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ARTICLE INFO ABSTRACT

N-Heterocyclic carbenes (NHCs) have become cornerstone ligands in modern coordination and main-group
chemistry, yet their interactions with metal and non-metal fluorides have long remained underexplored
because many fluorides are poorly soluble and often difficult to handle. This review surveys the synthesis,
structures, and reactivity of all structurally characterized NHC complexes and adducts containing the NHC-M-F
fragment reported from the advent of isolable NHCs (1991) through mid-2025. Across 33 elements spanning the
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ﬁg:rfc'ycnc carbenes s-, p-, d-, and f-blocks, we compile 458 reported compounds, including 277 crystallographically authenticated
Metal fluorides species, and organize the field by element group and oxidation state. Emphasis is placed on practical synthetic
Main-group fluorides entry points: direct coordination to soluble fluoride sources, transmetalation and synthon strategies, dehydro-
Coordination compounds fluorination routes from fluoride salts, fluorination of pre-formed halide, hydride, or organo precursors, and
Cyclic alkyl(amino)carbenes redox-driven fluoride formation. We highlight how ligand sterics and electronics (including CAAC and related
Crystal structures carbenes) govern stability and speciation. Comparative analysis of NHC-M and M—F metrics, typical geometries,

and '°F NMR ranges reveals periodic trends and recurring structural motifs, providing a unified reference
framework for designing new NHC-stabilized fluoride compounds and leveraging their distinctive reactivity.

1. Introduction and applications. In main group and transition metal chemistry, NHCs
have become popular ligands due to their strong donor ability. Histor-

Since the discovery, isolation, and characterization of the first ically, NHCs were considered phosphine mimics, as both are mono-
"bottleable" NHC carbene in 1991 [1], carbene chemistry has expanded dentate two-electron ligands [2]. In many cases, the geometries of
tremendously, quickly becoming indispensable in various research areas donor-acceptor complexes with phosphines and NHCs exhibit similar
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features, with some exceptions attributed to differences in ligand donor
strength [3]. Among these, NHCs are typically considered much stronger
net donors [2,4]. Quantum chemical calculations on SiF4 and SiCl4 have
suggested that NHC complexes are more stable than those with amines
and phosphines [5]. This was also confirmed experimentally by the
stabilization of penta- and octacoordinated SiF4 with NHCs, while
identification of phosphine or thioether counterparts was unsuccessful
[6]. Compared with hard N- or O- donor ligands, NHCs, phosphines, and
thioethers form softer donor-acceptor adducts with high oxidation state
d- and p-block fluorides [7]. Nevertheless, NHC chemistry has devel-
oped into a useful and complex field distinct from other ligands. A major
advantage of using NHCs is the easy modification of their steric and
electronic properties through simple variations of the starting materials
[4].

By definition, NHCs are neutral heterocyclic compounds that contain
at least one nitrogen atom within the heterocyclic ring and a divalent
carbon atom with only six electrons in its valence shell. Because the ring
size, functionalization, and number of nitrogen atoms are not specified,
many different NHC classes exist within these criteria, each with distinct
properties [4]. Their synthesis, structure, and electronic properties have
been extensively studied and reviewed [4,8-14]. The most common
classes of NHCs discussed in this review are shown in Fig. 1. They are
derived from imidazole (NHC and aNHC), imidazoline (SNHC), and
pyrrolidine (CAAC). Other classes are also becoming increasingly
popular.

Strongly donating ligands, such as CAACs, are now being extensively
studied. The presence of a quaternary carbon in the position a to the
carbene center distinguishes CAACs from NHCs by influencing their
electronic and steric properties. Consequently, CAACs are more
electron-rich than NHCs and phosphines. This makes them more
nucleophilic, more electrophilic, and more basic than NHCs [9,11].
These features enable the synthesis of otherwise unstable intermediates
and unusual d- and p-block complexes [4,9]. In a recent study, the steric
properties of CAACs enabled the synthesis of the first transition metal
hexafluoride complex with a pentagonal bipyramidal geometry,
[WFe(CAAQ)] [15]. In contrast, the same reactions using NHCs resulted
in seven-coordinate complexes in the form of distorted capped trigonal
prisms, which are more common [15]. In addition, the unique properties
of CAACs allow the stabilization of unusual low-valent transition metal
and main group complexes, which are not found with NHCs [11]. For
example, the Si(II) adduct [SiF2(CAAC),] was obtained by the reduction
of [SiF4(CAAC)], while the same reaction with NHC did not yield the
reduced compound [16]. Similarly, the B(I) adduct [BF(CAAC),] was
also obtained [17].

Coordination of NHCs to transition metals and the formation of
transition metal complexes typically involve the formation of strong
NHC-M bonds. Similarly, NHC carbenes form adducts with main group
species, which can be highly stable and non-labile due to strong dative
coordination. The synthesis, structure, and application of many NHC
complexes and adducts have already been extensively studied and
reviewed [18-24]. NHC transition metal complexes, including fluorides,
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Fig. 1. Common types of NHC carbenes.
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are the most widely used in homogeneous catalysis and organic trans-
formations [4]. For example, the broad utility of [CuF(NHC)] complexes
has been demonstrated in several reactions with organosilicon com-
pounds and in cross-coupling reactions [25]. The strong NHC-metal
binding increases the stability and, consequently, the catalytic stabil-
ity of complexes due to low rates of catalyst decomposition [4].
Compared to other ligands, NHC complexes exhibit higher reactivity,
improved selectivity, efficiency, and versatility, allowing access to un-
precedented reactivity pathways [4]. For example, fluoride complexes
with late transition metals such as Au are usually labile and reactive.
However, using NHCs prevented reduction to Au metal, enabling the
synthesis of the first [AuF(NHC)] complex [26]. Another significant
advantage is the solubility of these complexes in aprotic solvents,
compared to the often insoluble nature of the corresponding metal
fluoride [25]. However, a drawback of such complexes is their sensi-
tivity to moisture. In Cu chemistry, this was addressed by using more
stable bifluoride adducts [25].

It is worth noting that many recent reviews of NHC transition metal
complexes and main group element adducts do not focus on NHC-
stabilized fluoride species. One reason is that the chemistry of fluo-
rides was traditionally developed separately from that of other halides.
Working with fluorine-containing molecules sometimes requires
specialized equipment and skills, which are rarely available in most
laboratories [7]. Fortunately, with the development of adequate
experimental techniques, equipment, characterization methods, and
fluorination reagents, interest in this area has grown enormously.

The synthesis of NHC-stabilized metal and non-metal fluorides can
be accomplished using various methods, as shown in Scheme 1. The
most commonly used method is the free carbene route. For many ele-
ments, complexes with NHC-M-F fragments have been prepared by
directly combining a fluoride with a free NHC. This procedure is
straightforward but requires a fluoride with good solubility in the cho-
sen solvent, a free carbene, and anhydrous conditions. To avoid the need
for anhydrous conditions, transmetalation procedures can be used. In
this method, a carbene-transfer reagent is combined with a metal or non-
metal fluoride source to produce the desired NHC fluoride. To increase
the solubility of fluorides, synthons (e.g. [MF(L)], where L is a neutral
ligand) can be used. In this approach, a neutral ligand of a synthon is
displaced by an NHC ligand to form the desired NHC fluoride.

Sometimes, dehydrofluorination of the corresponding fluoride salts
leads to the formation of NHC-stabilized fluorides. For example, ther-
molytic decomposition of [(NHC)H][MF1)] salts or their in-situ
deprotonation can directly yield [MF,(NHC)] complexes.

NHC-stabilized fluorides can also be obtained by fluorinating pre-
formed [MX,(NHC)] complexes. Depending on the selectivity of the
fluorinating reagent, the starting substituents on the metal or non-metal
center can be partially or completely replaced with fluorides. Various
reagents can be used for this purpose, such as inorganic fluorinating
compounds (KF, AgF, AgF,, MesSnF, SF4, SFg, KHF,, etc.), organic
fluorinating reagents (Selectfluor, NFSI, NH4F, NR4F, EtsN-3HF, etc.), or
fluorinated organic compounds (C¢Fg, benzyl fluoride, etc.).

The [MF,(NHC)] complexes can be further functionalized to form
new species. Functionalization can occur at the metal or non-metal
center by exchanging fluorides with other substituents to form de-
rivatives of the type [MF_m)Rm(NHC)], or at the NHC scaffold to form
derivatives of the type [MF,(NHC-R)], where R is a C-, N-, O-substituent,
or halide.

Reductions and oxidations of existing complexes can also lead to the
formation of new NHC-stabilized metal fluorides. For example, reduc-
tion of [MF,(NHC)] with KCg yields complexes in a low oxidation state.
Conversely, oxidation of compounds in a lower oxidation state with XeFs
or 2,2-difluoroimidazolidine produces NHC-stabilized fluorides in a
high oxidation state.

Over the past 25 years, extensive study in metal and non-metal
fluoride chemistry has led to the synthesis and characterization of
many NHC complexes and adducts. Their chemistry has been partially
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Scheme 1. Methods for the synthesis of NHC-stabilized metal and non-metal fluorides. TM = transmetalation group.

covered in several review articles [7,26-32]. review, we focus exclusively on compounds containing NHC-M-F frag-
This article reviews the synthetic and structural aspects of NHC ments, prepared from the discovery of stable NHCs in 1991 through mid-
transition metal complexes and main group element adducts. In this 2025. To the best of our knowledge, 33 elements form such fragments, as
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Fig. 2. Elements forming NHC-M-F fragments.
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indicated on the periodic table in Fig. 2. Among the 458 compounds
included in this review, B is by far the most extensively studied element,
followed by P, Ni, Ru, Au, and Cu. Fig. 3 shows the proportions of known
compounds with NHC-M-F fragments for each element.

A detailed search of The Cambridge Structural Database identified
277 unique structurally characterized compounds [33]. In analyzing
their structural features, we focused on their NHC-M and M-F bond
lengths. Because this information may be useful to a broad audience, we
compiled the typical bond lengths, geometries, and °F NMR data of the
structurally characterized neutral NHC-stabilized metal and non-metal
fluorides in Table 1. Note that not all elements discussed in this re-
view form neutral complexes. All data collected for the 277 structurally
characterized complexes are provided in the Supporting Information.

2. s-block complexes

S-block metal fluorides stabilized with NHC ligands are not known.
In the literature, only a few structures are reported in which NHC-
stabilized metals are coordinated to weakly coordinating anions. More
information about s-block metal complexes with NHC ligands in avail-
able in ref. [18].

2. GROUP1I
2.1.1. Lithium & Potassium

Stable Li-containing products were obtained by deprotonating the
corresponding imidazolium phosphate salts with Li-containing reagents.
The formation of complexes 1 and 2 (Fig. 4) was confirmed by single-
crystal structure analysis. Both structures exhibit tetrahedral coordina-
tion at the Li center and a bridging fluorine bond to [PFg]  anions
[34,35]. In both cases, using an excess of LIHMDS reagent in THF was a
key factor in forming the complexes [35]. The NHC-Li bond lengths in
known complexes range from 2.22 to 2.23 A, while the Li-F bond
lengths are between 1.90 and 1.93 A, which is significantly shorter than
in LiPFg [36].

