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ABSTRACT
We study a random walk on the Lie algebra 𝔰𝔩2(F𝑝) where new elements are produced by randomly applying adjoint
operators of two generators. Focusing on the generic case where the generators are selected at random, we analyze
the limiting distribution of the random walk and the speed at which it converges to this distribution. These questions
reduce to the study of a random walk on a cyclic group. We show that, with high probability, the walk exhibits a
pre-cutoff phenomenon after roughly 𝑝 steps. Notably, the limiting distribution need not be uniform, and it depends
on the prime divisors of 𝑝 − 1. Furthermore, we prove that by incorporating a simple random twist into the walk, we
can embed a well-known affine random walk on F𝑝 into the modified random Lie bracket, allowing us to show that
the entire Lie algebra is covered in roughly log 𝑝 steps in the generic case.

1 | Introduction

Random walks on finite groups are a powerful tool for analyzing their structure and properties (see Diaconis (1988); Hilde-
brand (2005) and references therein). Of particular significance is their connection to growth and expansion in Cayley
graphs of finite simple groups (see, for example, Bourgain and Gamburd (2008)). However, extending these techniques,
and ultimately the results, to the closely related setting of finite simple Lie algebras is not straightforward. Unlike groups,
Lie algebras have two operations: addition and the Lie bracket. The fact that the Lie bracket is non-invertible introduces
additional challenges.

In this paper, we introduce and study a random walk on the Lie algebra 𝔰𝔩2(F𝑝) that focuses solely on the Lie bracket
structure. This walk is defined as follows. Let 𝐴 and 𝐵 be a generating pair of the Lie algebra 𝔰𝔩2(F𝑝) with 𝑝 ≥ 3. Let
𝑍𝑘, for 𝑘 ∈ N, be independent random variables uniformly distributed in the set {𝐴,𝐵}. Starting with 𝑋0 = [𝐴,𝐵], the
random walk evolves according to

𝑋𝑘 = [𝑍𝑘,𝑋𝑘−1] (𝑘 ∈ N).

This process generates a sequence (𝑋𝑘)𝑘∈N0
that forms a Markov chain on the set 𝔰𝔩2(F𝑝). New elements are produced by

iteratively applying the adjoint operators associated with the generators, a process we refer to as the random Lie bracket.
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Example. Let us look at a simulation of the random Lie bracket. Suppose

𝑝 = 11, 𝐴 =

(
7 5
2 4

)
, 𝐵 =

(
8 8

10 3

)
, 𝑋0 = [𝐴,𝐵] =

(
1 10
2 10

)
.

Randomly sample the sequence (𝐵,𝐴,𝐵, 𝐵, 𝐵) from {𝐴,𝐵} to obtain the values

𝑋1 =

(
4 1

10 7

)
, 𝑋2 =

(
4 7
8 7

)
, 𝑋3 =

(
5 4
7 6

)
, 𝑋4 =

(
5 6

10 6

)
, 𝑋5 =

(
9 5
6 2

)
.

Observe that 𝑋2 = 4𝑋0, 𝑋4 = 5𝑋0.

Our goal is to analyze the limiting distribution of this random walk and to study the rate at which it converges to that
distribution, particularly when the elements 𝐴 and 𝐵 are chosen uniformly at random. We prove the following somewhat
surprising results.

The random walk (𝑋𝑘)𝑘∈N0
exhibits different behavior depending on whether the number of steps is even or odd (as hinted

at in the example above). In fact, as we will explain, it suffices to focus on what happens after an even number of steps.
We first show that the distribution of 𝑋2𝑘 is supported on the line Lin{[𝐴,𝐵]} and converges (in total variation distance1)
to a distribution 𝜈2𝑘 on this line in a pre-cutoff manner at 𝑘 ≈ 𝑝.

Theorem 1.1. For every 𝛿, 𝜖 > 0, there are constants 𝐶, 𝑐 > 0 such that the following holds. Let 𝑝 > 𝐶 , let 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝)
be uniformly random, and let (𝑋𝑘)𝑘∈N0

be the associated random Lie bracket. Let 𝜇2𝑘 be the distribution of 𝑋2𝑘. There is a
distribution 𝜈2𝑘 that is uniform on a coset of a subgroup of F∗

𝑝
= Lin{[𝐴,𝐵]} ⧵ {0} such that with probability at least 1 − 𝛿:

1. For 𝑘 < 𝑐𝑝, we have d(𝜇2𝑘, 𝜈2𝑘) > 1 − 𝜖.

2. For 𝑘 > 𝐶𝑝, we have d(𝜇2𝑘, 𝜈2𝑘) < 𝜖.

After 2𝑘 + 1 of steps, the distribution 𝜈2𝑘 equally splits into two distributions, one supported on the line Lin{[𝐴, [𝐴,𝐵]]}
and the other on the line Lin{[𝐵, [𝐴,𝐵]]}.

Example. Consider the example above. Take 𝑘 = 50 and generate 1000 independent samples of the random Lie bracket
𝑋100. The following table shows the sample distribution:(

[𝐴,𝐵] 5[𝐴,𝐵] 4[𝐴,𝐵] 3[𝐴,𝐵] 9[𝐴,𝐵]
189 185 193 209 224

)

In this case, the distribution 𝜈100 (indeed, any 𝜈2𝑘 with 𝑘 > 0) is uniform over the five listed multiples of [𝐴,𝐵]. The total
variation distance between the sample distribution and𝜈100 is 0.033.

For randomly chosen 𝐴,𝐵, the distribution 𝜈2𝑘 is uniform on the whole of Lin{[𝐴,𝐵]} ⧵ {0} with a certain probability that
depends on the prime divisors of 𝑝 − 1.

Theorem 1.2. Let (𝑠, 𝑡) be a subinterval of

 =
[

1
𝜁(2)

,
2
3

]
∪
[

9
8𝜁(2)

,
3
4

]
≈ [0.6079, 0.6667] ∪ [0.6839, 0.7500].

Then there is a set of primes 𝑝 of positive lower density with the following property. Let 𝐴,𝐵 be uniformly random in 𝔰𝔩2(F𝑝),
and let 𝜈 be the uniform distribution on Lin{[𝐴,𝐵]} ⧵ {0}. Then P𝐴,𝐵(𝜈2𝑘 = 𝜈) ∈ (𝑠, 𝑡) for all 𝑘 ≥ 0.2

Based on our inspection of the random Lie bracket on 𝔰𝔩2(F𝑝) driven by random generators 𝐴 and 𝐵, we can prove an
additional result in this setting. Although the random walk requires roughly 𝑝 steps to approach its limiting distribution,
the two elements𝐴 and𝐵 generate the entire Lie algebra 𝔰𝔩2(F𝑝) much more quickly. In fact, we will show that, with high
probability, every element of 𝔰𝔩2(F𝑝) can be reached after only 𝑂(log 𝑝) steps.
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We measure steps in a weighted way using the notion of the diameter of a Lie algebra as defined in Dona (2023). Let 𝑆
be a subset of a Lie algebra 𝔤. The set 𝑆 is called symmetric if 0 ∈ 𝑆 and 𝑆 = −𝑆. For a symmetric set 𝑆, we inductively
define the set of weighted 𝑘-balls as

𝑆1 = 𝑆, 𝑆𝑘 =
⋃

0<𝑗<𝑘

(
(𝑆𝑗 + 𝑆𝑘−𝑗) ∪ [𝑆𝑗, 𝑆𝑘−𝑗]

)
(𝑘 ≥ 2),

where we have denoted 𝑋 + 𝑌 = {𝑥 + 𝑦|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } and [𝑋, 𝑌 ] = {[𝑥, 𝑦]|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } for subsets 𝑋, 𝑌 ⊆ 𝔤. If 𝑆 is a
symmetric generating set of a Lie algebra 𝔤 over F𝑝, then the diameter diam(𝔤, 𝑆) of 𝔤 with respect to 𝑆 is the smallest 𝑘
such that 𝑆𝑘 = 𝔤.

For any classical Lie algebra 𝔤 over F𝑝, Dona proves in Dona (2023) that there is a constant 𝐶 = 𝑂(dim (𝔤)2 log dim(𝔤))
such that

diam(𝔤, 𝑆) ≤ (log |𝔤|)𝐶
for any symmetric generating set 𝑆 of 𝔤. For the case of 𝔰𝔩2(F𝑝), this gives a bound of the form (log 𝑝)𝑂(1). We will now
improve this bound to linear in log 𝑝 for the case when the generating set is chosen uniformly at random.

Theorem 1.3. There is a (possibly empty) small set3of primes 𝑇 with the following property. For any 𝜖 > 0 there is a 𝐶

such that for all primes 𝑝 > 𝐶 not in 𝑇 , we have

P𝐴,𝐵

(
diam

(
𝔰𝔩2(F𝑝), 𝑆

) ≤ 120 log 𝑝 + 8
) ≥ 1 − 𝜖,

where 𝑆 = {0,±𝐴,±𝐵} for uniformly random 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝).

The situation is very similar to what happens in groups: the diameter of SL2(F𝑝) is (log 𝑝)𝑂(1) for any generating set, and
it is 𝑂(log 𝑝) for a random generating set (Helfgott 2008, Corollary 6.5).

1.1 | Reader’s Guide

The ideas behind these results can be outlined as follows. First, we analyze the initial steps of the random walk and observe
that odd and even steps exhibit distinct behaviors. This observation allows us to reduce the problem to a random walk
on the cyclic group F∗

𝑝
of order 𝑛 = 𝑝 − 1 (see Section 2). The key parameters of this random walk are the coefficients of

the Gram matrix associated with the Hilbert–Schmidt inner product on 𝔰𝔩2(F𝑝). We then study the distribution of these
parameters and demonstrate that they are nearly uniform (see Section 3). As a result, the problem reduces to analyzing a
random walk on the cyclic group Z𝑛 with almost uniformly random generators, which can be approached using Fourier
analysis on cyclic groups (see Section 4). We identify the characters that contribute to the limiting distribution 𝜈2𝑘 and
relate the probability of converging to the uniform distribution to a 𝜁(2)–type condition concerning the prime divisors of
𝑛 = 𝑝 − 1 (see Section 5). After that, we establish the pre-cutoff4 phenomenon for the random Lie bracket (see Section 6).
Upper bounds on the total variation distance in the generic case were first obtained in Hildebrand (1994), and lower
bounds were established in Hildebrand (2005) (see Theorem 2 and the exercises following it). Here, we provide simpler
proofs tailored to our specific requirements. For the upper bound, we adapt recent elementary methods based on Fourier
analysis from Abrams et al. (2022). These techniques alone yield only a 1∕2 − 𝜖 lower bound, as we discuss. We therefore
streamline the probabilistic argument from Hildebrand (2005) in our context to obtain the stronger 1 − 𝜖 bound. Lastly,
we discuss the linear bound of 𝑂(log 𝑝) on the diameter with respect to generic generators (see Section 7). Our result here
relies on embedding a variant of the well-known Chung-Diaconis-Graham affine random walk on F𝑝 Chung et al. (1987)
into the random Lie bracket, which allows us to leverage the results of Breuillard and Varjú (2022) on covering times of
such walks.

