.

Proposition 1.  Let T  be a maximal tree with the maximum degree ∆, and P = ux · · · yv a path in T . If d(u) > d(v), then 
d(x) ≤ d(y). Also, if d(x) > d(y), then d(u) ≤ d(v).

Proof.  To prove the first claim of the proposition, suppose that d(u) > d(v). If d(u, v) = 1, then x = v and y = u, so 
d(x) = d(v) < d(u) = d(y), and the claim holds. Next, if d(u, v) = 2, then x = y which implies d(x) = d(y), so the claim 
also holds. Hence, let us assume that d(u, v) ≥ 3. Assume to the contrary that d(x) > d(y). Let T ′ be the tree obtained 
from T  by removing edges ux and yv, and adding edges uy and xv instead. Notice that

σ (T ′) − σ (T ) = (d(u) − d(y))2 − (d(u) − d(x))2 + (d(v) − d(x))2 − (d(v) − d(y))2

= 2(d(u) − d(v))(d(x) − d(y)) > 0,

which contradicts to T  being maximal.
Now, let us prove the second claim of the proposition. Suppose that d(x) > d(y), which is only possible if x ̸= y. Assume 

to the contrary that d(u) > d(v). Then again for the tree T ′
= T − ux − yv + yu + xv we have

σ (T ′) − σ (T ) = 2(d(u) − d(v))(d(x) − d(y)) > 0,

a contradiction. ■
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Fig. 1. Trees T of maximal-degree ∆ on n = ∆ + 2 and n = ∆ + 3 vertices.

The next property we wish to establish is that all internal leaves of maximal trees have maximum degree ∆. The 
property holds provided that the number of vertices in a tree is sufficiently large, and it will be extensively used in the 
next section where we will establish maximal trees for ∆ = 5.

To arrive at this result, we need the following three lemmas.

Lemma 2.  Let T  be a maximal tree with maximum degree ∆ ≥ 3. If T  contains at least two big vertices, then m2,1 = 0.

Proof.  Assume to the contrary, that T  does contain an edge uv with d(u) = 2 and d(v) = 1. Let x be the big vertex closest 
to u, and let y be the neighbor of x which is not a leaf, such that the path P connecting y and v contains x, i.e., P = yx · · · uv. 
Notice that such a vertex y must exist, since T  contains at least two big vertices, and there is no big vertex on the path 
connecting x and v. Since d(v) < d(y), Proposition  1 implies d(u) ≥ d(x), a contradiction. ■

There is only one tree T  of maximum degree ∆ with n = ∆ + 1 vertices, obviously the star; and also one such T  on 
n = ∆ + 2 vertices, see Fig.  1(a). If n = ∆ + 3, we have three non-isomorphic trees, shown in Fig.  1(b)–(d), and the 
maximum of σ (·) is attained by the tree in (c).

Let us show that a maximal tree T  with the sufficiently many vertices does have at least two big vertices. This is 
established by the following lemma.

Lemma 3.  Let T  be a maximal tree on n vertices with maximum degree ∆ ≥ 3. If n ≥ ∆ + 4, then T  contains at least two 
big vertices.

Proof.  Assume to the contrary that T  does not contain two big vertices. Then T  has precisely one vertex u of degree ∆, 
and so it consists of ∆ pending paths attached to u.

First suppose that one of these pending paths has length at least 4, say
P = u · · · v3v2v1v0, d(v0) = 1, d(v1) = d(v2) = d(v3) = 2.

If we modify T  by deleting the edge v0v1 and adding v0v2, we obtain a new tree
T ′

= T − v0v1 + v0v2.

In T ′, the degree of v2 increases from 2 to 3, while v1 decreases from 2 to 1. Thus, σ (T ′) > σ (T ), contradicting the 
maximality of T . Hence no pending path may have length at least 4.

Next, suppose there are two distinct pending paths, each of length 2 or 3, say
v0v1 · · · u, uv2 · · · v3,

with d(v1) = d(v2) = 2 and d(v0) = d(v3) = 1. Applying Proposition  1 on the subpath v0v1 · · · uv2 we obtain that vertex 
v1 has to be big, a contradiction.

From the above, it follows that T  has at most one pending path of length 3 and all others are of length 1, and 
consequently

n ≤ ∆ + 3.

This contradicts the assumption n ≥ ∆ + 4, which establishes the claim. ■

An immediate consequence of Lemmas  2 and 3 is the following corollary.

Corollary 4.  Let T  be a maximal tree on n vertices with maximum degree ∆ ≥ 3. If n ≥ ∆ + 4, then m1,2 = 0.

The next important step towards the result we aim at, is the following lemma in which we establish that almost all 
internal vertices of a maximal tree have the degree ∆.
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Lemma 5.  Let T  be a maximal tree on n vertices with maximum degree ∆ ≥ 3. If n ≥ ∆ + 4, then at most one internal leaf 
of T  has the degree smaller than ∆.

Proof.  The assumption n ≥ ∆ + 4 implies that T  contains at least two distinct internal leaves. Assume to the contrary, 
that at least two internal leaves have the degree less than ∆. Let u and v be two such internal leaves at the maximum 
possible distance, and we may assume d(u) ≥ d(v). If u and v are neighbors, then u and v are the only non-leaf vertices of 
T . Since the maximum degree of T  is ∆, at least one of u and v must have the degree ∆, say u. So, v is the only internal 
leaf of T  which may have the degree smaller than ∆, which proves the claim in this case.

