



## The $\sigma$ -irregularity of trees with maximum degree 5

Darko Dimitrov <sup>a</sup>, Žana Kovijanić Vukićević <sup>b</sup>, Goran Popivoda <sup>b</sup>,  
Jelena Sedlar <sup>c,a</sup>, Riste Škrekovski <sup>d,a,e,\*</sup>, Saša Vujošević <sup>f</sup>



<sup>a</sup> Faculty of Information Studies, Novo mesto, Slovenia

<sup>b</sup> University of Montenegro, Faculty of Science and Mathematics, Podgorica, Montenegro

<sup>c</sup> University of Split, Faculty of Civil Engineering, Architecture and Geodesy, Split, Croatia

<sup>d</sup> University of Ljubljana, FMF, Ljubljana, Slovenia

<sup>e</sup> Rudolfovo - Science and Technology Centre Novo mesto, Slovenia

<sup>f</sup> University of Montenegro, Faculty of Economics, Podgorica, Montenegro

### ARTICLE INFO

#### Article history:

Received 2 May 2025

Received in revised form 24 September 2025

Accepted 18 November 2025

Available online 25 November 2025

#### Keywords:

Regular graph

Tree

Maximum degree

$\sigma$ -irregularity

Maximal graphs

Graph measure

Topological index

### ABSTRACT

The  $\sigma$ -irregularity, a variant of the well-established Albertson irregularity, is a topological invariant defined for a graph  $G = (V, E)$  as  $\sigma(G) = \sum_{uv \in E} (d(u) - d(v))^2$ , where  $d(u)$  and  $d(v)$  denote the degrees of vertices  $u$  and  $v$ , respectively. Recent research has successfully characterized chemical trees with the maximum  $\sigma$ -irregularity. In this paper, we expand upon this research by establishing several structural properties of maximal trees with prescribed maximum degree  $\Delta$ . Application of these properties enables us to characterize maximal trees with  $\Delta = 5$ . We establish that extremal trees contain only vertices of degrees 1, 2 and  $\Delta$ . Moreover, the number of edges with both end-vertices having the degree 2 or  $\Delta$  is very small, so almost all edges have the (second) maximum possible contribution to  $\sigma$ -irregularity. We believe this property or similar should extend to maximal trees for any value of  $\Delta$ , so this is an interesting direction for further research.

© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

## 1. Introduction

Let  $G = (V, E)$  be a graph with the vertex set  $V = V(G)$  and the edge set  $E = E(G)$ . Unless explicitly stated otherwise, all graphs in this paper are assumed to be simple and finite. The degree  $d_G(v)$  of a vertex  $v \in V(G)$  is defined to be the number of neighbors of  $v$  in  $G$ . For a pair of vertices  $u, v \in V(G)$ , by  $d_G(u, v)$  we denote the *distance* of these two vertices, i.e. the length of a shortest path connecting them. If the graph  $G$  is clear from context, we omit the subscript  $G$ . A graph  $G$  is *regular* if all its vertices have a same degree, otherwise it is said to be *irregular*. The concept of irregularity has been widely researched within various scientific fields such as chemistry and network theory [6,8–10,12,17,18].

One of the well-known irregularity measures of a graph  $G$  is the *Albertson irregularity* [4] denoted by  $\text{irr}(G)$  and defined as follows

$$\text{irr}(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)|.$$

This index received considerable attention from the scientific community, we refer here to a selection of relevant studies [1,2,4,5,12,14].

\* Corresponding author at: Rudolfovo - Science and Technology Centre Novo mesto, Slovenia.  
E-mail address: [skrekovski@gmail.com](mailto:skrekovski@gmail.com) (R. Škrekovski).

A downside of the Albertson irregularity is the inherent need to calculate absolute values, hence it is natural to propose a similar index, the so-called  $\sigma$ -irregularity, defined for a graph  $G$  by

$$\sigma(G) = \sum_{uv \in E(G)} (d_G(u) - d_G(v))^2.$$

Some fundamental properties of the  $\sigma$ -irregularity were given by Gutman et al. in [13], such as the following basic relation

$$\sigma(G) = F(G) - 2M_2(G), \quad (1)$$

where  $F(G)$  denotes the *forgotten index* defined by

$$F(G) = \sum_{u \in V(G)} d(u)^3,$$

while  $M_2(G)$  denotes the *second Zagreb index* defined by

$$M_2(G) = \sum_{uv \in E(G)} d(u)d(v).$$

In [3], a characterization of graphs with the maximum value of  $\sigma$ -irregularity is provided, and also some lower bounds on the  $\sigma$ -irregularity. In [3,13], the inverse problem for  $\sigma$ -irregularity is solved, i.e., the problem of establishing the existence of a graph with the  $\sigma$ -irregularity equal to a given non-negative integer. The research of the relation of  $\sigma$ -irregularity with some other well-known irregularity measures is conducted by Réti in [16]. Also, in a recent paper [7] the characterization of graphs with a prescribed degree sequence having extremal  $\sigma$ -irregularity is given. The so called total  $\sigma$ -irregularity, which is a variant of  $\sigma$ -irregularity, has also recently been studied [11,15].

A graph  $G$  is said to be *chemical* if the maximum vertex degree in  $G$  is 4. A *tree* is a connected acyclic graph. Among the (chemical) trees explored in [3], the path graph is shown to have the smallest  $\sigma$ -irregularity. In [19], the characterization of chemical trees with maximal  $\sigma$ -irregularity was provided. Here, we extend this outcome by giving several properties of trees with prescribed maximum degree  $\Delta$  exhibiting maximal  $\sigma$ -irregularity. The application of these properties to the case  $\Delta = 5$  yields a characterization of maximal trees.

Before delving into properties of maximal trees with respect to  $\sigma$ -irregularity, we introduce the necessary additional notation and preliminaries. In a tree  $T$ , a *k-vertex* is a vertex of degree  $k$ . Particularly, a *leaf* is a vertex of degree 1. A vertex of a tree  $T$  is an *internal leaf* if it has precisely one neighbor with a degree greater than 1. Notice that an internal leaf of  $T$  is a leaf in the tree  $T'$  obtained from  $T$  by removing all leaves, hence the name. A vertex with degree at least 3 will be called a *big vertex*. The number of vertices in  $T$  of degree  $i$  is denoted by  $n_i$ , where  $i$  ranges from 1 to  $\Delta$ . Similarly, the number of edges in  $T$  with end-vertices of degrees  $i$  and  $j$ , for  $1 \leq i \leq j \leq \Delta$ , is denoted by  $m_{i,j}$ . If  $T$  is a tree with maximal  $\sigma$ -irregularity on a given number of vertices  $n$ , we refer to it as a *maximal tree*.

The present paper is organized as follows. In the next section we give several properties of maximal trees with prescribed maximum degree  $\Delta$ , for any  $\Delta \geq 3$ . In the third section, these properties are applied to the case  $\Delta = 5$  for which the characterization of maximal trees is obtained.

## 2. Properties of maximal trees for general $\Delta$

In this section we will establish several properties of maximal trees with the maximum degree  $\Delta$ , which hold for any  $\Delta \geq 3$ . We start with the following proposition which will be a useful tool in proving further properties of maximal trees and it stems from a simple tree transformation.

**Proposition 1.** *Let  $T$  be a maximal tree with the maximum degree  $\Delta$ , and  $P = ux \cdots yv$  a path in  $T$ . If  $d(u) > d(v)$ , then  $d(x) \leq d(y)$ . Also, if  $d(x) > d(y)$ , then  $d(u) \leq d(v)$ .*

**Proof.** To prove the first claim of the proposition, suppose that  $d(u) > d(v)$ . If  $d(u, v) = 1$ , then  $x = v$  and  $y = u$ , so  $d(x) = d(v) < d(u) = d(y)$ , and the claim holds. Next, if  $d(u, v) = 2$ , then  $x = y$  which implies  $d(x) = d(y)$ , so the claim also holds. Hence, let us assume that  $d(u, v) \geq 3$ . Assume to the contrary that  $d(x) > d(y)$ . Let  $T'$  be the tree obtained from  $T$  by removing edges  $ux$  and  $yv$ , and adding edges  $uy$  and  $xv$  instead. Notice that

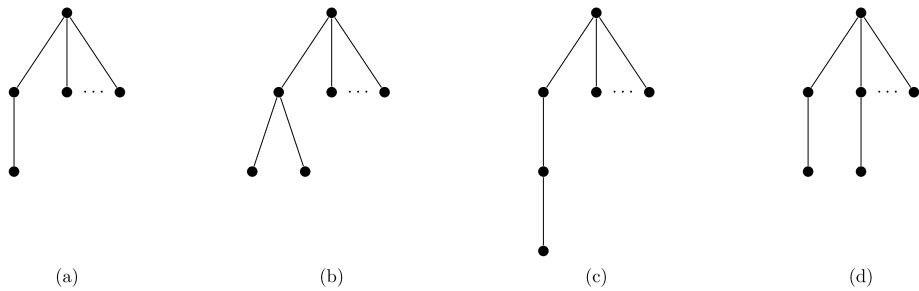
$$\begin{aligned} \sigma(T') - \sigma(T) &= (d(u) - d(y))^2 - (d(u) - d(x))^2 + (d(v) - d(x))^2 - (d(v) - d(y))^2 \\ &= 2(d(u) - d(v))(d(x) - d(y)) > 0, \end{aligned}$$

which contradicts to  $T$  being maximal.

Now, let us prove the second claim of the proposition. Suppose that  $d(x) > d(y)$ , which is only possible if  $x \neq y$ . Assume to the contrary that  $d(u) > d(v)$ . Then again for the tree  $T' = T - ux - yv + yu + xv$  we have

$$\sigma(T') - \sigma(T) = 2(d(u) - d(v))(d(x) - d(y)) > 0,$$

a contradiction. ■



**Fig. 1.** Trees  $T$  of maximal-degree  $\Delta$  on  $n = \Delta + 2$  and  $n = \Delta + 3$  vertices.

The next property we wish to establish is that all internal leaves of maximal trees have maximum degree  $\Delta$ . The property holds provided that the number of vertices in a tree is sufficiently large, and it will be extensively used in the next section where we will establish maximal trees for  $\Delta = 5$ .