Similarly, deprotonation of phosphorane-substituted NHC precursors
carrying one or two weakly coordinating anionic PFy(CoF5)3 groups with
K bases led to the formation of K-containing salts, which upon crystal-
lization produced structures 3 and 4. In both structures, K does not form
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Ge, Li, K, Sn, S, Se, Te,
Fe U,V, Cr, Mn, In, As
1.5% <1.5%
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Fig. 3. Proportions of complexes with NHC-M-F fragments per element.
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Table 1

Typical geometries, bond lengths, and '°F NMR data for neutral NHC-stabilized
metal and non-metal fluorides of the following elements. All data were collected
from known crystal structures.

Element  Typical d(NHC-M) /  d(M-F) /A 9F NMR / ppm
geometry A
Li Tetrahedral 2.22-2.23 1.90-1.93 NA
K* 7-or 9- 2.94-2.96 2.75-2.99°  NA
coordinate
U Trigonal 2.09 2.65 NA
bipyramidal
Ti Octahedral 2.24-2.28 1.84-1.90 122-197
v Square 2.14 1.78-1.80 174-178
pyramidal
Nb Octahedral 2.32-2.35 1.87-1.93 153
Ta Octahedral 2.31-2.43 1.88-1.92 0-82
Cr Square planar 2.17 1.91 NA
Seven-
w coordinate, 2.19-2.28 1.86-1.93 140-152
Octahedral
Mn* Octahedral 2.04 1.90 —325
Fe Tetrahedral 2.09-2.12 1.85-1.89 —158
1.95-2.27 cis;
Ru Octahedral 2.07-2.20 2.18-2.38 (—302)-(—405)
trans
Ru Square 2.05-2.10 2.02-2.04cis  (—208)-(—239)
pyramidal
Co Tetrahedral 1.95-2.15 1.87-1.89 —460*
Rh Square planar 1.97-2.06 2.02-2.15 (—254)-(—327)
Ir Square planar 2.02-2.05 2.01-2.07 (—221)-(-227)
(—314)-(—376)
Ni Square planar 1.84-1.96 1.83-1.94 NiFR
—560 NiF,
Pd Square planar 1.94-2.07 1.96-2.01 (—236)-(—400)
Cu Linear 1.85-1.96 1.78-1.87 (—213)-(—254)
Ag* Linear 2.05 2.07+* —243*
Au(D) Linear 1.94-1.96 2.03-2.06 —247
Au(IID) Square planar 1.97-2.05 1.91-1.94 (—311)-(—341)
B Tetrahedral 1.53-1.73 1.32-1.46 (—130)-(-181)
Al Tetrahedral 1.99-2.11 1.67-1.71 (—147)-(-171)
Ga Tetrahedral 1.99-2.05 1.79-1.84 (—-151)-(—212)
In Tetrahedral 2.18 2.19%* —124%*
Si Octahedral 1.80-2.03 1.58-1.69 (—103)-(—-120)
Trigonal
pyramidal,
Ge Trigonal 1.98-2.12 1.78-1.83 (-112)-(-116)
bipyramidal
Sn Octahedral 1.97-1.98 1.97-1.98 —121
P Octahedral 1.87-1.99 1.53-1.66 (—43)-(-102)
(—45.97)-
As Octahedral 2.00 1.72 (-68.06)
Sb Octahedral 2.14-2.18 1.86-1.90 E:?gz“zg
S T-shape 1.73 1.82 -97
Se(1D) T-shape 1.88 1.94 —158
Seqyy ~ Square 1.97 1.85 36
pyramidal
Te Square 2.12-2.29 1.94-1.98 _47
pyramidal

" marks the elements, where no neutral compounds are structurally charac-
terized. In this case, values of ionic compounds are given.

" marks the M—F bond lengths where the only structurally characterized
compound has bridging bonds.

)/N\tBu

t /
Bu Li

OO/ FPFs @/

1 2

N—N
NN N N

Li\ \tBu Bu \Q
FPF5

Fig. 4. Schematic representation of 1 and 2.
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direct bonds with F but is weakly coordinated to F atoms of the
PFo(CoFs5)s group (Fig. 5) [37]. The NHC-K bond lengths in known
complexes range from 2.94 to 2.96 A, while the bridging K-F bond
lengths are between 2.75 and 2.99 A.

3. f-block complexes

Lanthanide fluoride compounds do not form neutral simple com-
plexes with neutral electron-donating ligands. This is due to their
insolubility in water and common organic solvents. Some lanthanide
fluorides are also strong fluorinating agents, which further hinders
complex formation. The coordination chemistry of actinide fluorides is
more extensive but remains limited. Most research has focused on ura-
nium, partly because access to actinide elements is restricted outside
specialized nuclear facilities [7,28]. Consequently, NHC-stabilized f-
block metal fluoride complexes are extremely rare, as are other NHC-
stabilized halide complexes. To the best of our knowledge, only one
such compound is known in the literature.

3.1. Actinides

3.1.1. Uranium

Only one structure with the NHC-U-F motif is known, and it was
formed accidentally. During investigations of the reactivity of the U
complex, its reaction with Me3SiCF3 led to the formation of an isolable
red-brown U fluoride complex 5 in 69% yield. The structure of this
compound is shown in Fig. 6. It displays a 5-coordinate geometry at the
U center, with F in the axial position. The structure has an NHC-U bond
distance of 2.09 A and a U-F bond distance of 2.65 A [38].

4. d-block complexes

The chemistry of d-block NHC-stabilized metal fluorides is discussed
in the following chapters, with each group of elements covered sepa-
rately. Notably, almost all groups of d-block elements form complexes
with the NHC-M-F motif, except for group III and group XII.

4.1. GROUP IV

Within group IV, only NHC-stabilized Ti fluoride complexes are
known, most of which are derived from TiF4.

4.1.1. Titanium

The coordination chemistry of TiF4 with neutral electron-donating
ligands is well studied, due to its solubility in organic solvents. Its syn-
thesis, reactivity, and applications are thoroughly summarized in the
review by Nikiforov [27].

Coordination Chemistry Reviews 555 (2026) 217604

Fig. 6. View of the structure of 5, redrawn from ref. [38].

TiF4 reacts with NHC carbenes in THF in a 1:2 ratio to form
[TiF4(NHC)2] complexes 6 [39], 7, and 8 [40], as shown in Fig. 7.
Complex 6 forms whether one or two equiv of NHC are used. It is stable
in the solid state under an inert atmosphere at room temperature but
tends to slowly decompose in solution or upon contact with moisture
[39]. Degradation of complexes in solution also occurs with 7 and 8. The
latter converts to the corresponding [(MezliPr)H] [TiFs(MEZIiPr)] salt 9 in
CegDg and MeCN within a few hours [40].

The three [TiF4(NHC)3] complexes 6, 7, and 8 were also structurally
characterized. Their structures display octahedral coordination at the Ti
center, with the two NHC ligands in trans positions (Fig. 8) [39,40]. The
trans arrangement is attributed to the bulkiness of the ligands [40].

Compound 7 was also used to test the properties of [TiF4(NHC),]
complexes (Scheme 2). It reacted with Ti(NEtp)4 to form dimer 10,
whose composition was confirmed by crystal structure analysis.

Me Me
Dipp/NTN‘Dipp R’NTN‘R Me Me \/7\/
F\T,,F F\Ti,F , = ~|ipp=N_N-ip,
FIF FI°F 'Pr/NYN"Pr N
Di Di R R -Tis
ipp~N~ N~ Dipp N~ N~ H F7L°F
\—/ H F
6 7;: R=Me 9
8 R=Pr

Fig. 7. Schematic representation of complexes 6-9.

Fig. 5. View of the structures of 3 (left) and 4 (right), redrawn from ref. [37].
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Fig. 8. View of the structure of 7, redrawn from ref. [40].

=

NN —~N__N— _N_ N— I?ipp
F N TiNE T N
EtzN ‘/F\\ N\ i(NEtz)s F_ | _F NacNacLi F.l_F-. -y }
N NEt2 Toluene F /L F  Toluene F /L F ‘N"
J\f )4\ NN O
10 7 11

Scheme 2. Synthesis of dimer 10 and adduct 11.

Alternatively, dimer 10 was formed directly by reacting of Ti(NEty)4
with 3 equiv of TiF4 and 4 equiv of NHC in toluene. Complex 7 also
reacted with NacNacLi to form a 1:1 adduct 11, whose composition was
deduced from NMR, mass spectrometry, and elemental analysis data
[40].

Based on the known structures of NHC-stabilized Ti fluorides, the
NHC-Ti bond lengths in neutral complexes are typically between 2.24
and 2.28 A. The only anionic species, [TiF5(NHC)] ™~ in the structure of 9,
has a slightly longer NHC-Ti bond of 2.31 A [40]. In contrast, the
average Ti-F bond lengths in all reported structures range from 1.90 to
1.84 A. Only the complex with bridging fluorine bonds shows a longer
Ti-F bridging bond of 2.05 A [40].

4.1.2. Zirconium & Hafnium

The chemistry of ZrF4 and HfF4 is less explored than that of TiF4, due
to their inert polymeric nature, which prevents dissolution in common
organic solvents. Nevertheless, the structures of their fluoride complexes
with neutral electron-donating ligands have been comprehensively
reviewed by Davidovich [41]. To the best of our knowledge, there is only
one report on the reactivity of ZrF4 and HfF4 compounds with NHC
carbenes. Levason’s group attempted to synthesize [MF4(NHC),] (M =
Zr, Hf) complexes by displacing DMF in the corresponding [MF4(DMF),]
synthons with IDipp carbene. The reaction was unsuccessful and resul-
ted in the formation of [(IDipp)H][Cl] in DCM, indicating a tendency
toward protonation rather than adduct formation. In THF, salts of the
type [IDippH]3[M3Fi5]-4THF (M = Zr, Hf) were obtained and struc-
turally characterized [42].

4.2. GROUP V
Within Group V, only a limited number of NHC-stabilized complexes

of vanadium oxyfluorides, niobium fluorides, and tantalum fluorides in
high oxidation states have been reported.

4.2.1. Vanadium

In general, the chemistry of VOF3 and VOoF with neutral electron-
donating ligands is well established, while the chemistry of high-
valent V fluorides is unusual and limited to a few reports. An
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overview of their chemistry can be found in ref. [28].

To date, only one neutral complex of VOF3 with an NHC carbene has
been prepared and structurally characterized. [VOF3(IDipp)] (12) was
obtained by reacting VOF3; with free IDipp carbene in ethers (THF or
Et0) [43]. Structural characterization revealed a distorted square py-
ramidal coordination at the V center, with the oxygen atom in the apical
position, as shown in Fig. 9. The structure features an NHC-V bond
length of 2.14 A and V-F bond lengths in the range of 1.78-1.80 A [43].

The group also attempted to prepare molecular VOoF by reacting 12
with (Me3Si)20, following the procedure for preparing known neutral N-
complexes [44], but was unsuccessful. Complex 12 hydrolyzed in the
presence of moisture, forming [(IDipp)H][VOF4] and [(IDipp)H]
[VOyF;] salts. Alternatively, [(IDipp)H][VOF4] could be obtained in
pure form by reacting VOF3 with the [(IDipp)H][F] fluorinating reagent
[43].

4.2.2. Niobium & Tantalum

Nb and Ta pentafluorides are very hygroscopic powders that dissolve
easily in organic solvents, enabling their use in coordination chemistry.
A comprehensive review of various Nb and Ta fluoride complexes with
neutral electron-donating ligands can be found in references [7, 28].