2 | Translating the Walk to a Cyclic Group

2.1 | Inner Product and Adjoint Operators

The vector space 𝔰𝔩2(F𝑝) comes equipped with the inner product ⟨𝐴,𝐵⟩ = tr(𝐴𝐵). Note that ⟨𝐴,𝐴⟩ = tr(𝐴2), and since
𝐴2 + det(𝐴) = 0 for a matrix in 𝔰𝔩2(F𝑝), we have ⟨𝐴,𝐴⟩ = −2 det(𝐴).5

Random Structures & Algorithms, 2026 3 of 19
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Lemma 2.1 (compare with Proposition 6.2 in Cantor et al. (2025)). For any two elements 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝), we have

[𝐴,𝐵,𝐵] = 2⟨𝐵,𝐵⟩𝐴 − 2⟨𝐴,𝐵⟩𝐵.
Proof. The characteristic polynomial of 𝐴 is 𝐴2 + det𝐴 = 0, hence 𝐴3 − 1

2
⟨𝐴,𝐴⟩𝐴 = 0. Multilinearize this identity by

considering it in the Lie algebra 𝔰𝔩2(F𝑝)⊗F𝑝
F𝑝[𝑇 ]∕(𝑇 2) and using it with the element 𝑇𝐴 + 𝐵. Inspecting the 𝑇 -term, we

obtain

𝐴𝐵2 + 𝐵𝐴𝐵 + 𝐵2𝐴 − 1
2
(2⟨𝐴,𝐵⟩𝐵 + ⟨𝐵,𝐵⟩𝐴) = 0.

Taking into account that 𝐵2 = 1
2
⟨𝐵,𝐵⟩, we get

⟨𝐵,𝐵⟩𝐴 − 2⟨𝐴,𝐵⟩𝐵 + 2𝐵𝐴𝐵 = 0.

The last term of the sum is 2𝐵𝐴𝐵 = 2𝐵[𝐴,𝐵] + 2𝐵2𝐴 = 2𝐵[𝐴,𝐵] + ⟨𝐵,𝐵⟩𝐴, hence

2⟨𝐵,𝐵⟩𝐴 − 2⟨𝐴,𝐵⟩𝐵 = −2𝐵[𝐴,𝐵]. (1)

Finally, we have 𝐵[𝐴,𝐵] = 𝐵𝐴𝐵 − 𝐵2𝐴 = 𝐵𝐴𝐵 − 𝐴𝐵2 = [𝐵,𝐴]𝐵, therefore

[𝐴,𝐵,𝐵] = [𝐴,𝐵]𝐵 − 𝐵[𝐴,𝐵] = −2𝐵[𝐴,𝐵],

which is the right-hand side of (1). ◽

We clearly have ad𝐴𝐴 = 0, ad𝐴𝐵 = [𝐴,𝐵], and it follows from Lemma 2.1 that ad𝐴[𝐴,𝐵] = −2⟨𝐴,𝐵⟩𝐴 + 2⟨𝐴,𝐴⟩𝐵. Sym-
metrically, we have ad𝐵𝐴 = −[𝐴,𝐵], ad𝐵𝐵 = 0, and ad𝐵[𝐴,𝐵] = −2⟨𝐵,𝐵⟩𝐴 + 2⟨𝐴,𝐵⟩𝐵. Thus, if𝐴,𝐵 is a generating pair
of the Lie algebra 𝔰𝔩2(F𝑝), the matrices 𝐴,𝐵, [𝐴,𝐵] generate it as a vector space. In this basis, the adjoint operators ad𝐴
and ad𝐵 can be represented by the matrices

ad𝐴 =
⎛⎜⎜⎜⎝
0 0 −2⟨𝐴,𝐵⟩
0 0 2⟨𝐴,𝐴⟩
0 1 0

⎞⎟⎟⎟⎠, ad𝐵 =
⎛⎜⎜⎜⎝

0 0 −2⟨𝐵,𝐵⟩
0 0 2⟨𝐴,𝐵⟩
− 1 0 0

⎞⎟⎟⎟⎠.
To simplify notation we shall write 𝛼 = 2⟨𝐴,𝐵⟩, 𝛽 = 2⟨𝐴,𝐴⟩ and 𝛾 = 2⟨𝐵,𝐵⟩.
2.2 | Odd/Even Number of Steps

The random walk (𝑋𝑘)𝑘∈ℕ0
begins at 𝑋0 = [𝐴,𝐵]. After the first step, 𝑋1 is uniformly distributed among the elements

ad𝐴𝑋0 = −𝛼𝐴 + 𝛽𝐵 and ad𝐵𝑋0 = −𝛾𝐴 + 𝛼𝐵. At the second step, 𝑋2 is uniformly distributed among 𝛽[𝐴,𝐵], 𝛼[𝐴,𝐵],
𝛼[𝐴,𝐵], and 𝛾[𝐴,𝐵].

By induction, we observe that for all even indices, 𝑋2𝑘 ∈ Lin{[𝐴,𝐵]}, where Lin{[𝐴,𝐵]} denotes the line spanned by
[𝐴,𝐵]. Similarly, for all odd indices, 𝑋2𝑘+1 ∈ Lin{−𝛼𝐴 + 𝛽𝐵} ∪ Lin{−𝛾𝐴 + 𝛼𝐵}. Given the distribution of 𝑋2𝑘 on the line
Lin{[𝐴,𝐵]}, it follows that 𝑋2𝑘+1 is distributed proportionally (scaled by a factor of 1∕2) across the lines Lin{−𝛼𝐴 + 𝛽𝐵}
and Lin{−𝛾𝐴 + 𝛼𝐵}.

Thus, to understand the behavior of our random walk, it suffices to focus on the distribution after an even number of
steps. This allows us to reduce the problem to analyzing how the distribution evolves along the line Lin{[𝐴,𝐵]}.

The sequence (𝑋2𝑘)𝑘∈N is equivalent to a random walk on F𝑝, where we start at the element 1 ∈ F𝑝 and, at each step,
multiply by 𝛼 with probability 1∕2, or by 𝛽 or 𝛾 each with probability 1∕4. Provided that 𝛼, 𝛽, and 𝛾 are nonzero, this
random walk occurs on the group F∗

𝑝
. By fixing an isomorphism log ∶ F∗

𝑝
→ Z𝑛 where 𝑛 = 𝑝 − 1, we can translate the

problem to a random walk on the cyclic group Z𝑛.

4 of 19 Random Structures & Algorithms, 2026
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3 | Distribution of the Gram Matrix

In order to analyze our random walk, we need to determine how the parameters 𝛼 = 2⟨𝐴,𝐵⟩, 𝛽 = 2⟨𝐴,𝐴⟩, and 𝛾 = 2⟨𝐵,𝐵⟩
are distributed in F𝑝 as 𝐴,𝐵 vary across 𝔰𝔩2(F𝑝). These parameters are essentially coefficients of the Gram matrix of the
inner product on 𝔰𝔩2(F𝑝):

𝐺𝐴,𝐵 =

(⟨𝐴,𝐴⟩ ⟨𝐴,𝐵⟩⟨𝐴,𝐵⟩ ⟨𝐵,𝐵⟩
)

= 1
2

(
𝛽 𝛼

𝛼 𝛾

)
.

We thus consider the Gram map to the set of all symmetric matrices,

𝐺 ∶ 𝔰𝔩2(F𝑝)2 → Sym2(F𝑝), (𝐴,𝐵) ↦ 𝐺𝐴,𝐵.

The orthogonal group𝑂(3) over F𝑝 acts naturally on the space 𝔰𝔩2(F𝑝) (see Clark (2013)), with Witt decompositon ⟨𝑒, 𝑓⟩⊕⟨ℎ⟩, where 𝑒 = 𝐸12, 𝑓 = 𝐸21, and ℎ = 𝐸11 − 𝐸22. The discriminant of the form is −2. This action induces an action on pairs
(𝐴,𝐵) ∈ 𝔰𝔩2(F𝑝)2. The Gram map 𝐺 is invariant under this action.

3.1 | Fibers of the Gram Map

Lemma 3.1. The number of elements 𝐴 ∈ 𝔰𝔩2(F𝑝) with ⟨𝐴,𝐴⟩ = 𝑎 is equal to 𝑝(𝑝 + 𝜂(𝑎∕2)), where 𝜂 is the quadratic
character on F𝑝.

Proof. Write 𝐴 = 𝑥𝑒 + 𝑦𝑓 + 𝑧ℎ with 𝑥, 𝑦, 𝑧 ∈ F𝑝. The condition ⟨𝐴,𝐴⟩ = 𝑎 is equivalent to 2𝑥𝑦 + 2𝑧2 = 𝑎. This is an
affine quadric. If 𝑦 ≠ 0, we can uniquely solve for 𝑥, giving (𝑝 − 1)𝑝 solutions. If 𝑦 = 0, we have 𝑧2 = 𝑎∕2, which has
1 + 𝜂(𝑎∕2) solutions for 𝑧, and 𝑥 is arbitrary, giving 𝑝(1 + 𝜂(𝑎∕2)) solutions. ◽

Proposition 3.2. Let 𝑋 ∈ Sym2(F𝑝). Then

|𝐺−1(𝑋)| =
⎧⎪⎪⎨⎪⎪⎩

𝑝3 − 𝑝 rank 𝑋 = 2
2𝑝3 + 𝑝2 − 𝑝 rank 𝑋 = 1, 𝜂(𝑋11∕2), 𝜂(𝑋22∕2) ≥ 0
𝑝2 − 𝑝 rank 𝑋 = 1, 𝜂(𝑋11∕2) = −1 or 𝜂(𝑋22∕2) = −1
𝑝3 + 𝑝2 − 𝑝 rank 𝑋 = 0.

Proof. Each fiber of 𝐺 is a disjoint union of orbits under the action of 𝑂(3). The size of the orthogonal group is |𝑂(3)| =
2𝑝(𝑝2 − 1).

Suppose first that rank 𝑋 = 2. Each pair (𝐴,𝐵) ∈ 𝔰𝔩2(F𝑝)2 with𝐺𝐴,𝐵 = 𝑋 determines a nondegenerate quadratic subspace⟨𝐴,𝐵⟩ of 𝔰𝔩2(F𝑝). For any other pair (𝐴′, 𝐵′) with 𝐺𝐴′,𝐵′ = 𝑋, we have an isometry mapping 𝐴 ↦ 𝐴′, 𝐵 → 𝐵′. By Witt’s
extension lemma, this isometry can be extended to an action of 𝑂(3) on 𝔰𝔩2(F𝑝) that maps (𝐴,𝐵) to (𝐴′, 𝐵′). Thus, the
fiber of 𝐺 over 𝑋 is a single orbit of 𝑂(3). The stabilizer Stab𝑂(3)(𝐴,𝐵) fixes ⟨𝐴,𝐵⟩ pointwise, hence it also preserves the
line ⟨𝐴,𝐵⟩⊥, on which it can only act as ±id. Hence |Stab𝑂(3)(𝐴,𝐵)| = 2 and so the orbit of 𝑂(3) on (𝐴,𝐵) is of size 𝑝3 − 𝑝.