To arrive at this result, we need the following three lemmas.

**Lemma 2.** *Let  $T$  be a maximal tree with maximum degree  $\Delta \geq 3$ . If  $T$  contains at least two big vertices, then  $m_{2,1} = 0$ .*

**Proof.** Assume to the contrary, that  $T$  does contain an edge  $uv$  with  $d(u) = 2$  and  $d(v) = 1$ . Let  $x$  be the big vertex closest to  $u$ , and let  $y$  be the neighbor of  $x$  which is not a leaf, such that the path  $P$  connecting  $y$  and  $v$  contains  $x$ , i.e.,  $P = yx \cdots uv$ . Notice that such a vertex  $y$  must exist, since  $T$  contains at least two big vertices, and there is no big vertex on the path connecting  $x$  and  $v$ . Since  $d(v) < d(y)$ , [Proposition 1](#) implies  $d(u) \geq d(x)$ , a contradiction. ■

There is only one tree  $T$  of maximum degree  $\Delta$  with  $n = \Delta + 1$  vertices, obviously the star; and also one such  $T$  on  $n = \Delta + 2$  vertices, see [Fig. 1\(a\)](#). If  $n = \Delta + 3$ , we have three non-isomorphic trees, shown in [Fig. 1\(b\)–\(d\)](#), and the maximum of  $\sigma(\cdot)$  is attained by the tree in (c).

Let us show that a maximal tree  $T$  with the sufficiently many vertices does have at least two big vertices. This is established by the following lemma.

**Lemma 3.** *Let  $T$  be a maximal tree on  $n$  vertices with maximum degree  $\Delta \geq 3$ . If  $n \geq \Delta + 4$ , then  $T$  contains at least two big vertices.*

**Proof.** Assume to the contrary that  $T$  does not contain two big vertices. Then  $T$  has precisely one vertex  $u$  of degree  $\Delta$ , and so it consists of  $\Delta$  pending paths attached to  $u$ .

First suppose that one of these pending paths has length at least 4, say

$$P = u \cdots v_3 v_2 v_1 v_0, \quad d(v_0) = 1, \quad d(v_1) = d(v_2) = d(v_3) = 2.$$

If we modify  $T$  by deleting the edge  $v_0 v_1$  and adding  $v_0 v_2$ , we obtain a new tree

$$T' = T - v_0 v_1 + v_0 v_2.$$

In  $T'$ , the degree of  $v_2$  increases from 2 to 3, while  $v_1$  decreases from 2 to 1. Thus,  $\sigma(T') > \sigma(T)$ , contradicting the maximality of  $T$ . Hence no pending path may have length at least 4.

Next, suppose there are two distinct pending paths, each of length 2 or 3, say

$$v_0 v_1 \cdots u, \quad u v_2 \cdots v_3,$$

with  $d(v_1) = d(v_2) = 2$  and  $d(v_0) = d(v_3) = 1$ . Applying [Proposition 1](#) on the subpath  $v_0 v_1 \cdots u v_2$  we obtain that vertex  $v_1$  has to be big, a contradiction.

From the above, it follows that  $T$  has at most one pending path of length 3 and all others are of length 1, and consequently

$$n \leq \Delta + 3.$$

This contradicts the assumption  $n \geq \Delta + 4$ , which establishes the claim. ■

An immediate consequence of [Lemmas 2](#) and [3](#) is the following corollary.

**Corollary 4.** *Let  $T$  be a maximal tree on  $n$  vertices with maximum degree  $\Delta \geq 3$ . If  $n \geq \Delta + 4$ , then  $m_{1,2} = 0$ .*

The next important step towards the result we aim at, is the following lemma in which we establish that almost all internal vertices of a maximal tree have the degree  $\Delta$ .

**Lemma 5.** Let  $T$  be a maximal tree on  $n$  vertices with maximum degree  $\Delta \geq 3$ . If  $n \geq \Delta + 4$ , then at most one internal leaf of  $T$  has the degree smaller than  $\Delta$ .

**Proof.** The assumption  $n \geq \Delta + 4$  implies that  $T$  contains at least two distinct internal leaves. Assume to the contrary, that at least two internal leaves have the degree less than  $\Delta$ . Let  $u$  and  $v$  be two such internal leaves at the maximum possible distance, and we may assume  $d(u) \geq d(v)$ . If  $u$  and  $v$  are neighbors, then  $u$  and  $v$  are the only non-leaf vertices of  $T$ . Since the maximum degree of  $T$  is  $\Delta$ , at least one of  $u$  and  $v$  must have the degree  $\Delta$ , say  $u$ . So,  $v$  is the only internal leaf of  $T$  which may have the degree smaller than  $\Delta$ , which proves the claim in this case.

Assume next that  $u$  and  $v$  are not neighbors, i.e.,  $d(u, v) \geq 2$ . Denote the neighbors of  $u$  by  $u_i$ , for  $i = 1, \dots, d(u)$ , so that  $u_i$  is a leaf for  $i \geq 2$ . Similarly, let the neighbors of  $v$  be denoted by  $v_i$ , for  $i = 1, \dots, d(v)$ , so that  $v_i$  is a leaf for  $i \geq 2$ . Since  $n \geq \Delta + 4$ , Lemma 3 implies that  $T$  contains at least two big vertices. Lemma 2 further implies that every leaf of  $T$  is a neighbor of a vertex of degree at least three. This means that  $d(u) \geq 3$  and  $d(v) \geq 3$ . Recall that we assumed  $d(u) \geq d(v)$ . If  $d(u) > d(v)$ , then Proposition 1 implies  $d(u_1) \leq d(v_1)$ . If  $d(u) = d(v)$  and  $d(u_1) > d(v_1)$ , then we swap labels of  $u$  and  $v$ , and also  $u_i$  and  $v_i$  for every  $i$ . Either way, we obtain  $d(u) \geq d(v)$  and  $d(u_1) \leq d(v_1)$ . Let  $T' = T - vv_2 + uv_2$ , and notice that  $\sigma(T') - \sigma(T) = \sigma_1 + \sigma_2 + \sigma_3$  where

$$\begin{aligned}\sigma_1 &= (d(v) - 2)((d(v) - 1 - 1)^2 - (d(v) - 1)^2) \\ &\quad + (d(u) - 1)((d(u) + 1 - 1)^2 - (d(u) - 1)^2), \\ \sigma_2 &= (d(u) + 1 - 1)^2 - (d(v) - 1)^2, \\ \sigma_3 &= (d(v) - 1 - d(v_1))^2 - (d(v) - d(v_1))^2 \\ &\quad + (d(u) + 1 - d(u_1))^2 - (d(u) - d(u_1))^2.\end{aligned}$$

Notice that  $\sigma_1 = (d(u) - d(v) + 1)(2d(u) + 2d(v) - 5)$ , so  $d(u) \geq d(v) \geq 3$  implies  $\sigma_1 > 0$ . Notice further that due to  $d(u) \geq d(v)$  it holds that  $\sigma_2 > 0$ . Finally, it holds that  $\sigma_3 = 2d(u) - 2d(v) + 2d(v_1) - 2d(u_1) + 2$ , where  $d(u) \geq d(v)$  and  $d(v_1) \geq d(u_1)$  implies  $\sigma_3 > 0$ . This amounts to  $\sigma(T') - \sigma(T) > 0$ , a contradiction with  $T$  being maximal. ■

A tree  $T$  with only one internal leaf has  $n = \Delta + 1$  vertices, so a tree  $T$  on  $n \geq \Delta + 4$  vertices must have at least two internal leaves. On the other hand, a tree  $T$  on  $n \leq 2\Delta - 1$  vertices cannot have two vertices of degree  $\Delta$ . Hence, the result of Lemma 5 is the best possible for maximal trees on  $n$  vertices, where  $\Delta + 4 \leq n \leq 2\Delta - 1$ . In the next theorem we show that the presence of this one internal leaf with the degree less than  $\Delta$  is only due to the small number of vertices, i.e. that for  $n \geq 2\Delta$  all internal leaves in a maximal tree are of degree  $\Delta$ .

**Theorem 6.** Let  $T$  be a maximal tree with maximum degree  $\Delta$ . If  $n \geq 7$ , for  $\Delta = 3$  and  $n \geq 2\Delta$ , for  $\Delta \geq 4$ , then all internal leaves of  $T$  are of degree  $\Delta$ .

**Proof.** Notice that  $n \geq \Delta + 4$  for each  $\Delta \geq 3$ .

Assume to the contrary that there exists an internal leaf  $u$  of  $T$  with  $d(u) < \Delta$ . Lemma 5 implies that all other internal leaves of  $T$  are of degree  $\Delta$ . A vertex of  $T$  which is neither a leaf nor an internal leaf will be called a *core* vertex of  $T$ . Notice that  $n \geq 2\Delta$  and  $d(u) < \Delta$  imply that  $T$  contains at least one core vertex.

Let us show that the degree of each core vertex of  $T$  is at most  $d(u)$ . For that purpose, let  $v$  be a core vertex of  $T$ , and let  $w$  be a neighbor of  $v$  such that  $d(w, u) > d(v, u)$  and  $w$  is not a leaf. Such a vertex  $w$  must exist in  $T$ , since  $v$  is not an internal leaf. If  $d(v) > d(u)$ , due to Proposition 1, we would have  $d(w) \leq 1$ , a contradiction. Hence, it must hold that  $d(v) \leq d(u)$ .

We now distinguish the following two cases.