The first [MFs(NHC)] (M = Nb, Ta) complexes were prepared by the
group of Marchetti in 2016 [45]. NbFs5 and TaFs reacted in a 1:1 ratio
with IDipp carbene in toluene or benzene to afford the corresponding
[NbF5(IDipp)] (13) and [TaFs(IDipp)] (14) in moderate yields (Fig. 10).
The complexes were characterized by NMR spectroscopy, IR spectros-
copy and elemental analysis.

Three years later, Tavcar’s group prepared complexes 13 and 14
using a similar procedure and structurally characterized both [46].
Structural analysis of 13 and 14 revealed that they are isostructural,
with octahedral geometry around the metal center (Fig. 11). Interest-
ingly, in 13 and 14, the MF5 group is oriented in a staggered position
relative to the plane of the NHC ring, which was attributed to in-
teractions between the fluorine atoms and the "wingtips" of the ligand
[46]. Unfortunately, the complexes are very susceptible to moisture,
degrading in the presence of traces of water [45]. In polar solvents such
as MeCN and DCM, conversion to imidazolium salts [(IDipp)H][NbFg]
and [(IDipp)H][TaFe] occurs [46]. Alternatively, the two hexa-
fluorometalate salts can be prepared in pure form by reacting NbFs and
TaFs with the [(IDipp)H][F] fluorination reagent [46].

The group led by Marchetti observed that compound 13 shows
moderate air stability when isolated but is significantly more sensitive to
moisture in toluene solution. Slow crystallization of 13 in toluene under
moist air led to gradual hydrolysis of the complex, resulting in the for-
mation of the [NbOF3(IDipp)], dimer (15) [47]. This binuclear complex
consists of two distorted octahedral Nb units that share one edge. The

h

Fig. 9. View of the structure of [VOF3(IDipp)] (12), redrawn from ref. [43].
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Fig. 10. Schematic representation of complexes 13-18.
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Fig. 11. View of the structure of [TaFs(IDipp)] (14), redrawn from ref. [46].

terminal oxygen atom and the NHC ligand occupy equatorial positions
relative to the Nby(p-F); ring, as shown in Fig. 12 [47].

A binuclear Nb complex, 16 (Fig. 10), was prepared by reacting Nb
(NMey)s with [(IDipp)H][BF4]. Calculation of its formal oxidation state
confirmed the formation of a mixed-valent Nb(IV,V) complex with one
unpaired electron [48]. Presumably, Nb is reduced to Nb(IV) due to
elimination of a methyl group from the dimethylamide substituent,
forming methylimide. The yield was very low, indicating the occurrence
of various parallel reactions in the mixture. In contrast, the same reac-
tion of Nb(NMey)s with [(IMes)H][BF,4] afforded the [(IMes)H][NbFg]
salt instead. Both compounds were structurally characterized [48].

Fig. 12. View of the structure of the [NbOF3(IDipp)]l, dimer (15), redrawn
from ref. [47].
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Similar experiments were conducted with the Ta counterpart, Ta
(NMey)s, which reacted with [(NHC)H][BF4] (NHC = IMes and SIMes)
to form Ta amidofluoride complexes [TaF3(NHC)(NMey),] (NHC = IMes
17, SIMes 18) (Fig. 10). Structural analysis revealed that 17 and 18 are
isostructural. Both complexes exhibit octahedral coordination at the Ta
center, with all fluoride substituents in cis positions relative to the NHC
ligand [49].

Based on the known structures of NHC-stabilized Nb and Ta fluo-
rides, the NHC-M and M-F bonds are very similar for both elements. The
NHC-Nb bond lengths in neutral complexes are usually between 2.32
and 2.35 A, while the NHC-Ta bonds range from 2.31 to 2.43 A. The
average Nb—F bond lengths are between 1.87 and 1.93 A, while the Ta-F
bonds range from 1.88 to 1.92 A. Only complex 15, with bridging F
atoms, exhibits longer Nb-F bridging bonds in the range of 2.13-2.34 A
[48].

4.3. GROUP VI

Group VI metal fluorides stabilized with NHC ligands are rare. To
date, only one Cr compound and several W compounds have been
reported.

4.3.1. Chromium

A Cr silylamido complex, Cr(N(SiMeyPh)s)s (THF),, reacts with
[(IMes)H][FHF] in the presence of IMes carbene to form [CrFy(IMes)s]
(19). This compound is only the second structurally characterized
organometallic Cr(II) fluoride known. It adopts a square planar geom-
etry at the Cr center, with a trans arrangement of the NHC ligands, as
shown in Fig. 13. The structure features an average NHC-Cr bond length
of 2.17 A and an average Cr—F bond length of 1.91 A [50].

4.3.2. Tungsten

Recently, the first W fluoride complexes stabilized by NHCs have
been prepared. Stoichiometric reactions of WFg with different carbenes
in hexane led to the formation of complexes 20-25 (Fig. 14) [15]. Al W
(VI) complexes exhibit 7-coordinate metal centers. The geometry of the
structurally characterized NHC complexes 21 and 22 is best described as
distorted mono-capped trigonal prismatic, with the carbene in the
capping position, while the CAAC complex 25 adopts a pentagonal
bipyramidal geometry, with the CAAC ligand in the pentagonal plane, as
shown in Fig. 15. This represents the first example of a transition metal
hexafluoride adduct with that geometry [15].

Treatment of the NHC-stabilized WFg complexes 20-25 with 0.5
equiv of the non-metallic reducing agent 2,3,5,6-tetramethyl-1,4-bis

Fig. 13. View of the structure of [CrF(IMes).] (19), redrawn from ref. [50].
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Fig. 15. View of the structure of [WF¢(MECAACQ)] (25), redrawn from ref. [15].

(trimethylsilyl)-1,4-dihydropyrazine resulted in formation of W(V)
complexes 26-30 [15]. Under the same conditions, the CAAC counter-
part 25 remained unaffected. Its reduction was achieved using a more
reactive derivative, 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine, which
upon crystallization revealed the formation of the fluoride-bridged
dimeric complex [WF5(MeCAAC)]2 (31) [15]. Furthermore, the
dimeric complex was converted to the bis-CAAC complex [WFg(Me
CAACQ);3] (32) by treatment of 31 with 2 equiv of MeCAAC carbene.
Complexes 31 and 32 were structurally characterized, revealing a
pentagonal bipyramidal geometry at the metal centers with CAAC car-
benes in equatorial positions [15].

Based on known structures of NHC-stabilized W fluorides, the
NHC-W bond lengths are usually between 2.19 and 2.28 A, while the
average W-F bond lengths are usually between 1.86 and 1.93 A.
Notably, the W-F bonds in trans position to NHCs are slightly longer.
Only complex 31, with bridging F atoms, exhibits longer W-F bridging
bonds of 2.10 A [15].

4.4. GROUP VII

Group VII metal fluorides stabilized with NHC ligands are also
extremely rare. To date, only one Mn compound has been reported. The
absence of Tc and Re fluorides is likely due to the challenges in accessing
the corresponding metal fluorides.

4.4.1. Manganese

Oxidation of the Mn(IV) nitride complex with AgF led to the for-
mation of the NHC-stabilized Mn fluoride 33. The cationic complex
adopts an octahedral geometry at the Mn center, with the trimeric NHC
ligand and the fluoride coordinated in the equatorial plane, as shown in

Fig. 16. View of the structure of 33, redrawn from ref. [51].

Fig. 16. The structure features an NHC-Mn bond length of 2.04 A and a
Mn-F bond length of 1.90 A [51].

4.5. GROUP VIII

NHC-stabilized Group VIII metal fluoride compounds are limited to
those of Fe and Ru. Fe compounds are mainly found in the +3 and +2
oxidation states, while Ru compounds are restricted to the 42 oxidation
state. Both elements have been extensively studied for their favorable
catalytic properties.

4.5.1. Iron

The first NHC-stabilized Fe fluoride complexes were prepared by
oxidizing the dimer complex [Fe(MezliPr)(/z-NDipp)] 2 with 1 or 2 equiv
of [CpyoFe][BF4]. The reaction yielded the paramagnetic complexes 34
and 35, respectively, as shown in Scheme 3 [52]. Both complexes were
structurally characterized and feature a rhombic [Fe(yz-NDipp)gFe] core
with tetrahedral coordination at the Fe center and NHC ligands in trans
orientation [52].

The first mononuclear NHC-stabilized iron fluoride complex 36 was
synthesized from the corresponding methoxide by reaction with TMS-
CFs3. The structure of the tris-NHC complex features a tetrahedrally co-
ordinated Fe center, as shown in Fig. 17 [53]. Using a similar route, the
group also prepared and structurally characterized the related tris-NHC
complex 37 by fluorinating the FeCl complex with Me4NF (Fig. 18) [54].
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Fig. 17. View of the structure of 36, redrawn from ref. [53].
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A rare example of an NHC-stabilized FeF, complex was prepared by
reacting the iron silylamido complex Fe(N(SiMeoPh);)o(THF), with
[(IMes)H][FHF] in the presence of IMes carbene. The resulting
[FeFy(IMes)s] (38) was obtained using the same procedure as for the
Cr(II) complex [50]. Structurally, the Fe counterpart, which features a
tetrahedral geometry at the Fe center, differs from the Cr complex,
which has a square planar geometry [50]. Recently, a dicationic hex-
avalent Fe nitrido fluoride complex was prepared by oxidizing the cor-
responding dicationic nitrido complex with AgFs. The molecular
structure of 39 revealed octahedral coordination at the Fe(VI) center

with an equatorially coordinated F substituent [55]. The complex can be
further oxidized with 1 equiv of a strong oxidizing agent (ReFg, MoFg, or
XeF' cations) to form a one-electron oxidized Fe(VII) nitride, which
undergoes rearrangement above —50 °C via intramolecular amination to
form a cyclic Fe(V) imido complex [55]. In one instance, crystallization
of the nitrido fluoride complex yielded single crystals of the interme-
diate 40, in which the mesityl group bonds to the nitrido substituent
[55]. All complexes are shown schematically in Fig. 18.

Based on known structures of NHC-stabilized Fe fluorides, the
NHC-Fe bond lengths in neutral complexes are typically between 2.09
and 2.12 A, while cationic complexes have shorter NHC-Fe bonds
(dicationic 39: 1.98 A; tricationic 40: 1.91 A) [55]. The average FeF
bond lengths are usually between 1.85 and 1.89 A, although longer
bonds are observed in cationic complexes (40: 2.06 f\) or in structures
with bridging bonds (35: 2.06 A) [52,55].

4.5.2. Ruthenium

A wide range of NHC-stabilized Ru fluoride compounds is known.
These have been extensively studied due to their favourable catalytic
properties.

The first complex in this category was the 16-electron hydride
fluoride complex [RuFH(IMes)2(CO)] (41), prepared by adding
Et3N-3HF to [RuH»(IMes),(AsPh3)(CO)], as shown in Scheme 4 [56].
The hydride fluoride complex is converted to the 18-electron dicarbonyl
complex [RuFH(IMes)2(CO)3] (42) upon exposure to 1 atm CO at room
temperature. In the crystal structure, both complexes exhibit octahedral
coordination at the metal center, with the NHC ligands in a trans
arrangement [56].

