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ABSTRACT

We study a random walk on the Lie algebra 81,(F,) where new elements are produced by randomly applying adjoint
operators of two generators. Focusing on the generic case where the generators are selected at random, we analyze
the limiting distribution of the random walk and the speed at which it converges to this distribution. These questions
reduce to the study of a random walk on a cyclic group. We show that, with high probability, the walk exhibits a
pre-cutoff phenomenon after roughly p steps. Notably, the limiting distribution need not be uniform, and it depends
on the prime divisors of p — 1. Furthermore, we prove that by incorporating a simple random twist into the walk, we
can embed a well-known affine random walk on F,, into the modified random Lie bracket, allowing us to show that
the entire Lie algebra is covered in roughly log p steps in the generic case.

1 | Introduction

Random walks on finite groups are a powerful tool for analyzing their structure and properties (see Diaconis (1988); Hilde-
brand (2005) and references therein). Of particular significance is their connection to growth and expansion in Cayley
graphs of finite simple groups (see, for example, Bourgain and Gamburd (2008)). However, extending these techniques,
and ultimately the results, to the closely related setting of finite simple Lie algebras is not straightforward. Unlike groups,
Lie algebras have two operations: addition and the Lie bracket. The fact that the Lie bracket is non-invertible introduces
additional challenges.

In this paper, we introduce and study a random walk on the Lie algebra 81,(F,) that focuses solely on the Lie bracket
structure. This walk is defined as follows. Let A and B be a generating pair of the Lie algebra 81,(F,) with p > 3. Let
Z,, for k € N, be independent random variables uniformly distributed in the set { A, B}. Starting with X, = [A, B], the
random walk evolves according to

X, =1Z.X,_,] (keN).

This process generates a sequence (X )y, that forms a Markov chain on the set 81,(F,). New elements are produced by
iteratively applying the adjoint operators associated with the generators, a process we refer to as the random Lie bracket.
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Example. Let us look at a simulation of the random Lie bracket. Suppose

75 8 8 110
p=11, A= , B= , X,=[A B]= .
24 10 3 210

Randomly sample the sequence (B, A, B, B, B) from { A, B} to obtain the values

41 47 54 56 95
X, = X, = X, = X, = . X, = .
10 7 8 7 76 10 6 62

Observe that X, = 4X,, X, = 5X,,.

Our goal is to analyze the limiting distribution of this random walk and to study the rate at which it converges to that
distribution, particularly when the elements A and B are chosen uniformly at random. We prove the following somewhat
surprising results.

The random walk (X ), exhibits different behavior depending on whether the number of steps is even or odd (as hinted
at in the example above). In fact, as we will explain, it suffices to focus on what happens after an even number of steps.
We first show that the distribution of X,, is supported on the line Lin{[A, B]} and converges (in total variation distance')
to a distribution v,, on this line in a pre-cutoff manner at k = p.

Theorem 1.1. Forevery §, ¢ > 0, there are constants C, ¢ > 0 such that the following holds. Let p > C,let A, B € §Iz(Fp)
be uniformly random, and let (X),cn, be the associated random Lie bracket. Let p,; be the distribution of X,;. Thereis a
distribution v, that is uniform on a coset of a subgroup of F;‘ = Lin{[A, B]} \ {0} such that with probability at least 1 — &:

1. For k < cp, we have d(py, vy) > 1 — €.
2. For k > Cp, we have d(i,,;, v,;,) < €.

After 2k + 1 of steps, the distribution v,, equally splits into two distributions, one supported on the line Lin{[ A, [A, B]]}
and the other on the line Lin{[B, [A, B]]}.

Example. Consider the example above. Take k = 50 and generate 1000 independent samples of the random Lie bracket
X,9- The following table shows the sample distribution:

[A, B] 5[A, B] 4[A, B] 3[A, B] 9[A, B]
189 185 193 209 224

In this case, the distribution vy, (indeed, any v,, with k > 0) is uniform over the five listed multiples of [A, B]. The total

variation distance between the sample distribution andv,, is 0.033.

For randomly chosen A, B, the distribution v,, is uniform on the whole of Lin{[ A, B]} \ {0} with a certain probability that
depends on the prime divisors of p — 1.

Theorem 1.2. Let (s, 1) be a subinterval of

I ) VN P2
1= [C(Z)’ 3] U [85(2), 4] ~ [0.6079,0.6667] U [0.6839, 0.7500].

Then there is a set of primes p of positive lower density with the following property. Let A, B be uniformly random in 31,(F ),
and let v be the uniform distribution on Lin{[A, B]} \ {0}. Then P, (v, = v) € (s,1) forall k > 0.2

Based on our inspection of the random Lie bracket on 81,(F,) driven by random generators A and B, we can prove an
additional result in this setting. Although the random walk requires roughly p steps to approach its limiting distribution,
the two elements A and B generate the entire Lie algebra 81,(F,) much more quickly. In fact, we will show that, with high
probability, every element of 8[,(F,) can be reached after only O(log p) steps.
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We measure steps in a weighted way using the notion of the diameter of a Lie algebra as defined in Dona (2023). Let S
be a subset of a Lie algebra g. The set S is called symmetric if 0 € S and S = —S. For a symmetric set .S, we inductively
define the set of weighted k-balls as

sl=us, Sk = U ((S7+S*Huls/, s571) (k> 2),

0<j<k

where we have denoted X + Y = {x+ y|[x € X,yeY}and [X,Y] = {[x,y]|x € X,y € Y} for subsets X,Y C g. If Sisa
symmetric generating set of a Lie algebra g over F,, then the diameter diam(g, ) of g with respect to .S is the smallest k
such that S* = g.

For any classical Lie algebra g over F,, Dona proves in Dona (2023) that there is a constant C = O(dim (g)? log dim(g))
such that
diam(g, S) < (log|g])®

for any symmetric generating set S of g. For the case of 8[,(F,), this gives a bound of the form (log p)°"). We will now
improve this bound to linear in log p for the case when the generating set is chosen uniformly at random.

Theorem 1.3. There is a (possibly empty) small set>of primes T with the following property. For any € > 0 thereis a C
such that for all primes p > C notin T, we have

P, p(diam(8L,(F,), S) <120logp+8) >1—e¢,
where S = {0, +A, +B} for uniformly random A, B € 81,(F ).

The situation is very similar to what happens in groups: the diameter of SL,(F,) is (log p)°W for any generating set, and
it is O(log p) for a random generating set (Helfgott 2008, Corollary 6.5).