**Case 1:** All core vertices in  $T$  have precisely two neighbors with degrees greater than 1. Here, we distinguish two subcases regarding the degrees of core vertices in  $T$ .

**Subcase 1.a:** All core vertices have the degree 2. Since all core vertices are of degree 2, the tree  $T$  contains precisely two internal leaves  $u$  and  $v$ , and one of the two internal leaves must have the degree  $\Delta$ , say  $v$ . Let  $P$  be the path in  $T$  connecting  $u$  and  $v$ , then the core vertices of  $T$  are the interior vertices of  $P$ .

If  $T$  contains precisely one core vertex  $w$ , then from  $n \geq 2\Delta$  and  $d(w) = 2$  we conclude  $d(u) = \Delta - 1$ . Let  $T' = T - vw + vu$ , and notice that the contribution of the edges  $vw$  and  $uv$  taken together to  $\sigma(T') - \sigma(T)$  is  $0 - (\Delta - 2)^2$ , the contribution of the edge  $uw$  is  $(\Delta - 1)^2 - (\Delta - 3)^2$ , and the contribution of  $\Delta - 2$  leaves of  $T$  attached to  $u$  is  $(\Delta - 1)^2 - (\Delta - 2)^2$ . Hence, we have

$$\begin{aligned}\sigma(T') - \sigma(T) &= -(\Delta - 2)^2 + (\Delta - 1)^2 - (\Delta - 3)^2 + (\Delta - 2)((\Delta - 1)^2 - (\Delta - 2)^2) \\ &= \Delta^2 + \Delta - 6 > 0\end{aligned}$$

for  $\Delta \geq 3$ , a contradiction.

So, let us assume  $T$  contains more than one core vertex. This implies that  $u$  and  $v$  are connected by a path  $P$  of the length  $\geq 3$ , and all internal vertices of  $P$  are core vertices which are of degree 2. Let  $P' = zwu$  be the subpath of the

path connecting  $u$  and  $v$ . Consider the tree  $T' = T - zw + zu$ , and notice that the contribution of the edges  $zw$  and  $zu$  to  $\sigma(T') - \sigma(T)$  is  $(d(u) - 2)^2 - 0$ , the contribution of the edge  $wu$  is  $(d(u) - 1)^2 - (d(u) - 2)^2$ , and the contribution of  $d(u) - 1$  leaves of  $T$  attached to  $u$  is  $d(u)^2 - (d(u) - 1)^2$ . We obtain

$$\begin{aligned}\sigma(T') - \sigma(T) &= (d(u) - 2)^2 + (d(u) - 1)^2 - (d(u) - 2)^2 + (d(u) - 1)(d(u)^2 - (d(u) - 1)^2) \\ &= 3d(u)^2 - 5d(u) + 2 > 0\end{aligned}$$

for  $d(u) \geq 2$ , a contradiction.

**Subcase 1.b:** *There exists a core vertex  $v$  of  $T$  with  $d(v) \geq 3$ .* We may assume that  $v$  is the core vertex of the degree  $\geq 3$  closest to  $u$ . This implies that every internal vertex of the path  $P$  connecting  $u$  and  $v$  is of degree 2 in  $T$ . Due to  $d(v) \geq 3$  and the assumption that  $v$  contains at most two non-leaf vertices, we conclude that there exists a leaf  $v_1$  of  $T$  attached to  $v$ . Let  $T' = T - v_1v + v_1u$  and let us consider the difference  $\sigma(T') - \sigma(T)$ .

Since  $v$  is a core vertex of  $T$ , recall that  $d(v) \leq d(u)$ . This implies that the contribution of the edges  $v_1v$  and  $v_1u$  to  $\sigma(T') - \sigma(T)$  is strictly positive. This also implies that the sum of the contributions of edges of  $P$  to  $\sigma(T') - \sigma(T)$  is strictly positive.

Let  $v_2$  be the non-leaf neighbor of  $v$  not contained on  $P$ , and  $u_1$  a leaf of  $T$  attached to  $u$ . If  $d(v_2) \geq d(v)$  then the contribution of  $v_2v$  to  $\sigma(T') - \sigma(T)$  is positive, otherwise if  $d(v_2) < d(v)$  then the contribution of  $v_2v$  may be negative, but it is  $\geq (d(v) - 2)^2 - (d(v) - 1)^2$ . Hence, the sum  $\sigma_1$  of contributions of edges  $v_2v$  and  $u_1u$  is

$$\begin{aligned}\sigma_1 &\geq (d(v) - 2)^2 - (d(v) - 1)^2 + d(u)^2 - (d(u) - 1)^2 \\ &= 2d(u) - 2d(v) + 2 > 0,\end{aligned}$$

since  $d(u) \geq d(v)$ .

Let  $E_v$  be the set of all leaves of  $T$  incident to  $v$  distinct from  $v_1v$  and  $E_u$  the set of all leaves incident to  $u$  except  $u_1u$ . Since  $d(v) \leq d(u)$  and  $v_2v$  is not a leaf, we conclude  $|E_v| < |E_u|$ . We conclude that

$$\begin{aligned}\sigma(T') - \sigma(T) &> |E_v|((d(v) - 2)^2 - (d(v) - 1)^2) - |E_u|(d(u)^2 - (d(u) - 1)^2) \\ &> |E_v|(2d(u) - 2d(v) + 2) > 0,\end{aligned}$$

a contradiction.

**Case 2:** *There exists a core vertex in  $T$  with at least three neighbors with degrees greater than 1.* Let  $v$  be a core vertex of  $T$  with at least three non-leaf neighbors closest to  $u$ . Let  $P$  be the subpath of  $T$  connecting  $u$  and  $v$ , and notice that the choice of  $v$  implies that all the internal vertices of  $P$  have the degree 2 in  $T$ .

**Subcase 2.a:** *All non-leaf neighbors of  $v$  are internal leaves of  $T$ .* This implies that  $v$  is the only core vertex of  $T$  and  $uv$  is an edge of  $T$ , i.e.,  $u$  and  $v$  are neighbors.

Suppose first that there exists a leaf  $w$  attached to  $v$  in  $T$ . Let  $T' = T - wv + wu$  and let us consider the difference  $\sigma(T') - \sigma(T)$ . Since  $d(v) \leq d(u)$ , the sum of contributions of edges  $wv$  and  $wu$  to  $\sigma(T') - \sigma(T)$  is strictly positive. For the same reason, the contribution of the edge  $uv$  is also strictly positive. A non-leaf neighbor  $z$  of  $v$  is an internal leaf of  $T$ , so  $d(z) = \Delta$ . This implies that for every such  $z$  the contribution of the edge  $vz$  to  $\sigma(T') - \sigma(T)$  is strictly positive. It remains to consider leaves of  $T$  incident to  $v$  which are distinct from  $wv$ , denote the set of such edges by  $E_v$ . Notice that edges of  $E_v$  are the only edges in  $T$  with negative contribution to  $\sigma(T') - \sigma(T)$ . Denote by  $E_u$  the set of leaves incident to  $u$ . Since  $d(v) \leq d(u)$  and  $v$  has more non-leaf neighbors than  $u$ , we conclude  $|E_v| < |E_u|$ . Hence, we obtain

$$\begin{aligned}\sigma(T') - \sigma(T) &\geq |E_v|((d(v) - 2)^2 - (d(v) - 1)^2) - |E_u|(d(u)^2 - (d(u) - 1)^2) \\ &> |E_v|(2d(u) - 2d(v) + 2) > 0,\end{aligned}$$

a contradiction.

Suppose now that there are no leaves attached to  $v$  in  $T$ . Denote by  $z$  a leaf of  $T$  which is not attached to  $u$ . Let  $T' = T - uv + uz$ , and notice that  $d(v) \leq d(u)$  implies that the sum of contributions of edges  $uv$  and  $uz$  to  $\sigma(T') - \sigma(T)$  is strictly positive. Hence, we have

$$\begin{aligned}\sigma(T') - \sigma(T) &> (d(v) - 1)((\Delta - (d(v) - 1))^2 - (\Delta - d(v))^2) + (\Delta - 2)^2 - (\Delta - 1)^2 \\ &= (d(v) - 2)(2\Delta - 2d(v) - 1) > 0,\end{aligned}$$

a contradiction.

**Subcase 2.b:** *There exists a non-leaf neighbor of  $v$  which is a core vertex of  $T$ .* Let  $P$  be the path connecting  $u$  and  $v$  in  $T$ . Let  $u_1$  (resp.  $v_1$ ) be the neighbor of  $u$  (resp.  $v$ ) which belongs to  $P$ . If  $v_1$  is the only neighbor of  $v$  which is a core vertex of  $T$ , then  $v$  has a non-leaf neighbor  $v_2$  which is an internal leaf of  $T$ . [Lemma 5](#) implies  $d(v_2) = \Delta$ . Now, since  $d(u) < \Delta = d(v_2)$ , [Proposition 1](#) implies  $d(u_1) \geq d(v)$ , a contradiction since  $d(u_1) = 2$  and  $d(v) > 2$ .

Hence, there exists a core vertex  $v_2 \neq v_1$  which is a neighbor of  $v$ . We may assume that among neighbors of  $v$  distinct from  $v_1$  which are core vertices,  $v_2$  has the smallest degree. Also, since  $v_2$  is a core vertex, we have  $d(v_2) \leq d(u)$ . Let

$v_3 \neq v_1$  be the third non-leaf neighbor of  $v$ , and the choice of  $v_2$  implies  $d(v_2) \leq d(v_3)$ . Let  $T' = T - v_2v + v_2u$ , and notice that the sum of the contributions of edges of the path  $P$  to  $\sigma(T') - \sigma(T)$  is strictly positive due to  $d(v) \leq d(u)$ .