A few years later, the same group extended their research on coor-
dinatively unsaturated Ru complexes. RuFH(PPh3)3(CO) reacted with
the NHC pentafluorobenzene adducts SIMes(CgFs)H, SIDipp(CgFs)H,
IMes, IDipp, and 6-Mes to form [RuFH(NHC)(PPh3)(CO)] (NHC = SIMes
43, SIDipp 44, IMes 45, IDipp 46, 6-Mes 47), as shown in Fig. 19
[57,58]. The structure of 43 is shown in Fig. 20. It features square planar
coordination at the Ru center, with the H atom in the apical position and
the NHC and phosphine ligands in a trans arrangement [59]. Upon
cooling the reaction mixtures of 43-46 to —59 °C, the unsaturated
complexes formed the 18-electron bis-phosphine complexes [RuFH

—\ —\
TN‘Mes Mes™ ~N_N-Mes Mes™ NTN‘Mes
Ph3As\ Et;N-3HF T F cO OC.
Ru —_— /Ru —_— /Ru
ocC /L H ocC
Mes\N N,Mes Mes\N N,Mes Mes\N N,Mes
\—/ \—/ \—/
41 42

Scheme 4. Synthesis of 41 and 42.
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Fig. 19. Schematic presentation of 43-55.

Fig. 20. View of the structure of the complex [RuFH(SIMes)(PPh3)(CO)] (43),
redrawn from ref. [60].

(NHC)(PPh3),(CO)] (NHC = SIMes 48, SIDipp 49, IMes 50, IDipp 51),
respectively (Fig. 19). The coordinatively unsaturated 43-46 were also
trapped with CO to give the corresponding [RuFH(NHC)(PPh3)(CO),]
(NHC = SIMes 52, SIDipp 53, IMes 54, IDipp 55) [57].

A series of mono-substituted NHC complexes [RuFH(NHC)
(PPh3)2(CO)] (NHC = Me2IMe 56, Me2[Et 57, M2[ipr 58, ICy 59), shown
in Fig. 21, was prepared by ligand exchange from the corresponding
hydride fluoride phosphine complexes [RuFH(PPh3)3(CO)]. The phos-
phine complexes were obtained by fluorination of the
[RuH,(PPh3)3(CO)] precursors with EtsN-3HF [60]. Complexes 56-59
exhibit octahedral coordination at the Ru center with a trans arrange-
ment of the two phosphine ligands. However, isomerization from trans-
to cis-phosphine isomers occurred when the samples were stored in THF-
dg at ambient temperature for 1-2 weeks [60].

The same ligand exchange reaction was used to prepare [RuFH(IMes)
(dppp)(CO)] (60) from the corresponding phosphine complex [RuFH
(PPh3)(dppp)(CO)]1, while [RuFH(ICy)(dppp)(CO)] (61) was obtained
by fluorination of the corresponding RuH; complex with EtsN-3HF [59].
This fluorination method proved highly effective, yielding three un-
precedented complexes, 62, 63, and 64 (Fig. 21). Of these, only the last
was structurally characterized. Its structure features a trans arrangement
of the NHC-Ru-P ligands and a trans arrangement of the F-Ru-CO

10

Coordination Chemistry Reviews 555 (2026) 217604

R R N_ N N_N
Q/\N’ PPh, (/\N’ PPhy Et” Tt CyT “Cy
NJ\ | _co N)\ | _co oc\R _H oc\Ru/H
/ / u u
RET|SH  RFET|H P F P | F
PPh; PPhs bP bP
56; R = Me 59; R =Cy 60; P-P = P1 61; P-P = P1
57; R = Et 62; P-P = P2
58: R = Pr 63; P-P=P3
-~ =0
Mes~ s N Mes PPh ° PPh
oc._| _H 2 2
F,/Ru\F P2 = [(}Fe{);
P
b P3= Ph,P” " PPh, PPh; — PPh
64; P-P = P3

Fig. 21. Schematic presentation of 56-64.

substituents [61].

Fluorination of RuH, complexes can also be achieved using fluori-
nated aromatic compounds. This procedure was first used to fluorinate
[RuH5(M®1Et),(PPh3),] with CgFg or CgFsH, resulting in a mixture of the
trans hydride fluoride complex [RuFH(™®2IEt),(PPh3),] (65) (Fig. 22)
and the hydride pentafluorophenyl species [RuH(C6F5)(Me21Et)2(PPh3)2]
[62]. A more convenient route to the hydride fluoride complex remains
the use of EtsN-3HF. However, using excess reagent led to the formation
of the [RuH(MSIEt)(PPhs),][HoF3] salt [62]. Later, [RuFH(M’-
Me),(PPhs),] (66) was prepared using CeFsH [63], while [RuFH
(MEZIMe)4] (67) and [RuFH(IMe)4] (68) were prepared using C¢Fg [64].
Complex 66 was also used as a precursor for the synthesis of complexes
with chelating phosphine ligands, [RuFH(M®2IMe),(P-P)] (69-71) and
[RuFH(MeZIEt)Z(P-P)] (72), by direct substitution of the two phosphines
with a chelating ligand [63].

The first Ru difluoride NHC complexes, [RuF2(NHC)2(CO)2] (NHC =
IMes 73, IDipp 74), shown in Fig. 22, were prepared from the [RuF(p-F)
(CO)3l4 tetramer by reaction with 8 equiv of NHC. Structural charac-
terization of the IDipp complex 74 revealed a trans arrangement of the
two NHC ligands and a cis arrangement of the two F and CO substituents
[65]. The IMes-stabilized difluoride 73 subsequently reacted with BFs3,
which, after carbonylation, allowed isolation of [Ru(BF4)(IMes)2(CO)3]
[BF4] (75). In contrast, the IDipp complex 74 reacted directly with BF3
to form the [Ruy(p-Cl)3(IDipp)2(CO)41(BF4)/(F) salt [65]. The reactivity
of the IDipp-stabilized RuF, complex 74 was further tested with the
Lewis acid B(CgFs)3. This reaction yielded the 16-electron cationic
complex [RuF(IDipp)2(CO)2]1[FB(C¢Fs)3] (76), which can be further
carbonylated to the 18-electron cationic complex [RuF(IDipp)2(CO)s]
[FB(CeFs)s] (77) [66].

Fluorination of a commercially available NHC-stabilized RuCl,
complex with AgF in 1:1 and 1:2 ratios selectively afforded the mixed
fluoride chloride 78 and the difluoride complex 79. The structures of
both complexes feature a distorted square pyramidal geometry with the
indenylide unit at the apical position, as shown in Fig. 23 [67].

Based on known structures of NHC-stabilized Ru fluorides, the
NHC-Ru bond lengths in these complexes are typically between 2.05
and 2.20 A. The Ru-F bond lengths, however, can vary significantly
depending on their configuration. When F is in a cis position relative to
NHG, the bond lengths are generally in the range of 1.98-2.26 A. A trans
arrangement usually results in longer Ru-F bond lengths, ranging from
2.18 to 2.38 A.

4.6. GROUP IX

Group IX chemistry is widely studied due to its catalytic properties
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Fig. 22. Schematic representation of 65-79.

Fig. 23. View of the structure of complex 79, redrawn from ref. [67].

[68-70]. The chemistry of NHC-stabilized Co compounds has been
reviewed in Ref. [29]. Rh(I) complexes with neutral donors and their
applications in catalysis have been comprehensively reviewed in
Ref. [70], while the chemistry of Ir compounds with NHC carbenes has
been reviewed in Ref. [71].

The few NHC-stabilized Co fluorides are found in +3 and +2
oxidation states, while Rh and Ir complexes are found predominantly in
the +1 oxidation state.

4.6.1. Cobalt

The only neutral NHC-stabilized CoFy complex, [CoFz(IMes),] (80),
was prepared by reacting the cobalt silylamido complex Co(N
(SiMeyPh)2)2(THF), with [(IMes)H][FHF] in the presence of IMes car-
bene. Compound 80 was prepared using the same procedure as for the
CrFy and FeFy fluorides. The CoFy; complex adopts a tetrahedral
arrangement, as shown in Fig. 24. Structurally, it is similar to the FeFy
counterpart [50].

A diamagnetic dicationic Co(IIl) fluorido complex stabilized by a

Fig. 24. View of the structure of [CoFy(IMes),] (80), redrawn from ref. [50].

trimeric NHC ligand, 81, was formed by hydrolysis of the corresponding
tricationic salt [72], while another dicationic Co(IIl) fluorido complex
stabilized by a chelating NHC ligand, 82, was prepared from the
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Fig. 25. Schematic representation of 80-82.
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corresponding aqua complex in water by fluorination with NaF [73].
The structures of these two cationic complexes are schematically shown
in Fig. 25.

Based on the known structures of NHC-stabilized Co fluorides, the
NHC-Co bond lengths are typically between 1.95 and 2.15 A, while the
cationic complex 82 features a shorter NHC-Co bond (1.83 A) [73]. The
average Co-F bond lengths are usually between 1.87 and 1.89 A.

4.6.2. Rhodium

The Whittlesey group began research on NHC-stabilized Rh fluoride
catalysts using the same methods as for Ru compounds. Fluorination of
[RhH(NHC)(PPh3)5] (NHC = 6-iPr, 6-Me, 6-Et) with Et3N-3HF produced
the bifluoride complexes cis—[Rh(FHF)(6—iPr)(PPh3)2] (83), trans-[Rh
(FHF)(6-Me)(PPh3),] (84), and cis- and trans-[Rh(FHF)(6-Et)(PPhs);]
(85), as shown in Fig. 26 [74,75]. Subsequent abstraction of HF from 83
with anhydrous Me4NF yielded the Rh fluoride complex [RhF(6-'Pr)
(PPh3)-] (86). Both 6-Pr complexes 83 and 86 adopt square planar
coordination at the metal center, with the two phosphines in a cis
arrangement, as shown in Fig. 27 [74].

The Rh fluoride complexes can also be synthesized by hydro-
defluorination reactions of [RhH(NHC)(PPhs),] with fluorinated
organic compounds. C-F activation of C¢Fg leads to the formation of
[RhF(6—iPr)(PPh3)2] (86), while activation of CF3CF=CF5 results in the
formation of cis-[RhF(6-Me)(PPh3),] (87) and cis-/trans-[RhF(6-Et)
(PPhs),] (88) [74,75]. Activation of CgF5CF3 and 2-C¢F4HCF;3 yields a
cis-/trans-[RhF(6-iPr)(PPh3)2] (86) mixture, with predominant forma-
tion of the trans product [76]. In addition, [RhF(6-iPr)(PPh3)2] (86)
rapidly reacts with CO at room temperature to form [RhF(6—iPr)(PPh3)
(CO)1 (89). Its formation was determined only by spectroscopic methods
[75].

Treatment of Rh hydroxide complexes [Rh(OH)(NHC)(cod)] with
KHF; or Et3N-3HF resulted in ligand exchange and the formation of [RhF
(NHC)(cod)] (NHC = IDipp 90, ICy 91) complexes (Fig. 26). However,
in one instance, when excess EtgN-3HF was used, the bifluoride complex
[Rh(FHF)(IDipp)(cod)] (92) was formed [77].