1.1 | Reader’s Guide

The ideas behind these results can be outlined as follows. First, we analyze the initial steps of the random walk and observe
that odd and even steps exhibit distinct behaviors. This observation allows us to reduce the problem to a random walk
on the cyclic group F; of order n = p — 1 (see Section 2). The key parameters of this random walk are the coefficients of
the Gram matrix associated with the Hilbert-Schmidt inner product on 81,(F,). We then study the distribution of these
parameters and demonstrate that they are nearly uniform (see Section 3). As a result, the problem reduces to analyzing a
random walk on the cyclic group Z, with almost uniformly random generators, which can be approached using Fourier
analysis on cyclic groups (see Section 4). We identify the characters that contribute to the limiting distribution v,, and
relate the probability of converging to the uniform distribution to a {(2)-type condition concerning the prime divisors of
n = p — 1(see Section 5). After that, we establish the pre-cutoff* phenomenon for the random Lie bracket (see Section 6).
Upper bounds on the total variation distance in the generic case were first obtained in Hildebrand (1994), and lower
bounds were established in Hildebrand (2005) (see Theorem 2 and the exercises following it). Here, we provide simpler
proofs tailored to our specific requirements. For the upper bound, we adapt recent elementary methods based on Fourier
analysis from Abrams et al. (2022). These techniques alone yield only a 1/2 — ¢ lower bound, as we discuss. We therefore
streamline the probabilistic argument from Hildebrand (2005) in our context to obtain the stronger 1 — ¢ bound. Lastly,
we discuss the linear bound of O(log p) on the diameter with respect to generic generators (see Section 7). Our result here
relies on embedding a variant of the well-known Chung-Diaconis-Graham affine random walk on F, Chung et al. (1987)
into the random Lie bracket, which allows us to leverage the results of Breuillard and Varju (2022) on covering times of
such walks.

2 | Translating the Walk to a Cyclic Group

2.1 | Inner Product and Adjoint Operators

The vector space 81,(F,) comes equipped with the inner product (A, B) = tr(AB). Note that (4, A) = tr(A?), and since
A? 4 det(A) = 0 for a matrix in 31,(F,), we have (4, A) = -2 det(A).>
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Lemma 2.1 (compare with Proposition 6.2 in Cantor et al. (2025)).  For any two elements A, B € 8[,(F ), we have

[A, B, B] = 2(B, B)A — 2(A, B)B.

Proof. The characteristic polynomial of A is A2 + det A = 0, hence A3 — %(A, A)A = 0. Multilinearize this identity by
considering it in the Lie algebra 81,(F,) ®g, F,[T] /(T?) and using it with the element T A + B. Inspecting the T-term, we
obtain

AB? + BAB + B*A - %(2(14, B)B + (B, B)A) = 0.
Taking into account that B> = %(B, B), we get
(B,B)A—2(A,B)B+2BAB = 0.

The last term of the sum is 2BAB = 2B[A, B] + 2B*A = 2B[A, B] + (B, B) A, hence

2(B, B)A —2(A, BYB = —2B|[A, B]. 1)
Finally, we have B[A, B] = BAB — B’A = BAB — AB? = [B, A]B, therefore

[A, B, B] = [A, B]B — B[A, B] = =2B[A, B],

which is the right-hand side of (1). O
We clearly have ad ;A = 0, ad, B = [ A, B], and it follows from Lemma 2.1 that ad ,[A, B] = —2(A, B)A + 2(A, A) B. Sym-
metrically, we have ady A = —[A, B],adzB = 0,and adg[A, B] = —2(B, B)A + 2(A, B) B. Thus, if A, B is a generating pair

of the Lie algebra 81,(F,), the matrices A, B,[A, B] generate it as a vector space. In this basis, the adjoint operators ad ,
and ad, can be represented by the matrices

00 —2(A, B) 0 0 —2(B,B)
ad, =100 2(A,A) | adg=| 0 0 2(A,B) |
01 0 -10 0

To simplify notation we shall write a« = 2(A, B), # = 2(A, A) and y = 2(B, B).

2.2 | Odd/Even Number of Steps

The random walk (X),cy, begins at X, = [A, B]. After the first step, X, is uniformly distributed among the elements
ad, X, =—-aA+ B and adz X, = —yA + aB. At the second step, X, is uniformly distributed among f[A, B], a[A, B],
alA, B], and y[A, B].

By induction, we observe that for all even indices, X,, € Lin{[A, B]}, where Lin{[A, B]} denotes the line spanned by
[A, B]. Similarly, for all odd indices, X,;,,; € Lin{—aA + B} U Lin{—y A + aB}. Given the distribution of X,, on the line
Lin{[A, B]}, it follows that X,, ., is distributed proportionally (scaled by a factor of 1/2) across the lines Lin{—a A + B}
and Lin{—yA + aB}.

Thus, to understand the behavior of our random walk, it suffices to focus on the distribution after an even number of
steps. This allows us to reduce the problem to analyzing how the distribution evolves along the line Lin{[A, B]}.

The sequence (X, )en is equivalent to a random walk on F,, where we start at the element 1 € F, and, at each step,
multiply by « with probability 1/2, or by f or y each with probability 1/4. Provided that a, f, and y are nonzero, this
random walk occurs on the group F:. By fixing an isomorphism log : F; — Z, where n = p— 1, we can translate the
problem to a random walk on the cyclic group Z,.
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3 | Distribution of the Gram Matrix

In order to analyze our random walk, we need to determine how the parameters @ = 2(A, B), f = 2(A, A),andy = 2(B, B)
are distributed in F, as A, B vary across 31,(F ). These parameters are essentially coefficients of the Gram matrix of the

inner product on 81,(F,):
o (<A,A> <A,B>> _ 1<ﬂ a>
AB = =3 .
(A,B) (B,B)) 2\avy

We thus consider the Gram map to the set of all symmetric matrices,
G : 81,(F,)* - Sym,(F,), (A,B)~ G .

The orthogonal group O(3) over F, acts naturally on the space $1,(F,) (see Clark (2013)), with Witt decompositon (e, /) &
(h),wheree = E,,, f = E,;,and h = E;; — E,,. The discriminant of the form is —2. This action induces an action on pairs
(A,B) € §12(Fp)2. The Gram map G is invariant under this action.

3.1 | Fibers of the Gram Map

Lemma 3.1. The number of elements A € 81,(F,) with (A, A) = a is equal to p(p + n(a/2)), where n is the quadratic
character on F,,.

Proof. Write A =xe+ yf + zh with x,y,z € Fp. The condition (A, A) = a is equivalent to 2xy + 2z = a. This is an
affine quadric. If y # 0, we can uniquely solve for x, giving (p — 1)p solutions. If y = 0, we have z? = a/2, which has
1 + n(a/2) solutions for z, and x is arbitrary, giving p(1 + n(a/2)) solutions. O

Proposition 3.2. Let X € Sym,(F,). Then

pPP—-p rank X =2
2P+ p?—p rank X =1, g(X,1/2),1(X5,/2) >0
G701 = RPN
pPP=p rank X =1, n(X,;/2) = -1 or n(X,,/2) = -1

pP+pP—p rank X =0.

Proof.  Each fiber of G is a disjoint union of orbits under the action of O(3). The size of the orthogonal group is |O(3)| =
2p(p* = 1).