Denote by  $u_2$  and  $u_3$  a pair of leaves attached to  $u$  in  $T$ . Also, let  $\sigma_1$  be the sum of contributions to  $\sigma(T') - \sigma(T)$  of the edges  $v_2v, v_2u, v_3v, u_2u, u_3u$ . It holds that

$$\begin{aligned}\sigma_1 &= (d(v_3) - (d(v) - 1))^2 - (d(v_3) - d(v))^2 + (d(v_2) - (d(u) + 1))^2 - (d(v_2) - d(v))^2 \\ &\quad + 2(d(u)^2 - (d(u) - 1)^2) \\ &= (d(u) - d(v_2))^2 + 3d(u) + d(v)(d(v) - 2) + 3(d(u) - d(v_2)) + 2d(v_3).\end{aligned}$$

Since  $d(u) \geq d(v_2)$ , it follows that  $\sigma_1 > 0$ . Now, let  $E_v$  (resp.  $E_u$ ) be the set of edges incident to  $v$  (resp.  $u$ ) in  $T$  distinct from  $v_iv$  (resp.  $u_iu$ ), for  $1 \leq i \leq 3$ . Obviously,  $|E_v| = d(v) - 3$  and  $|E_u| = d(u) - 3$ , so  $d(v) \leq d(u)$  implies  $|E_v| \leq |E_u|$ . The contribution of each edge  $e$  from  $E_v$  to  $\sigma(T') - \sigma(T)$  is  $\geq (d(v) - 2)^2 - (d(v) - 1)^2$ , and notice that this contribution may be negative. On the other hand, the contribution of each edge  $e$  of  $|E_u|$  to  $\sigma(T') - \sigma(T)$  is  $\geq d(u)^2 - (d(u) - 1)^2 > 0$ . Since  $\sigma_1 > 0$  and the contribution of edges of  $P$  to  $\sigma(T') - \sigma(T)$  is also strictly positive, we conclude that

$$\begin{aligned}\sigma(T') - \sigma(T) &> |E_v|((d(v) - 2)^2 - (d(v) - 1)^2) + |E_u|(d(u)^2 - (d(u) - 1)^2) \\ &\geq |E_v|((d(v) - 2)^2 - (d(v) - 1)^2) + d(u)^2 - (d(u) - 1)^2 \\ &= |E_v|(2d(u) - 2d(v) + 2) > 0,\end{aligned}$$

a contradiction.

To summarize, in each of the two possible cases we have proved that the assumption that there exists an internal leaf  $u$  of  $T$  with  $d(u) < \Delta$  leads to contradiction. We conclude that all internal leaves of  $T$  must be of the degree  $\Delta$ , and we are done. ■

Let us next prove one additional property of maximal trees.

**Proposition 7.** *Let  $T$  be a maximal tree with maximum degree  $\Delta \geq 3$  and  $n \geq \Delta + 4$ . Then  $m_{2,2} \leq 2$ .*

**Proof.** Assume to the contrary that  $m_{2,2} \geq 3$ . Let  $e_i = u_iv_i$ , for  $i \in \{1, 2, 3\}$ , be three edges of  $T$  with  $d(u_i) = d(v_i) = 2$ . If all three edges  $e_i$  are pairwise vertex disjoint, denote by  $w_i$  the other neighbor of  $v_i$ , for  $i = 1, 2, 3$ . Let

$$\begin{aligned}T' &= T - u_3v_3 - v_3w_3 + u_3w_3 - u_2v_2 - v_2w_2 + u_2w_2 \\ &\quad - v_1w_1 + v_1v_2 + v_2w_1 + v_3v_1,\end{aligned}$$

and notice that the contribution of edges  $v_iw_i$  and  $u_iw_i$  to the difference  $\sigma(T') - \sigma(T)$  cancels out for  $i \in \{1, 2\}$ , while the contribution of edges  $u_iv_i$  equals zero. The contribution of edges  $v_1w_1$  and  $v_2w_1$  to the difference also cancels out, so we have

$$\sigma(T') - \sigma(T) = (3 - 2)^2 + (3 - 1)^2 > 0,$$

a contradiction.

Assume next that two of the edges  $e_i$  share an end-vertex, say  $v_1 = u_2$ , and the third edge  $e_3$  is vertex disjoint with  $e_1$  and  $e_2$ . Let  $T' = T - u_3v_3 - v_3w_3 + u_3w_3 + v_3v_1$ , and let us consider again the difference  $\sigma(T') - \sigma(T)$ . Notice that the contribution of edges  $v_3w_3$  and  $u_3w_3$  to the difference cancels out, the contribution of  $u_3v_3$  equals zero, the contribution of edges  $u_1v_1$  and  $u_2v_2$  equals  $(3 - 2)^2 - 0$ , so we have

$$\sigma(T') - \sigma(T) = 2(3 - 2)^2 + (3 - 1)^2 > 0,$$

a contradiction.

Assume finally that two pairs of edges  $e_i$  share an end-vertex, say  $v_1 = u_2$  and  $v_2 = u_3$ . Let  $T' = T - u_3v_3 - v_3w_3 + u_3w_3 + v_3v_1$ , and notice that the contribution of the edges  $v_3w_3$  and  $u_3w_3$  to  $\sigma(T') - \sigma(T)$  cancels out, the contribution of the edge  $u_3v_3$  is zero, the contribution of edges  $u_1v_1$  and  $u_2v_2$  is  $(3 - 2)^2 - 0$ , and the contribution of  $v_3v_1$  is  $(3 - 1)^2$ . Hence, summing all this we again obtain  $\sigma(T') - \sigma(T) > 0$ , a contradiction. ■

### 3. Case $\Delta = 5$

In this section we will characterize extremal trees with  $\Delta = 5$ . In order to do so, we will heavily rely on the property of maximal trees stated in [Theorem 6](#). For [Theorem 6](#) to apply, we will assume throughout the section that considered trees have at least  $2\Delta = 10$  vertices. We first wish to show that an extremal tree with  $\Delta = 5$  does not contain vertices of degree 3. To arrive to this result, we first need the following two lemmas regarding the edges incident to vertices of degree 3.

**Lemma 8.** *Let  $T$  be a maximal tree on  $n \geq 10$  vertices with  $\Delta = 5$ . Then,  $m_{3,3} = 0$ .*

**Proof.** Assume to the contrary that  $T$  does contain an edge  $uv$  with  $d(u) = d(v) = 3$ . Denote by  $u_1$  and  $u_2$  (resp.  $v_1$  and  $v_2$ ) the two remaining neighbors of  $u$  (resp.  $v$ ). Let  $T' = T - u_1u - u_2u + u_1v + u_2v$ . Notice that

$$\begin{aligned}\sigma(T') - \sigma(T) &\geq (d(u_1) - 5)^2 - (d(u_1) - 3)^2 + (d(u_2) - 5)^2 - (d(u_2) - 3)^2 \\ &\quad + (d(v_1) - 5)^2 - (d(v_1) - 3)^2 + (d(v_2) - 5)^2 - (d(v_2) - 3)^2 \\ &\quad + (5 - 1)^2 - (3 - 3)^2 \\ &= 32 - 4d(u_1) - 4d(u_2) + 32 - 4d(v_1) - 4d(v_2) + 16 \\ &\geq 32 - 4 \cdot 5 - 4 \cdot 5 + 32 - 4 \cdot 5 - 4 \cdot 5 + 16 = 0\end{aligned}$$

with equality if and only if each of the vertices  $u_1, u_2, v_1$  and  $v_2$  has the degree 5. If at least one of the vertices  $u_1, u_2, v_1, v_2$  has a degree distinct from 5, we have a contradiction with  $T$  being maximal. So, let us assume each of the vertices  $u_1, u_2, v_1, v_2$  is of degree 5.

Let  $T_{u_2v_2}$  be the connected component of  $T - u_1u - v_1v$  which contains the edge  $uv$ . Since  $d(u_2) = 5 > 1$ ,  $T_{u_2v_2}$  must contain an internal leaf  $z$  of  $T$ , so [Theorem 6](#) implies that  $d(z) = 5$ . Denote by  $z_1$  and  $z_2$  the two neighbors of  $z$  in  $T$  which are leaves. Let  $T' = T - u_1u - v_1v + u_1z_1 + v_1z_2$ . Notice that the contribution of the pair of edges  $u_1u$  and  $u_1z_1$ , just as the pair  $v_1v$  and  $v_1z_2$ , to the difference  $\sigma(T') - \sigma(T)$  equals  $(9 - 4)$ . The contribution of each of the edges  $u_2u$  and  $v_2v$  also equals  $(9 - 4)$ , and the contribution each of the edges  $z_1z$  and  $z_2z$  equals  $(9 - 16)$ . Finally, the contribution of the edge  $uv$  is zero, so we have

$$\sigma(T') - \sigma(T) \geq 4(9 - 4) + 2(9 - 16) = 6 > 0,$$

a contradiction with  $T$  being maximal. ■

After we have eliminated edges with both end-vertices of degree 3, next we wish to do the same with edges such that one end-vertex is of degree 1 and the other of degree 3.

**Lemma 9.** *Let  $T$  be a maximal tree on  $n \geq 10$  vertices with  $\Delta = 5$ . Then,  $m_{1,3} = 0$ .*

**Proof.** Assume to the contrary that  $T$  contains an edge  $uv$  with  $d(u) = 1$  and  $d(v) = 3$ . Let  $v_1$  and  $v_2$  denote the other two neighbors of  $v$ , where we may assume  $d(v_1) \leq d(v_2)$ . If  $d(v_1) = 1$ , then  $v$  would be an internal leaf of  $T$  with  $d(v) = 3$ , which contradicts [Theorem 6](#). Hence, we may assume  $d(v_1) \geq 2$ . [Lemma 8](#) implies  $3 \notin \{d(v_1), d(v_2)\}$ .