The rhodium(I) fluoride complex trans-[RhF(IMes)»(CO)] (93) was
prepared by reacting trans-[RhCl(IMes)2(CO)] with Me4NF, as shown in
Scheme 5 [78]. Both the chloride and fluoride complexes were used in
further reactions with SFsCl, yielding trans,trans-[Rh(Cl)2(IMes)2(CO)]
[SFs] and trans-[Rh(Cl)(F)(IMes)2(CO)1[SFs] (94), respectively. These
were then converted to the fluorido complexes trans,trans-[Rh(Cl)2(F)
(CO)(IMes)2] (95) and cis,trans-[Rh(C1)(F),(IMes)2(CO)] (96) (Scheme
5), respectively. The formation of these complexes was determined only
spectroscopically [78].

Based on the known structures of NHC-stabilized Rh fluorides,
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Fig. 26. Schematic representation of 83-92.

Coordination Chemistry Reviews 555 (2026) 217604

Fig. 27. View of the structure of cis-[RhF(6-Pr)(PPhs),] (86), redrawn from
ref. [74].
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Scheme 5. Reactivity of trans-[RhCl(IMes)2(CO)] and trans-[RhF(IMes),(CO)]
(93) with SFsCl.

Fig. 28. View of the structure of 97, redrawn from ref. [79].

including the crystal structure of the ionic compound 97 (Fig. 28), the
NHG-Rh bond lengths are typically between 1.97 and 2.06 A, while the
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Rh-F bond lengths generally range from 2.02 to 2.15 A. As observed for
Ru, the Rh-F bond lengths also depend slightly on their configuration.
The cis arrangement of F and NHC ligands usually results in shorter bond
lengths than the trans arrangement.

4.6.3. Iridium

Treatment of Ir chloride complexes [IrCI(NHC)(cod)] with AgF, or
the hydroxide complex [Ir(OH)(NHC)(cod)] with KHF, or EtsN-3HF,
resulted in ligand exchange and the formation of [IrF(NHC)(cod)] (NHC
= IDipp 98, IDD 99, I'Pr 100, ICy 101) complexes (Fig. 29) [77].

However, when excess Et3N-3HF was used, the bifluoride complexes
[Rh(FHF)(NHC)(cod)] (NHC = IDipp 102, I'Pr 103) were formed. Many
of these complexes were structurally characterized. An example of a
fluoride and a bifluoride complex is shown in Fig. 30 [77].

Neutral Ir(I) NHC-chloride complexes [IrCI(NHC)(CO),] and [IrCl
(NHC)(cod)] can be oxidized by XeF, at low temperature to yield Ir(III)
NHC-fluoride complexes [IrFoCI(NHC)(CO)] (NHC = IMes 104, IDipp
105) and [IrFoCI(NHC)(cod)] (NHC = IMes 106, IDipp 107), respec-
tively (Fig. 29) [80]. Similarly, the Ir(I) carbonyl cations [Ir(IMes)
(CO),L][BF4] and [Ir(NHC)(CO)2pyl[BF4] react with XeFs to produce a
mixture of two isomeric difluoride complexes, [IrF;(IMes)(CO),L][BF4]
(L = PPhyEt 108, PPhy,CCPh 109) and [IrFo(NHC)(CO)opyl[BF4] (NHC
= IMes 110, IDipp 111), in approximately a 1:1 ratio. The reduced
stability of cod-containing carbonyl cations hampered the studies, as
these compounds rapidly decompose in the presence of XeF,. All com-
plexes were characterized only spectroscopically, due to their high
instability and rapid decomposition in solution during crystallization
[801.

Based on known structures of NHC-stabilized Ir fluorides, the NHC-Ir
bond lengths in these complexes are typically between 2.02 and 2.05 A,
while average Ir-F bond lengths are usually between 2.01 and 2.07 A.

4.7. GROUP X

The NHC-stabilized Group X metal fluoride compounds are limited to
Ni and Pd. These compounds are found predominantly in the +2
oxidation state. Typically, the complexes are 4-coordinated with square
planar geometry. Currently, the NHC complexes of both elements are
being extensively studied due to their favorable catalytic properties
[81].

4.7.1. Nickel

A comprehensive review of various NHC-stabilized Ni complexes can
be found in Ref. [29].
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Fig. 29. Schematic representation of 98-111.
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Fig. 30. View of the structures of [IrF(I'Pr)(cod)] (100) (left) and [Ir(FHF)(I'Pr)
(cod)] (103) (right), redrawn from ref. [77].

The Radius group initiated research on NHC-stabilized Ni fluorides.
In 2005, the group observed C-F bond activation of C¢F¢ with the NHC-
stabilized Ni complex [Niz(IiPr)4(cod)]. The reaction efficiently pro-
duced trans-[NiF(IiPr)g(C6F5)] (112), which was initially characterized
only spectroscopically [82]. Its crystal structure was published three
years later by the same group, confirming the square planar coordina-
tion at the metal center with a trans arrangement of NHC ligands
(Fig. 31) [83]. Alternatively, compound 112 can be synthesized directly
by reacting [Ni(cod)2] with I'Pr and CeFg in THF [84].

Encouraged by these results, the group investigated C-F bond acti-
vation of other fluorinated arenes. The reactions of [Nig(IiPr)4(cod)]
with octafluorotoluene and decafluorobiphenyl in various solvents
(THF, benzene, or toluene) proceed with high chemo- and regiose-
lectivity to give trans- [NiF(IiPr)2(4-(CF3)C6F4)] (113) and trans-[NiF
(IiPr)2(4—(C6F5)C6F4)] (114) (Fig. 32). Complex 113 was also structur-
ally characterized, showing the same arrangement as 112 [85]. The
same procedure worked very well for other polyfluorinated and partially
fluorinated aromatics, yielding to products 115-122. For aromatics of
the type C¢FsR, C-F activation selectively occurs at the para position to
the R group, affording trans products [83]. Next, the group tested [Ni
(IiPr)Z(nz-C2H4)] in reactions with previously used fluorinated aromatic
compounds. In general, the same products were obtained as with
[Nig(IiPr)4(cod)] when the temperature was kept low. However, at room
temperature, there were two exceptions. [Ni(IiPr)z(nZ—C2H4)] reacted
with pentafluoropyridine to give a mixture of insertion products at po-
sitions 4 and 2, forming complexes 122 and 123, respectively. The same
reaction with octafluoronaphthalene at room temperature also yielded a
mixture of two isomers, 116 and 124 [83]. Treating complexes 112 or
113 with 1 equiv of [Niz(IiPr)4(cod)] at elevated temperature (60 °C)
enabled a second C-F activation of the polyfluoroarene to give dinuclear
metal complexes 125 and 126, respectively. Alternatively, these com-
plexes can be obtained directly from [Niz(IiPr)4(cod)] with 1 equiv of

.

Fig. 31. View of the structures of trans- [NiF(IiPr)z(C(,FS)] (112), redrawn from
ref. [83].



E. Gruden and G. Tavéar

i i i i i i i i
PFP PFP /PFP PrF

Cow< ] LoD Lo [ - ] L, HI% ] L, HI% ] L, .

/ / /

Coordination Chemistry Reviews 555 (2026) 217604

iP i iPi’ i iP i i i

< Ty 4 0

'Pr iPr 'Pr iPr 'Pr iPr 'Pr 'Pr ipr 'Pr 'Pf
E F F F F F SiMe3 F
F F F F F F s F
CFs CoFs 119
112 113 114
N/ipr e Pr Jpro P /iPr F ipr /ip F ip N/iPr F ‘PrN
i
Lo € - ] <) € i ] [ %w ] L, s N oW
\ N N
Pr 'Pr iPr 'Pr/ 'Pr 'Pr Pr| P
F F F N F F
F F F FNYF F CFs
120 121 F F
123 127
iP Fi MesFMes| MesFMes MesFMes Mes Mes Mes Mes 126 Mes Mes
Con<CT L=< T CowCT Cyn<CT [ < ~J L - T s e L HI% 7
T N
'Pr 'Pr Mes Mes/ Mes Mes Mes Mes Mes Mes Mes Mes [N},\E%N] Mes Mes
F CFy F F FooOF F F FoS | N
\ /
Mes |Mes
F F F F F F FoF F F F . . 135
=
F 126 F CF3 132 133 ]
128 130 131 F N
134

Fig. 32. Schematic representation of 112-135.

CeFg and C;2F;o at 60 °C in almost quantitative yield [86].

The C-F activation compounds 112 and 113 react with silanes
PhSiH3 and Ph,SiH; to form the corresponding hydride complexes [NiH
(I'Pr)2(R)]. Both complexes rearrange in solution at room temperature
within a few days, or within a few hours at 60 °C. Complex 112 rear-
ranges to compound 121, which was previously prepared, while com-
plex 113 rearranges to a mixture of isomers 127 and 128 in an
approximately 4:1 ratio [87]. The C-F bond activation of arene 1,2,3,5-
CgF4Hj also proceeds with [Ni(IMes).], yielding compound 129 in good
yield [88]. Similarly, activation of other fluorinated organic compounds
with [Ni(IMes)2] leads to the formation of compounds 130-134 [89].
During the formation of 130 with CgF¢, small amounts of a side product
were obtained, which turned out to be the NiF; compound trans-
[NiF5(IMes),] (135). However, when the reaction mixture was stored in
solution for 3 days at -30 °C, a one-electron oxidative addition reaction
may occur, leading to the formation of the Ni(I) compound trans-
[NiI(CGFs)(IMes)Z] and the Ni(I) radical species [NiIF(IMES)g]. Alterna-
tively, compound 135 was prepared by fluorination of the correspond-
ing diiodo complex with 2 equiv of AgF in DCM [89], and by the reaction
of nickelocene with [(IMes)H][F] [90].

[NiF(IiPr)z(Cst)] (112) forms adducts with CgF4I; and indole by
forming halogen or hydrogen bonds with ligands in compounds 136 and
137 (Fig. 33). In the crystal structure of 136, compound 112 co-
ordinates to two CgF4l ligands, forming a zigzag chain structure as
shown in Fig. 34. In contrast, the formation of 137 was confirmed only
in solution [91]. The scope of research was then extended to other NHC-
stabilized Ni fluorides. [NiF(MeZIiPr)g(CGFs)] (138) coordinates one

14

139

Fig. 33. Schematic representation of 136-139.

CeF4l; ligand to form 139 (Fig. 33). The formation of only one halogen
bond in 139 was attributed to steric hindrance from the bulkier carbene.
Moreover, the even more sterically encumbered complex [NiF
(IMes)2(CgFs)] (130) does not form an adduct with CgF4l [91].

The trans-[NiF(ICy)2(Ar)] (140) (Fig. 35) was obtained directly in a
one-pot reaction starting from Ni(cod)2 and an ammonium triflate in the
presence of [(ICy)H][BF4] and CsF as a deprotonation agent. The
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Fig. 34. View of the structures of 136, redrawn from ref. [91].

reaction proceeded in higher yields at elevated temperature (80 °C). The
structure of 140 agrees well with previously determined related com-
pounds. It features a square planar geometry with a trans arrangement of
the NHC ligands at the Ni(II) center [92]. A similar result was observed
by the oxidative addition of a Ni(0) compound, Ni(6-Mes)(PPhgs),, with
CgFg, which resulted in the formation of trans-[NiF(6-Mes)(PPh3)(CgFs)]
(141) [93].