Suppose first that rank X = 2. Each pair (A, B) € 8,(F,)* with G, ; = X determines a nondegenerate quadratic subspace
(A, B) of 81,(F,). For any other pair (A", B') with G ,, » = X, we have an isometry mapping A — A’, B — B’. By Witt’s
extension lemma, this isometry can be extended to an action of O(3) on 81,(F,) that maps (4, B) to (A’, B"). Thus, the
fiber of G over X is a single orbit of O(3). The stabilizer Stab,, (A, B) fixes (A, B) pointwise, hence it also preserves the
line (A, B)*, on which it can only act as +id. Hence |Staby3)(A, B)| = 2 and so the orbit of O(3) on (A, B) is of size P> —p.

Assume now that rank X = 0. Suppose (A, B) is a pair with G, = 0. Since the Witt index of the quadratic space 31,(F,)
is 1, we must have dim(A, B) < 2. Assume (A, B) # (0, 0), which forms a single orbit of size 1. Thus (A, B) = (AZ, uZ)
for some (4, ) € Fﬁ \ {0} and 0 # Z € 81,(F,) with (Z, Z) = 0. By Witt extension lemma, this pair maps to a pair with
Z = e under O(3). Two such pairs can further be mapped to each other by an O(3) map if and only if their (4, u) vectors
are dependent. Thus, a set of orbit representatives is parameterized by vectors in P, so there are p + 1 orbits in total. Each
such orbit has size |O(3).e|, which is the number of nonzero isotropic vectors in 31,(F ). There are a total of p? — 1 of these
by the previous lemma. In total, we obtain 1 + (p + 1)(p? — 1) = p> + p? — p pairs in the fiber over 0.

Consider finally the option when rank X = 1. Suppose (4, B) is a pair with G, = X.
dim(A, B) = 1: This means (A, B) = (xZ, yZ) for some Z € 81,(F,) and x, y not both 0. The Gram matrix of this pair is

2
x=z.z" 7).
Xy y
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so (Z,Z) # 0. Let (C, D) be another pair with G , = X. Thus (C, D) = («W, fW) for some «, § not both zero.
Comparing the Gram matrices, it follows that (W, W) /(Z, Z) is anonzero square u*> € F,. Hence W can be mapped
by an element of O(3) to uZ, and the pair (C, D) gets mapped to (auZ, puZ). Again, comparing the Gram matrices
gives au = +x and fu = +y, where nonequal signs can only occur if aff = 0. Hence (C, D) = (xZ,yZ) = (A, B) or
(C,D) = (—A,—B)when aff # 0, and (C, D) = (0,+yZ) = (0,+B) or (+xZ,0) = (+A,0) when af = 0. In all cases,
an extra application of an element of O(3) identifies elements with distinct signs. Therefore (C, D) is in the orbit of
(A, B), and hence (A, B) has a single orbit under O(3). The stabilizer of any such point is the transformations in O(3)
that fix Z. Since Z is anisotropic, we have two options for the complement: either it is split or non-split, depending
on whether the discriminant A((Z)*) = —=2/(Z, Z) is —1 modulo squares. In the split case, the stabilizer has size
2(p — 1), and in the non-split case, it has size 2(p + 1). Thus, the stabilizer is of size 2(p — n({Z, Z)/2)). The number
of pairs in the fiber over X is thus p(p + n({Z, Z)/2)). These orbits appear whenever X is of rank 1.

dim(A, B) = 2: In this case, we can find a nonzero vector C € (A, B) that is orthogonal to A and B. Hence C is isotropic,
and we can map it to e under O(3). Then A, B € (e)* = (e, h). Thus A = x,e + xh and B = y,e + yh with not both
X,y zero. Assuming y # 0, an orthogonal transformation maps this pair into (e + xh, yh). On the other hand, if
y =0, we can map it to (xh, ). In both cases, the values of x, y are uniquely determined by X (the option —x, —y
is equivalent to (A, B) by the flip along (e, f)). Hence, we again have a unique orbit over any X. Since the stabi-
lizer of (e, f) is trivial, the orbit is of size 2p(p*> — 1). These orbits only appear when 7(X;/2),7(X,,/2) > 0 (not
both zero).

Summing up the contributions from the two cases completes the proof. O

Corollary 3.3. Let A, B be uniformly random in 81,(F,). Then G, p has all entries nonzero with probability at least
1-9/p.

Proof.  Each fiber of the Gram map is of size at most 3p*. The probability that G , 5 has a zero entry can thus be upper
bounded by the union bound as
3p* - 3p?
- G < 22
P” X esym, (F)\sym,(F?) p p

3.2 | Distribution of Parameters Governing the Random Walk

Let U = G‘l(Symz(F:)) be the set of pairs (A, B) € 81,(F,)* whose Gram matrix G, 5 has all entries nonzero. For any
(A, B) € U, the random walk on 81,(F ) after an even number of steps reduces to a random walk on the cyclic group Z,,_;
as in Section 2. In this case, the behavior of the walk is determined by two parameters a, b extracted from G 4 p via the map

. 1({f «
P:Symy(F)—>2Z2 ,, X==2 = (log(a/p).log(a/y)).
P P 2\ay
Let F = PG : U — Z;_l be the composite map, so that (a, b) = F(A, B). Let = be the pushforward measure of the uni-
form distribution on ,cBIZ(Fp)2 under F. In other words, 7(.S) = |F~1(S)|/p°® = P, 3(P(G, p) € S)for any subset § C Zi_l.
Denote the uniform distribution on Zi_l by vz . As pgrows to infinity, the distributions 7 and v;> become close to each
other. ’ ’

Proposition 3.4. For any subset S C Z,2;—1’ we have

I7(S) — vz (S)] < 2.
4 p

To prove this proposition, we first examine the sizes of fibers of the map F.

Lemma 3.5. Foranyx =(a,b) € ZIZ)_1 we have
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6

p
(r-17

|F 00l = < 6p’.

Proof. We have | P~}(x)| = p — 1. First, suppose that a + b = 0. In this case we have a?> = fy, so all matrices X € P~1(x)
have rank 1. Half of these satisfy (X, /2) = #(X,,/2) = 1, and the other half satisfy #(X,, /2) = n(X,,/2) = —1. It follows
from Proposition 3.2 that

_ p—1 p—1
|F~'(x)] = T(2P3 +p —p)+ T(p2 -p=p"-2p"+p.
We compute 0 < p® — (p* — 2p* + p)(p — 1)? < 6p*(p — 1)%. Dividing by (p — 1)? completes the proof for this case.