If  $d(v_1) = 2$ , let  $x$  denote the neighbor of  $v_1$  distinct from  $v$ . Let  $T' = T - xv_1 + xv$ , and notice that the contribution of the edge  $uv$  to  $\sigma(T') - \sigma(T)$  is  $(9 - 4)$ , the contribution of the edge  $v_1v$  is  $(9 - 1)$ , so we have

$$\begin{aligned}\sigma(T') - \sigma(T) &= (9 - 4) + (9 - 1) + (d(x) - 4)^2 - (d(x) - 2)^2 + (d(v_2) - 4)^2 - (d(v_2) - 3)^2 \\ &= 32 - 4d(x) - 2d(v_2) \geq 2 > 0,\end{aligned}$$

a contradiction with  $T$  being maximal.

If  $d(v_1) \geq 4$ , let us consider internal leaves of  $T$ . If  $v_1$  and  $v_2$  are the only two internal leaves of  $T$ , then  $d(v_1) = d(v_2) = 5$ . Let  $T' = T - v_1v + v_1u$ , and notice that the sum of contributions of edges  $v_1v$  and  $v_1u$  to  $\sigma(T') - \sigma(T)$  is  $(9 - 4)$ , the contribution of the edge  $uv$  is  $(0 - 4)$ , and of  $v_2v$  is  $(9 - 4)$ . Hence, we obtain

$$\sigma(T') - \sigma(T) = 2(9 - 4) + (0 - 4) = 6 > 0$$

a contradiction. So, we may assume that there exists an internal leaf  $z$  in  $T$  distinct from  $v_1$  and  $v_2$ .

Let  $w$  be the only neighbor of  $z$  which is not a leaf. Let  $T' = T - uv - zw + wu + uz$ . Notice that each of the edges  $v_1v$  and  $v_2v$  contributes to  $\sigma(T') - \sigma(T)$  with at least  $(4 - 1)$ , and the edges  $uv$  and  $uz$  taken together contribute at least  $(9 - 4)$ . Hence, it holds that

$$\begin{aligned}\sigma(T') - \sigma(T) &\geq ((d(w) - 2)^2 - (d(w) - 5)^2) + (9 - 4) + 2(4 - 1) \\ &= 6d(w) - 10 \geq 2 > 0,\end{aligned}$$

a contradiction with  $T$  being maximal, so we are done. ■

We are now in a position to prove that a maximal tree with  $\Delta = 5$  does not contain vertices of degree 3.

**Lemma 10.** *Let  $T$  be a maximal tree on  $n \geq 10$  vertices with  $\Delta = 5$ . Then,  $n_3 = 0$ .*

**Proof.** Assume to the contrary that  $T$  does contain a vertex  $u$  with  $d(u) = 3$ . Denote by  $u_1, u_2$  and  $u_3$  the three neighbors of  $u$ , and we may assume that  $d(u_1) \leq d(u_2) \leq d(u_3)$ . [Lemmas 8](#) and [9](#) imply that the degrees of  $u_1, u_2$  and  $u_3$  take their values from the set  $\{2, 4, 5\}$ .

Assume first that  $d(u_1) = d(u_2) = d(u_3) = 2$ . Denote by  $x$  the neighbor of  $u_1$  distinct from  $u$ , and let  $T' = T - xu_1 + xu$ . Notice that the contribution of each of the edges  $u_2u$  and  $u_3u$  to  $\sigma(T') - \sigma(T)$  is  $(4 - 1)$ , and the contribution of  $u_1u$  is

(9 – 1). We obtain

$$\begin{aligned}\sigma(T') - \sigma(T) &= 2(4 - 1) + (9 - 1) + (d(x) - 4)^2 - (d(x) - 2)^2 \\ &= 26 - 4d(x) \geq 6 > 0,\end{aligned}$$

a contradiction.

Assume next that  $d(u_1) = d(u_2) = 2$  and  $d(u_3) \geq 4$ . Denote by  $x$  and  $y$  the neighbor of  $u_1$  and  $u_2$ , respectively, distinct from  $u$ . Let  $T' = T - xu_1 - yu_2 + xu + yu$  and consider the difference  $\sigma(T') - \sigma(T)$ . Notice that the contribution of each of the edges  $u_1u$  and  $u_2u$  to the difference is  $(16 - 1)$ , and since  $d(u_3) \in \{4, 5\}$  the contribution of the edge  $u_3u$  is at least  $(0 - 4)$ , so we have

$$\begin{aligned}\sigma(T') - \sigma(T) &\geq ((d(x) - 5)^2 - (d(x) - 2)^2) + ((d(y) - 5)^2 - (d(y) - 2)^2) \\ &\quad + 2(16 - 1) + (0 - 4) \\ &= 68 - 6d(y) - 6d(x) \geq 8 > 0,\end{aligned}$$

a contradiction.

Assume further that  $d(u_1) = 2$  and  $d(u_2) \geq 4$ , which implies  $d(u_3) \geq 4$  also. If  $d(u_2) = 4$ , let  $T' = T - u_1u + u_1u_2$  and consider the difference  $\sigma(T') - \sigma(T)$ . The edges  $u_1u$  and  $u_1u_2$  taken together contribute  $(9 - 1)$  to the difference, the edge  $u_2u$  contributes  $(9 - 1)$ , and the edge  $u_3u$  contributes at least  $(4 - 1)$ . Also, each of the three edges incident to  $u_2$  distinct from  $u_2u$  contributes at least  $(0 - 1)$ . We conclude that

$$\sigma(T') - \sigma(T) \geq 2(9 - 1) + (4 - 1) + 3(0 - 1) = 16 > 0,$$

a contradiction. On the other hand, if  $d(u_2) = 5$ , then  $d(u_3) = 5$  also. Let  $z$  be a leaf of  $T$  contained in the same component of  $T - u_1u$  as  $u$ . Let  $T' = T - u_1u + u_1z$ , and notice that each of the edges  $u_2u$  and  $u_3u$  contributes to  $\sigma(T') - \sigma(T)$  by  $(9 - 4)$ . The pair of edges  $u_1u$  and  $u_1z$  taken together contributes  $(0 - 1)$ , and the edge incident to  $z$  in  $T$  contributes no less than  $(9 - 16)$ . We obtain

$$\sigma(T') - \sigma(T) \geq 2(9 - 4) + (0 - 1) + (9 - 16) = 2 > 0,$$

a contradiction.

Assume finally that  $d(u_1) \geq 4$ . Let  $z$  be a leaf of  $T$  contained in the same component of  $T - u_1u$  as  $u$ . Let  $T' = T - u_1u + u_1z$  and notice that each of the edges  $u_iu$ , given that  $d(u_i) \in \{4, 5\}$  contributes to  $\sigma(T') - \sigma(T)$  either  $(4 - 1)$  or  $(9 - 4)$ . Similarly, the edge incident to  $z$  in  $T$  contributes no less than  $(9 - 16)$ . Assuming the smallest possible contribution of edges  $u_iu$ , which is the worst case, we still have

$$\sigma(T') - \sigma(T) \geq 3(4 - 1) + (9 - 16) = 2 > 0,$$

a contradiction, so we are done. ■

Next, we wish to establish that a maximal tree  $T$  with  $\Delta$  does not contain a vertex of degree 4 either. Again, we will arrive to this result through the following two lemmas regarding the edges incident to a vertex of degree 4.

**Lemma 11.** *Let  $T$  be a maximal tree on  $n \geq 10$  vertices with  $\Delta = 5$ . Then,  $m_{2,4} = 0$ .*

**Proof.** Assume to the contrary that  $T$  contains an edge  $uv$  with  $d(u) = 2$  and  $d(v) = 4$ . Denote by  $u_1$  the only neighbor of  $u$  distinct from  $v$ . Also, denote by  $v_1, v_2$  and  $v_3$  the three neighbors of  $v$  distinct from  $u$ . Let  $T' = T - u_1u + u_1v$ , and notice that the contribution of the edge  $uv$  to  $\sigma(T') - \sigma(T)$  is  $16 - 4$ . Also, considering all the possible degrees of  $u_1$ , the contribution of the edges  $u_1u$  and  $u_1v$  taken together is no less than  $(0 - 9)$ . Similarly, considering all the possible degrees of  $v_i$ , the contribution of each edge  $v_iv$  is no less than  $(0 - 1)$ . We obtain

$$\sigma(T') - \sigma(T) \geq (16 - 4) + (0 - 9) + 3(0 - 1) = 0$$

with equality if and only if  $d(u_1) = d(v_1) = d(v_2) = d(v_3) = \Delta$ . If at least one of these degrees is not equal to  $\Delta$ , then we have a contradiction with  $T$  being maximal. So, let us assume that all these degrees are indeed equal to  $\Delta$ .

Let  $T_v$  be the connected component of  $T - v_1v - v_2v$  which contains  $v$ . Since  $d(v_3) = \Delta$ , there exists an internal leaf  $z$  in the connected component of  $T - v_1v - v_2v$  which contains  $v_3$ . By Theorem 6 we know  $d(z) = \Delta$ . Let  $z_1$  and  $z_2$  be two leaves attached to  $z$  in  $T$ . Now, let  $T' = T - v_1v - v_2v + v_1z_1 + v_2z_2$  and notice that the contribution to  $\sigma(T') - \sigma(T)$  of the pair of edges  $v_iv$  and  $v_iz_i$  taken together is  $(9 - 1)$ , for  $i \in \{1, 2\}$ , since  $d(v_i) = 5$ . The contribution of the edge  $uv$  is  $(0 - 4)$ , the contribution of the edge  $v_3v$  is  $(9 - 1)$ , and the contribution of each of the edges  $z_iz$ , for  $i \in \{1, 2\}$ , is  $(9 - 16)$ . Therefore, it holds that

$$\sigma(T') - \sigma(T) = 2(9 - 1) + (0 - 4) + (9 - 1) + 2(9 - 16) = 6 > 0,$$

so we again have a contradiction. ■

We next wish to show that a maximal tree cannot contain an edge with one end-vertex of degree 1 and the other 4.