The Ni(0) NHC-stabilized complexes [Ni(NHC),] were able to acti-
vate C(sp®)-F bonds of Ar-CF3 compounds to afford the corresponding
trans-difluorobenzyl Ni(II) fluoride complexes [NiF(NHC)3(CF2Ar)].
Activation of C(sp>)-F bonds proceeded efficiently with the Ni complex
bearing the sterically non-demanding carbene ligand I'Pr (142), while
the bulkier ICy produced 143 in lower yield (Fig. 35). However, com-
plexes with more sterically demanding carbenes I'Bu, IMes, and IDipp
did not engage in C(sp>)-F bond activation [94]. The group also tested
the effect of different Ar groups on C(spg)—F bond activation, producing
the series of complexes 144-148. They found that the degree of electron
deficiency of the arene ring significantly impacts reactivity, as does the
position of the electron-withdrawing groups [94]. Soon after, the bond
activation patterns were further extended to hydrofluoroolefins. Ni
(cod)y reacted with IAd and 1,1-difluoroethylene to afford the dimeric
compound 149, while the same synthesis with the addition of DMAP
afforded the monomeric compound 150 [95].
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A planar cationic complex, 151 (Fig. 36), was obtained from the
reaction of Ni(cod); with an imidazolium salt. The crystal structure of
the cationic complex also features square planar geometry with the
phosphine ligands in trans positions [96]. The tetrabutylammonium salt
of the anionic nickel fluoride 152 was prepared by reaction of the cor-
responding DMF complex with TBAF-3H,0, which upon oxidation
formed the corresponding neutral tetracoordinated Ni(III) complex 153
[97]. Formation of NHC-stabilized NiF complexes is also possible by
fluorination of the corresponding chlorido complex. The chloride-
fluoride exchange reaction quantitatively produced 154 using SCF3-
based reagents (AgSCF3, CuSCF3, NMe4SCF3) or AgF for fluorination
[98].

Almost all known structures of NHC-stabilized Ni fluorides exhibit a
square planar geometry at the metal center. The only exceptions are the
recently published structures of 155 (CSD communication No. 2376667)
and 156 (CSD communication No. 2214689) [99,100]. Generally, the
NHC-Ni bond lengths range from 1.84 to 1.96 A, while the Ni-F bond
lengths are typically between 1.83 and 1.94 A, except for the cationic
complex 151 (2.12 A) [96]. Among the wide variety of complexes with
fluorinated aromatic ligands, it is notable that Ni-F bonds are slightly
shorter with a higher degree of fluorination on the aromatic ligands
[89].

4.7.2. Palladium

The first NHC-stabilized Pd fluoride compounds were prepared from
the corresponding chloride or methyl analogues by exchanging ligands
for a BF; anion. The formation of fluoride-bridged complexes was
confirmed by the crystal structure determination of 157 (Fig. 37). The
structure of its IDipp counterpart, 158, is presumably similar to 157
[101]. The group also attempted to prepare complexes with even weaker
nucleophiles (PFg and AlRy4). Although the complexes formed by ligand
exchange in solution, their X-ray single-crystal structures could not be
determined [101].

Using a similar ligand exchange procedure, the Pd complex with
bridging bonds to BFs, 159 (Fig. 38), was prepared from the corre-
sponding chloride analogue by adding AgBF4. Compound 159 is a
neutral complex in the solid state, but in solution it may be described as
an inner-sphere ion pair [102].

Next, a series of Pd(II) fluoride complex cations stabilized by NHC-
based pincer ligands 160-162 (Fig. 38) was prepared by fluorinating
the corresponding chloride analogues with AgF in MeCN [103]. Elec-
trophilic fluorination of a Pd(Il) tetrafluoroborate salt with Selectfluor
or NFSI enabled the formation of the Pd(IV) cationic complex 163 with
octahedral coordination [104]. The compound was characterized by
spectroscopy, mass spectrometry, and XPS analysis. Despite several at-
tempts, suitable single crystals of 163 could not be obtained [104]. It is
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Fig. 35. Schematic representation of 140-150.
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Fig. 37. View of the structures of 157, redrawn from ref. [101].

worth mentioning that PA(II) fluoride compounds are difficult to pre-
pare due to excessive hard/soft mismatch. However, the group of Munz
managed to prepare one from intermediate Pd imido complexes, which
exhibit nitrene character, and CgFe. Activation of CgFg led to the for-
mation of compounds 164 and 165 [105]. These two compounds are the
only Pd complexes featuring CAAC-based carbene ligands.

All known structures of neutral NHC-stabilized Pd fluorides,
including the dimeric NHC-stabilized mixed Pd fluoride/chloride com-
plex 166 (CSD communication No. 1031958) [106], adopt a square
planar geometry at the metal center. The only exception is the octahe-
dral complex 163 [104]. In general, the NHC-Pd bond lengths are be-
tween 1.94 and 2.07 A, while the Pd-F bond lengths are typically in the
range of 1.96-2.01 A. Complexes with Pd-F bridging bonds exhibit
longer bonds of 2.24 A (157) [101] and 2.26 A (159) [102].

4.8. GROUP XI

The NHC-stabilized Cu, Ag, and Au fluorides are mostly found in the
+1 oxidation state. Only Au also forms compounds in the +3 oxidation
state. The chemistry of these elements has been extensively studied
because of their catalytic and biological properties.
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4.8.1. Copper

A comprehensive review of various Cu-NHC complexes is available
in ref. [29].

The first NHC-stabilized copper fluoride complex, [CuF(IDipp)]
(167), was prepared by adding 0.33 equiv EtsN-3HF to [Cu(OtBu)
(IDipp)]. Initially, it was characterized only spectroscopically and used
as a catalyst in further studies on the transmetalation reactions of
organosilanes [107]. In 2020, its structural characterization revealed a
linear arrangement at the Cu center, as shown in Fig. 39 [108].

The same method was also used to synthesize [CuF(ClZIDipp)] (168),
[CuF(SICy)] (169), [CuF(IMes)] (170), and the sterically demanding
171 (Fig. 40) [109-111]. Alternatively, the synthesis of 167 and 170
started from the corresponding chloride, which was first converted to
the O'Bu complex using NaO'Bu and then to the fluoride using EtsN-3HF
[110,112]. However, when the reactions were carried out with 2 equiv
of HF instead of 1, bifluoride complexes were formed. [Cu(F-HF)
(IDipp)] (172) was structurally characterized, revealing a structure
similar to 167 with an additional HF forming the bifluoride [113].
Bifluoride complexes can also be prepared directly from [CuCl(NHC)]
using AgHF,, which, in addition to complex 172, also resulted in the
synthesis of [CuF(SIDipp)] (173) and the two more sterically

Fig. 39. View of the structure of [CuF(IDipp)] (167), redrawn from ref. [108].
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encumbered variations 174 and 175 [113].

Fluorination of [Cu(Mes)(carbene)] complexes with 0.33 equiv
EtsN-3HF yielded various NHC- and CAAC-stabilized fluoride com-
plexes: [CuF(6-Mes)] (176), [CuF(7-Mes)] (177), two more sterically
encumbered carbene complexes 178 and 179, and the CAAC counter-
part 180 (Fig. 41) [114]. The same method was also used to prepare
[CuF(NHC)] (NHC = IDipp 167, SIDipp 181, I'Bu 182, Me2rMe 183,
Me2[ipr 184, and MCCAAC 185) [115]. Alternatively, these complexes
could be prepared from the corresponding chloride complex by reaction
with NaO'Bu or KO'Bu, followed by fluorination with Et3N-3HF. In some
cases, these conditions gave better yields [115]. Additionally, synthesis
of [CuF(IAd)] (186) demonstrated that CuF complexes can also be
prepared from the chloride counterpart using TMAF reagents [116],
while fluorination of [Cu(O'Bu)(SIDipp)] with benzoyl fluoride also
proved to be a feasible method for preparing terminal fluorides such as
[CuF(SIDipp)] (181) [117]. Furthermore, when this compound subse-
quently reacts with [Ph3C][BF4], it undergoes fluoride abstraction,
forming a dinuclear fluoride-bridged cation in compound [(SIDipp)Cu-
F-Cu(SIDipp)]1[BF4] (187) [117]. The same cationic complex was also
prepared by reacting [CuF(SIDipp)] with [Cu(OTf)(SIDipp)], resulting
in the formation of the triflate salt 188. In addition, the corresponding
IDipp fluorine-bridged cationic compound 189 was also prepared [118].

Treatment of CuSiFg with an imidazolium salt led to in the formation
of the Cu(Il) NHC-stabilized complex 190 (Fig. 42). In its crystal
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structure, the compound adopts a pseudo-octahedral arrangement at the
Cu(Il) center, with a Cu-F contact of 2.56 A [119]. This compound is a
rare example of a Cu(II) NHC complex, which formed despite the un-
favorable hard-soft interactions between carbon and Cu(Il) [119].
Treatment of [CuBr(SIDipp)] with AgSbFg in the presence of carbon
monoxide yielded the Cu(I) dicarbonyl complex [Cu(CO)y(IDipp)]
[SbFg] (191). In its crystal structure, Cu forms a contact with F of 2.49 A
(Fig. 42). However, this contact is not strong enough to distort the Cu
from the trigonal planar geometry of the [Cu(CO)2(SIDipp)]™ cation
[120].

Based on the known structures of NHC-stabilized Cu fluorides, the
NHC-Cu bond lengths in these complexes are usually between 1.85 and
1.96 A, while the average Cu-F bond lengths are typically between 1.78
and 1.87 A. The only exceptions are the Cu-F contact bond lengths in
structures 190 and 191, where SiFZ~ and SbFg are coordinated to Cu,
respectively [119,120].

4.8.2. Silver

There are only a few NHC-stabilized AgF compounds. The first
neutral complex, [AgF(SIDipp)] (192) (Fig. 43), was prepared by
reacting [Ag(O'Bu)(IDipp)] with benzoyl fluoride, similar to the Cu
compounds [117]. In this case, the subsequent reaction of 192 with
[Ph3C][BF4] led to fluoride abstraction and the formation of a dinuclear,
fluoride-bridged cation in compound [(SIDipp)Ag-F-Ag(SIDipp)]1[BF4]
(193). The dinuclear complex is the only NHC-stabilized AgF compound
that has also been structurally characterized. It features a linear
arrangement at each Ag center and a bent arrangement at the fluoride.
The average NHC-Ag bond distance is 2.05 A, while the average Ag-F
bond distance is 2.07 A [117]. The structure is shown in Fig. 44.

Later, the benzoyl fluoride fluorination method was used by the same
group to prepare the [AgF(6-Dipp)] (194) and [AgF(7-Dipp)] (195)
complexes (Fig. 43) [121].

4.8.3. Gold

The properties of Au fluorides stabilized by NHC and other neutral
ligands have been reviewed to some extent in ref. [26].