Now, suppose that a + b # 0. In this scenario, all matrices X € P~(x) have rank 2. Again, by Proposition 3.2, the size of
the fiber F~1(x) is (p — 1)(p® — p) = p* — p> — p? + p. As in the previous case, this quantity is within 6p* of p®/(p — 1)2. O

Proof of Proposition 3.4. 'We have

1 _ |.S] 1 4 p°
12(S) = vz () =|= D IF ()| - <=2 IF (= .
%1 pﬁ; (p—17 pﬁ;‘g (p—1)?
The last sum can be upper bounded by the last lemma as 6p3|.S|/p® < 6/p. o
We will need the following corollary multiple times in the rest of the paper.
Corollary 3.6. Let S C 8[,(F,)* andT C zj_l WwithS N U = F~Y(T). Then
S| 7]
Lind R < 15/p.
P (p-1) /
Proof. Since F~)(T) €S € F7(T) U (81,(F,)* \ V"), we have
‘|S| |F-1<T>|’ L BLEAVT 9
P° A p° TP
by Corollary 3.3. On the other hand, we have
|F~Y(D)] T 6
- =[z(T) —vg (1) < =
‘ »° (p—1)? % p
by Proposition 3.4. The result now follows by the triangle inequality. O

We shall apply the above corollary as follows. Suppose that for every (A, B) € U, the random walk on 81,(F,) exhibits a
property P if and only if the corresponding parameters (a, b) = F(A, B) € Zi_l satisfy a condition C. Then, for uniformly
random A, B € 31,(F)), the probability that the walk exhibits property 7 differs by at most 15/p from the probability that
uniformly random (a,b) € Z2_, satisfy C.

4 | A Brief Overview of Fourier Analysis on Cyclic Groups

We give a brief overview of Fourier analysis on cyclic groups, following the exposition in Diaconis (1988).

41 | Setup

Let .S be a subset of a cyclic group Z, equipped with a probability measure p : .S — C. Let (¥})en, be the random walk
on Z, starting at 0 with transition probabilities given by p(x, y) = p(y — x). Let ¢, be the probability distribution of the
walk after k steps, that is, o, (x) = P(Y, = x) for x € Z,. This distribution is a function in the vector space L*(Z,) of all
complex-valued functions on Z,.
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4.2 | Markov Operator
Let M : L*(Z,) — L*(Z,) be the operator defined by

(Mf)(x) = Y p(s)f(x = 9).

SES

The distribution ¢, can be written as

0 (x) = D p(s)oy_y (x = 5) = (Moy_;)(x),

SES

andso o, = M*6, = M*1,. In order to understand high powers of the Markov operator, we need to analyze its eigenvalues
and eigenfunctions. For any character y of the group Z,, we have

(M p)(x) = <2p(S))((—S)>x(x),
SES

so y is an eigenfunction of M with eigenvalue A = | _ p(s) y(—s). Characters of Z, are of the form y;(x) = w/* forj € Z,,
where @ = ¢*7/", and they form a basis of L*(Z,).

4.3 | Limiting Distribution

The initial distribution 1, can be expressed in terms of the basis of characters as 1, = %Zj;é ;- It follows that the distri-

bution after k steps is given by
n—1
1N«
o= Z A5 X
j=0

where 4; = Des P(s) x;(—s) is the eigenvalue corresponding to ;. We can decompose o, into two components o, = ¢, +

w,, where
_1 k _1 k
b=y LAy o= Xy
[4;1=1 14;1<1

As k grows to infinity, the contribution of @, diminishes to zero, making o, increasingly close to ¢,.° This proximity can
be quantified in terms of the spectral radius p = max{|4,|||4;| < 1} of the Markov operator.

Lemma 4.1 (Lemma 3 in Abrams et al. (2022)). The distance to the limiting distribution satisfies

2k 2 2k
P <llog =il < ) 14,1
[4;1<1

Proof. The characters x; form an orthogonal basis of L?(Z,) and have norm \/Z Thus

2 2_ 1 ko2 2%
logll? < nlleogll3 = — 3 a5zl = X 14,1

14;1<1 14;1<1

proving the second inequality. For the first inequality, let y be a character of Z, corresponding to an eigenvalue with
absolute value p. Since || 7||, = 1, we have

1
oy > Ky, x)| = ;pklw,){)I = pt. o

5 | The Limiting Distribution

We are now ready to analyze our random Lie bracket in more detail. We have already seen that the distribution of the
random walk after an even number of steps is equivalent to a random walk on the cyclic group F;‘ starting at 1 and evolving
by multiplication with «a, 8, y (all nonzero) with probabilities 1/2,1/4,1/4.

80f19 Random Structures & Algorithms, 2026
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51 | Log

Fix an isomorphism log : F: — Z,andleta’ =loga, ' =log B, and y’ = logy. Under this mapping, the random walk on
F: translates to a random walk on Z , starting at 0 = log 1 € Z,. At each step, the walk adds o’ with probability 1/2, or p’
or y’ each with probability 1/4. Let S’ = {a’, #’, y'} be the set of steps of the walk with probability measure p(a’) = 1/2,
p(p) = p(y") = 1/4. The limiting distribution on Z, is given by

1
¢k = ; Z /1;()(]"

Mjlzl

5.2 | Contributing Characters

Let us examine which characters y; appear in the sum ¢,. Certainly, the trivial character y, will always contribute to the
limiting distribution. The character y; will contribute if and only if

4,1 = | 2 p()7;(=9)| = 1.

seSs’

As | y;(=s)| = 1foreach s € S, this holds if and only if y;(—a’) = x;(—=f") = x;(=y’), which is equivalent to y;(a’ — f') =
xj(@ —y") = 1. Introduce parameters a = &’ — ' and b = o’ — y’. Hence a character y; appears in the limiting distribu-

tion if and only if a, b € ker y;, and the corresponding eigenvalue is 4; = y;(a’). The random walk is thus essentially
determined by the parameters a, b.

Lemma5.1. ker y; = (n/ ged(n, j))Z,.

Proof.  An element x € Z, satisfies x € ker y; if and only if n divides jx. We can write j = dj’ and n = dn’, where d =
ged(j, n). By canceling d, we see that this is equivalent to ' dividing j'x and hence to n’ dividing x. Therefore ker y; = 2Z,
and | ker ;| = d. o

Lemma5.2. Leta=a'—f" and b=a' —y'. Then the characters appearing in ¢, are precisely those y; for which j is
divisible by n/ gcd(a, b, n). The number of contributing characters is thus gcd(a, b, n).

Proof. The character x; contributes to the limiting distribution if and only if a, b € ker xi=(n / ged(n, j))Z,,. This is
equivalent to n/ gcd(n, j)|a, b, which is the same as n/ gcd(a, b, n)| gcd(n, j), and this is further equivalent to j being divis-
ible by n/ gcd(a, b, n). O

Corollary 5.3. The limiting distribution ¢, is uniform if and only if gcd(a, b, n) = 1.

In fact, we always get a uniform distribution on gcd(a, b, n)Z,, provided the number of steps k is divisible by gcd(a, b, n),
and more generally a uniform distribution on a coset of gcd(a, b, n)Z,.