Assume now that rank 𝑋 = 0. Suppose (𝐴,𝐵) is a pair with 𝐺𝐴,𝐵 = 0. Since the Witt index of the quadratic space 𝔰𝔩2(F𝑝)
is 1, we must have dim⟨𝐴,𝐵⟩ < 2. Assume (𝐴,𝐵) ≠ (0, 0), which forms a single orbit of size 1. Thus (𝐴,𝐵) = (𝜆𝑍, 𝜇𝑍)
for some (𝜆, 𝜇) ∈ F2

𝑝
⧵ {0} and 0 ≠ 𝑍 ∈ 𝔰𝔩2(F𝑝) with ⟨𝑍,𝑍⟩ = 0. By Witt extension lemma, this pair maps to a pair with

𝑍 = 𝑒 under 𝑂(3). Two such pairs can further be mapped to each other by an 𝑂(3) map if and only if their (𝜆, 𝜇) vectors
are dependent. Thus, a set of orbit representatives is parameterized by vectors in P1, so there are 𝑝 + 1 orbits in total. Each
such orbit has size |𝑂(3).𝑒|, which is the number of nonzero isotropic vectors in 𝔰𝔩2(F𝑝). There are a total of 𝑝2 − 1 of these
by the previous lemma. In total, we obtain 1 + (𝑝 + 1)(𝑝2 − 1) = 𝑝3 + 𝑝2 − 𝑝 pairs in the fiber over 0.

Consider finally the option when rank 𝑋 = 1. Suppose (𝐴,𝐵) is a pair with 𝐺𝐴,𝐵 = 𝑋.
dim⟨𝐴,𝐵⟩ = 1: This means (𝐴,𝐵) = (𝑥𝑍, 𝑦𝑍) for some 𝑍 ∈ 𝔰𝔩2(F𝑝) and 𝑥, 𝑦 not both 0. The Gram matrix of this pair is

𝑋 = ⟨𝑍,𝑍⟩(𝑥2 𝑥𝑦

𝑥𝑦 𝑦2

)
,

Random Structures & Algorithms, 2026 5 of 19
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so ⟨𝑍,𝑍⟩ ≠ 0. Let (𝐶,𝐷) be another pair with 𝐺𝐶,𝐷 = 𝑋. Thus (𝐶,𝐷) = (𝛼𝑊 , 𝛽𝑊 ) for some 𝛼, 𝛽 not both zero.
Comparing the Gram matrices, it follows that ⟨𝑊 ,𝑊 ⟩∕⟨𝑍,𝑍⟩ is a nonzero square 𝑢2 ∈ F𝑝. Hence𝑊 can be mapped
by an element of 𝑂(3) to 𝑢𝑍, and the pair (𝐶,𝐷) gets mapped to (𝛼𝑢𝑍, 𝛽𝑢𝑍). Again, comparing the Gram matrices
gives 𝛼𝑢 = ±𝑥 and 𝛽𝑢 = ±𝑦, where nonequal signs can only occur if 𝛼𝛽 = 0. Hence (𝐶,𝐷) = (𝑥𝑍, 𝑦𝑍) = (𝐴,𝐵) or
(𝐶,𝐷) = (−𝐴,−𝐵) when 𝛼𝛽 ≠ 0, and (𝐶,𝐷) = (0,±𝑦𝑍) = (0,±𝐵) or (±𝑥𝑍, 0) = (±𝐴, 0) when 𝛼𝛽 = 0. In all cases,
an extra application of an element of 𝑂(3) identifies elements with distinct signs. Therefore (𝐶,𝐷) is in the orbit of
(𝐴,𝐵), and hence (𝐴,𝐵) has a single orbit under𝑂(3). The stabilizer of any such point is the transformations in𝑂(3)
that fix 𝑍. Since 𝑍 is anisotropic, we have two options for the complement: either it is split or non-split, depending
on whether the discriminant Δ(⟨𝑍⟩⊥) = −2∕⟨𝑍,𝑍⟩ is −1 modulo squares. In the split case, the stabilizer has size
2(𝑝 − 1), and in the non-split case, it has size 2(𝑝 + 1). Thus, the stabilizer is of size 2(𝑝 − 𝜂(⟨𝑍,𝑍⟩∕2)). The number
of pairs in the fiber over 𝑋 is thus 𝑝(𝑝 + 𝜂(⟨𝑍,𝑍⟩∕2)). These orbits appear whenever 𝑋 is of rank 1.

dim⟨𝐴,𝐵⟩ = 2: In this case, we can find a nonzero vector 𝐶 ∈ ⟨𝐴,𝐵⟩ that is orthogonal to 𝐴 and 𝐵. Hence 𝐶 is isotropic,
and we can map it to 𝑒 under 𝑂(3). Then 𝐴,𝐵 ∈ ⟨𝑒⟩⊥ = ⟨𝑒, ℎ⟩. Thus 𝐴 = 𝑥0𝑒 + 𝑥ℎ and 𝐵 = 𝑦0𝑒 + 𝑦ℎ with not both
𝑥, 𝑦 zero. Assuming 𝑦 ≠ 0, an orthogonal transformation maps this pair into (𝑒 + 𝑥ℎ, 𝑦ℎ). On the other hand, if
𝑦 = 0, we can map it to (𝑥ℎ, 𝑒). In both cases, the values of 𝑥, 𝑦 are uniquely determined by 𝑋 (the option −𝑥,−𝑦
is equivalent to (𝐴,𝐵) by the flip along ⟨𝑒, 𝑓⟩). Hence, we again have a unique orbit over any 𝑋. Since the stabi-
lizer of (𝑒, 𝑓 ) is trivial, the orbit is of size 2𝑝(𝑝2 − 1). These orbits only appear when 𝜂(𝑋11∕2), 𝜂(𝑋22∕2) ≥ 0 (not
both zero).

Summing up the contributions from the two cases completes the proof. ◽

Corollary 3.3. Let 𝐴,𝐵 be uniformly random in 𝔰𝔩2(F𝑝). Then 𝐺𝐴,𝐵 has all entries nonzero with probability at least
1 − 9∕𝑝.

Proof. Each fiber of the Gram map is of size at most 3𝑝3. The probability that 𝐺𝐴,𝐵 has a zero entry can thus be upper
bounded by the union bound as

1
𝑝6

∑
𝑋∈Sym2(F𝑝)⧵Sym2(F∗

𝑝
)
|𝐺−1(𝑋)| ≤ 3𝑝3 ⋅ 3𝑝2

𝑝6 = 9
𝑝
.

◽

3.2 | Distribution of Parameters Governing the Random Walk

Let  = 𝐺−1(Sym2(F∗
𝑝
)) be the set of pairs (𝐴,𝐵) ∈ 𝔰𝔩2(F𝑝)2 whose Gram matrix 𝐺𝐴,𝐵 has all entries nonzero. For any

(𝐴,𝐵) ∈  , the random walk on 𝔰𝔩2(F𝑝) after an even number of steps reduces to a random walk on the cyclic group Z𝑝−1
as in Section 2. In this case, the behavior of the walk is determined by two parameters 𝑎, 𝑏 extracted from𝐺𝐴,𝐵 via the map

𝑃 ∶ Sym2(F∗
𝑝
) → Z2

𝑝−1, 𝑋 = 1
2

(
𝛽 𝛼

𝛼 𝛾

)
↦ (log(𝛼∕𝛽), log(𝛼∕𝛾)).

Let 𝐹 = 𝑃 ∘𝐺 ∶  → Z2
𝑝−1 be the composite map, so that (𝑎, 𝑏) = 𝐹 (𝐴,𝐵). Let 𝜋 be the pushforward measure of the uni-

form distribution on 𝔰𝔩2(F𝑝)2 under 𝐹 . In other words, 𝜋(𝑆) = |𝐹 −1(𝑆)|∕𝑝6 = P𝐴,𝐵(𝑃 (𝐺𝐴,𝐵) ∈ 𝑆) for any subset 𝑆 ⊆ Z2
𝑝−1.

Denote the uniform distribution on Z2
𝑝−1 by 𝜈Z2

𝑝−1
. As 𝑝 grows to infinity, the distributions 𝜋 and 𝜈Z2

𝑝−1
become close to each

other.

Proposition 3.4. For any subset 𝑆 ⊆ Z2
𝑝−1, we have

|𝜋(𝑆) − 𝜈Z2
𝑝−1
(𝑆)| ≤ 6

𝑝
.

To prove this proposition, we first examine the sizes of fibers of the map 𝐹 .

Lemma 3.5. For any 𝑥 = (𝑎, 𝑏) ∈ Z2
𝑝−1 we have
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||||||𝐹 −1(𝑥)| − 𝑝6

(𝑝 − 1)2

||||| ≤ 6𝑝3.

Proof. We have |𝑃 −1(𝑥)| = 𝑝 − 1. First, suppose that 𝑎 + 𝑏 = 0. In this case we have 𝛼2 = 𝛽𝛾 , so all matrices 𝑋 ∈ 𝑃 −1(𝑥)
have rank 1. Half of these satisfy 𝜂(𝑋11∕2) = 𝜂(𝑋22∕2) = 1, and the other half satisfy 𝜂(𝑋11∕2) = 𝜂(𝑋22∕2) = −1. It follows
from Proposition 3.2 that

|𝐹 −1(𝑥)| = 𝑝 − 1
2

(2𝑝3 + 𝑝2 − 𝑝) + 𝑝 − 1
2

(𝑝2 − 𝑝) = 𝑝4 − 2𝑝3 + 𝑝.

We compute 0 ≤ 𝑝6 − (𝑝4 − 2𝑝3 + 𝑝)(𝑝 − 1)2 ≤ 6𝑝3(𝑝 − 1)2. Dividing by (𝑝 − 1)2 completes the proof for this case.

Now, suppose that 𝑎 + 𝑏 ≠ 0. In this scenario, all matrices 𝑋 ∈ 𝑃 −1(𝑥) have rank 2. Again, by Proposition 3.2, the size of
the fiber 𝐹 −1(𝑥) is (𝑝 − 1)(𝑝3 − 𝑝) = 𝑝4 − 𝑝3 − 𝑝2 + 𝑝. As in the previous case, this quantity is within 6𝑝3 of 𝑝6∕(𝑝 − 1)2. ◽

Proof of Proposition 3.4. We have

|𝜋(𝑆) − 𝜈Z2
𝑝−1
(𝑆)| = ||||| 1

𝑝6

∑
𝑥∈𝑆
|𝐹 −1(𝑥)| − |𝑆|

(𝑝 − 1)2

||||| ≤ 1
𝑝6

∑
𝑥∈𝑆

||||||𝐹 −1(𝑥)| − 𝑝6

(𝑝 − 1)2

|||||.
The last sum can be upper bounded by the last lemma as 6𝑝3|𝑆|∕𝑝6 ≤ 6∕𝑝. ◽

We will need the following corollary multiple times in the rest of the paper.

Corollary 3.6. Let 𝑆 ⊆ 𝔰𝔩2(F𝑝)2 and𝑇 ⊆ Z2
𝑝−1 with𝑆 ∩ = 𝐹 −1(𝑇 ). Then

|||| |𝑆|𝑝6 − |𝑇 |
(𝑝 − 1)2

|||| < 15∕𝑝.