The first NHC-stabilized gold fluoride complex, [AuF(SIDipp)] (196)
(Fig. 45), was prepared from the corresponding chloride compound. The
chloride compound was first converted to the O'Bu derivative using
NaO'Bu, which was then reacted with 0.33 equiv of EtsN-3HF to form
the fluoride complex 196. Structural determination revealed a linear
geometry at the Au center, similar to the related Cu complexes described
above [122]. Complex 196 was also prepared by the benzoyl fluoride
fluorination method from the corresponding O'Bu substrate [117].
Subsequently, reaction of 196 with [Ph3C][BF4] resulted in the forma-
tion of a dinuclear fluoride-bridged cation in compound [(SIDipp)Au-F-
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_ . N. P P inp— ~Di tg— -t — —
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H =\ . F ) {A i } ) F . {OTf }
N__N N N. N Dipp, SN Dipp | [M" Dipp, N Dipp
w/ Y \( Dipp~™ Ad~ Y ~Ad N\\/Cu Cu\[/N N\‘/Cu CUT/N
Cu Cu Cu N. /N\) Q\/N\ . i /N\/)
\ t \ Dipp  Dipp Dipp  Dipp
F F
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Fig. 41

188; Anion = OTf

. Schematic representation of 176-189.
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Fig. 42. View of the structures of 190 (left) and 191 (right), redrawn from ref. [119, 120].
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Fig. 44. View of the structures of the cationic complex in 193, redrawn from
ref. [117].

Au(SIDipp)1[BF4] (197) [117]. The benzoyl fluoride method was also
used to prepare [AuF(SIMes)] (198) from the corresponding alkoxide
[123].

In 2009, Nolan’s group prepared a rare compound featuring a
bridging anionic PF4 ligand bonded to two Au(IDipp) units in [(u-PF4)
(Au(IDipp))2]1[PF4] (199) (Fig. 46). The complex formed as a result of
decomposition during slow crystallization [124]. Metathesis of [AuCl
(“1Dipp)] with AgBF4 led to the formation of [Au(F-BF3)(“IDipp)]
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. BF.

NN Dipp, PN Dipp { 4} NN
Dipp~ Y ~Dipp N\(AU AU\[/N Mes™ Y ~Mes
A‘u Q/N\D, ) /N\) A‘u
F ipp  Dipp F
196 197 198
Fig. 45. Schematic representation of 196-198.

F\P/F { PF4 } cl cl
VAN
FF =
D'PRN Au/ \Au Dipp Dipp/NYN‘Dipp
X .
Q\/ N\/) A‘u
Dipp Dipp” FBF3
199 _ 200 _
i .Dipp [F}z
.Dipp (\
(\N J\
NJ\AU/F N 'é \ 7 Diep
Dipp ~ F Dipp / \ / \rN
201 L 202 D|pp B
. B _Di [F
oinp o 0P [F],
o :
J\ N N R )
/N AU Dipp( Au Au Dipp
Dipp -~ F NS \rN
. /N\/)
203 B 204;R=Me Dipp |
205; R = Bu

Fig. 46. Schematic representation of 199-205.

(200), which is best described as an inner-sphere complex [125].
Alternatively, 200 can be prepared from the corresponding acetonyl
complex using HBF4-OEt;. However, the bonding of BF4 to Au is
reversible. In CDCls, the BF4 dissociates, forming the solvent-separated
ion pair [Au(®IDipp)(CDCl3)]1[BF4] [125].

Oxidation of [AuMe(SIDipp)] with XeF; led to the formation of the
first Au(Ill) fluoride species. In solution, a mixture of [AuFy(Me)
(SIDipp)] (201) and the dimer 202 was observed (Fig. 46), while slow
crystallization yielded only crystals of 202, attributed to its lower sol-
ubility [126]. The same reaction with the IDipp analogue produced
[AuFy(Me)(IDipp)] (203) as the sole product, while slow crystallization
again yielded the corresponding dimer 204. In contrast, using [Au(*Bu)
(IDipp)] as the starting compound, which contains a more sterically
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demanding group, resulted in the formation of dimer 205 as the only
product [126]. Using the same fluorination procedure, the group iden-
tified a series of [AuFy(R)(IDipp)] complexes 206-210 in solution
(Fig. 47) [127,128]. However, these complexes tend to decompose in
solution to form [AuF(IDipp)] (211) as the major product, along with
other organic elimination products [127]. Later, 211 was quantitatively
prepared by fluorination of the corresponding [Au(OH)(IDipp)] com-
plex with KHF; [129]. Additionally, it formed as a side product during
hydrofluorination of NHC-stabilized Au alkoxy complexes [129].

[AuF3(SIMes)] (212) (Fig. 47) was obtained from [NMe4][AuF4] and
SIMes carbene in DCM. At the same time, the ionic compound 213,
containing [AuF,(SIMes)»]" cations, was also formed. Compound 213
can be selectively prepared using two or more equiv of SIMes. It was
characterized only spectroscopically and is most likely present as a
chloride salt after CI/F exchange in DCM [130]. Compound 212 is also
the first structurally characterized NHC-stabilized AuFs3 species
(Fig. 48). In its crystal structure, it features a square-planar coordinated
Au center. Due to the trans influence, the length of the Au-F bond in the
trans position (1.972(1) [o\) is elongated compared with the cis-posi-
tioned bonds (1.916(1) and 1.921(1) 1°\) [130]. This feature enables
subsequent substitution of the trans-F with other substituents. [AuF,Cl
(SIMes)] (214) was prepared by reacting 212 with MegSiCl, while
[AuF,(OTeF5)(SIMes)] (215) was obtained using Me3Si(OTeFs) [131].
Both complexes are more stable than 212, and further replacement re-
actions were not observed [131]. In contrast, trifluoromethylation of
212 with Me3SiCF3 in the presence of CsF resulted in mixtures of com-
pounds. According to 1°F NMR investigations in DCM, the reaction first
leads to the formation of [AuF5(CF3)(SIMes)] (216), but over time [AuF
(CF3)2(SIMes)] (217) is also formed. In THF, the reaction preferentially
yields 217 and [Au(CF3)3(SIMes)], likely due to the better solubility of
CsF in THF compared with DCM, which enhances activation of Me3SiCF3
[132]. The trans-F in [AuF3(SIMes)] (212) was also substituted by
several other ligands with different electronic properties. Mono-
substitutions yielded alkynido, cyanido, azido, and a series of per-
fluoroalkoxido complexes 218-225 [133]. Upon close examination of
complexes 212-225, the group demonstrated that the electron-
withdrawing nature of the ligand in the trans position influences the
Lewis acidity of the Au(IIl) center. More electron-withdrawing groups
lead to shorter and stronger NHC-Au bonds. This trend also correlates
with the calculated SIMes affinities and the chemical shifts of the car-
bene carbon atom in *C NMR spectra. Finally, the ligands were classi-
fied by their trans influence, in the order
OTeF5<F<OCF3~0CyF57~0C3F;~0C4F9<Cl<CN
~N3<CCH~CCSiMe3<CF5 [133].

The carbene complexes [AuF(SIDipp)] (196) and [AuF(IDipp)] (211)
reacted with poly(4-vinylpyridinium poly(hydrogen fluoride)) to form
[Au(F-HF)(IDipp)] (226) and [Au(F-HF)(SIDipp)] (227), respectively
(Fig. 49). The formation of these two complexes was confirmed in so-
lution by 1 and '°F NMR spectra [134]. Oxidation of the Au(I) complex
stabilized by a bis(NHC)-carbazolide pincer ligand with Selectfluor re-
agent produced an ionic compound with an Au(IIl) center, 228, in 37%
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Fig. 48. View of the structure of [AuF3(SIMes)] (212), redrawn from ref. [130].
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Fig. 49. Schematic representation of 226-230.

yield [135]. Recently, the ionic compounds with Au(III) fluoride centers
229 and 230 were prepared by fluorination of the corresponding chlo-
ride salts with AgF [136].

Based on known crystal structures of NHC-stabilized Au fluorides,
the NHC-Au bond lengths in these complexes are typically between 1.94
and 2.05 A, while the Au-F bond lengths can vary significantly
depending on the configuration. Au(IIl) complexes with square planar
geometry generally have Au-F bond lengths in the range of 1.91-1.94 A,
whereas Au(I) complexes with linear geometry usually have Au-F bond
lengths ranging from 1.97 to 2.08 A. Notably, a trans arrangement of F
relative to NHC usually results in longer Au-F bonds.
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5. p-block compounds
5.1. GROUP XIII

BFj3 is a gaseous compound and a reactive Lewis acid that promptly
reacts with Lewis bases to form coordination compounds. In contrast,
the heavier counterparts MF3 (M = Al, Ga, In) are unreactive polymeric
solids, with an octahedral environment at the metal center. Group XIII
metal fluorides stabilized with NHC ligands are mostly found in the +3
oxidation state. Upon reduction, rare examples in the +1 oxidation state
have been prepared.

5.1.1. Boron

NHC-stabilized B fluorides are widely studied. A broad variety of
synthetic methods are used for their preparation.

The first [BF3(NHC)] (NHC = M¢2IMe 231, Me?1Et 232, Me?1'pr 233)
adducts (Fig. 50) were prepared by the direct reaction of the free NHC
with BF3-Et2O in THF solution [137]. The adduct 231 was also struc-
turally characterized, revealing a tetrahedral coordination at the B
center [138].

The same method was also used to prepare the adducts [BF3(IMes)]
(234) [139], [BF3(“IMes)] (235) [139], and [BF5(IDipp)] (236) [140].
The latter was also prepared by reacting a free carbene with NOBF4
[141]. The crystal structure of 236 is shown in Fig. 51 and represents a
typical example of a tetrahedrally coordinated NHC-stabilized B fluoride
adduct. The structure was reported in 2020 as a CSD Communication
(No. 2010795) [142].

Adduct 236 was used as a precursor for further functionalization of
the backbone. Deprotonation with n-BuLi enabled formation of the
lithiated product 237 [140], which can subsequently be converted to
238 and 239 by addition of the electrophiles TMS or ethyloxirane, as
shown in Scheme 6 [143]. The lithiated 237 also reacts with AgCl to
form the lithium salt 240, which was further functionalized by addition
of [Ru(p-cymene)Cls]; to form the dimer 241. This is a rare example of
an abnormally bound Ru complex with two Ru centers connected by
bridging chloride atoms [140]. Compound 241 was further reacted with
Ag(Et,0)[B(CgFs5)4] to give compound 242, and with the monodentate
ligands PPhs and CO to give the monomeric adducts 243 and 244,
respectively [140].

Using the free carbene route, a DAC-stabilized BF3 adduct 245
(Fig. 52) was prepared from the DAC carbene and BFs-Et20 in benzene
[144]. Similarly, [BF(I'Bu)(Mes),] was also synthesized. Although the
carbene adduct is observed in solution, it quickly rearranges to the
thermodynamically more favorable abnormal carbene adduct [BF
(aI'Bu)(Mes),] (246) [145]. The crystal structure of 246 was first pub-
lished by the authors in 2014, revealing the tetrahedral arrangement at
the B center. Years later, the same group published the structure of 246
as a cocrystal and as a solvate in CSD communications (No. 2282956,
and 2282952, respectively) [146,147]. The same group also published
the crystal structures of the abnormally bonded aIDipp compound [BF
(aIDipp)(Mes),] (247) (CSD No. 2282984) [148], [BF3(M2I'Bu)] (248)
(CSD No. 2282987) [149], [BFo(M2I'Bu)OTf] (249) (CSD No. 2282989)
[150], [BF,(I'Bu)OTf] (250) (CSD No. 2282988) [151], and
[BF3(“21'Bu)] (251) (CSD No. 2282996) [152].