Assume next that u and v are not neighbors, i.e., d(u, v) ≥ 2. Denote the neighbors of u by ui, for i = 1, . . . , d(u), so 
that ui is a leaf for i ≥ 2. Similarly, let the neighbors of v be denoted by vi, for i = 1, . . . , d(v), so that vi is a leaf for 
i ≥ 2. Since n ≥ ∆ + 4, Lemma  3 implies that T  contains at least two big vertices. Lemma  2 further implies that every 
leaf of T  is a neighbor of a vertex of degree at least three. This means that d(u) ≥ 3 and d(v) ≥ 3. Recall that we assumed 
d(u) ≥ d(v). If d(u) > d(v), then Proposition  1 implies d(u1) ≤ d(v1). If d(u) = d(v) and d(u1) > d(v1), then we swap labels 
of u and v, and also ui and vi for every i. Either way, we obtain d(u) ≥ d(v) and d(u1) ≤ d(v1). Let T ′

= T − vv2 + uv2, 
and notice that σ (T ′) − σ (T ) = σ1 + σ2 + σ3 where

σ1 = (d(v) − 2)((d(v) − 1 − 1)2 − (d(v) − 1)2)

+ (d(u) − 1)((d(u) + 1 − 1)2 − (d(u) − 1)2),

σ2 = (d(u) + 1 − 1)2 − (d(v) − 1)2,

σ3 = (d(v) − 1 − d(v1))2 − (d(v) − d(v1))2

+ (d(u) + 1 − d(u1))2 − (d(u) − d(u1))2.

Notice that σ1 = (d(u) − d(v) + 1) (2d(u) + 2d(v) − 5), so d(u) ≥ d(v) ≥ 3 implies σ1 > 0. Notice further that due to 
d(u) ≥ d(v) it holds that σ2 > 0. Finally, it holds that σ3 = 2d(u) − 2d(v) + 2d(v1) − 2d(u1) + 2, where d(u) ≥ d(v) and 
d(v1) ≥ d(u1) implies σ3 > 0. This amounts to σ (T ′) − σ (T ) > 0, a contradiction with T  being maximal. ■

A tree T  with only one internal leaf has n = ∆ + 1 vertices, so a tree T  on n ≥ ∆ + 4 vertices must have at least two 
internal leaves. On the other hand, a tree T  on n ≤ 2∆ − 1 vertices cannot have two vertices of degree ∆. Hence, the 
result of Lemma  5 is the best possible for maximal trees on n vertices, where ∆+4 ≤ n ≤ 2∆−1. In the next theorem we 
show that the presence of this one internal leaf with the degree less than ∆ is only due to the small number of vertices, 
i.e. that for n ≥ 2∆ all internal leaves in a maximal tree are of degree ∆.

Theorem 6.  Let T  be a maximal tree with maximum degree ∆. If n ≥ 7, for ∆ = 3 and n ≥ 2∆, for ∆ ≥ 4, then all internal 
leaves of T  are of degree ∆.

Proof.  Notice that n ≥ ∆ + 4 for each ∆ ≥ 3.
Assume to the contrary that there exists an internal leaf u of T  with d(u) < ∆. Lemma  5 implies that all other internal 

leaves of T  are of degree ∆. A vertex of T  which is neither a leaf nor an internal leaf will be called a core vertex of T . 
Notice that n ≥ 2∆ and d(u) < ∆ imply that T  contains at least one core vertex.

Let us show that the degree of each core vertex of T  is at most d(u). For that purpose, let v be a core vertex of T , and 
let w be a neighbor of v such that d(w, u) > d(v, u) and w is not a leaf. Such a vertex w must exist in T , since v is not 
an internal leaf. If d(v) > d(u), due to Proposition  1, we would have d(w) ≤ 1, a contradiction. Hence, it must hold that 
d(v) ≤ d(u).

We now distinguish the following two cases.
Case 1: All core vertices in T  have precisely two neighbors with degrees greater than 1. Here, we distinguish two subcases 
regarding the degrees of core vertices in T .
Subcase 1.a: All core vertices have the degree 2. Since all core vertices are of degree 2, the tree T  contains precisely two 
internal leaves u and v, and one of the two internal leaves must have the degree ∆, say v. Let P be the path in T  connecting 
u and v, then the core vertices of T  are the interior vertices of P .

If T  contains precisely one core vertex w, then from n ≥ 2∆ and d(w) = 2 we conclude d(u) = ∆ − 1. Let 
T ′

= T −vw + vu, and notice that the contribution of the edges vw and uv taken together to σ (T ′)−σ (T ) is 0− (∆−2)2, 
the contribution of the edge uw is (∆ − 1)2 − (∆ − 3)2, and the contribution of ∆ − 2 leaves of T  attached to u is 
(∆ − 1)2 − (∆ − 2)2. Hence, we have

σ (T ′) − σ (T ) = −(∆ − 2)2 + (∆ − 1)2 − (∆ − 3)2 + (∆ − 2)((∆ − 1)2 − (∆ − 2)2)

= ∆2
+ ∆ − 6 > 0

for ∆ ≥ 3, a contradiction.
So, let us assume T  contains more than one core vertex. This implies that u and v are connected by a path P of the 

length ≥ 3, and all internal vertices of P are core vertices which are of degree 2. Let P ′
= zwu be the subpath of the 
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path connecting u and v. Consider the tree T ′
= T − zw + zu, and notice that the contribution of the edges zw and zu

to σ (T ′) − σ (T ) is (d(u) − 2)2 − 0, the contribution of the edge wu is (d(u) − 1)2 − (d(u) − 2)2, and the contribution of 
d(u) − 1 leaves of T  attached to u is d(u)2 − (d(u) − 1)2. We obtain

σ (T ′) − σ (T ) = (d(u) − 2)2 + (d(u) − 1)2 − (d(u) − 2)2 + (d(u) − 1)(d(u)2 − (d(u) − 1)2)

= 3d(u)2 − 5d(u) + 2 > 0

for d(u) ≥ 2, a contradiction.
Subcase 1.b: There exists a core vertex v of  T  with d(v) ≥ 3. We may assume that v is the core vertex of the degree ≥ 3
closest to u. This implies that every internal vertex of the path P connecting u and v is of degree 2 in T . Due to d(v) ≥ 3
and the assumption that v contains at most two non-leaf vertices, we conclude that there exists a leaf v1 of T  attached 
to v. Let T ′

= T − v1v + v1u and let us consider the difference σ (T ′) − σ (T ).
Since v is a core vertex of T , recall that d(v) ≤ d(u). This implies that the contribution of the edges v1v and v1u to 

σ (T ′)−σ (T ) is strictly positive. This also implies that the sum of the contributions of edges of P to σ (T ′)−σ (T ) is strictly 
positive.