Proof. Since 𝐹 −1(𝑇 ) ⊆ 𝑆 ⊆ 𝐹 −1(𝑇 ) ∪ (𝔰𝔩2(F𝑝)2 ⧵ ), we have

|||| |𝑆|𝑝6 − |𝐹 −1(𝑇 )|
𝑝6

|||| ≤ |𝔰𝔩2(F𝑝)2 ⧵ |
𝑝6 ≤ 9

𝑝

by Corollary 3.3. On the other hand, we have|||| |𝐹 −1(𝑇 )|
𝑝6 − |𝑇 |

(𝑝 − 1)2

|||| = |𝜋(𝑇 ) − 𝜈Z2
𝑝−1
(𝑇 )| ≤ 6

𝑝

by Proposition 3.4. The result now follows by the triangle inequality. ◽

We shall apply the above corollary as follows. Suppose that for every (𝐴,𝐵) ∈  , the random walk on 𝔰𝔩2(F𝑝) exhibits a
property  if and only if the corresponding parameters (𝑎, 𝑏) = 𝐹 (𝐴,𝐵) ∈ Z2

𝑝−1 satisfy a condition . Then, for uniformly
random 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝), the probability that the walk exhibits property  differs by at most 15∕𝑝 from the probability that
uniformly random (𝑎, 𝑏) ∈ Z2

𝑝−1 satisfy .

4 | A Brief Overview of Fourier Analysis on Cyclic Groups

We give a brief overview of Fourier analysis on cyclic groups, following the exposition in Diaconis (1988).

4.1 | Setup

Let 𝑆 be a subset of a cyclic group Z𝑛 equipped with a probability measure 𝑝 ∶ 𝑆 → C. Let (𝑌𝑘)𝑘∈N0
be the random walk

on Z𝑛 starting at 0 with transition probabilities given by 𝑝(𝑥, 𝑦) = 𝑝(𝑦 − 𝑥). Let 𝜎𝑘 be the probability distribution of the
walk after 𝑘 steps, that is, 𝜎𝑘(𝑥) = P(𝑌𝑘 = 𝑥) for 𝑥 ∈ Z𝑛. This distribution is a function in the vector space 𝐿2(Z𝑛) of all
complex-valued functions on Z𝑛.

Random Structures & Algorithms, 2026 7 of 19
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4.2 | Markov Operator

Let 𝑀 ∶ 𝐿2(Z𝑛) → 𝐿2(Z𝑛) be the operator defined by

(𝑀𝑓 )(𝑥) =
∑
𝑠∈𝑆

𝑝(𝑠)𝑓 (𝑥 − 𝑠).

The distribution 𝜎𝑘 can be written as

𝜎𝑘(𝑥) =
∑
𝑠∈𝑆

𝑝(𝑠)𝜎𝑘−1(𝑥 − 𝑠) = (𝑀𝜎𝑘−1)(𝑥),

and so 𝜎𝑘 = 𝑀𝑘𝜎0 = 𝑀𝑘10. In order to understand high powers of the Markov operator, we need to analyze its eigenvalues
and eigenfunctions. For any character 𝜒 of the group Z𝑛, we have

(𝑀𝜒)(𝑥) =

(∑
𝑠∈𝑆

𝑝(𝑠)𝜒(−𝑠)

)
𝜒(𝑥),

so 𝜒 is an eigenfunction of𝑀 with eigenvalue 𝜆 =
∑

𝑠∈𝑆 𝑝(𝑠)𝜒(−𝑠). Characters of Z𝑛 are of the form 𝜒𝑗(𝑥) = 𝜔𝑗𝑥 for 𝑗 ∈ Z𝑛,
where 𝜔 = 𝑒2𝜋𝑖∕𝑛, and they form a basis of 𝐿2(Z𝑛).

4.3 | Limiting Distribution

The initial distribution 10 can be expressed in terms of the basis of characters as 10 = 1
𝑛

∑𝑛−1
𝑗=0𝜒𝑗 . It follows that the distri-

bution after 𝑘 steps is given by

𝜎𝑘 =
1
𝑛

𝑛−1∑
𝑗=0

𝜆𝑘
𝑗
𝜒𝑗,

where 𝜆𝑗 =
∑

𝑠∈𝑆 𝑝(𝑠)𝜒𝑗(−𝑠) is the eigenvalue corresponding to 𝜒𝑗 . We can decompose 𝜎𝑘 into two components 𝜎𝑘 = 𝜙𝑘 +
𝜔𝑘, where

𝜙𝑘 =
1
𝑛

∑
|𝜆𝑗 |=1

𝜆𝑘
𝑗
𝜒𝑗, 𝜔𝑘 =

1
𝑛

∑
|𝜆𝑗 |<1

𝜆𝑘
𝑗
𝜒𝑗.

As 𝑘 grows to infinity, the contribution of 𝜔𝑘 diminishes to zero, making 𝜎𝑘 increasingly close to 𝜙𝑘.6 This proximity can
be quantified in terms of the spectral radius 𝜌 = max{|𝜆𝑗|||𝜆𝑗| < 1} of the Markov operator.

Lemma 4.1 (Lemma 3 in Abrams et al. (2022)). The distance to the limiting distribution satisfies

𝜌2𝑘 ≤ ||𝜎𝑘 − 𝜙𝑘||21 ≤ ∑
|𝜆𝑗 |<1

||𝜆𝑗|2𝑘.
Proof. The characters 𝜒𝑗 form an orthogonal basis of 𝐿2(Z𝑛) and have norm

√
𝑛. Thus

||𝜔𝑘||21 ≤ 𝑛||𝜔𝑘||22 = 1
𝑛

∑
|𝜆𝑗 |<1

||𝜆𝑘
𝑗
𝜒𝑗||22 =

∑
|𝜆𝑗 |<1

|𝜆𝑗|2𝑘,
proving the second inequality. For the first inequality, let 𝜒 be a character of Z𝑛 corresponding to an eigenvalue with
absolute value 𝜌. Since ||𝜒||∞ = 1, we have

||𝜔𝑘||1 ≥ |⟨𝜔𝑘, 𝜒⟩| = 1
𝑛
𝜌𝑘|⟨𝜒, 𝜒⟩| = 𝜌𝑘. ◽

5 | The Limiting Distribution

We are now ready to analyze our random Lie bracket in more detail. We have already seen that the distribution of the
random walk after an even number of steps is equivalent to a random walk on the cyclic group F∗

𝑝
starting at 1 and evolving

by multiplication with 𝛼, 𝛽, 𝛾 (all nonzero) with probabilities 1∕2, 1∕4, 1∕4.

8 of 19 Random Structures & Algorithms, 2026
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5.1 | Log

Fix an isomorphism log ∶ F∗
𝑝
→ Z𝑛 and let 𝛼′ = log 𝛼, 𝛽′ = log 𝛽, and 𝛾 ′ = log 𝛾 . Under this mapping, the random walk on

F∗
𝑝

translates to a random walk on Z𝑛, starting at 0 = log 1 ∈ Z𝑛. At each step, the walk adds 𝛼′ with probability 1∕2, or 𝛽′
or 𝛾 ′ each with probability 1∕4. Let 𝑆′ = {𝛼′, 𝛽′, 𝛾 ′} be the set of steps of the walk with probability measure 𝑝(𝛼′) = 1∕2,
𝑝(𝛽′) = 𝑝(𝛾 ′) = 1∕4. The limiting distribution on Z𝑛 is given by

𝜙𝑘 =
1
𝑛

∑
|𝜆𝑗 |=1

𝜆𝑘
𝑗
𝜒𝑗.

5.2 | Contributing Characters

Let us examine which characters 𝜒𝑗 appear in the sum 𝜙𝑘. Certainly, the trivial character 𝜒0 will always contribute to the
limiting distribution. The character 𝜒𝑗 will contribute if and only if

|𝜆𝑗| = |||||
∑
𝑠∈𝑆′

𝑝(𝑠)𝜒𝑗(−𝑠)
||||| = 1.

As |𝜒𝑗(−𝑠)| = 1 for each 𝑠 ∈ 𝑆′, this holds if and only if 𝜒𝑗(−𝛼′) = 𝜒𝑗(−𝛽′) = 𝜒𝑗(−𝛾 ′), which is equivalent to 𝜒𝑗(𝛼′ − 𝛽′) =
𝜒𝑗(𝛼′ − 𝛾 ′) = 1. Introduce parameters 𝑎 = 𝛼′ − 𝛽′ and 𝑏 = 𝛼′ − 𝛾 ′. Hence a character 𝜒𝑗 appears in the limiting distribu-
tion if and only if 𝑎, 𝑏 ∈ ker𝜒𝑗 , and the corresponding eigenvalue is 𝜆𝑗 = 𝜒𝑗(𝛼′). The random walk is thus essentially
determined by the parameters 𝑎, 𝑏.

Lemma 5.1. ker𝜒𝑗 = (𝑛∕ gcd(𝑛, 𝑗))Z𝑛.

Proof. An element 𝑥 ∈ Z𝑛 satisfies 𝑥 ∈ ker𝜒𝑗 if and only if 𝑛 divides 𝑗𝑥. We can write 𝑗 = 𝑑𝑗′ and 𝑛 = 𝑑𝑛′, where 𝑑 =
gcd(𝑗, 𝑛). By canceling 𝑑, we see that this is equivalent to 𝑛′ dividing 𝑗′𝑥 and hence to 𝑛′ dividing 𝑥. Therefore ker𝜒𝑗 =

𝑛

𝑑
Z𝑛

and | ker𝜒𝑗| = 𝑑. ◽

Lemma 5.2. Let 𝑎 = 𝛼′ − 𝛽′ and 𝑏 = 𝛼′ − 𝛾 ′. Then the characters appearing in 𝜙𝑘 are precisely those 𝜒𝑗 for which 𝑗 is
divisible by 𝑛∕ gcd(𝑎, 𝑏, 𝑛). The number of contributing characters is thus gcd(𝑎, 𝑏, 𝑛).

Proof. The character 𝜒𝑗 contributes to the limiting distribution if and only if 𝑎, 𝑏 ∈ ker𝜒𝑗 = (𝑛∕ gcd(𝑛, 𝑗))Z𝑛. This is
equivalent to 𝑛∕ gcd(𝑛, 𝑗)|𝑎, 𝑏, which is the same as 𝑛∕ gcd(𝑎, 𝑏, 𝑛)| gcd(𝑛, 𝑗), and this is further equivalent to 𝑗 being divis-
ible by 𝑛∕ gcd(𝑎, 𝑏, 𝑛). ◽

Corollary 5.3. The limiting distribution 𝜙𝑘 is uniform if and only if gcd(𝑎, 𝑏, 𝑛) = 1.

In fact, we always get a uniform distribution on gcd(𝑎, 𝑏, 𝑛)Z𝑛 provided the number of steps 𝑘 is divisible by gcd(𝑎, 𝑏, 𝑛),
and more generally a uniform distribution on a coset of gcd(𝑎, 𝑏, 𝑛)Z𝑛.

Lemma 5.4. The distribution 𝜙𝑘 is uniform on the coset 𝑘𝛼′ + gcd(𝑎, 𝑏, 𝑛)Z𝑛.

Proof. Let 𝑑 = gcd(𝑎, 𝑏, 𝑛). We have

𝜙𝑘 =
1
𝑛

∑
𝑛

𝑑
|𝑗 𝜒𝑗(𝛼

′)
𝑘
𝜒𝑗.