Lemma 5.4. The distribution ¢, is uniform on the coset ka’ + gcd(a, b, n)Z,.
Proof. Letd = gcd(a, b, n). We have
b= %kaﬂf -
gl
Any x € ka' + dZ, can be written as x = ka’ + md for some m € Z. Thus
2@ 1,(0) = gy(~ka) g, (ka' +md) = z,(md) = 1

for any j appearing in the sum. Therefore ¢, (x) = d/n, and so ¢, is uniform on ka’ + dZ,,. o
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5.3 | Randomly Chosen Parameters

Suppose that the parameters o', ’,y’ are chosen uniformly at random from Z,. In this case, the parameters a = «' — f’
and b = &’ — y’ are also uniformly distributed in Z,. Thus the probability that a character y; contributes to the limiting
distribution is equal to (| ker y;|/ n)?. Taking j = 2, we see that the probability that y, /2 contributes is 1/4. It follows that
the limiting distribution ¢, is uniform with probability at most 3/4. We will show that for any given € > 0, there is a
positive proportion of primes for which the probability that any other character contributes to the limiting distribution is
less than e. In fact, we can compute the exact probability that the limiting distribution is uniform in terms of the prime
divisors of n.

Lemma 5.5. Let a,b € Z, be uniformly random. Then
1
Pa»b(ng(a’ b’ n) - 1) = H<1 B ?>’
qln

where the product is over all primes q dividing n.

Proof. For each prime ¢|n, the probability that ¢ divides both a and b is 1/¢%. Since the events for distinct primes
are independent, the probability that no prime divisor of n divides both @ and b (which is exactly the probability that

ged(a, b,n) =1)is
1
(%)

qln O

When the only small prime dividing » is 2, the probability that the limiting distribution is uniform is close to 3/4. Con-
versely, when 7 is divisible by all the primes up to some large number (“divisible by all primes”), the probability that the
limiting distribution is uniform is close to

1y__1
g<1 - E) ok 0.6079. 2)

We will now give more precise estimates for the probability that the limiting distribution is uniform and show it can come
arbitrarily close to almost all numbers between 1/{(2) and 3/4 apart from some subinterval.

5.4 | Probability of Convergence to the Uniform Distribution

Lemma 5.6. Let X and Y be two finite disjoint sets of odd primes. There exists a positive lower density’subset of primes
p € P that satisfy

1. All primes from X divide p — 1.

2. No prime from Y divides p — 1.
Proof. Letx=1]] sexgandy= 11 4ev 4- Since x and y are coprime, the conditions p = 1 (mod x) and p = 2 (mod y) are
equivalent to p = ¢ (mod xy) for some ¢ € N by the Chinese remainder theorem. As ¢ is coprime to xy, the proportion of

primes congruent to ¢ modulo xy is 1/¢(xy) > 0 (see (Serre 2012, Section VI.4)). For any prime p with this property, p — 1
is divisible by x and is coprime to y. O

Lemma5.7. Let X =}, x; be the sum of a convergent series of positive numbers, wherex, < ¥, ., x; foreach k € N.
Then for any open interval (s, t) contained in (0, X), there is a finite subset S C N such that ZjeS x; € (s, 1).

Proof. Inductively define subsets S, C N by

S {{x1} X, <t B S,U{n+1} xn+1+.%xj<t
1= . ntl = I3
g otherwise, S, otherwise.
10 0f 19 Random Structures & Algorithms, 2026
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Take S = J,5; S,- We may assume that < X after possibly shortening the interval. Thus we can find some k € N with
k & S.Then
ij+ 2 xj>xk+ 2 ijt,
Jj=k+1 JES, 1 JES 1

sowe can find some k' > k with k" ¢ S. Therefore, there are arbitrarily large numbers that are notin §. Since lim,_, , x; =
0, thereisan m € N \ .S with x,, < 7 — s. Since m ¢ S, we have ) x; +x,, >t hence ) x; >t—x, > s. Hence

jGSm_l jeSm_l
S, is the desired finite subset. O
We shall apply the previous lemma with x; = —log(1 -1/ pj2.). The terms x; are positive and } j»1X; =1ogl(2) by (2).
However, the condition that x, < ¥,.,, x; fails to hold for all kK € N. Here is how the numbers look like for the first few
primes:
x, ~ 0.2877 x, ~0.1178 x5 ~ 0.0408 x, ~ 0.0206
D x; % 0.2100 D' x; 7 0.0922 D' x; ~0.0514 D' x; ~0.0308
jz2 Jjz3 j=4 Jj=5

The inequality fails with k = 1, 2, and works with k = 3, 4. Let us verify that the condition does hold from that point on,
so we can use the previous lemma with the sequence (x;);3.

Lemma 5.8. Let p; be the j-th prime and let x; = —log(1 — 1/pj?). Then x, < Y, x; forallk > 5.

jzk+1

Proof.  We first claim that x;,, > x,/2 for any j > 5. This is equivalent to
2
<1_2L> c1-1 @
Pin P;

Jjdogj+loglogj—3/2) < p; < j(logj +loglog; —1/2)

It follows from Axler (2019) that

for all j > 20. Basic analysis then gives p;,; < 14p;/10for any j > 28, and hence
2
1 2 1 200 1 1 1
l-— ) =1-——+ ——<1-=" = <1-=.
2 2 4 2 4 2
< Pia ) 144 p

It can be checked with a computer that (3) also holds for j € {5,6, ...,27}. We obtain, for any k > 5,

Z x; > ka% = Xy,

k41 j>1
as required. O

Proposition 5.9. Let (s, t) be a subinterval of
I [L,E] Y [Li]
(@2 3 80(2) 4
Then there is a set of primes p of positive lower density for which

I <1 - %) € (s,1).

qlp-1

Proof. Letx; = —log(1 -1/ p?). It follows by combining the previous two lemmas that the sums Y’ ¢ x; with .S a finite
subset of N\ {1, 2} form a dense subset of the interval (0, log {(2) + log(3/4) + 1log(8/9)) = (0, 1log(2{(2)/3)). Equivalently,
the products HjeS e = HjeS(l - 1/p12.) form a dense subset of the interval (3/(2£(2)), 1).
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Suppose first that (s,7) C (1/£(2),2/3). By the argument above, we can find a set .S with Hjes(l — 1/p12.) € (3s/2,3t/2).

Let S = S U {1,2}, so that HJ.GS,(l - l/pf) € (s,1). We can thus find a k larger than all elements in S’ such that

-1

1 1
H(l——2> >s-exp<2xj> =S-H<1— —2> .
jes P; ik Jzk P;

Take X = {p;|j € S’} and Y = {p,|j < k} \ X. Then any prime p with the property that all primes from X divide p — 1
and no prime from Y divides p — 1 satisfies

1 1
> H(l—:) - 10 <1__2>>s.
glp=1 q JESNjzk p;

The set of primes p with this property has positive lower density by Lemma 5.6.

The case when (s, 1) C (9/(8¢(2)), 3/4) can be handled in a similar way by taking .S’ = .S U {1}. The interval (3/(2¢£(2)),1)
transforms under multiplication by 3/4 to (9/(8£(2)), 3/4). O

Corollary 5.10. Let (s,t) be a subinterval of 1. Then there is a set of primes p of positive lower density for which the
following holds. Leta’, p’, v’ be uniformly random in Z,,, and let v be the uniform distribution on Z,, where n = p— 1. Then
Py (@ =V) E(s,1) forallk > 0.