Let v2 be the non-leaf neighbor of v not contained on P , and u1 a leaf of T  attached to u. If d(v2) ≥ d(v) then the 
contribution of v2v to σ (T ′) − σ (T ) is positive, otherwise if d(v2) < d(v) then the contribution of v2v may be negative, 
but it is ≥ (d(v) − 2)2 − (d(v) − 1)2. Hence, the sum σ1 of contributions of edges v2v and u1u is

σ1 ≥ (d(v) − 2)2 − (d(v) − 1)2 + d(u)2 − (d(u) − 1)2

= 2d(u) − 2d(v) + 2 > 0,

since d(u) ≥ d(v).
Let Ev be the set of all leaves of T  incident to v distinct from v1v and Eu the set of all leaves incident to u except u1u. 

Since d(v) ≤ d(u) and v2v is not a leaf, we conclude |Ev| < |Eu|. We conclude that
σ (T ′) − σ (T ) > |Ev| ((d(v) − 2)2 − (d(v) − 1)2) − |Eu| (d(u)2 − (d(u) − 1)2)

> |Ev| (2d(u) − 2d(v) + 2) > 0,

a contradiction.
Case 2: There exists a core vertex in T  with at least three neighbors with degrees greater than 1. Let v be a core vertex of 
T  with at least three non-leaf neighbors closest to u. Let P be the subpath of T  connecting u and v, and notice that the 
choice of v implies that all the internal vertices of P have the degree 2 in T .
Subcase 2.a: All non-leaf neighbors of  v are internal leaves of  T . This implies that v is the only core vertex of T  and uv is 
an edge of T , i.e., u and v are neighbors.

Suppose first that there exists a leaf w attached to v in T . Let T ′
= T − wv + wu and let us consider the difference 

σ (T ′) − σ (T ). Since d(v) ≤ d(u), the sum of contributions of edges wv and wu to σ (T ′) − σ (T ) is strictly positive. For the 
same reason, the contribution of the edge uv is also strictly positive. A non-leaf neighbor z of v is an internal leaf of T , so 
d(z) = ∆. This implies that for every such z the contribution of the edge vz to σ (T ′)− σ (T ) is strictly positive. It remains 
to consider leaves of T  incident to v which are distinct from wv, denote the set of such edges by Ev . Notice that edges of 
Ev are the only edges in T  with negative contribution to σ (T ′) − σ (T ). Denote by Eu the set of leaves incident to u. Since 
d(v) ≤ d(u) and v has more non-leaf neighbors than u, we conclude |Ev| < |Eu|. Hence, we obtain

σ (T ′) − σ (T ) ≥ |Ev| ((d(v) − 2)2 − (d(v) − 1)2) − |Eu| (d(u)2 − (d(u) − 1)2)
> |Ev| (2d(u) − 2d(v) + 2) > 0,

a contradiction.
Suppose now that there are no leaves attached to v in T . Denote by z a leaf of T  which is not attached to u. Let 

T ′
= T − uv + uz, and notice that d(v) ≤ d(u) implies that the sum of contributions of edges uv and uz to σ (T ′) − σ (T )

is strictly positive. Hence, we have
σ (T ′) − σ (T ) > (d(v) − 1)((∆ − (d(v) − 1))2 − (∆ − d(v))2) + (∆ − 2)2 − (∆ − 1)2

= (d(v) − 2) (2∆ − 2d(v) − 1) > 0,

a contradiction.
Subcase 2.b: There exists a non-leaf neighbor of  v which is a core vertex of  T . Let P be the path connecting u and v in T . Let 
u1 (resp. v1) be the neighbor of u (resp. v) which belongs to P . If v1 is the only neighbor of v which is a core vertex of T , 
then v has a non-leaf neighbor v2 which is an internal leaf of T . Lemma  5 implies d(v2) = ∆. Now, since d(u) < ∆ = d(v2), 
Proposition  1 implies d(u1) ≥ d(v), a contradiction since d(u1) = 2 and d(v) > 2.

Hence, there exists a core vertex v2 ̸= v1 which is a neighbor of v. We may assume that among neighbors of v distinct 
from v  which are core vertices, v  has the smallest degree. Also, since v  is a core vertex, we have d(v ) ≤ d(u). Let 
1 2 2 2
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v3 ̸= v1 be the third non-leaf neighbor of v, and the choice of v2 implies d(v2) ≤ d(v3). Let T ′
= T − v2v + v2u, and notice 

that the sum of the contributions of edges of the path P to σ (T ′) − σ (T ) is strictly positive due to d(v) ≤ d(u).
Denote by u2 and u3 a pair of leaves attached to u in T . Also, let σ1 be the sum of contributions to σ (T ′)− σ (T ) of the 

edges v2v, v2u, v3v, u2u, u3u. It holds that
σ1 = (d(v3) − (d(v) − 1))2 − (d(v3) − d(v))2 + (d(v2) − (d(u) + 1))2 − (d(v2) − d(v)2)

+ 2(d(u)2 − (d(u) − 1)2)

= (d(u) − d(v2))2 + 3d(u) + d(v)(d(v) − 2) + 3(d(u) − d(v2)) + 2d(v3).

Since d(u) ≥ d(v2), it follows that σ1 > 0. Now, let Ev (resp. Eu) be the set of edges incident to v (resp. u) in T  distinct 
from viv (resp. uiu), for 1 ≤ i ≤ 3. Obviously, |Ev| = d(v) − 3 and |Eu| = d(u) − 3, so d(v) ≤ d(u) implies |Ev| ≤ |Eu|. The 
contribution of each edge e from Ev to σ (T ′) − σ (T ) is ≥ (d(v) − 2)2 − (d(v) − 1)2, and notice that this contribution may 
be negative. On the other hand, the contribution of each edge e of |Eu| to σ (T ′)− σ (T ) is ≥ d(u)2 − (d(u)− 1)2 > 0. Since 
σ1 > 0 and the contribution of edges of P to σ (T ′) − σ (T ) is also strictly positive, we conclude that

σ (T ′) − σ (T ) > |Ev| ((d(v) − 2)2 − (d(v) − 1)2) + |Eu| (d(u)2 − (d(u) − 1)2)

≥ |Ev| ((d(v) − 2)2 − (d(v) − 1)2 + d(u)2 − (d(u) − 1)2)
= |Ev| (2d(u) − 2d(v) + 2) > 0,

a contradiction.
To summarize, in each of the two possible cases we have proved that the assumption that there exists an internal leaf 

u of T  with d(u) < ∆ leads to contradiction. We conclude that all internal leaves of T  must be of the degree ∆, and we 
are done. ■

Let us next prove one additional property of maximal trees.