Any 𝑥 ∈ 𝑘𝛼′ + 𝑑Z𝑛 can be written as 𝑥 = 𝑘𝛼′ + 𝑚𝑑 for some 𝑚 ∈ Z. Thus

𝜒𝑗(𝛼′)
𝑘
𝜒𝑗(𝑥) = 𝜒𝑗(−𝑘𝛼′)𝜒𝑗(𝑘𝛼′ + 𝑚𝑑) = 𝜒𝑗(𝑚𝑑) = 1

for any 𝑗 appearing in the sum. Therefore 𝜙𝑘(𝑥) = 𝑑∕𝑛, and so 𝜙𝑘 is uniform on 𝑘𝛼′ + 𝑑Z𝑛. ◽

Random Structures & Algorithms, 2026 9 of 19
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5.3 | Randomly Chosen Parameters

Suppose that the parameters 𝛼′, 𝛽′, 𝛾 ′ are chosen uniformly at random from Z𝑛. In this case, the parameters 𝑎 = 𝛼′ − 𝛽′

and 𝑏 = 𝛼′ − 𝛾 ′ are also uniformly distributed in Z𝑛. Thus the probability that a character 𝜒𝑗 contributes to the limiting
distribution is equal to (| ker𝜒𝑗|∕𝑛)2. Taking 𝑗 = 2, we see that the probability that 𝜒𝑛∕2 contributes is 1∕4. It follows that
the limiting distribution 𝜙𝑘 is uniform with probability at most 3∕4. We will show that for any given 𝜖 > 0, there is a
positive proportion of primes for which the probability that any other character contributes to the limiting distribution is
less than 𝜖. In fact, we can compute the exact probability that the limiting distribution is uniform in terms of the prime
divisors of 𝑛.

Lemma 5.5. Let 𝑎, 𝑏 ∈ Z𝑛 be uniformly random. Then

P𝑎,𝑏(gcd(𝑎, 𝑏, 𝑛) = 1) =
∏
𝑞|𝑛
(

1 − 1
𝑞2

)
,

where the product is over all primes 𝑞 dividing 𝑛.

Proof. For each prime 𝑞|𝑛, the probability that 𝑞 divides both 𝑎 and 𝑏 is 1∕𝑞2. Since the events for distinct primes
are independent, the probability that no prime divisor of 𝑛 divides both 𝑎 and 𝑏 (which is exactly the probability that
gcd(𝑎, 𝑏, 𝑛) = 1) is ∏

𝑞|𝑛
(

1 − 1
𝑞2

)
.

◽

When the only small prime dividing 𝑛 is 2, the probability that the limiting distribution is uniform is close to 3∕4. Con-
versely, when 𝑛 is divisible by all the primes up to some large number (“divisible by all primes”), the probability that the
limiting distribution is uniform is close to ∏

𝑝∈P

(
1 − 1

𝑝2

)
= 1
𝜁(2)

≈ 0.6079. (2)

We will now give more precise estimates for the probability that the limiting distribution is uniform and show it can come
arbitrarily close to almost all numbers between 1∕𝜁(2) and 3∕4 apart from some subinterval.

5.4 | Probability of Convergence to the Uniform Distribution

Lemma 5.6. Let 𝑋 and 𝑌 be two finite disjoint sets of odd primes. There exists a positive lower density7subset of primes
𝑝 ∈ P that satisfy

1. All primes from 𝑋 divide 𝑝 − 1.

2. No prime from 𝑌 divides 𝑝 − 1.

Proof. Let 𝑥 =
∏

𝑞∈𝑋 𝑞 and 𝑦 =
∏

𝑞∈𝑌 𝑞. Since 𝑥 and 𝑦 are coprime, the conditions 𝑝 ≡ 1 (𝑚𝑜𝑑 𝑥) and 𝑝 ≡ 2 (𝑚𝑜𝑑 𝑦) are
equivalent to 𝑝 ≡ 𝑐 (𝑚𝑜𝑑 𝑥𝑦) for some 𝑐 ∈ N by the Chinese remainder theorem. As 𝑐 is coprime to 𝑥𝑦, the proportion of
primes congruent to 𝑐 modulo 𝑥𝑦 is 1∕𝜙(𝑥𝑦) > 0 (see (Serre 2012, Section VI.4)). For any prime 𝑝 with this property, 𝑝 − 1
is divisible by 𝑥 and is coprime to 𝑦. ◽

Lemma 5.7. Let 𝑋 =
∑

𝑗≥1 𝑥𝑗 be the sum of a convergent series of positive numbers, where𝑥𝑘 <
∑

𝑗≥𝑘+1 𝑥𝑗 for each 𝑘 ∈ N.
Then for any open interval (𝑠, 𝑡) contained in (0, 𝑋), there is a finite subset 𝑆 ⊆ N such that

∑
𝑗∈𝑆 𝑥𝑗 ∈ (𝑠, 𝑡).

Proof. Inductively define subsets 𝑆𝑛 ⊆ N by

𝑆1 =

{
{𝑥1} 𝑥1 < 𝑡

∅ otherwise,
𝑆𝑛+1 =

⎧⎪⎨⎪⎩
𝑆𝑛 ∪ {𝑛 + 1} 𝑥𝑛+1 +

∑
𝑗∈𝑆𝑛

𝑥𝑗 < 𝑡

𝑆𝑛 otherwise.

10 of 19 Random Structures & Algorithms, 2026
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Take 𝑆 =
⋃

𝑛≥1 𝑆𝑛. We may assume that 𝑡 < 𝑋 after possibly shortening the interval. Thus we can find some 𝑘 ∈ N with
𝑘 ∉ 𝑆. Then ∑

𝑗≥𝑘+1
𝑥𝑗 +

∑
𝑗∈𝑆𝑘−1

𝑥𝑗 > 𝑥𝑘 +
∑

𝑗∈𝑆𝑘−1

𝑥𝑗 ≥ 𝑡,

so we can find some 𝑘′ > 𝑘with 𝑘′ ∉ 𝑆. Therefore, there are arbitrarily large numbers that are not in𝑆. Since lim𝑗→∞ 𝑥𝑗 =
0, there is an 𝑚 ∈ N ⧵ 𝑆 with 𝑥𝑚 < 𝑡 − 𝑠. Since 𝑚 ∉ 𝑆, we have

∑
𝑗∈𝑆𝑚−1

𝑥𝑗 + 𝑥𝑚 ≥ 𝑡 hence
∑

𝑗∈𝑆𝑚−1
𝑥𝑗 ≥ 𝑡 − 𝑥𝑚 > 𝑠. Hence

𝑆𝑚−1 is the desired finite subset. ◽

We shall apply the previous lemma with 𝑥𝑗 = − log(1 − 1∕𝑝2
𝑗
). The terms 𝑥𝑗 are positive and

∑
𝑗≥1 𝑥𝑗 = log 𝜁(2) by (2).

However, the condition that 𝑥𝑘 <
∑

𝑗≥𝑘+1 𝑥𝑗 fails to hold for all 𝑘 ∈ N. Here is how the numbers look like for the first few
primes:

𝑥1 ≈ 0.2877 𝑥2 ≈ 0.1178 𝑥3 ≈ 0.0408 𝑥4 ≈ 0.0206∑
𝑗≥2

𝑥𝑗 ≈ 0.2100
∑
𝑗≥3

𝑥𝑗 ≈ 0.0922
∑
𝑗≥4

𝑥𝑗 ≈ 0.0514
∑
𝑗≥5

𝑥𝑗 ≈ 0.0308

The inequality fails with 𝑘 = 1, 2, and works with 𝑘 = 3, 4. Let us verify that the condition does hold from that point on,
so we can use the previous lemma with the sequence (𝑥𝑘)𝑘≥3.

Lemma 5.8. Let 𝑝𝑗 be the 𝑗-th prime and let 𝑥𝑗 = − log(1 − 1∕𝑝2
𝑗
). Then 𝑥𝑘 <

∑
𝑗≥𝑘+1 𝑥𝑗 for all 𝑘 ≥ 5.

Proof. We first claim that 𝑥𝑗+1 > 𝑥𝑗∕2 for any 𝑗 ≥ 5. This is equivalent to(
1 − 1

𝑝2
𝑗+1

)2

< 1 − 1
𝑝2
𝑗

. (3)

It follows from Axler (2019) that

𝑗(log 𝑗 + log log 𝑗 − 3∕2) < 𝑝𝑗 < 𝑗(log 𝑗 + log log 𝑗 − 1∕2)

for all 𝑗 ≥ 20. Basic analysis then gives 𝑝𝑗+1 < 14𝑝𝑗∕10for any 𝑗 ≥ 28, and hence(
1 − 1

𝑝2
𝑗+1

)2

= 1 − 2
𝑝2
𝑗+1

+ 1
𝑝4
𝑗+1

< 1 − 200
144

1
𝑝2
𝑗

+ 1
𝑝4
𝑗

< 1 − 1
𝑝2
𝑗

.

It can be checked with a computer that (3) also holds for 𝑗 ∈ {5, 6,… , 27}. We obtain, for any 𝑘 ≥ 5,∑
𝑗≥𝑘+1

𝑥𝑗 > 𝑥𝑘

∑
𝑗≥1

1
2𝑗

= 𝑥𝑘,

as required. ◽

Proposition 5.9. Let (𝑠, 𝑡) be a subinterval of

 =
[

1
𝜁(2)

,
2
3

]
∪
[

9
8𝜁(2)

,
3
4

]
.

Then there is a set of primes 𝑝 of positive lower density for which∏
𝑞|𝑝−1

(
1 − 1

𝑞2

)
∈ (𝑠, 𝑡).

Proof. Let 𝑥𝑗 = − log(1 − 1∕𝑝2
𝑗
). It follows by combining the previous two lemmas that the sums

∑
𝑗∈𝑆 𝑥𝑗 with 𝑆 a finite

subset of N ⧵ {1, 2} form a dense subset of the interval (0, log 𝜁(2) + log(3∕4) + log(8∕9)) = (0, log(2𝜁(2)∕3)). Equivalently,
the products

∏
𝑗∈𝑆 𝑒

−𝑥𝑗 =
∏

𝑗∈𝑆(1 − 1∕𝑝2
𝑗
) form a dense subset of the interval (3∕(2𝜁(2)), 1).

Random Structures & Algorithms, 2026 11 of 19
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Suppose first that (𝑠, 𝑡) ⊆ (1∕𝜁(2), 2∕3). By the argument above, we can find a set 𝑆 with
∏

𝑗∈𝑆(1 − 1∕𝑝2
𝑗
) ∈ (3𝑠∕2, 3𝑡∕2).

Let 𝑆′ = 𝑆 ∪ {1, 2}, so that
∏

𝑗∈𝑆′ (1 − 1∕𝑝2
𝑗
) ∈ (𝑠, 𝑡). We can thus find a 𝑘 larger than all elements in 𝑆′ such that

∏
𝑗∈𝑆′

(
1 − 1

𝑝2
𝑗

)
> 𝑠 ⋅ exp

(∑
𝑗≥𝑘

𝑥𝑗

)
= 𝑠 ⋅

∏
𝑗≥𝑘

(
1 − 1

𝑝2
𝑗

)−1

.

Take 𝑋 = {𝑝𝑗|𝑗 ∈ 𝑆′} and 𝑌 = {𝑝𝑗|𝑗 < 𝑘} ⧵𝑋. Then any prime 𝑝 with the property that all primes from 𝑋 divide 𝑝 − 1
and no prime from 𝑌 divides 𝑝 − 1 satisfies

𝑡 >
∏
𝑞|𝑝−1

(
1 − 1

𝑞2

)
>

∏
𝑗∈𝑆′∨𝑗≥𝑘

(
1 − 1

𝑝2
𝑗

)
> 𝑠.