We now transport this result to the original setting of the random Lie bracket.

Corollary 5.11. Let (s, t) be a subinterval of 1. Then there is a set of primes p of positive lower density with the following
property. Let A, B be uniformly random in 31,(F ), let ¢, be the limiting distribution of the corresponding random walk on
Z, after k steps,® let v, be the corresponding distribution on Lin{[A, B]} \ {0}, and let v be the uniform distribution on
Lin{[A, B]} \ {0}. Then P, (v, = v) € (s,1) forall k > 0.

Proof.  Take any A, B € 81,(F,) such that G, 5 has nonzero entries. Then the random Lie bracket satisfies v,, = vifand
only if the parameters (a, b)) = F(A, B) satisty gcd(n, a, b) = 1. By Corollary 3.6 we have |P 4 (v, = v) — P ,(gcd(n, a, b) =
1)| < 15/p and by the previous corollary, we have

P, ,(ged(n,a,b) =1) = vzi({(a’,ﬁ',y') € Zz|¢k = vzn}) € (s+15/p,t —15/p)9

for a set of primes p of positive lower density. Combining these gives us that P, p(v,, = v) € (s,1) for a set of primes p of
positive lower density. O

In particular, for any x € T and any € > 0, there is a set of primes of positive lower density such that the random Lie
bracket converges to the uniform distribution on a line after an even number of steps with probability in (x — e, x + €).

6 | Pre-Cutoff

Let A, B € 81,(F,) be uniformly random. Let y,, be the distribution of the random Lie bracket after 2k steps, and let v, be
the associated limiting distribution, supported on Lin{[A, B]}. We shall now prove that with high probability, the distance
d(p,y, v4) quickly transitions from 1 to 0 at around k =~ p. This is the phenomenon of pre-cutoff, and we establish it by
providing sharp upper and lower bounds on d(u,,, v,;) in terms of k and the parameters a, b. We further inspect what
happens for generic a, b.

The distribution of the random Lie bracket after 2k steps is the same as the distribution of the random walk on F: with
parameters a, 8, y after k steps. Supposing these parameters are all nonzero, the random walk is equivalent to a random
walk on Z, with parameters «’, #’,y’. Let o, be the distribution of this random walk after k steps. The Markov operator
has eigenvalues

1

3y = S+ TP+ 3,1

12 0of 19 Random Structures & Algorithms, 2026

85U8017 SUOWILLOD BA 81D (edldde ay) A peusenob afe Se(oie YO ‘88N JO Sa|nI Joj Akeiq1T8UlUQ A8]IM UO (SUOTHPUOD-PUB-SWBIW0 A8 | IMAleIq Ul [UO//SANY) SUORIPUOD PUe SW 1 84} 88S *[9202/20/50] Uo ARIqiT8uliuo A8|IM BIUBACIS 8URIYO0D AQ Zi002€S1/200T OT/I0p/Loo" A3 1M Akelq1|euluo//:sdny wo. pepeojumoq ‘T ‘9202 ‘8T¥Z860T



of absolute value

1 1 1
Mjl = 2 + Z)(j(a)+ Zk’j(b) >

wherea=a —f andb=a' —y'.

6.1 | Upper Bound

For x € R, let (x) be the unique value in the interval (—1/2,1/2] such that x — (x) is an integer. Let us associate to each

eigenvalue 4; the vector
; b
=)<
n n

The norm [|u;|| controls | 4| in the following way.
1
Lemmaé6.1. |4 < exp<—5 ||u,-||2)-
Proof.  The triangle inequality gives
1 1 . 1 .
12,1 < 2 (N + 2@ + 11+ 2,®)l) = S| cos(zja/m]| + S| cos(xjb/m.
Note that | cos(zx)| = | cos(z({x))|. Using the bound cos(zx) < exp(—2x?), which holds for all x € [-3/2, 3/2], we obtain
1 . .
4,1 < 3 (exp(=2(ja/n)) + exp(~2(jb/n))).
By Jensen’s inequality for the function x — exp(—2x?), which is concave on the interval [—-1/2,1/2], the latter is at most

1,.,. . 1
exp( =3 (I(a/m+ 1(b/m1)*) < exp( =3 lu, 17
and the proof is complete. O

The characters contributing to the limiting distribution ¢, are those y; for which |4;| = 1. Note that this happens if and
only if a, b € ker Xjs which is the same as u ;=0. In order to control the residual distribution o, — ¢, = w,, let A be the
plane lattice

A= (uj+zz)=<$,§)z+zzgkz

j€z,

and let A be the minimal distance between two distinct points in A. When a, b # 0, the lattice A is nontrivial, and we have
A =min {||u;l||j € Z,, u; #0}.

Proposition 6.2. Forallnandall a,b € Z,, we have

d(oy, (,l),c)2 < 11 ged(a, b, n)e_kAz.

Proof. Use Lemma 4.1 with the last lemma to bound'®

low = dills < 14,17 < ) exp(—kllu,I1°). @

14;1<1 ;0

Let us upper bound this sum in terms of the lattice A. Note that the union in the definition of A might not be disjoint,
since we might have u; = u; for some i, j. This happens precisely when n divides a(j — i) and b(j — i), which is equivalent

Random Structures & Algorithms, 2026 13 0f 19

85U8017 SUOWILLOD BA 81D (edldde ay) A peusenob afe Se(oie YO ‘88N JO Sa|nI Joj Akeiq1T8UlUQ A8]IM UO (SUOTHPUOD-PUB-SWBIW0 A8 | IMAleIq Ul [UO//SANY) SUORIPUOD PUe SW 1 84} 88S *[9202/20/50] Uo ARIqiT8uliuo A8|IM BIUBACIS 8URIYO0D AQ Zi002€S1/200T OT/I0p/Loo" A3 1M Akelq1|euluo//:sdny wo. pepeojumoq ‘T ‘9202 ‘8T¥Z860T



to n dividing ged(a, b)(j — i), and this is the same as saying that n/ gcd(a, b, n) divides j — i. Hence, every value of u; occurs
precisely ged(a, b, n) times. We can thus bound the exponential sum in (4) by

ged(a, b,n) ) exp(—kllull3).

ueA\{0}
The sum of norms over the whole lattice A can be upper bounded as in (Abrams et al. 2022, Lemma 6) by

. . 2 — e—kAZ
9N (i +1)2e " <18 Y (i + 1)e 2T = 180k 2 ¢
1221 1221 1- e—kAz)z

For e %4’ <1 /10, the value of the fraction is less than 12/5, so we get the overall bound
lloy — ¢k”2 < 44 gcd(a, b, n)e_kAZ_

For e**” > 1/10, the same bound holds since we always have ||o, — ¢,||? < 4. |

The minimal norm A can be estimated as follows.

gcd(a, b, n) <A< 2 /gcd(a, b, n).
n \/; n

Proof. The lattice A is contained in (gcd(a, b, n)/ n)Z?, hence A > gcd(a, b, n)/n. For the upper bound, project R? to the
torus R?/Z?. Observe that the image of the lattice A contains exactly n/ gcd(a, b, n) points. Since the minimal distance
between two distinct points of A is A, the open discs of radius A/2 in the torus R?/Z? around these points are disjoint.
Comparing areas, we thus obtain

Lemma 6.3. We have

m’r(%)z <1

Rearranging terms gives the claimed upper bound. O

The bounds in the lemma are sharp with respect to n. If @ = 1 and b = 0, we have gcd(a, b,n) = 1 and A = 1/n, matching
the lower bound. For the upper bound, consider n = m?, a = m, and b = 1 for some m € N. If llu;ll < 1/mfor some j € Z,,
then, since the second coordinate of u; is less than 1/m in absolute value, we must have |j| < m. However, this implies

Jj = 0, as the same condition holds for the first coordinate. Thus u; = 0. This demonstrates that A > 1/m =1/ \/ﬁ and the
upper bound is also sharp up to a constant factor.