Proposition 7.  Let T  be a maximal tree with maximum degree ∆ ≥ 3 and n ≥ ∆ + 4. Then m2,2 ≤ 2.

Proof.  Assume to the contrary that m2,2 ≥ 3. Let ei = uivi, for i ∈ {1, 2, 3}, be three edges of T  with d(ui) = d(vi) = 2. If 
all three edges ei are pairwise vertex disjoint, denote by wi the other neighbor of vi, for i = 1, 2, 3. Let

T ′
= T − u3v3 − v3w3 + u3w3 − u2v2 − v2w2 + u2w2

− v1w1 + v1v2 + v2w1 + v3v1,

and notice that the contribution of edges viwi and uiwi to the difference σ (T ′)− σ (T ) cancels out for i ∈ {1, 2}, while the 
contribution of edges uivi equals zero. The contribution of edges v1w1 and v2w1 to the difference also cancels out, so we 
have

σ (T ′) − σ (T ) = (3 − 2)2 + (3 − 1)2 > 0,

a contradiction.
Assume next that two of the edges ei share an end-vertex, say v1 = u2, and the third edge e3 is vertex disjoint with 

e1 and e2. Let T ′
= T − u3v3 − v3w3 + u3w3 + v3v1, and let us consider again the difference σ (T ′) − σ (T ). Notice that the 

contribution of edges v3w3 and u3w3 to the difference cancels out, the contribution of u3v3 equals zero, the contribution 
of edges u1v1 and u2v2 equals (3 − 2)2 − 0, so we have

σ (T ′) − σ (T ) = 2(3 − 2)2 + (3 − 1)2 > 0,

a contradiction.
Assume finally that two pairs of edges ei share an end-vertex, say v1 = u2 and v2 = u3. Let T ′

= T − u3v3 − v3w3 +

u3w3 + v3v1, and notice that the contribution of the edges v3w3 and u3w3 to σ (T ′) − σ (T ) cancels out, the contribution 
of the edge u3v3 is zero, the contribution of edges u1v1 and u2v2 is (3 − 2)2 − 0, and the contribution of v3v1 is (3 − 1)2. 
Hence, summing all this we again obtain σ (T ′) − σ (T ) > 0, a contradiction. ■

3. Case ∆ = 5

In this section we will characterize extremal trees with ∆ = 5. In order to do so, we will heavily rely on the property 
of maximal trees stated in Theorem  6. For Theorem  6 to apply, we will assume throughout the section that considered 
trees have at least 2∆ = 10 vertices. We first wish to show that an extremal tree with ∆ = 5 does not contain vertices 
of degree 3. To arrive to this result, we first need the following two lemmas regarding the edges incident to vertices of 
degree 3.

Lemma 8.  Let T  be a maximal tree on n ≥ 10 vertices with ∆ = 5. Then, m = 0.
3,3
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Proof.  Assume to the contrary that T  does contain an edge uv with d(u) = d(v) = 3. Denote by u1 and u2 (resp. v1 and 
v2) the two remaining neighbors of u (resp. v). Let T ′

= T − u1u − u2u + u1v + u2v. Notice that
σ (T ′) − σ (T ) ≥ (d(u1) − 5)2 − (d(u1) − 3)2 + (d(u2) − 5)2 − (d(u2) − 3)2

+ (d(v1) − 5)2 − (d(v1) − 3)2 + (d(v2) − 5)2 − (d(v2) − 3)2

+ (5 − 1)2 − (3 − 3)2

= 32 − 4d(u1) − 4d(u2) + 32 − 4d(v1) − 4d(v2) + 16
≥ 32 − 4 · 5 − 4 · 5 + 32 − 4 · 5 − 4 · 5 + 16 = 0

with equality if and only if each of the vertices u1, u2, v1  and v2 has the degree 5. If at least one of the vertices 
u1, u2, v1, v2 has a degree distinct from 5, we have a contradiction with T  being maximal. So, let us assume each of 
the vertices u1, u2, v1, v2 is of degree 5.

Let Tu2v2  be the connected component of T − u1u − v1v which contains the edge uv. Since d(u2) = 5 > 1, Tu2v2  must 
contain an internal leaf z of T , so Theorem  6 implies that d(z) = 5. Denote by z1 and z2 the two neighbors of z in T  which 
are leaves. Let T ′

= T − u1u− v1v + u1z1 + v1z2. Notice that the contribution of the pair of edges u1u and u1z1, just as the 
pair v1v and v1z2, to the difference σ (T ′) − σ (T ) equals (9 − 4). The contribution of each of the edges u2u and v2v also 
equals (9 − 4), and the contribution each of the edges z1z and z2z equals (9 − 16). Finally, the contribution of the edge 
uv is zero, so we have

σ (T ′) − σ (T ) ≥ 4(9 − 4) + 2(9 − 16) = 6 > 0,

a contradiction with T  being maximal. ■

After we have eliminated edges with both end-vertices of degree 3, next we wish to do the same with edges such that 
one end-vertex is of degree 1 and the other of degree 3.

Lemma 9.  Let T  be a maximal tree on n ≥ 10 vertices with ∆ = 5. Then, m1,3 = 0.

Proof.  Assume to the contrary that T  contains an edge uv with d(u) = 1 and d(v) = 3. Let v1 and v2 denote the other two 
neighbors of v, where we may assume d(v1) ≤ d(v2). If d(v1) = 1, then v would be an internal leaf of T  with d(v) = 3, 
which contradicts Theorem  6. Hence, we may assume d(v1) ≥ 2. Lemma  8 implies 3 ̸∈ {d(v1), d(v2)}.