The set of primes 𝑝 with this property has positive lower density by Lemma 5.6.

The case when (𝑠, 𝑡) ⊆ (9∕(8𝜁(2)), 3∕4) can be handled in a similar way by taking 𝑆′ = 𝑆 ∪ {1}. The interval (3∕(2𝜁(2)), 1)
transforms under multiplication by 3∕4 to (9∕(8𝜁(2)), 3∕4). ◽

Corollary 5.10. Let (𝑠, 𝑡) be a subinterval of . Then there is a set of primes 𝑝 of positive lower density for which the
following holds. Let𝛼′, 𝛽′, 𝛾 ′ be uniformly random in Z𝑛, and let 𝜈 be the uniform distribution on Z𝑛, where 𝑛 = 𝑝 − 1. Then
P𝛼′,𝛽′,𝛾 ′ (𝜙𝑘 = 𝜈) ∈ (𝑠, 𝑡) for all 𝑘 ≥ 0.

We now transport this result to the original setting of the random Lie bracket.

Corollary 5.11. Let (𝑠, 𝑡) be a subinterval of . Then there is a set of primes 𝑝 of positive lower density with the following
property. Let 𝐴,𝐵 be uniformly random in 𝔰𝔩2(F𝑝), let 𝜙𝑘 be the limiting distribution of the corresponding random walk on
Z𝑛 after 𝑘 steps,8 let 𝜈2𝑘 be the corresponding distribution on Lin{[𝐴,𝐵]} ⧵ {0}, and let 𝜈 be the uniform distribution on
Lin{[𝐴,𝐵]} ⧵ {0}. Then P𝐴,𝐵(𝜈2𝑘 = 𝜈) ∈ (𝑠, 𝑡) for all 𝑘 ≥ 0.

Proof. Take any 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) such that 𝐺𝐴,𝐵 has nonzero entries. Then the random Lie bracket satisfies 𝜈2𝑘 = 𝜈 if and
only if the parameters (𝑎, 𝑏) = 𝐹 (𝐴,𝐵) satisfy gcd(𝑛, 𝑎, 𝑏) = 1. By Corollary 3.6 we have |P𝐴,𝐵(𝜈2𝑘 = 𝜈) − P𝑎,𝑏(gcd(𝑛, 𝑎, 𝑏) =
1)| < 15∕𝑝 and by the previous corollary, we have

P𝑎,𝑏(gcd(𝑛, 𝑎, 𝑏) = 1) = 𝜈Z3
𝑛

(
{(𝛼′, 𝛽′, 𝛾 ′) ∈ Z3

𝑛
|𝜙𝑘 = 𝜈Z𝑛

}
)
∈ (𝑠 + 15∕𝑝, 𝑡 − 15∕𝑝)9

for a set of primes 𝑝 of positive lower density. Combining these gives us that P𝐴,𝐵(𝜈2𝑘 = 𝜈) ∈ (𝑠, 𝑡) for a set of primes 𝑝 of
positive lower density. ◽

In particular, for any 𝑥 ∈  and any 𝜖 > 0, there is a set of primes of positive lower density such that the random Lie
bracket converges to the uniform distribution on a line after an even number of steps with probability in (𝑥 − 𝜖, 𝑥 + 𝜖).

6 | Pre-Cutoff

Let𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) be uniformly random. Let 𝜇2𝑘 be the distribution of the random Lie bracket after 2𝑘 steps, and let 𝜈2𝑘 be
the associated limiting distribution, supported on Lin{[𝐴,𝐵]}. We shall now prove that with high probability, the distance
d(𝜇2𝑘, 𝜈2𝑘) quickly transitions from 1 to 0 at around 𝑘 ≈ 𝑝. This is the phenomenon of pre-cutoff, and we establish it by
providing sharp upper and lower bounds on d(𝜇2𝑘, 𝜈2𝑘) in terms of 𝑘 and the parameters 𝑎, 𝑏. We further inspect what
happens for generic 𝑎, 𝑏.

The distribution of the random Lie bracket after 2𝑘 steps is the same as the distribution of the random walk on F∗
𝑝

with
parameters 𝛼, 𝛽, 𝛾 after 𝑘 steps. Supposing these parameters are all nonzero, the random walk is equivalent to a random
walk on Z𝑛 with parameters 𝛼′, 𝛽′, 𝛾 ′. Let 𝜎𝑘 be the distribution of this random walk after 𝑘 steps. The Markov operator
has eigenvalues

𝜆𝑗 =
1
2
𝜒𝑗(−𝛼′) +

1
4
𝜒𝑗(−𝛽′) +

1
4
𝜒𝑗(−𝛾 ′)

12 of 19 Random Structures & Algorithms, 2026
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of absolute value

|𝜆𝑗| = ||||12 + 1
4
𝜒𝑗(𝑎) +

1
4
𝜒𝑗(𝑏)

||||,
where 𝑎 = 𝛼′ − 𝛽′ and 𝑏 = 𝛼′ − 𝛾 ′.

6.1 | Upper Bound

For 𝑥 ∈ R, let ⟨𝑥⟩ be the unique value in the interval (−1∕2, 1∕2] such that 𝑥 − ⟨𝑥⟩ is an integer. Let us associate to each
eigenvalue 𝜆𝑗 the vector

𝑢𝑗 =
(⟨

𝑗𝑎

𝑛

⟩
,

⟨
𝑗𝑏

𝑛

⟩)
∈ R2.

The norm ||𝑢𝑗|| controls |𝜆𝑗| in the following way.

Lemma 6.1. |𝜆𝑗| ≤ exp
(
− 1

2
||𝑢𝑗||2).

Proof. The triangle inequality gives

|𝜆𝑗| ≤ 1
4
(|1 + 𝜒𝑗(𝑎)| + |1 + 𝜒𝑗(𝑏)|) = 1

2
| cos(𝜋𝑗𝑎∕𝑛)| + 1

2
| cos(𝜋𝑗𝑏∕𝑛)|.

Note that | cos(𝜋𝑥)| = | cos(𝜋⟨𝑥⟩)|. Using the bound cos(𝜋𝑥) ≤ exp(−2𝑥2), which holds for all 𝑥 ∈ [−3∕2, 3∕2], we obtain

|𝜆𝑗| ≤ 1
2
(
exp(−2⟨𝑗𝑎∕𝑛⟩2) + exp(−2⟨𝑗𝑏∕𝑛⟩2)

)
.

By Jensen’s inequality for the function 𝑥 ↦ exp(−2𝑥2), which is concave on the interval [−1∕2, 1∕2], the latter is at most

exp
(
−1

2
(|⟨𝑗𝑎∕𝑛⟩| + |⟨𝑗𝑏∕𝑛⟩|)2

) ≤ exp
(
−1

2
||𝑢𝑗||2)

and the proof is complete. ◽

The characters contributing to the limiting distribution 𝜙𝑘 are those 𝜒𝑗 for which |𝜆𝑗| = 1. Note that this happens if and
only if 𝑎, 𝑏 ∈ ker𝜒𝑗 , which is the same as 𝑢𝑗 = 0. In order to control the residual distribution 𝜎𝑘 − 𝜙𝑘 = 𝜔𝑘, let Λ be the
plane lattice

Λ =
⋃
𝑗∈Z𝑛

(
𝑢𝑗 + Z2) = (𝑎

𝑛
,
𝑏

𝑛

)
Z + Z2 ⊆ R2

and let Δ be the minimal distance between two distinct points in Λ. When 𝑎, 𝑏 ≠ 0, the lattice Λ is nontrivial, and we have

Δ = min
{||𝑢𝑗|||𝑗 ∈ Z𝑛, 𝑢𝑗 ≠ 0

}
.

Proposition 6.2. For all 𝑛 and all 𝑎, 𝑏 ∈ Z𝑛, we have

d(𝜎𝑘, 𝜙𝑘)2 ≤ 11 gcd(𝑎, 𝑏, 𝑛)𝑒−𝑘Δ2
.

Proof. Use Lemma 4.1 with the last lemma to bound10

||𝜎𝑘 − 𝜙𝑘||21 ≤ ∑
|𝜆𝑗 |<1

|𝜆𝑗|2𝑘 ≤ ∑
𝑢𝑗≠0

exp
(
−𝑘||𝑢𝑗||2). (4)

Let us upper bound this sum in terms of the lattice Λ. Note that the union in the definition of Λ might not be disjoint,
since we might have 𝑢𝑖 = 𝑢𝑗 for some 𝑖, 𝑗. This happens precisely when 𝑛 divides 𝑎(𝑗 − 𝑖) and 𝑏(𝑗 − 𝑖), which is equivalent

Random Structures & Algorithms, 2026 13 of 19
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to 𝑛 dividing gcd(𝑎, 𝑏)(𝑗 − 𝑖), and this is the same as saying that 𝑛∕ gcd(𝑎, 𝑏, 𝑛) divides 𝑗 − 𝑖. Hence, every value of 𝑢𝑗 occurs
precisely gcd(𝑎, 𝑏, 𝑛) times. We can thus bound the exponential sum in (4) by

gcd(𝑎, 𝑏, 𝑛)
∑

𝑢∈Λ⧵{0}
exp
(
−𝑘||𝑢||22).

The sum of norms over the whole lattice Λ can be upper bounded as in (Abrams et al. 2022, Lemma 6) by

9
∑
𝑖≥1

(𝑖 + 1)2𝑒−𝑘Δ
2𝑖2 ≤ 18

∑
𝑖≥1

(𝑖 + 1)𝑒−𝑘Δ2𝑖 = 18𝑒−𝑘Δ
2 2 − 𝑒−𝑘Δ

2

(1 − 𝑒−𝑘Δ
2)2

.

For 𝑒−𝑘Δ2 ≤ 1∕10, the value of the fraction is less than 12∕5, so we get the overall bound

||𝜎𝑘 − 𝜙𝑘||21 ≤ 44 gcd(𝑎, 𝑏, 𝑛)𝑒−𝑘Δ
2
.

For 𝑒−𝑘Δ2
> 1∕10, the same bound holds since we always have ||𝜎𝑘 − 𝜙𝑘||21 ≤ 4. ◽

The minimal norm Δ can be estimated as follows.

Lemma 6.3. We have

gcd(𝑎, 𝑏, 𝑛)
𝑛

≤ Δ ≤ 2√
𝜋

√
gcd(𝑎, 𝑏, 𝑛)

𝑛
.

Proof. The lattice Λ is contained in (gcd(𝑎, 𝑏, 𝑛)∕𝑛)Z2, hence Δ ≥ gcd(𝑎, 𝑏, 𝑛)∕𝑛. For the upper bound, project R2 to the
torus R2∕Z2. Observe that the image of the lattice Λ contains exactly 𝑛∕ gcd(𝑎, 𝑏, 𝑛) points. Since the minimal distance
between two distinct points of Λ is Δ, the open discs of radius Δ∕2 in the torus R2∕Z2 around these points are disjoint.
Comparing areas, we thus obtain

𝑛

gcd(𝑎, 𝑏, 𝑛)
𝜋

(Δ
2

)2 ≤ 1.