**Lemma 12.** Let  $T$  be a maximal tree on  $n \geq 14$  vertices with  $\Delta = 5$ . Then,  $m_{1,4} = 0$ .

**Proof.** Assume to the contrary that  $T$  contains an edge  $uv$  with  $d(u) = 1$  and  $d(v) = 4$ . Denote by  $v_1, v_2$  and  $v_3$  the three neighbors of  $v$  distinct from  $u$ , where we may assume  $d(v_1) \leq d(v_2) \leq d(v_3)$ . Notice that  $d(v_2) = 1$  would imply  $d(v_1) = 1$  also, so  $v$  would be an internal leaf of  $T$  with  $d(v) = 4 < \Delta$ , a contradiction with [Theorem 6](#). Hence, we may assume  $d(v_2) \geq 2$ . [Lemmas 10](#) and [11](#) imply  $4 \leq d(v_2) \leq d(v_3)$ . The same two lemmas imply that  $d(v_1) = 1$  or  $d(v_1) \geq 4$ .

Assume first that  $d(v_1) = 1$ . If  $d(v_2) = d(v_3) = 4$ , let  $T' = T - uv - v_1v + uv_2 + v_1v_3$ , and notice that the contribution of the pair  $uv$  and  $uv_2$  taken together to  $\sigma(T') - \sigma(T)$  is  $(16 - 9)$ . The same holds for the pair  $v_1v$  and  $v_1v_3$ . Each of the edges  $v_iv$ , for  $i \in \{2, 3\}$ , contributes to the difference by  $(9 - 0)$ . Finally, each of the remaining six edges incident to  $v_2$  and  $v_3$  contributes no less than  $(0 - 1)$ . We conclude that

$$\sigma(T') - \sigma(T) \geq 2(16 - 9) + 2(9 - 0) + 6(0 - 1) = 26 > 0,$$

a contradiction.

If  $d(v_2) = 4$  and  $d(v_3) = 5$ , then let  $T' = T - v_1v + v_1v_2$ . The contribution to  $\sigma(T') - \sigma(T)$  of the pair  $v_1v + v_1v_2$  taken together is  $(16 - 9)$ , of  $uv$  is  $(4 - 9)$ , of  $v_2v$  is  $(4 - 0)$  and of  $v_3v$  is  $(4 - 1)$ . Also, the contribution of the remaining three edges incident to  $v_2$  is no less than  $(0 - 1)$ , which yields

$$\sigma(T') - \sigma(T) \geq (16 - 9) + (4 - 9) + (4 - 0) + (4 - 1) + 3(0 - 1) = 6 > 0,$$

again a contradiction.

Finally, if  $d(v_2) = d(v_3) = 5$ , notice that  $n \geq 14$  implies that  $T$  contains an internal leaf  $w$  distinct from  $v_2$  and  $v_3$ . Denote by  $z$  the non-leaf neighbor of  $w$ . [Lemma 10](#) implies  $d(z) \neq 3$ .

Let us first assume  $d(z) \geq 4$ . Let  $T' = T - uv - wz + wu + uz$ , and notice that the contribution to  $\sigma(T') - \sigma(T)$  of the pair  $uv$  and  $wz$  taken together is 0. Considering all the possible values of  $z$ , the contribution of the pair  $wz$  and  $uz$  is no less than  $(4 - 1)$ . The contribution of  $v_1v$  is  $(4 - 9)$ , and the contribution of each of  $v_2$  and  $v_3$  is  $(4 - 1)$ . We obtain

$$\sigma(T') - \sigma(T) \geq (4 - 1) + (4 - 9) + 2(4 - 1) = 4 > 0,$$

a contradiction. So, we may assume  $d(z) \leq 3$ .

If  $d(z) = 3$ , let  $T' = T - uv - v_1v + uz + v_1z$ , and notice that the pair  $uv$  and  $uz$  taken together contributes to  $\sigma(T') - \sigma(T)$  by  $(16 - 9)$ . The same holds for the pair  $v_1v$  and  $v_1z$ . Each of the edges  $v_2v$  and  $v_3v$  contributes  $(9 - 1)$ . The edge  $zw$  contributes  $(0 - 4)$ , and the two remaining edges incident to  $z$  contribute no less than  $(0 - 4)$ . Hence, we have

$$\sigma(T') - \sigma(T) \geq 2(16 - 9) + 2(9 - 1) + (0 - 4) + 2(0 - 4) = 18 > 0,$$

a contradiction.

If  $d(z) = 2$ , let  $T' = T - uv - v_1v - v_2v - v_3v + v_2v_3 + uz + vz + v_1z$ . Let  $x$  be the neighbor of  $z$  distinct from  $w$ , and notice that the edge  $zx$  contributes to  $\sigma(T)$  by no less than  $(1 - 9)$ . As for the other edges, notice that all edges incident to  $v$  in  $T$  contribute to  $\sigma(T)$  by  $1 + 1 + 9 + 9$ , also  $zw$  contributes to  $\sigma(T)$  by 9. In  $T'$ , all edges incident to  $z$  except  $xz$  contribute to  $\sigma(T')$  by  $16 + 16 + 16 + 0$ , and the edge  $v_2v_3$  contributes to  $\sigma(T')$  by 0. We conclude

$$\sigma(T') - \sigma(T) \geq (1 - 9) + (16 + 16 + 16 + 0) - (1 + 1 + 9 + 9) = 20 > 0,$$

a contradiction.

Assume now that  $d(v_1) \geq 4$ . Denote by  $z$  an internal leaf of  $T$  distinct from  $v_1, v_2$  and  $v_3$ , if such a vertex  $z$  exists. Let  $x$  be the only neighbor of  $z$  which is not a leaf and by  $y$  a neighbor of  $z$  which is a leaf. Let  $T' = T - uv - xz - uv_1 + xu + uz + v_1y$  and notice that

$$\sigma(T') - \sigma(T) \geq (9 - 0) + (0 - 0) + (4 - 0) + (9 - 16) + 2(4 - 0) = 14 > 0,$$

so we have a contradiction.

It remains to consider the case of  $d(v_1) \geq 4$  when  $v_1, v_2$  and  $v_3$  are the only internal leaves of  $T$ . If  $d(v_1) = 4$ , let  $T' = T - uv + uv_1$ . Notice that the contribution of the edges  $uv$  and  $uv_1$  considered together to  $\sigma(T') - \sigma(T)$  is  $16 - 9$ , the contribution of all the remaining edges is non-negative, so  $\sigma(T') - \sigma(T) > 0$ . If  $d(v_1) = 5$ , let  $T' = T - v_1v + uv_1$ . The contribution to  $\sigma(T') - \sigma(T)$  of the edges  $v_1v$  and  $uv_1$  taken together is  $9 - 1$ , of the edge  $uv$  is  $1 - 9$ , and for each of the edges  $v_2v$  and  $v_3v$  is  $4 - 1$ . We conclude

$$\sigma(T') - \sigma(T) \geq (9 - 1) + (1 - 9) + 2(4 - 1) = 6 > 0,$$

a contradiction. ■

Using the above two lemmas we can now establish that a maximal tree  $T$  does not contain a vertex of degree 4 either.

**Lemma 13.** Let  $T$  be a maximal tree on  $n \geq 14$  vertices with  $\Delta = 5$ . Then,  $n_4 = 0$ .

**Proof.** Assume to the contrary that  $T$  does contain a vertex  $u$  with  $d(u) = 4$ . Denote by  $u_i$ , for  $i = 1, \dots, 4$ , the four neighbors of  $u$ . We may assume that  $d(u_1) \leq d(u_2) \leq d(u_3) \leq d(u_4)$ . Lemmas 10–12 imply  $d(u_1) \geq 4$ . Since all internal leaves of  $T$  are of degree 5 and a vertex of degree 4 can only be neighbor to vertices of degree 4 or 5, we may assume  $d(u_4) = 5$ . Let  $z$  be an internal leaf of  $T$  contained in the same connected component of  $T - u_1u - u_2u$  as  $u$ . Theorem 6 implies that  $d(z) = 5$ . Denote by  $x$  and  $y$  two leaves attached to  $z$ . Let  $T' = T - u_1u - u_2u + u_1x + u_2y$  and notice that

$$\sigma(T') - \sigma(T) \geq (4 - 0) + (9 - 1) + 2(4 - 0) + 2(9 - 16) = 6 > 0,$$

so we obtain a contradiction with  $T$  being maximal. ■

Lemmas 10 and 13 imply the following corollary.

**Corollary 14.** *Let  $T$  be a maximal tree on  $n \geq 14$  vertices with  $\Delta = 5$ . Then  $T$  contains only vertices of degrees 1, 2 and  $\Delta$ .*

In order to fully characterize extremal trees with  $\Delta = 5$ , we need the following lemmas regarding the number and the position of vertices of the degree 2 in extremal trees.

**Lemma 15.** *Let  $T$  be a maximal tree on  $n \geq 14$  vertices with  $\Delta = 5$ . Then,  $m_{2,2} \leq 1$ . Moreover, if  $m_{2,2} = 1$ , then  $m_{\Delta,\Delta} = 0$ .*

**Proof.** Assume to the contrary that  $m_{2,2} \geq 2$ . Suppose first that all edges with both end-vertices of degree two are vertex disjoint. Denote by  $uv$  and  $ab$  a pair of edges with  $d(u) = d(v) = d(a) = d(b) = 2$ . Let  $u_1, v_1, a_1$  and  $b_1$  be the neighbors of  $u, v, a$  and  $b$ , respectively, which is not contained in  $\{u, v, a, b\}$ . Since all edges with both end-vertices of degree two are vertex disjoint, we conclude that  $d(u_1) = d(v_1) = d(a_1) = d(b_1) = 5$ . Let  $z$  be an internal leaf in  $T$ , and  $z_1$  a leaf attached to  $z$ . Theorem 6 implies  $d(z) = 5$ . Denote by  $T'$  the tree obtained from  $T$  by removing all edges incident to vertices  $u, v, a$  and  $b$ , and then adding edges  $u_1v_1, a_1b_1, uz_1, vz_1, az_1$  and  $bz_1$ . Notice that

$$\sigma(T') - \sigma(T) \geq 4(16 - 9) + (0 - 16) = 12 > 0,$$

and we have a contradiction.