If d(v1) = 2, let x denote the neighbor of v1 distinct from v. Let T ′
= T − xv1 + xv, and notice that the contribution of 

the edge uv to σ (T ′) − σ (T ) is (9 − 4), the contribution of the edge v1v is (9 − 1), so we have
σ (T ′) − σ (T ) = (9 − 4) + (9 − 1) + (d(x) − 4)2 − (d(x) − 2)2 + (d(v2) − 4)2 − (d(v2) − 3)2

= 32 − 4d(x) − 2d(v2) ≥ 2 > 0,

a contradiction with T  being maximal.
If d(v1) ≥ 4, let us consider internal leaves of T . If v1 and v2 are the only two internal leaves of T , then d(v1) = d(v2) = 5. 

Let T ′
= T − v1v + v1u, and notice that the sum of contributions of edges v1v and v1u to σ (T ′) − σ (T ) is (9 − 4), the 

contribution of the edge uv is (0 − 4), and of v2v is (9 − 4). Hence, we obtain
σ (T ′) − σ (T ) = 2(9 − 4) + (0 − 4) = 6 > 0

a contradiction. So, we may assume that there exists an internal leaf z in T  distinct from v1 and v2.
Let w be the only neighbor of z which is not a leaf. Let T ′

= T − uv − zw + wu + uz. Notice that each of the edges 
v1v and v2v contributes to σ (T ′) − σ (T ) with at least (4 − 1), and the edges uv and uz taken together contribute at least 
(9 − 4). Hence, it holds that

σ (T ′) − σ (T ) ≥ ((d(w) − 2)2 − (d(w) − 5)2) + (9 − 4) + 2(4 − 1)
= 6d(w) − 10 ≥ 2 > 0,

a contradiction with T  being maximal, so we are done. ■

We are now in a position to prove that a maximal tree with ∆ = 5 does not contain vertices of degree 3.

Lemma 10.  Let T  be a maximal tree on n ≥ 10 vertices with ∆ = 5. Then, n3 = 0.

Proof.  Assume to the contrary that T  does contain a vertex u with d(u) = 3. Denote by u1, u2 and u3 the three neighbors 
of u, and we may assume that d(u1) ≤ d(u2) ≤ d(u3). Lemmas  8 and 9 imply that the degrees of u1, u2 and u3 take their 
values from the set {2, 4, 5}.

Assume first that d(u1) = d(u2) = d(u3) = 2. Denote by x the neighbor of u1 distinct from u, and let T ′
= T − xu1 + xu. 

Notice that the contribution of each of the edges u u and u u to σ (T ′) − σ (T ) is (4 − 1), and the contribution of u u is 
2 3 1
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(9 − 1). We obtain
σ (T ′) − σ (T ) = 2(4 − 1) + (9 − 1) + (d(x) − 4)2 − (d(x) − 2)2

= 26 − 4d(x) ≥ 6 > 0,

a contradiction.
Assume next that d(u1) = d(u2) = 2 and d(u3) ≥ 4. Denote by x and y the neighbor of u1 and u2, respectively, distinct 

from u. Let T ′
= T − xu1 − yu2 + xu + yu and consider the difference σ (T ′) − σ (T ). Notice that the contribution of each 

of the edges u1u and u2u to the difference is (16− 1), and since d(u3) ∈ {4, 5} the contribution of the edge u3u is at least 
(0 − 4), so we have

σ (T ′) − σ (T ) ≥ ((d(x) − 5)2 − (d(x) − 2)2) + ((d(y) − 5)2 − (d(y) − 2)2)
+ 2(16 − 1) + (0 − 4)

= 68 − 6d(y) − 6d(x) ≥ 8 > 0,

a contradiction.
Assume further that d(u1) = 2 and d(u2) ≥ 4, which implies d(u3) ≥ 4 also. If d(u2) = 4, let T ′

= T − u1u + u1u2 and 
consider the difference σ (T ′)−σ (T ). The edges u1u and u1u2 taken together contribute (9−1) to the difference, the edge 
u2u contributes (9− 1), and the edge u3u contributes at least (4− 1). Also, each of the three edges incident to u2 distinct 
from u2u contributes at least (0 − 1). We conclude that

σ (T ′) − σ (T ) ≥ 2(9 − 1) + (4 − 1) + 3(0 − 1) = 16 > 0,

a contradiction. On the other hand, if d(u2) = 5, then d(u3) = 5 also. Let z be a leaf of T  contained in the same component 
of T − u1u as u. Let T ′

= T − u1u + u1z, and notice that each of the edges u2u and u3u contributes to σ (T ′) − σ (T ) by 
(9 − 4). The pair of edges u1u and u1z taken together contributes (0 − 1), and the edge incident to z in T  contributes no 
less than (9 − 16). We obtain

σ (T ′) − σ (T ) ≥ 2(9 − 4) + (0 − 1) + (9 − 16) = 2 > 0,

a contradiction.
Assume finally that d(u1) ≥ 4. Let z be a leaf of T  contained in the same component of T−u1u as u. Let T ′

= T−u1u+u1z
and notice that each of the edges uiu, given that d(ui) ∈ {4, 5} contributes to σ (T ′)−σ (T ) either (4−1) or (9−4). Similarly, 
the edge incident to z in T  contributes no less than (9 − 16). Assuming the smallest possible contribution of edges uiu, 
which is the worst case, we still have

σ (T ′) − σ (T ) ≥ 3(4 − 1) + (9 − 16) = 2 > 0,

a contradiction, so we are done. ■

Next, we wish to establish that a maximal tree T  with ∆ does not contain a vertex of degree 4 either. Again, we will 
arrive to this result through the following two lemmas regarding the edges incident to a vertex of degree 4.

Lemma 11.  Let T  be a maximal tree on n ≥ 10 vertices with ∆ = 5. Then, m2,4 = 0.