6.2 | Randomly Chosen Parameters

Suppose the parameters a, b € Z, of the random walk are chosen uniformly at random. We shall now show that in this
case, gcd(a, b, n) is not large and A is of order 1/ \/ﬁ with high probability.

Lemma 6.4. Let a, b be uniformly random in Z,,. Then for any M > 1, we have

P, ,(gcd(a, b,n) > M) < 1/(M —1).

Proof. 1f gcd(a, b,n) > M, then there isa d > M that divides a, b, n. By the union bound, we thus get

P,,(gcd(a,b,n) > M) < NP, (a,bEdZ,) < Y % < / N

dln d>M
d>M

(]
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Lemma 6.5. Leta,b € Z, be uniformly random. For any 0 # j € Z, and r > 0, we have

Pa’b(O <lu;|l < r) < 8.
Proof. Let d = gcd(n, j) and m = n/d. Let L be the additive subgroup of R? generated by (d/n,0) and (0,d/n), and
consider (L) = L n(=1/2,1/2]. For uniformly random a, b, the point u ; is uniformly distributed on (L). Note that (L)

consists of m? points and at most (2|rm] + 1)? of them are of norm at most r. The probability that 0 < ||lu ;I < ris thus
bounded by ((2|rm] + 1)* — 1)/m?. This is 0 when m < 1/r, and for m > 1/r it is at most 4r% + 4r/m < 8r2. m|

Lemma 6.6. Let a,b € Z, be uniformly random. For any ¢ > 0, we have
P, (A < e/+/n) < 8€.

Proof. Theevent A < ¢/ \/Z implies that we must have 0 < ||lu;|| < ¢/ \/ﬁ for some 0 # j € Z,,. The claim now follows
by the union bound and the previous lemma. O

Theorem 6.7. Forevery e, > 0 there is a constant C such that the following holds. Let a, b € Z,, be uniformly random.
Then for all k > Cn, we have

P,,(d(o. ¢ <€) >1-3.

Proof. With probability larger than 1 — § we have, by Lemma 6.4 and Lemma 6.6, that both ged(a, b,n) < 1+2/6 < 3/6
and A% > §/16n hold. Using these with Proposition 6.2 gives

d(oy, ¢p)? < % exp(—6k/16n).

For k > Chn, this is less than €2, completing the proof. o

Corollary 6.8. For every €,5 > 0 there is a constant C such that the following holds. Let A, B € 31,(F,) be uniformly
random. Then for all k > Cp, we have

P, p(d(py, vy) <€) >1-6.
Proof. Take A, B € 8,(F,) such that G, 5 has nonzero entries. Then the random Lie bracket satisfies d(uy, v5;) < € if

and only if the parameters (a, b) = F(A, B) satisfy d(c,, ¢;) < €. By the previous theorem, we have P ,(d(c;, ¢;) < €) >
1 - 6/2for k > Cp. It now follows from Corollary 3.6 that P, z(d(py, v,) <€) > 1— 6.1 |

6.3 | Lower Bound in L!-Distance

We now prove the corresponding lower bound on the distance between ¢, and v,. Using Fourier analysis, we can easily
obtain a lower bound 1 — ¢ on the L!-distance (but not on the total variation distance, this will be done in the following
section) in terms of the vectors u; and minimal norm A as in the previous section. We tightly follow the argument in
Abrams et al. (2022).

Lemma 6.9 (Lemma 4 in Abrams et al. (2022)). If ||u;|| < 1/2x, then

14,1 2 exp(=72lu,|12).

Proof.  'We have

14,1 > Re(% + i;(j(a) + %;(j(b)) - % + %cos(zn(ja/n» + icos(Z;r(jb/n)).

This can be lower bounded using cos x > exp(—x?), which holds for all |x| < 1, by
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Ly Lep(cartja/n?) + L exp(-az(/m?).

and applying Jensen’s inequality for the convex function x — exp(—x) gives

14,1 2 exp(—r2(ja/n)* — z(jb/n)*) = exp(—n*|lu;|I%).
[m}

Theorem 6.10. For every €,5 > 0 there are constants C, ¢ > 0 such that the following holds. Let n > C and let a,b € Z,
be uniformly random. For all k < cn, we have

P,,(d(o,.d) >1/2—€) >1-6.

Proof. With probability at least 1 — 5, we have gcd(a, b,n) <1+ 1/5 by Lemma 6.4. Let C be such that

1
oy LELE 1
zC 2

As long as n > C, we thus have A <1/2z by Lemma 6.3. Let u; be the vector with A = ||u;||. We have |4;| # 1 since
[lu;|l # 0, and so Lemma 6.9 gives p > [4;| > exp(—z2A?). Hence

d(o,, ;) > p*/2 > exp(—=4z(1 + 1/8)k/n)/2

by Lemma 4.1. For k < cn, this is more than 1/2 — ¢, completing the proof. O

6.4 | Lower Bound in Total Variation Distance
Let us now prove the corresponding stronger lower bound of 1 — ¢ in total variation distance. We do this by refining the
argument in (Hildebrand 2005, Theorem 2) (itself a modification of (Greenhalgh 1989, Theorem 6.1.1)), which proves a

bound of 1/2 — ¢ in total variation distance (so as strong as the one in the previous section).

Theorem 6.11.  For every ¢, > 0 there are constants C, ¢ > 0 such that the following holds. Let n > C and let a,b € Z,
be uniformly random. For all k < cn, we have

P, (d(o,. ) >1—¢€)>1-34.

Proof. Let 4 > 0 be a parameter to be determined later. Let C, ¢ > 0 be such that

A +1/8)24/c+1/VC)P <.

Assume n > C and k < cn. We will exhibit a set S C Z, that satisfies ¢, (S) < € and ¢,(S) > 1 — 2¢, which in turn gives
d(c,,¢,) > 1 —3e.Let¢ : Z* — Z, be the homomorphism defined by ¢(1,0,0) = &, ¢(0,1,0) = £, $(0,0,1) = ', and let

T = {(k—x—y,x,y) € Z3||x — k/4], |y — k/4| < ,1\/2} and S = ¢(T).