Rearranging terms gives the claimed upper bound. ◽

The bounds in the lemma are sharp with respect to 𝑛. If 𝑎 = 1 and 𝑏 = 0, we have gcd(𝑎, 𝑏, 𝑛) = 1 and Δ = 1∕𝑛, matching
the lower bound. For the upper bound, consider 𝑛 = 𝑚2, 𝑎 = 𝑚, and 𝑏 = 1 for some 𝑚 ∈ N. If ||𝑢𝑗|| < 1∕𝑚 for some 𝑗 ∈ Z𝑛,
then, since the second coordinate of 𝑢𝑗 is less than 1∕𝑚 in absolute value, we must have |𝑗| < 𝑚. However, this implies
𝑗 = 0, as the same condition holds for the first coordinate. Thus 𝑢𝑗 = 0. This demonstrates that Δ ≥ 1∕𝑚 = 1∕

√
𝑛, and the

upper bound is also sharp up to a constant factor.

6.2 | Randomly Chosen Parameters

Suppose the parameters 𝑎, 𝑏 ∈ Z𝑛 of the random walk are chosen uniformly at random. We shall now show that in this
case, gcd(𝑎, 𝑏, 𝑛) is not large and Δ is of order 1∕

√
𝑛 with high probability.

Lemma 6.4. Let 𝑎, 𝑏 be uniformly random in Z𝑛. Then for any 𝑀 > 1, we have

P𝑎,𝑏(gcd(𝑎, 𝑏, 𝑛) ≥ 𝑀) < 1∕(𝑀 − 1).

Proof. If gcd(𝑎, 𝑏, 𝑛) ≥ 𝑀 , then there is a 𝑑 ≥ 𝑀 that divides 𝑎, 𝑏, 𝑛. By the union bound, we thus get

P𝑎,𝑏(gcd(𝑎, 𝑏, 𝑛) ≥ 𝑀) ≤ ∑
𝑑|𝑛
𝑑≥𝑀

P𝑎,𝑏(𝑎, 𝑏 ∈ 𝑑Z𝑛) <
∑
𝑑≥𝑀

1
𝑑2 < ∫

∞

𝑀−1

1
𝑥2 𝑑𝑥 = 1

𝑀 − 1
.

◽
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Lemma 6.5. Let 𝑎, 𝑏 ∈ Z𝑛 be uniformly random. For any 0 ≠ 𝑗 ∈ Z𝑛 and 𝑟 > 0, we have

P𝑎,𝑏

(
0 < ||𝑢𝑗|| < 𝑟

)
< 8𝑟2.

Proof. Let 𝑑 = gcd(𝑛, 𝑗) and 𝑚 = 𝑛∕𝑑. Let 𝐿 be the additive subgroup of R2 generated by (𝑑∕𝑛, 0) and (0, 𝑑∕𝑛), and
consider ⟨𝐿⟩ = 𝐿 ∩ (−1∕2, 1∕2]2. For uniformly random 𝑎, 𝑏, the point 𝑢𝑗 is uniformly distributed on ⟨𝐿⟩. Note that ⟨𝐿⟩
consists of 𝑚2 points and at most (2⌊𝑟𝑚⌋ + 1)2 of them are of norm at most 𝑟. The probability that 0 < ||𝑢𝑗|| < 𝑟 is thus
bounded by ((2⌊𝑟𝑚⌋ + 1)2 − 1)∕𝑚2. This is 0 when 𝑚 < 1∕𝑟, and for 𝑚 ≥ 1∕𝑟 it is at most 4𝑟2 + 4𝑟∕𝑚 ≤ 8𝑟2. ◽

Lemma 6.6. Let 𝑎, 𝑏 ∈ Z𝑛 be uniformly random. For any 𝜖 > 0, we have

P𝑎,𝑏(Δ < 𝜖∕
√
𝑛) < 8𝜖2.

Proof. The event Δ < 𝜖∕
√
𝑛 implies that we must have 0 < ||𝑢𝑗|| < 𝜖∕

√
𝑛 for some 0 ≠ 𝑗 ∈ Z𝑛. The claim now follows

by the union bound and the previous lemma. ◽

Theorem 6.7. For every 𝜖, 𝛿 > 0 there is a constant 𝐶 such that the following holds. Let 𝑎, 𝑏 ∈ Z𝑛 be uniformly random.
Then for all 𝑘 > 𝐶𝑛, we have

P𝑎,𝑏

(
d(𝜎𝑘, 𝜙𝑘) < 𝜖

)
> 1 − 𝛿.

Proof. With probability larger than 1 − 𝛿 we have, by Lemma 6.4 and Lemma 6.6, that both gcd(𝑎, 𝑏, 𝑛) < 1 + 2∕𝛿 < 3∕𝛿
and Δ2 ≥ 𝛿∕16𝑛 hold. Using these with Proposition 6.2 gives

d(𝜎𝑘, 𝜙𝑘)2 ≤ 33
𝛿

exp(−𝛿𝑘∕16𝑛).

For 𝑘 > 𝐶𝑛, this is less than 𝜖2, completing the proof. ◽

Corollary 6.8. For every 𝜖, 𝛿 > 0 there is a constant 𝐶 such that the following holds. Let 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) be uniformly
random. Then for all 𝑘 > 𝐶𝑝, we have

P𝐴,𝐵

(
d(𝜇2𝑘, 𝜈2𝑘) < 𝜖

)
> 1 − 𝛿.

Proof. Take 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) such that 𝐺𝐴,𝐵 has nonzero entries. Then the random Lie bracket satisfies d(𝜇2𝑘, 𝜈2𝑘) < 𝜖 if
and only if the parameters (𝑎, 𝑏) = 𝐹 (𝐴,𝐵) satisfy d(𝜎𝑘, 𝜙𝑘) < 𝜖. By the previous theorem, we have P𝑎,𝑏(d(𝜎𝑘, 𝜙𝑘) < 𝜖) >
1 − 𝛿∕2 for 𝑘 > 𝐶𝑝. It now follows from Corollary 3.6 that P𝐴,𝐵(d(𝜇2𝑘, 𝜈2𝑘) < 𝜖) > 1 − 𝛿.11 ◽

6.3 | Lower Bound in 𝑳1-Distance

We now prove the corresponding lower bound on the distance between 𝜎𝑘 and 𝜈𝑘. Using Fourier analysis, we can easily
obtain a lower bound 1 − 𝜖 on the 𝐿1-distance (but not on the total variation distance, this will be done in the following
section) in terms of the vectors 𝑢𝑗 and minimal norm Δ as in the previous section. We tightly follow the argument in
Abrams et al. (2022).

Lemma 6.9 (Lemma 4 in Abrams et al. (2022)). If ||𝑢𝑗|| ≤ 1∕2𝜋, then

|𝜆𝑗| ≥ exp
(
−𝜋2||𝑢𝑗||2).

Proof. We have

|𝜆𝑗| ≥ Re
(1

2
+ 1

4
𝜒𝑗(𝑎) +

1
4
𝜒𝑗(𝑏)

)
= 1

2
+ 1

4
cos(2𝜋⟨𝑗𝑎∕𝑛⟩) + 1

4
cos(2𝜋⟨𝑗𝑏∕𝑛⟩).

This can be lower bounded using cos 𝑥 ≥ exp(−𝑥2), which holds for all |𝑥| ≤ 1, by

Random Structures & Algorithms, 2026 15 of 19
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1
2
+ 1

4
exp
(
−4𝜋2⟨𝑗𝑎∕𝑛⟩2) + 1

4
exp
(
−4𝜋2⟨𝑗𝑏∕𝑛⟩2),

and applying Jensen’s inequality for the convex function 𝑥 ↦ exp(−𝑥) gives

|𝜆𝑗| ≥ exp
(
−𝜋2⟨𝑗𝑎∕𝑛⟩2 − 𝜋2⟨𝑗𝑏∕𝑛⟩2) = exp

(
−𝜋2||𝑢𝑗||2).

◽

Theorem 6.10. For every 𝜖, 𝛿 > 0 there are constants 𝐶, 𝑐 > 0 such that the following holds. Let 𝑛 > 𝐶 and let 𝑎, 𝑏 ∈ Z𝑛

be uniformly random. For all 𝑘 < 𝑐𝑛, we have

P𝑎,𝑏

(
d(𝜎𝑘, 𝜙𝑘) > 1∕2 − 𝜖

)
> 1 − 𝛿.

Proof. With probability at least 1 − 𝛿, we have gcd(𝑎, 𝑏, 𝑛) ≤ 1 + 1∕𝛿 by Lemma 6.4. Let 𝐶 be such that

2
√

1 + 1∕𝛿
𝜋𝐶

≤ 1
2𝜋

.

As long as 𝑛 ≥ 𝐶 , we thus have Δ ≤ 1∕2𝜋 by Lemma 6.3. Let 𝑢𝑗 be the vector with Δ = ||𝑢𝑗||. We have |𝜆𝑗| ≠ 1 since||𝑢𝑗|| ≠ 0, and so Lemma 6.9 gives 𝜌 ≥ |𝜆𝑗| ≥ exp(−𝜋2Δ2). Hence

d(𝜎𝑘, 𝜙𝑘) ≥ 𝜌𝑘∕2 ≥ exp(−4𝜋(1 + 1∕𝛿)𝑘∕𝑛)∕2

by Lemma 4.1. For 𝑘 < 𝑐𝑛, this is more than 1∕2 − 𝜖, completing the proof. ◽

6.4 | Lower Bound in Total Variation Distance

Let us now prove the corresponding stronger lower bound of 1 − 𝜖 in total variation distance. We do this by refining the
argument in (Hildebrand 2005, Theorem 2) (itself a modification of (Greenhalgh 1989, Theorem 6.1.1)), which proves a
bound of 1∕2 − 𝜖 in total variation distance (so as strong as the one in the previous section).

Theorem 6.11. For every 𝜖, 𝛿 > 0 there are constants 𝐶, 𝑐 > 0 such that the following holds. Let 𝑛 > 𝐶 and let 𝑎, 𝑏 ∈ Z𝑛

be uniformly random. For all 𝑘 < 𝑐𝑛, we have

P𝑎,𝑏

(
d(𝜎𝑘, 𝜙𝑘) > 1 − 𝜖

)
> 1 − 𝛿.

Proof. Let 𝜆 > 0 be a parameter to be determined later. Let 𝐶, 𝑐 > 0 be such that

(1 + 1∕𝛿)(2𝜆
√
𝑐 + 1∕

√
𝐶)2 < 𝜖.

Assume 𝑛 > 𝐶 and 𝑘 < 𝑐𝑛. We will exhibit a set 𝑆 ⊆ Z𝑛 that satisfies 𝜙𝑘(𝑆) < 𝜖 and 𝜎𝑘(𝑆) > 1 − 2𝜖, which in turn gives
d(𝜎𝑘, 𝜙𝑘) > 1 − 3𝜖. Let𝜙 ∶ Z3 → Z𝑛 be the homomorphism defined by𝜙(1, 0, 0) = 𝛼′, 𝜙(0, 1, 0) = 𝛽′, 𝜙(0, 0, 1) = 𝛾 ′, and let

𝑇 =
{
(𝑘 − 𝑥 − 𝑦, 𝑥, 𝑦) ∈ Z3||𝑥 − 𝑘∕4|, |𝑦 − 𝑘∕4| ≤ 𝜆

√
𝑘

}
and 𝑆 = 𝜙(𝑇 ).