Proof.  Assume to the contrary that T  contains an edge uv with d(u) = 2 and d(v) = 4. Denote by u1 the only neighbor 
of u distinct from v. Also, denote by v1, v2 and v3 the three neighbors of v distinct from u. Let T ′

= T − u1u + u1v, and 
notice that the contribution of the edge uv to σ (T ′) − σ (T ) is 16 − 4. Also, considering all the possible degrees of u1, the 
contribution of the edges u1u and u1v taken together is no less than (0−9). Similarly, considering all the possible degrees 
of vi, the contribution of each edge viv is no less than (0 − 1). We obtain

σ (T ′) − σ (T ) ≥ (16 − 4) + (0 − 9) + 3(0 − 1) = 0

with equality if and only if d(u1) = d(v1) = d(v2) = d(v3) = ∆. If at least one of these degrees is not equal to ∆, then we 
have a contradiction with T  being maximal. So, let us assume that all these degrees are indeed equal to ∆.

Let Tv be the connected component of T − v1v − v2v which contains v. Since d(v3) = ∆, there exists an internal leaf z
in the connected component of T − v1v − v2v which contains v3. By Theorem  6 we know d(z) = ∆. Let z1 and z2 be two 
leaves attached to z in T . Now, let T ′

= T − v1v − v2v + v1z1 + v2z2 and notice that the contribution to σ (T ′) − σ (T ) of 
the pair of edges viv and vizi taken together is (9 − 1), for i ∈ {1, 2}, since d(vi) = 5. The contribution of the edge uv is 
(0− 4), the contribution of the edge v3v is (9− 1), and the contribution of each of the edges ziz, for i ∈ {1, 2}, is (9− 16). 
Therefore, it holds that

σ (T ′) − σ (T ) = 2(9 − 1) + (0 − 4) + (9 − 1) + 2(9 − 16) = 6 > 0,

so we again have a contradiction. ■

We next wish to show that a maximal tree cannot contain an edge with one end-vertex of degree 1 and the other 4.
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Lemma 12.  Let T  be a maximal tree on n ≥ 14 vertices with ∆ = 5. Then, m1,4 = 0.

Proof.  Assume to the contrary that T  contains an edge uv with d(u) = 1 and d(v) = 4. Denote by v1, v2 and v3 the three 
neighbors of v distinct from u, where we may assume d(v1) ≤ d(v2) ≤ d(v3). Notice that d(v2) = 1 would imply d(v1) = 1
also, so v would be an internal leaf of T  with d(v) = 4 < ∆, a contradiction with Theorem  6. Hence, we may assume 
d(v2) ≥ 2. Lemmas  10 and 11 imply 4 ≤ d(v2) ≤ d(v3). The same two lemmas imply that d(v1) = 1 or d(v1) ≥ 4.

Assume first that d(v1) = 1. If d(v2) = d(v3) = 4, let T ′
= T − uv − v1v + uv2 + v1v3, and notice that the contribution 

of the pair uv and uv2 taken together to σ (T ′) − σ (T ) is (16 − 9). The same holds for the pair v1v and v1v3. Each of the 
edges viv, for i ∈ {2, 3}, contributes to the difference by (9 − 0). Finally, each of the remaining six edges incident to v2
and v3 contributes no less than (0 − 1). We conclude that

σ (T ′) − σ (T ) ≥ 2(16 − 9) + 2(9 − 0) + 6(0 − 1) = 26 > 0,

a contradiction.
If d(v2) = 4 and d(v3) = 5, then let T ′

= T − v1v + v1v2. The contribution to σ (T ′)− σ (T ) of the pair v1v + v1v2 taken 
together is (16 − 9), of uv is (4 − 9), of v2v is (4 − 0) and of v3v is (4 − 1). Also, the contribution of the remaining three 
edges incident to v2 is no less than (0 − 1), which yields

σ (T ′) − σ (T ) ≥ (16 − 9) + (4 − 9) + (4 − 0) + (4 − 1) + 3(0 − 1) = 6 > 0,

again a contradiction.
Finally, if d(v2) = d(v3) = 5, notice that n ≥ 14 implies that T  contains an internal leaf w distinct from v2 and v3. 

Denote by z the non-leaf neighbor of w. Lemma  10 implies d(z) ̸= 3.
Let us first assume d(z) ≥ 4. Let T ′

= T − uv − wz + wu + uz, and notice that the contribution to σ (T ′) − σ (T ) of the 
pair uv and uw taken together is 0. Considering all the possible values of z, the contribution of the pair wz and uz is no 
less than (4 − 1). The contribution of v1v is (4 − 9), and the contribution of each of v2 and v3 is (4 − 1). We obtain

σ (T ′) − σ (T ) ≥ (4 − 1) + (4 − 9) + 2(4 − 1) = 4 > 0,

a contradiction. So, we may assume d(z) ≤ 3.
If d(z) = 3, let T ′

= T−uv−v1v+uz+v1z, and notice that the pair uv and uz taken together contributes to σ (T ′)−σ (T )
by (16 − 9). The same holds for the pair v1v and v1z. Each of the edges v2v and v3v contributes (9 − 1). The edge zw
contributes (0 − 4), and the two remaining edges incident to z contribute no less than (0 − 4). Hence, we have

σ (T ′) − σ (T ) ≥ 2(16 − 9) + 2(9 − 1) + (0 − 4) + 2(0 − 4) = 18 > 0,

a contradiction.
If d(z) = 2, let T ′

= T − uv − v1v − v2v − v3v + v2v3 + uz + vz + v1z. Let x be the neighbor of z distinct from w, and 
notice that the edge zx contributes to σ (T ) by no less than (1 − 9). As for the other edges, notice that all edges incident 
to v in T  contribute to σ (T ) by 1 + 1 + 9 + 9, also zw contributes to σ (T ) by 9. In T ′, all edges incident to z except xz
contribute to σ (T ′) by 16 + 16 + 16 + 0, and the edge v2v3 contributes to σ (T ′) by 0. We conclude