Suppose next that not all such edges are vertex disjoint, i.e. that there exist two edges  $uv$  and  $vw$  in  $T$  with  $d(u) = d(v) = d(w) = 2$ . Denote by  $u_1$  and  $w_1$  the neighbor of  $u$  and  $w$ , respectively, which is not contained in  $\{u, v, w\}$ .

Assume first that there exists a vertex  $z \notin \{u, v, w\}$  in  $T$  of degree 2. Denote by  $z_1$  and  $z_2$  its two neighbors, and let  $x$  be a leaf in  $T$ . Let  $T'$  be the tree obtained from  $T$  by removing all edges incident to vertices  $u, v, w, z$  and then adding edges  $u_1w_1, z_1z_2, xu, xv, xz$  and  $xw$ . Notice that

$$\sigma(T') - \sigma(T) \geq (0 - 9) + (16 - 9) + (0 - 0) + (16 - 0) + 2(16 - 9) = 28 > 0,$$

a contradiction.

Assume next that  $\{u, v, w\}$  are all vertices of  $T$  of degree 2. Since  $n \geq 14$ , there exists a non-leaf vertex in  $T$  not contained in  $\{u, v, w, u_1, w_1\}$ . Hence, Corollary 14 implies that  $T$  contains an edge  $xy$  with  $d(x) = d(y) = 5$ . Let  $T' = T - uv - vw - xy + uw + xv + yv$  and notice that

$$\sigma(T') - \sigma(T) \geq 2(9 - 0) > 0,$$

a contradiction. Hence, we have established that  $T$  contains at most one edge with both end-vertices of degree 2.

Finally, let us assume that  $T$  contains an edge with both end-vertices of the degree 2, denote them by  $u$  and  $v$ . We wish to establish that in such a case  $T$  does not contain an edge with both end-vertices of degree  $\Delta$ . Assume to the contrary that  $T$  does contain such an edge  $xy$ . Denote by  $u_1$  the neighbor of  $u$  distinct from  $v$ , and let  $T' = T - u_1u - uv - xy + u_1v + xu + uv$ . Notice that edges  $u_1u$  and  $u_1v$  contribute to  $\sigma(T') - \sigma(T)$  by  $(9 - 9)$ , the edges  $uv$  and  $ux$  by  $(9 - 0)$ , and the edges  $xy$  and  $xu$  by  $(9 - 0)$ , so we have

$$\sigma(T') - \sigma(T) \geq (9 - 9) + 2(9 - 0) > 0,$$

a contradiction. ■

**Lemma 16.** *Let  $T$  be a maximal tree on  $n \geq 14$  vertices with  $\Delta = 5$ . Then,  $m_{\Delta,\Delta} \leq 3$ .*

**Proof.** Assume to the contrary that  $m_{\Delta,\Delta} \geq 4$ . Suppose first that every internal leaf of  $T$  is adjacent to a vertex of degree 2. Let  $u$  be an internal vertex of  $T$ ,  $v$  its neighbor of degree 2 and  $w$  the other neighbor of  $v$ . Let  $xy$  be an edge of  $T$  with  $d(x) = d(y) = \Delta$ . For the tree  $T' = T - uv - vw - xy + uw + xv + vy$  it obviously holds that  $\sigma(T') = \sigma(T)$ . Hence, we may consider only trees  $T$  in which at least one internal leaf is adjacent to a vertex of degree  $\Delta$ .

Let  $u$  be an internal leaf of  $T$  and  $v$  its neighbor of degree  $\Delta$ . Denote by  $u_i$ , for  $i = 1, 2, 3, 4$ , a leaf attached to  $u$ . Assume first that  $T$  contains precisely four edges with both end-vertices of the degree  $\Delta$ . Denote by  $a_i$  and  $b_i$ , for  $i = 1, 2, 3$ , the six vertices of  $T$  distinct from  $u$  such that  $d(a_i) = d(b_i) = \Delta$  and  $a_i b_i$  is the edge of  $T$ . We define the following two sets of

edges

$$E^- = \{u_iu : i = 1, \dots, 4\} \cup \{a_i b_i : i = 1, 2, 3\};$$

$$E^+ = \{a_i u_i, u_i b_i : i = 1, 2\} \cup \{a_3 u_3, u_3 u_4, u_4 b_3\}.$$

Let  $T' = T - E^- + E^+$  and notice that  $T'$  must be a tree, since the removed edges  $u_iu$  are incident to leaves, and the removed edges  $a_i b_i$  are replaced by subpaths connecting  $a_i$  and  $b_i$  which contain vertices  $u_i$ . Now, each of the edges  $u_iu$  contributes to  $\sigma(T') - \sigma(T)$  by  $-16$ , the fifth edge incident to  $u$  by  $16$ , each of the edges  $a_i b_i$  by  $0$ , each of the edges  $a_i u_i$  and  $u_i b_i$  by  $9$ , and the edge  $u_3 u_4$  by  $0$ . So, we obtain

$$\sigma(T') - \sigma(T) = 4 \cdot (-16) + 16 + 6 \cdot 9 = 6 > 0,$$

a contradiction.

Assume next that  $T$  contains at least five edges with both end-vertices of the degree  $\Delta$ . We assume that one of them is incident to an internal leaf  $u$ , and let  $u_i$  be a leaf attached to  $u$  for  $i = 1, \dots, 4$ . Denote by  $a_i$  and  $b_i$ , for  $i = 1, \dots, 4$ , the vertices of  $T$  with  $d(a_i) = d(b_i) = \Delta$  such that  $a_i b_i$  is an edge of  $T$ . We again define sets

$$E^- = \{u_iu : i = 1, \dots, 4\} \cup \{a_i b_i : i = 1, \dots, 4\};$$

$$E^+ = \{a_i u_i, u_i b_i : i = 1, \dots, 4\}.$$

Let  $T' = T - E^- + E^+$  and notice that each of the edges  $u_iu$  contributes to  $\sigma(T') - \sigma(T)$  by  $-16$ , the fifth edge incident to  $u$  by  $16$ , each of the edges  $a_i b_i$  by  $0$ , and each of the edges  $a_i u_i$  and  $u_i b_i$  by  $9$ . Hence,

$$\sigma(T') - \sigma(T) = 4 \cdot (-16) + 16 + 8 \cdot 9 = 24 > 0,$$

a contradiction. ■

All the above lemmas yield that a maximal tree  $T$  with  $\Delta = 5$  and  $n \geq 14$  has the following properties:

- (P<sub>1</sub>)  $T$  contains only vertices of degrees 1, 2 and  $\Delta$ ;
- (P<sub>2</sub>) all internal leaves of  $T$  are of degree  $\Delta$ ;
- (P<sub>3</sub>)  $m_{\Delta, \Delta} \leq 3$  and  $m_{2, 2} \leq 1$ ;
- (P<sub>4</sub>) if  $m_{2, 2} = 1$ , then  $m_{\Delta, \Delta} = 0$ .

Denote by  $\mathcal{T}_{n, \Delta}$  the family of all trees on  $n \geq 8$  vertices with maximum degree  $\Delta = 5$  which satisfy the properties (P<sub>1</sub>)-(P<sub>4</sub>). In the next theorem we establish that all trees of  $\mathcal{T}_{n, \Delta}$  are maximal.

**Theorem 17.** *Let  $T$  be a tree with  $\Delta = 5$  and  $n \geq 14$ . The tree  $T$  is maximal if and only if  $T$  belongs to  $\mathcal{T}_{n, \Delta}$ .*

**Proof.** If  $T$  is maximal, then  $T$  has all the properties (P<sub>1</sub>)-(P<sub>4</sub>), so  $T$  belongs to  $\mathcal{T}_{n, \Delta}$ . Conversely, if  $T$  belongs to  $\mathcal{T}_{n, \Delta}$  we wish to prove that  $T$  is maximal. It is sufficient to show that all trees from  $\mathcal{T}_{n, \Delta}$  have the same value of  $\sigma$ -irregularity. Let  $T$  be a tree from  $\mathcal{T}_{n, \Delta}$ . Denote by  $n_i$  the number of vertices of degree  $i$  in  $T$ . Property (P<sub>1</sub>) implies  $n_1 + n_2 + n_5 = n$ . Due to Handshaking lemma, we also have  $5n_5 + 2n_2 + n_1 = 2(n - 1)$ . Next, consider the tree  $T'$  obtained from  $T$  by consecutive suppressions of vertices of degree 2 until there are no such vertices left. Notice that  $m_{\Delta, \Delta}(T') - 3 \leq n_2(T) \leq m_{\Delta, \Delta}(T') + 1$ , which implies that in  $T$  we have  $n_2 = n_5 - 4 + j$  for  $0 \leq j \leq 4 = \Delta - 1$ .