The distribution ¢, is uniform on a subset of size n/ gcd(a, b, n) by Lemma 5.4. With probability at least 1 — 6, we have
gcd(a, b,n) <1+ 1/6 by Lemma 6.4, and hence

$,(S) < S| ged(a, b,m)/n < (1 +1/8)2aVk + 1)?/n < e

by the assumption on n, k. On the other hand, let X, Y be the number of times the generators #, y’ are chosen in the ran-
dom walk. Note that X, Y are distributed as a sum of k independent Bernoulli random variables with success probability
1/4. Thus

6(S) = P(IX — k/4] < 2k, |Y = k/4] < AVk) = 1-2P(1X — k/4] > V).
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By Hoeffding’s inequality, the last probability is at most 2 exp(—2/12). Let A be such that this is less than e. Then ¢,(S) >
1 — 2¢, as required. O

Corollary 6.12. For every e, § > 0 there are constants C,c > 0 such that the following holds. Let p > C and let A, B €
31,(F,) be uniformly random. For all k < cp, we have

P, g(d(py,vy) >1—¢€) >1-56.

Proof.  For matrices A, B € 81,(F,) such that G, 5 has nonzero entries, the random Lie bracket satisfies d(sy;, v,) > 1 —
e if and only if the parameters (a, b) = F(A, B) satisty d(c;, ¢;) > 1 — €. By the previous theorem, we have P, ,(d(c}, ¢;) >
1-¢)>1-6/2 for k <cp. We can assume C is large enough so that 15/C < §/2, so Corollary 3.6implies that
P, p(d(py, vy) <1—¢€)>1-6. |

Corrollaries 6.8 and 6.12 together prove Theorem 1.1.

7 | Diameter

Here, we prove the diameter bound of O(log p) for the random Lie bracket in 81,(F,), as stated in Theorem 1.3. The key
point behind the argument is based on the analysis of the affine random walk on F,, evolving according to x,,,; = ax, + b,
for fixed a € F, and i.i.d. random b € F,,. This walk has been studied many times in the literature, the starting point being
Chung et al. (1987). The most relevant for us are the strong results of Breuillard and Varju (2022) which exhibit rapid
mixing of the walk for almost all values of a. In order to explain this more precisely, let, for any a € F, and n € N,

P,(a) = {Zbia’]bi € {—1,0,1}} CF,
i=0

be the set of all polynomials in a of degree at most n with coefficients in {-1,0,1}.

Theorem 7.1 (Proposition 13 together with Theorem 2 in Breuillard and Varju (2022)). There is a (possibly
empty) small set of primes T with the following property. For any € > 0 there is a C such that for all primes p > C notin T
and at least (1 — €)p values of a € F,, we have P,(a) = F, for some n < 10log p.

Remark 7.2. Alternatively, we can use Theorem 1 from Breuillard and Varju (2022) instead of Theorem 2. This yields
a weaker bound of n < C, log ploglog p, but it holds for all primes p.

We now show how to do deduce the stated diameter bound from this. First of all, using basic properties of the random
Lie bracket, we show that obtaining P, (a)-multiples of [A, B] € 31,(F,) grows linearly with n.

Lemma 7.3. Let A, Be 81,(F,) and S = {0,+A, +B}. Leta = 2(A, B). Then for any n € N, we have

P(a)-[A, B] C S¥*2

Proof.  We prove this by induction on n. The statement is trivial for n = 0. Suppose it holds for n and take any x € P, ().
Then x = ay + z for some y € P,(a) and z € {—1,0,1}. By the induction hypothesis, we have y[A, B] € $4*2, and so
ay[A, B] = [B,[A, y[A, B]]] € S*** by Lemma 2.1. Then

x[A, B] = ay[A, B] + z[A, B] € Gént6 _ gAnt+2

O
Secondly, we show that, with high probability, the value « = 2(A, B) belongs to any large enough set.
Lemma 7.4. Let A CF, be asubset of F, with |A| > (1 —€)p and let A, B € F, be uniformly random. Then
P, pla & A) < 3e.
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Proof. Let X C Sym,(F,) be the set of symmetric matrices X with 2X,, ¢ A. By assumption, we have |X| < ep®. By
Proposition 3.2, we then get then bound |G~1(X)| < 3ep®. The result follows. ]

We are now ready to deduce Theorem 1.3.

Proof of Theorem 1.3.  Let T be the exceptional set of primes from Theorem 7.1. Take any e > 0. Then there is a C such
that for all primes p > C not in T and at least (1 — e)p values of a € F,, we have P,(a) = F, for n = [10log p|. Hence, by
Lemma 7.4, for A, B € 31,(F,) uniformly random we have P,(«) = F, with probability at least 1 — 3e. This implies, by
Lemma 7.3, that Lin{[A, B]} C S*+2.

We can assume that C (and therefore p) is large enough that with probability at least 1 — ¢, the matrices A, B and [A, B]
span 81,(F,) as a vector space.!? In that case, we can write any element of 31,(F,) as xA + yB + z[ A, B] for some x, y,z €
F,. The Gram matrix G, p is invertible with probability at least 1 —4/p > 1 — €. Thus there are r, s € F,, such that (r, s) -
G, = (y/4,—x/4), meaning that —2ar — 2ys = x and 2fr + 2as = y. Then, by Lemma 2.1,

XA+ yB + z[A, B] = [A, r[A, B]] + [B, s[A, B]] + z[A, B] € S'"*8,

Hence S128 = 8[,(F,), and so with probability at least 1 — 5¢, we have the desired bound on the diameter. O
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Endnotes
I The total variation distance between probability measures y and v is d(u, v) = %H u=vl.

2The probability P 4.8(Vox = v) is independent of k, as v,, is supported on cosets of the same subgroup of Lin{[A, B]} \ {0}. Let v(p)
denote this probability. The theorem and its proof imply that the set of limit points of the sequence v(p) as p varies is exactly 7.

3 A small set is a set of positive integers whose sum of reciprocals converges.

4The term cutoff describes the stronger property that #,.(¢)/tnix(1 —€) = 1 for any 0 <e < 1/2, where t,,(x) = min{k €
N|d(#» Vo) < x}. This phenomenon cannot occur on a cyclic group with a bounded number of generators by Abrams et al. (2022).

> Throughout the paper we assume p > 2.

6 Note that ¢, may not converge as k — oo, nor is it guaranteed to be uniform.
’The lower density of a subset Z of P is liminf, | Z nP_,|/|P,I.

8If afy = 0, there is no corresponding walk on Z,. In that case, just take ¢, = 0.
19When a, b = 0, both sums are empty, and we have d(c,, ¢,) = 0.
1We can assume p is large enough so that 15/p < 5/2.

R2Write A = (a;;), B = (b;). Then A, B,[A, B] span QIZ(FP) if and only if the 3 X 4 matrix of vectorized A, B, [A, B] is of full rank, and
so some minor is nonzero. By the Schwartz-Zippel lemma, this occurs with probability at least 1 — 4/p.
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