σ (T ′) − σ (T ) ≥ (1 − 9) + (16 + 16 + 16 + 0) − (1 + 1 + 9 + 9) = 20 > 0,

a contradiction.
Assume now that d(v1) ≥ 4. Denote by z an internal leaf of T  distinct from v1, v2 and v3, if such a vertex z exists. Let x

be the only neighbor of z which is not a leaf and by y a neighbor of z which is a leaf. Let T ′
= T−uv−xz−uv1+xu+uz+v1y

and notice that

σ (T ′) − σ (T ) ≥ (9 − 0) + (0 − 0) + (4 − 0) + (9 − 16) + 2(4 − 0) = 14 > 0,

so we have a contradiction.
It remains to consider the case of d(v1) ≥ 4 when v1, v2 and v3 are the only internal leaves of T . If d(v1) = 4, let 

T ′
= T − uv + uv1. Notice that the contribution of the edges uv and uv1 considered together to σ (T ′) − σ (T ) is 16 − 9, 

the contribution of all the remaining edges is non-negative, so σ (T ′)− σ (T ) > 0. If d(v1) = 5, let T ′
= T − v1v + uv1. The 

contribution to σ (T ′)− σ (T ) of the edges v1v and uv1 taken together is 9− 1, of the edge uv is 1− 9, and for each of the 
edges v2v and v3v is 4 − 1. We conclude

σ (T ′) − σ (T ) ≥ (9 − 1) + (1 − 9) + 2(4 − 1) = 6 > 0,

a contradiction. ■

Using the above two lemmas we can now establish that a maximal tree T  does not contain a vertex of degree 4 either.

Lemma 13.  Let T  be a maximal tree on n ≥ 14 vertices with ∆ = 5. Then, n = 0.
4
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Proof.  Assume to the contrary that T  does contain a vertex u with d(u) = 4. Denote by ui, for i = 1, . . . , 4, the four 
neighbors of u. We may assume that d(u1) ≤ d(u2) ≤ d(u3) ≤ d(u4). Lemmas  10–12 imply d(u1) ≥ 4. Since all internal 
leaves of T  are of degree 5 and a vertex of degree 4 can only be neighbor to vertices of degree 4 or 5, we may assume 
d(u4) = 5. Let z be an internal leaf of T  contained in the same connected component of T − u1u − u2u as u. Theorem  6 
implies that d(z) = 5. Denote by x and y two leaves attached to z. Let T ′

= T − u1u − u2u + u1x + u2y and notice that

σ (T ′) − σ (T ) ≥ (4 − 0) + (9 − 1) + 2(4 − 0) + 2(9 − 16) = 6 > 0,

so we obtain a contradiction with T  being maximal. ■

Lemmas  10 and 13 imply the following corollary.

Corollary 14.  Let T  be a maximal tree on n ≥ 14 vertices with ∆ = 5. Then T  contains only vertices of degrees 1, 2 and ∆.

In order to fully characterize extremal trees with ∆ = 5, we need the following lemmas regarding the number and 
the position of vertices of the degree 2 in extremal trees.

Lemma 15.  Let T  be a maximal tree on n ≥ 14 vertices with ∆ = 5. Then, m2,2 ≤ 1. Moreover, if m2,2 = 1, then m∆,∆ = 0.

Proof.  Assume to the contrary that m2,2 ≥ 2. Suppose first that all edges with both end-vertices of degree two are vertex 
disjoint. Denote by uv and ab a pair of edges with d(u) = d(v) = d(a) = d(b) = 2. Let u1, v1, a1 and b1 be the neighbors of 
u, v, a and b, respectively, which is not contained in {u, v, a, b}. Since all edges with both end-vertices of degree two are 
vertex disjoint, we conclude that d(u1) = d(v1) = d(a1) = d(b1) = 5. Let z be an internal leaf in T , and z1 a leaf attached 
to z. Theorem  6 implies d(z) = 5. Denote by T ′ the tree obtained from T  by removing all edges incident to vertices u, v, a
and b, and then adding edges u1v1, a1b1, uz1, vz1, az1 and bz1. Notice that

σ (T ′) − σ (T ) ≥ 4(16 − 9) + (0 − 16) = 12 > 0,

and we have a contradiction.
Suppose next that not all such edges are vertex disjoint, i.e. that there exist two edges uv and vw in T  with d(u) =

d(v) = d(w) = 2. Denote by u1 and w1 the neighbor of u and w, respectively, which is not contained in {u, v, w}.
Assume first that there exists a vertex z ̸∈ {u, v, w} in T  of degree 2. Denote by z1 and z2 its two neighbors, and let 

x be a leaf in T . Let T ′ be the tree obtained from T  by removing all edges incident to vertices u, v, w, z and then adding 
edges u1w1, z1z2, xu, xv, xz and xw. Notice that

σ (T ′) − σ (T ) ≥ (0 − 9) + (16 − 9) + (0 − 0) + (16 − 0) + 2(16 − 9) = 28 > 0,

a contradiction.
Assume next that {u, v, w} are all vertices of T  of degree 2. Since n ≥ 14, there exists a non-leaf vertex in T

not contained in {u, v, w, u1, w1}. Hence, Corollary  14 implies that T  contains an edge xy with d(x) = d(y) = 5. Let 
T ′

= T − uv − vw − xy + uw + xv + yv and notice that

σ (T ′) − σ (T ) ≥ 2(9 − 0) > 0,

a contradiction. Hence, we have established that T  contains at most one edge with both end-vertices of degree 2.
Finally, let us assume that T  contains an edge with both end-vertices of the degree 2, denote them by u and v. We wish 

to establish that in such a case T  does not contain an edge with both end-vertices of degree ∆. Assume to the contrary that 
T  does contain such an edge xy. Denote by u1 the neighbor of u distinct from v, and let T ′

= T−u1u−uv−xy+u1v+xu+uv. 
Notice that edges u1u and u1v contribute to σ (T ′)−σ (T ) by (9− 9), the edges uv and ux by (9− 0), and the edges xy and 
xu by (9 − 0), so we have

σ (T ′) − σ (T ) ≥ (9 − 9) + 2(9 − 0) > 0,

a contradiction. ■

Lemma 16.  Let T  be a maximal tree on n ≥ 14 vertices with ∆ = 5. Then, m∆,∆ ≤ 3.