Taking all the equations together, we have obtained a system of three linear equations in terms of  $n_1$ ,  $n_2$  and  $n_5$  with the solution

$$n_1 = \frac{1}{5}(3n - 3j + 16), \quad n_2 = \frac{1}{5}(n + 4j - 18), \quad n_5 = \frac{1}{5}(n - j + 2).$$

In order for  $n_1$ ,  $n_2$  and  $n_5$  to be integers, it must hold  $j \equiv (n - 2) \pmod{5}$ . Since  $0 \leq j \leq 4 = \Delta - 1$ , we conclude that the value of  $j$  is determined by the value of  $n$ . This further implies that  $n_1$ ,  $n_2$  and  $n_3$  are also determined by the value of  $n$ , i.e. the values of  $n_1$ ,  $n_2$  and  $n_3$  do not depend on a tree  $T$ . Further, for a tree  $T$  it holds that  $m_{1, \Delta} = n_1$  and

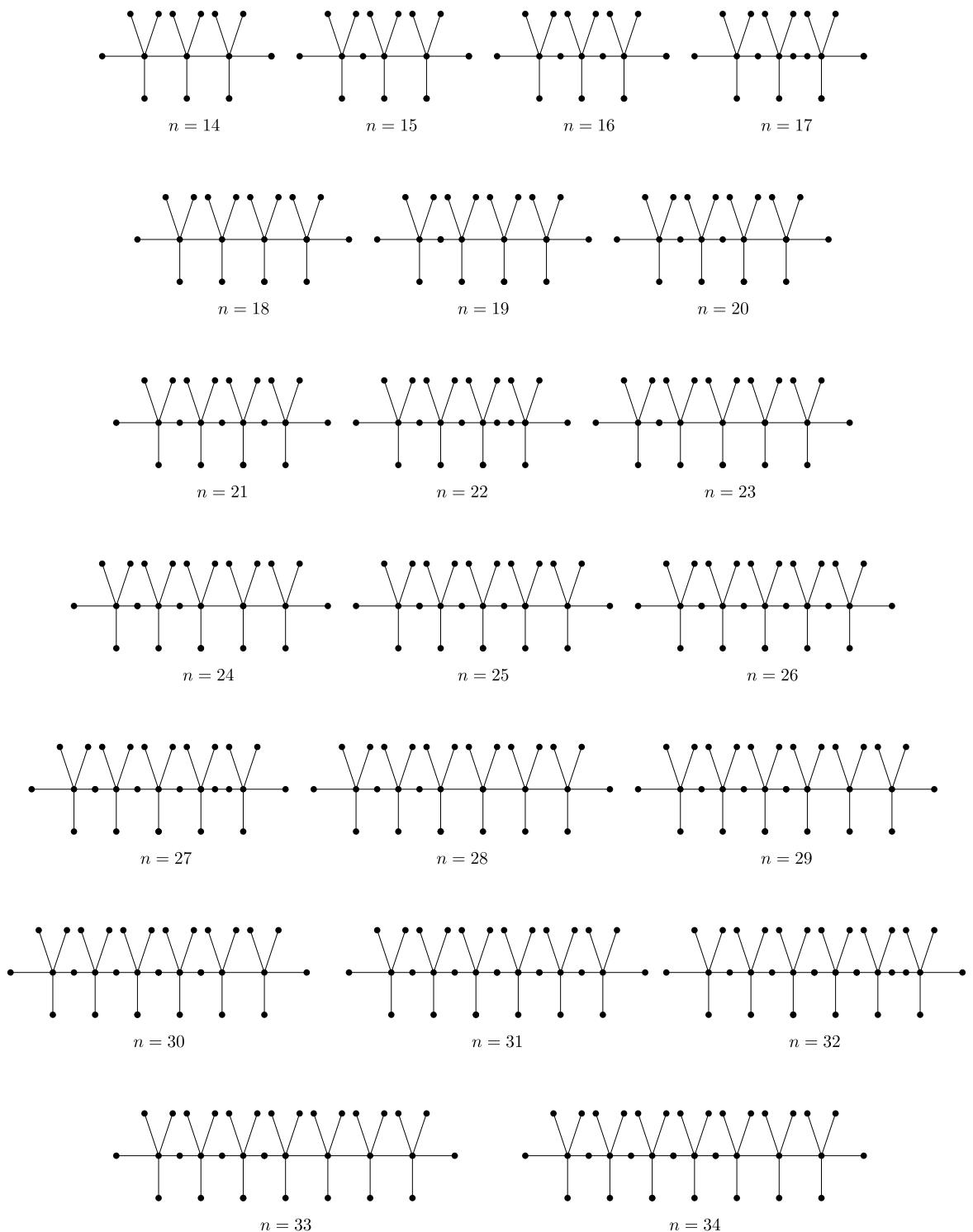
$$m_{2, \Delta} = \begin{cases} 2n_2 & \text{if } m_{2, 2} = 0; \\ 2n_2 - 1 & \text{if } m_{2, 2} = 1. \end{cases}$$

Since  $m_{2, 2} = 1$  if and only if  $j = 4$ , this implies that  $m_{1, \Delta}$  and  $m_{2, \Delta}$  are determined by the value of  $n$ . Notice that the property (P<sub>2</sub>) implies  $m_{1, 2} = 0$ , while  $m_{\Delta, \Delta}$  may be greater than zero, but the contribution of such edges to  $\sigma(T)$  equals zero. We conclude that  $\sigma(T) = m_{1, \Delta}(\Delta - 1)^2 + m_{2, \Delta}(\Delta - 2)^2$ , which implies that the value of  $\sigma(T)$  is determined by  $n$  and it does not depend on  $T$ . ■

The above theorem yields the following corollary (see Fig. 2).

**Corollary 18.** *Let  $T$  be a maximal tree with  $\Delta = 5$  and  $n = \Delta k - 2 + j \geq 14$ , where  $0 \leq j \leq \Delta - 1$ . Then,*

$$\sigma(T) = \begin{cases} \frac{1}{5}(3n - 3j + 16)(\Delta - 1)^2 + \frac{2}{5}(n + 4j - 18)(\Delta - 2)^2 & \text{if } j \neq 4, \\ \frac{1}{5}(3n - 3j + 16)(\Delta - 1)^2 + \frac{1}{5}(8j + 2n - 41)(\Delta - 2)^2 & \text{if } j = 4. \end{cases}$$



**Fig. 2.** Maximal trees  $T$  on  $n$  vertices with  $\Delta = 5$ , for  $14 \leq n \leq 34$ . (Mind that the list is not complete.).

## Acknowledgments

This work was partially supported by the Slovenian Research and Innovation Agency ARIS (Program no. P1-0383, Project no. J1-3002 and through the annual work program of Rudolfovo), by Ministry of Science of Montenegro (bilateral

Project no. 01-082/22-1659/1), by the Croatian Government and the European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Project KK.01.1.1.02.0027), by bilateral Croatian-Slovenian project BI-HR/25-27-004, and by bilateral Slovenian-Montenegrin project BI-ME/25-27-002.

## Data availability

No data was used for the research described in the article.

## References

- [1] H. Abdo, N. Cohen, D. Dimitrov, Graphs with maximal irregularity, *Filomat* 28 (2014) 1315–1322.
- [2] H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, *Discuss. Math. Graph Theory* 34 (2014) 263–278.
- [3] H. Abdo, D. Dimitrov, I. Gutman, Graphs with maximal  $\sigma$ -irregularity, *Discrete Appl. Math.* 250 (2018) 57–64.
- [4] M.O. Albertson, The irregularity of a graph, *Ars Combin.* 46 (1997) 219–225.
- [5] A. Ali, A.M. Albalahi, A.M. Alanazi, A.A. Bhatti, A.E. Hamza, On the maximum sigma index of k-cyclic graphs, *Discrete Appl. Math.* 352 (2023) 58–62.
- [6] R. Criado, J. Flores, A.G. del Amo, M. Romance, Centralities of a network and its line graph: an analytical comparison by means of their irregularity, *Int. J. Comput. Math.* 91 (2014) 304–314.
- [7] D. Dimitrov, W. Gao, W. Lin, J. Chen, Extremal trees with fixed degree sequence for  $\sigma$ -irregularity, *Discret. Math. Lett.* 12 (2023) 166–172.
- [8] D. Dimitrov, D. Stevanović, On the  $\sigma_t$ -irregularity and the inverse irregularity problem, *Appl. Math. Comput.* 441 (58) (2023) 127709.
- [9] E. Estrada, Quantifying network heterogeneity, *Phys. Rev. E* 82 (2010) #066102.
- [10] E. Estrada, Randić index, irregularity and complex biomolecular networks, *Acta Chim. Slov.* 57 (2010) 597–603.
- [11] S. Filipovski, D. Dimitrov, M. Knor, R. Škrekovski, Some results on  $\sigma_t$ -irregularity, [arXiv:2411.04881](https://arxiv.org/abs/2411.04881), [math.CO].
- [12] I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 10. Comparison of irregularity indices for chemical trees, *J. Chem. Inf. Model.* 45 (2005) 222–230.
- [13] I. Gutman, M. Togan, A. Yurtas, A.S. Cevik, I.N. Cangul, Inverse problem for sigma index, *MATCH Commun. Math. Comput. Chem.* 79 (2018) 491–508.
- [14] P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 9. Bounding the irregularity of a graph, *DIMACS Ser. Discrete Math. Theoret. Comput. Sci.* 69 (2005) 253–264.
- [15] M. Knor, R. Škrekovski, S. Filipovski, D. Dimitrov, Extremizing antiregular graphs by modifying total  $\sigma$ -irregularity, *Appl. Math. Comput.* 490 (2025) 129199.
- [16] T. Réti, On some properties of graph irregularity indices with a particular regard to the  $\sigma$ -index, *Appl. Math. Comput.* 344 (2019) 107–115.
- [17] T. Réti, R. Sharafdin, Á. Drégelyi-Kiss, H. Haghbin, Graph irregularity indices used as molecular descriptors in QSPR studies, *MATCH Commun. Math. Comput. Chem.* 79 (2018) 509–524.
- [18] T.A.B. Snijders, The degree variance: an index of graph heterogeneity, *Soc. Netw.* 3 (1981) 163–174.
- [19] Ž. Kovijanić Vukićević, G. Popivoda, S. Vujošević, R. Škrekovski, D. Dimitrov, The  $\sigma$ -irregularity of chemical trees, *MATCH Commun. Math. Comput. Chem.* 91 (2024) 267–282.