The distribution 𝜙𝑘 is uniform on a subset of size 𝑛∕ gcd(𝑎, 𝑏, 𝑛) by Lemma 5.4. With probability at least 1 − 𝛿, we have
gcd(𝑎, 𝑏, 𝑛) ≤ 1 + 1∕𝛿 by Lemma 6.4, and hence

𝜙𝑘(𝑆) ≤ |𝑆| gcd(𝑎, 𝑏, 𝑛)∕𝑛 ≤ (1 + 1∕𝛿)(2𝜆
√
𝑘 + 1)2∕𝑛 < 𝜖

by the assumption on 𝑛, 𝑘. On the other hand, let 𝑋, 𝑌 be the number of times the generators 𝛽′, 𝛾 ′ are chosen in the ran-
dom walk. Note that 𝑋, 𝑌 are distributed as a sum of 𝑘 independent Bernoulli random variables with success probability
1∕4. Thus

𝜎𝑘(𝑆) ≥ P(|𝑋 − 𝑘∕4| ≤ 𝜆
√
𝑘, |𝑌 − 𝑘∕4| ≤ 𝜆

√
𝑘) ≥ 1 − 2P(|𝑋 − 𝑘∕4| > 𝜆

√
𝑘).
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By Hoeffding’s inequality, the last probability is at most 2 exp
(
−2𝜆2). Let 𝜆 be such that this is less than 𝜖. Then 𝜎𝑘(𝑆) >

1 − 2𝜖, as required. ◽

Corollary 6.12. For every 𝜖, 𝛿 > 0 there are constants 𝐶, 𝑐 > 0 such that the following holds. Let 𝑝 > 𝐶 and let 𝐴,𝐵 ∈
𝔰𝔩2(F𝑝) be uniformly random. For all 𝑘 < 𝑐𝑝, we have

P𝐴,𝐵

(
d(𝜇2𝑘, 𝜈2𝑘) > 1 − 𝜖

)
> 1 − 𝛿.

Proof. For matrices𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) such that𝐺𝐴,𝐵 has nonzero entries, the random Lie bracket satisfies d(𝜇2𝑘, 𝜈2𝑘) > 1 −
𝜖 if and only if the parameters (𝑎, 𝑏) = 𝐹 (𝐴,𝐵) satisfy d(𝜎𝑘, 𝜙𝑘) > 1 − 𝜖. By the previous theorem, we have P𝑎,𝑏(d(𝜎𝑘, 𝜙𝑘) >
1 − 𝜖) > 1 − 𝛿∕2 for 𝑘 < 𝑐𝑝. We can assume 𝐶 is large enough so that 15∕𝐶 < 𝛿∕2, so Corollary 3.6implies that
P𝐴,𝐵(d(𝜇2𝑘, 𝜈2𝑘) < 1 − 𝜖) > 1 − 𝛿. ◽

Corrollaries 6.8 and 6.12 together prove Theorem 1.1.

7 | Diameter

Here, we prove the diameter bound of 𝑂(log 𝑝) for the random Lie bracket in 𝔰𝔩2(F𝑝), as stated in Theorem 1.3. The key
point behind the argument is based on the analysis of the affine random walk on F𝑝 evolving according to 𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏𝑛
for fixed 𝑎 ∈ F∗

𝑝
and i.i.d. random 𝑏 ∈ F𝑝. This walk has been studied many times in the literature, the starting point being

Chung et al. (1987). The most relevant for us are the strong results of Breuillard and Varjú (2022) which exhibit rapid
mixing of the walk for almost all values of 𝑎. In order to explain this more precisely, let, for any 𝑎 ∈ F𝑝 and 𝑛 ∈ N,

𝑃𝑛(𝑎) =

{
𝑛∑
𝑖=0

𝑏𝑖𝑎
𝑖|𝑏𝑖 ∈ {−1, 0, 1}

}
⊆ F𝑝

be the set of all polynomials in 𝑎 of degree at most 𝑛 with coefficients in {−1, 0, 1}.

Theorem 7.1 (Proposition 13 together with Theorem 2 in Breuillard and Varjú (2022)). There is a (possibly
empty) small set of primes 𝑇 with the following property. For any 𝜖 > 0 there is a 𝐶 such that for all primes 𝑝 > 𝐶 not in 𝑇

and at least (1 − 𝜖)𝑝 values of 𝑎 ∈ F𝑝, we have 𝑃𝑛(𝑎) = F𝑝 for some 𝑛 ≤ 10 log 𝑝.

Remark 7.2. Alternatively, we can use Theorem 1 from Breuillard and Varjú (2022) instead of Theorem 2. This yields
a weaker bound of 𝑛 ≤ 𝐶𝜖 log 𝑝 log log 𝑝, but it holds for all primes 𝑝.

We now show how to do deduce the stated diameter bound from this. First of all, using basic properties of the random
Lie bracket, we show that obtaining 𝑃𝑛(𝑎)-multiples of [𝐴,𝐵] ∈ 𝔰𝔩2(F𝑝) grows linearly with 𝑛.

Lemma 7.3. Let 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) and 𝑆 = {0,±𝐴,±𝐵}. Let𝛼 = 2⟨𝐴,𝐵⟩. Then for any 𝑛 ∈ N, we have

𝑃𝑛(𝛼) ⋅ [𝐴,𝐵] ⊆ 𝑆4𝑛+2.

Proof. We prove this by induction on 𝑛. The statement is trivial for 𝑛 = 0. Suppose it holds for 𝑛 and take any 𝑥 ∈ 𝑃𝑛+1(𝛼).
Then 𝑥 = 𝛼𝑦 + 𝑧 for some 𝑦 ∈ 𝑃𝑛(𝛼) and 𝑧 ∈ {−1, 0, 1}. By the induction hypothesis, we have 𝑦[𝐴,𝐵] ∈ 𝑆4𝑛+2, and so
𝛼𝑦[𝐴,𝐵] = [𝐵, [𝐴, 𝑦[𝐴,𝐵]]] ∈ 𝑆4𝑛+4 by Lemma 2.1. Then

𝑥[𝐴,𝐵] = 𝛼𝑦[𝐴,𝐵] + 𝑧[𝐴,𝐵] ∈ 𝑆4𝑛+6 = 𝑆4(𝑛+1)+2.
◽

Secondly, we show that, with high probability, the value 𝛼 = 2⟨𝐴,𝐵⟩ belongs to any large enough set.

Lemma 7.4. Let  ⊆ F𝑝 be a subset of F𝑝 with || ≥ (1 − 𝜖)𝑝 and let 𝐴,𝐵 ∈ F𝑝 be uniformly random. Then

P𝐴,𝐵(𝛼 ∉ ) ≤ 3𝜖.

Random Structures & Algorithms, 2026 17 of 19
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Proof. Let  ⊆ Sym2(F𝑝) be the set of symmetric matrices 𝑋 with 2𝑋12 ∉ . By assumption, we have || ≤ 𝜖𝑝3. By
Proposition 3.2, we then get then bound |𝐺−1()| ≤ 3𝜖𝑝6. The result follows. ◽

We are now ready to deduce Theorem 1.3.

Proof of Theorem 1.3. Let 𝑇 be the exceptional set of primes from Theorem 7.1. Take any 𝜖 > 0. Then there is a 𝐶 such
that for all primes 𝑝 > 𝐶 not in 𝑇 and at least (1 − 𝜖)𝑝 values of 𝑎 ∈ F𝑝, we have 𝑃𝑛(𝑎) = F𝑝 for 𝑛 = ⌊10 log 𝑝⌋. Hence, by
Lemma 7.4, for 𝐴,𝐵 ∈ 𝔰𝔩2(F𝑝) uniformly random we have 𝑃𝑛(𝛼) = F𝑝 with probability at least 1 − 3𝜖. This implies, by
Lemma 7.3, that Lin{[𝐴,𝐵]} ⊆ 𝑆4𝑛+2.

We can assume that 𝐶 (and therefore 𝑝) is large enough that with probability at least 1 − 𝜖, the matrices 𝐴, 𝐵 and [𝐴,𝐵]
span 𝔰𝔩2(F𝑝) as a vector space.12 In that case, we can write any element of 𝔰𝔩2(F𝑝) as 𝑥𝐴 + 𝑦𝐵 + 𝑧[𝐴,𝐵] for some 𝑥, 𝑦, 𝑧 ∈
F𝑝. The Gram matrix 𝐺𝐴,𝐵 is invertible with probability at least 1 − 4∕𝑝 > 1 − 𝜖. Thus there are 𝑟, 𝑠 ∈ F𝑝 such that (𝑟, 𝑠) ⋅
𝐺𝐴,𝐵 = (𝑦∕4,−𝑥∕4), meaning that −2𝛼𝑟 − 2𝛾𝑠 = 𝑥 and 2𝛽𝑟 + 2𝛼𝑠 = 𝑦. Then, by Lemma 2.1,

𝑥𝐴 + 𝑦𝐵 + 𝑧[𝐴,𝐵] = [𝐴, 𝑟[𝐴,𝐵]] + [𝐵, 𝑠[𝐴,𝐵]] + 𝑧[𝐴,𝐵] ∈ 𝑆12𝑛+8.

Hence 𝑆12𝑛+8 = 𝔰𝔩2(F𝑝), and so with probability at least 1 − 5𝜖, we have the desired bound on the diameter. ◽
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Endnotes
1 The total variation distance between probability measures 𝜇 and 𝜈 is d(𝜇, 𝜈) = 1

2
||𝜇 − 𝜈||1.

2 The probability P𝐴,𝐵(𝜈2𝑘 = 𝜈) is independent of 𝑘, as 𝜈2𝑘 is supported on cosets of the same subgroup of Lin{[𝐴,𝐵]} ⧵ {0}. Let 𝜈(𝑝)
denote this probability. The theorem and its proof imply that the set of limit points of the sequence 𝜈(𝑝) as 𝑝 varies is exactly .

3 A small set is a set of positive integers whose sum of reciprocals converges.
4 The term cutoff describes the stronger property that 𝑡mix(𝜖)∕𝑡mix(1 − 𝜖) → 1 for any 0 < 𝜖 < 1∕2, where 𝑡mix(𝑥) = min{𝑘 ∈

N|d(𝜇2𝑘, 𝜈2𝑘) < 𝑥}. This phenomenon cannot occur on a cyclic group with a bounded number of generators by Abrams et al. (2022).
5 Throughout the paper we assume 𝑝 > 2.
6 Note that 𝜙𝑘 may not converge as 𝑘 → ∞, nor is it guaranteed to be uniform.
7 The lower density of a subset 𝑍 of P is liminf𝑛→∞|𝑍 ∩ P≤𝑛|∕|P≤𝑛|.
8 If 𝛼𝛽𝛾 = 0, there is no corresponding walk on Z𝑛. In that case, just take 𝜙𝑘 = 0.

10 When 𝑎, 𝑏 = 0, both sums are empty, and we have d(𝜎𝑘, 𝜙𝑘) = 0.
11 We can assume 𝑝 is large enough so that 15∕𝑝 < 𝛿∕2.
12 Write 𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗). Then 𝐴,𝐵, [𝐴,𝐵] span 𝔰𝔩2(F𝑝) if and only if the 3 × 4 matrix of vectorized 𝐴,𝐵, [𝐴,𝐵] is of full rank, and

so some minor is nonzero. By the Schwartz-Zippel lemma, this occurs with probability at least 1 − 4∕𝑝.
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