Proof.  Assume to the contrary that m∆,∆ ≥ 4. Suppose first that every internal leaf of T  is adjacent to a vertex of degree 
2. Let u be an internal vertex of T , v its neighbor of degree 2 and w the other neighbor of v. Let xy be an edge of T  with 
d(x) = d(y) = ∆. For the tree T ′

= T − uv − vw − xy + uw + xv + vy it obviously holds that σ (T ′) = σ (T ). Hence, we 
may consider only trees T  in which at least one internal leaf is adjacent to a vertex of degree ∆.

Let u be an internal leaf of T  and v its neighbor of degree ∆. Denote by ui, for i = 1, 2, 3, 4, a leaf attached to u. Assume 
first that T  contains precisely four edges with both end-vertices of the degree ∆. Denote by ai and bi, for i = 1, 2, 3, the 
six vertices of T  distinct from u such that d(a ) = d(b ) = ∆ and a b  is the edge of T . We define the following two sets of 
i i i i
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edges

E−
= {uiu : i = 1, . . . , 4} ∪ {aibi : i = 1, 2, 3};

E+
= {aiui, uibi : i = 1, 2} ∪ {a3u3, u3u4, u4b3}.

Let T ′
= T − E−

+ E+ and notice that T ′ must be a tree, since the removed edges uiu are incident to leaves, and the 
removed edges aibi are replaced by subpaths connecting ai and bi which contain vertices ui. Now, each of the edges uiu
contributes to σ (T ′) − σ (T ) by −16, the fifth edge incident to u by 16, each of the edges aibi by 0, each of the edges aiui
and uibi by 9, and the edge u3u4 by 0. So, we obtain

σ (T ′) − σ (T ) = 4 · (−16) + 16 + 6 · 9 = 6 > 0,

a contradiction.
Assume next that T  contains at least five edges with both end-vertices of the degree ∆. We assume that one of them 

is incident to an internal leaf u, and let ui be a leaf attached to u for i = 1, . . . , 4. Denote by ai and bi, for i = 1, . . . , 4, 
the vertices of T  with d(ai) = d(bi) = ∆ such that aibi is an edge of T . We again define sets

E−
= {uiu : i = 1, . . . , 4} ∪ {aibi : i = 1, . . . , 4};

E+
= {aiui, uibi : i = 1, . . . , 4}.

Let T ′
= T − E−

+ E+ and notice that each of the edges uiu contributes to σ (T ′) − σ (T ) by −16, the fifth edge incident 
to u by 16, each of the edges aibi by 0, and each of the edges aiui and uibi by 9. Hence,

σ (T ′) − σ (T ) = 4 · (−16) + 16 + 8 · 9 = 24 > 0,

a contradiction. ■

All the above lemmas yield that a maximal tree T  with ∆ = 5 and n ≥ 14 has the following properties:

(P1) T  contains only vertices of degrees 1, 2 and ∆;

(P2) all internal leaves of T  are of degree ∆;

(P3) m∆,∆ ≤ 3 and m2,2 ≤ 1;
(P4) if m2,2 = 1, then m∆,∆ = 0.

Denote by Tn,∆ the family of all trees on n ≥ 8 vertices with maximum degree ∆ = 5 which satisfy the properties 
(P1)-(P4). In the next theorem we establish that all trees of Tn,∆ are maximal.

Theorem 17.  Let T  be a tree with ∆ = 5 and n ≥ 14. The tree T  is maximal if and only if T  belongs to Tn,∆.

Proof.  If T  is maximal, then T  has all the properties (P1)-(P4), so T  belongs to Tn,∆. Conversely, if T  belongs to Tn,∆ we 
wish to prove that T  is maximal. It is sufficient to show that all trees from Tn,∆ have the same value of σ -irregularity. Let 
T  be a tree from Tn,∆. Denote by ni the number of vertices of degree i in T . Property (P1) implies n1 + n2 + n5 = n. Due to 
Handshaking lemma, we also have 5n5 + 2n2 + n1 = 2(n − 1). Next, consider the tree T ′ obtained from T  by consecutive 
suppressions of vertices of degree 2 until there are no such vertices left. Notice that m∆,∆(T ′)−3 ≤ n2(T ) ≤ m∆,∆(T ′)+1, 
which implies that in T  we have n2 = n5 − 4 + j for 0 ≤ j ≤ 4 = ∆ − 1.

Taking all the equations together, we have obtained a system of three linear equations in terms of n1, n2 and n5 with 
the solution

n1 =
1
5
(3n − 3j + 16), n2 =

1
5
(n + 4j − 18), n5 =

1
5
(n − j + 2).

In order for n1, n2 and n5 to be integers, it must hold j ≡ (n − 2)mod 5. Since 0 ≤ j ≤ 4 = ∆ − 1, we conclude that the 
value of j is determined by the value of n. This further implies that n1, n2 and n3 are also determined by the value of n, 
i.e. the values of n1, n2 and n3 do not depend on a tree T . Further, for a tree T  it holds that m1,∆ = n1 and

m2,∆ =

{
2n2 if m2,2 = 0;
2n2 − 1 if m2,2 = 1.

Since m2,2 = 1 if and only if j = 4, this implies that m1,∆ and m2,∆ are determined by the value of n. Notice that the 
property (P2) implies m1,2 = 0, while m∆,∆ may be greater than zero, but the contribution of such edges to σ (T ) equals 
zero. We conclude that σ (T ) = m1,∆(∆ − 1)2 + m2,∆(∆ − 2)2, which implies that the value of σ (T ) is determined by n
and it does not depend on T . ■

The above theorem yields the following corollary (see Fig.  2). 

Corollary 18.  Let T  be a maximal tree with ∆ = 5 and n = ∆k − 2 + j ≥ 14, where 0 ≤ j ≤ ∆ − 1. Then,

σ (T ) =

{ 1
5 (3n − 3j + 16)(∆ − 1)2 +

2
5 (n + 4j − 18)(∆ − 2)2 if j ̸= 4,

1 2 1 2

5 (3n − 3j + 16)(∆ − 1) + 5 (8j + 2n − 41) (∆ − 2) if j = 4.
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Fig. 2. Maximal trees T on n vertices with ∆ = 5, for 14 ≤ n ≤ 34. (Mind that the list is not complete.).
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