The free carbene route was also used to synthesize various CAAC

R F Mes F
N/ XNy
‘ >*B\—F :[ >*B\—F
N F x~ N F
R Mes
231; R = Me 234; X =H
232; R = Et 235; X =Cl
233;R=Pr

Fig. 50. Schematic representation of 231-235.
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Fig. 51. View of the structure of 236, redrawn from CSD No. 2010795 [142].

adducts. Reactions of CAAC carbenes with BF3-Et,0 yielded adducts 252
and 253 (Fig. 52) [153], the BICAAC adduct 254 [154], and [BFg(Me’
CAACQ)] (255) [17]. The latter reacted with 1 equiv of free "®*CAAC and 2
equiv of KCg to give [BF(MSCAAC)Z] (256), which subsequently under-
went one-electron oxidation in reaction with LiB(CgFs)4 to produce the
ionic compound with the radical cation [BF(MeCAAC)Z] [B(CgFs)4] (257)
[17]. In their crystal structures, compound 256 and the radical cation of
257 adopt trigonal planar geometry at the B center, as shown in Fig. 53
[17].

Instead of using free carbene, a carbene-transfer reagent [AgI(NHC)]
was used to produce [BF3(NHC)] (258) in combination with BF3-Et50, a
BF3 source [155]. The adduct 258 was subsequently functionalized to
form adducts 259-261, as shown in Scheme 7 [155].

In a similar experiment, the carbene-transfer reagent [SiCl4(IMe)]
was used to produce [BF3(SIMe)] (262) (Fig. 54) [156], while
[BEt3(IMes)] was used to produce [BF3(IMes)] (234) [157]. The NHC-
stabilized Mg complex also acted as a carbene-transfer reagent in the
reaction with BF(Mes),, resulting in the formation of [BF(Mes)z(IiPr)]
(263) [158]. Carbene transfer was also observed in the formation of the
bis-NHC-stabilized BF3 adduct 264. In this case, an Ag(I) NHC-stabilized
salt with [BF4] anions was used as the starting compound, which
formed 264 in combination with ZnCly. This reaction represents the first
reported case of a [BF4]  anion acting as a source of BFg [159].

Later, imidazolium-based tetrafluoroborate salts proved to be effec-
tive precursors for NHC-stabilized BFs adducts. At elevated tempera-
tures, [(NHC)H][BF4] undergoes dehydrofluorination to form
[BF3(NHC)] adducts. At temperatures above 227 °C, adducts 265 and
266 were obtained (Fig. 54) [160,161], while 267 was obtained at
300-400 °C [162]. [BF3(SIDipp)] (268) formed at 120 °C from the
corresponding tetrafluoroborate salt in the presence of [Fe{N
(SiMes)2}2], which presumably facilitated the dehydrofluorination re-
action [163]. Trimethylsilyl-substituted triazaphospholenium tetra-
fluoroborate salts were converted to the corresponding carbene-
stabilized BF3 adducts 269 and 270 by heating the salt in DME at 60
°C [164]. The proposed mechanism involves elimination of FSiMes,
which initially forms the carbene intermediate that subsequently reacts
with the remaining BF3 to form the adduct [164]. Similarly, the silyli-
midazolium tetrafluoroborate salt is converted to [BF3(IMe)] (271)
upon heating, offering an alternative route to existing methods [165].
Alternatively, 271 was also prepared by heating the imidazolium tet-
rafluoroborate salt at 200 °C [155]. Imidazolium-based tetra-
fluoroborate salts can also form [BF3(NHC)] adducts upon
deprotonation. Using LiIHMDS, [BF3(6-Mes)] (272) and the more steri-
cally encumbered 273 were prepared [166], as well as [BF3(IMes)]
(234) and [BF3(SIMes)] (274) [167]. The reaction proceeds via in situ
generation of the free carbene and LiBF4, which acts as a source of BF3
[167]. In this way, a series of CAAC-stabilized adducts 275-280 was also
prepared [167]. The KHMDS reagent was suitable for the preparation of
281 [168] and 282 [169]. Deprotonation using LDA afforded 283 from
the corresponding tetrafluoroborate salt [170], while deprotonation of



E. Gruden and G. Tavéar Coordination Chemistry Reviews 555 (2026) 217604

Di Dipp
T™MS N PP E
\[ )—B—F \V/\[ >—B—F
N, F
Dlpp
239

N F
BZF
N F _
i [Li]
236 237 AgCl Dipp, Dipp

F\ /L/>\A IA\ F
>_®* [B(CoFo)| e o £

240 -

¢ [Ru(p-cymene)Cls],

| O o

| Dipp ] CI/
242 >~
F-B, PP £ F
FF 241
243; L = PPhy
244;: 1. =CO
Scheme 6. Synthesis of 237-244.
Mes Mes
N SR R
N NS /NjN\ Bu-N Nty 1g,~N_N-tg
Mes Mes R Y R Y Bu Y u
BFs H FB~F FB~F
X X
245 246; R ='Bu 248; X =F 250; R = H; X = OTf
247; R = Dipp 249; X =0OTf 251;,R=CI;X=F ‘\C~

DlppJ} Dlpp% Dippj\l@( Dipp~N
BF3 BF3
Fig. 53. View of the structure of 256, redrawn from ref. [17].
HoN

\ O
Dlpp Dlpp Dlpp Dlpp '\?:\N malsic NH
__maleic =
256 257 - Y ™ Tanhydride ~— NN A0,
Pd/C, Hy BF; HO - Y ~ NaOAc
Fig. 52. Schematic representation of 245-257. 259 o B
e1s N 02N 260 d o
NHC-anilido tetrafluoroborate precursors with LDA and subsequent =\ N
addition of BF3-Et,0 allowed synthesis of 284-289 [171]. /NYN\ e} >:\
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stabilized B fluoride compounds is the fluorination of the corresponding 258 BE
hydrides [BH3(NHC)]. One of the first experiments in this area was the 3
261

fluorination of the dimeric carbene-borane adduct with BF3-Et30. The
reaction produced a mixture of two products in a 95:5 ratio, with the Scheme 7. Synthesis of 259-261.
major compound being the tetrafluoro-substituted 290 and the minor
product being the partially fluorinated difluoro dihydro-substituted 291
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earlier, with its crystal structure published only as a CSD Communica-
s B/F / Fs B/F / — tion (No. 2053984) [177]. An H/F rearrangement was also observed in
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(/\ N \f\/) (/\ N \r\/) Dipp~N~N~Dipp the formation of adduct 303, which was obtained by decomposition of
J\ N J\ N the a-difluoroborane [178].
N B/ N B/ BFH,
I g Pg T T In the past decade, the use of Selectfluor in the fluorination of NHC-
292 supported B hydrides has been extensively studied. Generally, reactions
290 291 of [BH,R(NHC)] with Selectfluor in MeCN produced difluorides [BF;Ar
. /NiN\ . N/*\N {\N/\/\Nx (NHQ)] in high yields. This pathway enabled the synthesis of aryl-
Dipp Y Dipp - Y = N )\ substituted adducts 295, 299, 304-307 (Fig. 56) [179], 308 [180],
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298; R = 3-BrCgH, ()\ pound 327 [185]. Only in one case did the fluorination of BHj
BF3 / F ‘e compounds with Selectfluor result in a mixture of mono-, di-, and tri-
302 303 fluorinated adducts 328-330 [196]. Furthermore, the monofluorinated

Fig. 55. Schematic representation of 290-303.

(Fig. 55) [172]. Selective fluorination was later observed in a two-step
synthesis of the monofluorinated [BFH,(IDipp)] (292) and difluorinated
[BFoH(IDipp)] (293). The starting BH3 adduct was first selectively
converted to the mono- or disubstituted triflates using TfOH, and then to
the corresponding fluorides 292 and 293 using BusNF. During the
fluorination reaction, the OTf substituent acted as a good leaving group,
facilitating the formation of fluorinated adducts [173]. These partially
fluorinated compounds were not structurally characterized. However, a
mixed fluoride chloride counterpart [BFoCI(IDipp)] (294) was reported
[174]. [CPh3][BF4] was used as a fluorination reagent for a series of
[BH2Ar(NHC)] compounds. The authors observed that product forma-
tion was highly dependent on the nature of the Ar substituents, yielding
either [BF;Ar(NHC)] adducts (295-300) or [BF3(NHC)] (NHC = IDipp
236, IMe 271) adducts. The trifluorides were formed from the corre-
sponding adducts with 4-MeOCgH,4 and 2-thiophenyl Ar substituents
[175]. Similarly, [CPh3][PFg] was used to fluorinate bis-NHC and NHC-
stabilized BH3 adducts to form the corresponding BF3 compounds 301
and 302 [176]. The latter was structurally characterized a few years
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adduct 331 was formed using the same procedure starting from the
monohydride counterpart [197]. Finally, Selectfluor was also success-
fully used for the fluorination of diazaborolone, which was converted to
the cationic derivative 332 [198].

[BFoH(IMe)] (333) (Fig. 57) was also prepared from the corre-
sponding BH3 adduct and Selectfluor. However, the reaction was not
sufficiently selective for the author's needs. High-purity 333 was ob-
tained using an alternative one-pot, two-step reaction in which fluorine
was introduced as a nucleophile. The parent BH3 was first converted to
diiodoborane by in situ addition of I, which then reacted with TBAF in
THF to form 333 [199]. Subsequent hydrogen abstraction reactions of
333 with tert-butoxyl radical, prepared by photocleavage of di-tert-butyl
peroxide with laser excitation at 355 nm, produced the difluoroboryl
radical 334 [199]. Bypin, reacted with free NHC in the presence of a
fluoride ion (TMAF) in a 1:1:1 ratio to form a mixture of two products.
The adducts [FB(NHC)(pin)] (NHC = I'Pr 335, IMe 336, I'lPrMe 337, I"Pr
338) formed together with [NMe4] [BF2pin] salt and some unidentified
side products [200]. While compounds 335-337 formed in very low
yields, 338 was obtained as the main product in 91% yield [200]. TBAF
also reacted with the fluoride-sensing molecule [B(Mes)(alMe)][I],
which was converted to the neutral fluorinated abnormal adduct [BF
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Based on the known crystal structures of NHC-stabilized B fluorides,
N/ F F including the crystal structure of compound 344 (Fig. 58), the NHC-B
N/ o \N N o N N o N N/: P (\ bond lengths in adducts are usually between 1.53 and 1.73 A, while the
- -7 Y ~ R Y R~ w) J\ B-F bond lengths are typically in the range of 1.32 to 1.46 A.
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' | . .
336;R=R'=Me pr _ and [AIFMex(SIMes)] (346) (Fig. 59), were prepared by treating the
337, R="Pr,R'=Me N Ne. corresponding AlMes; adduct with SF4 and SFe, respectively. The for-
338, R=R'="Pr Y Dipp mation of both compounds was determined only by spectroscopic
{N (SO,Ph) } - B\‘Cer methods [207]. Alternatively, compounds 345 and 346 were prepared
A(\O E O/HL 2 F by treating [AlMe3(SIMes)] with 1.5 equiv or an excess of MesSnF,
N)\B/ — 341 respectively. In contrast, the use of HF sources resulted in the formation
PH /\C:N \ [N(SOzPh)z} of the salts [(SIMes)H][AlF;Mes] and [(SIMes)H][AlF4] [207].
Ph ><\O . O’>< Later, Me3SnF was also used to prepare the carbocyclic Al fluoride
342 N)\é/kN 347 by dehydrofluorination of the corresponding alane [208]. In its
Ph crystal structure, the Al center adopts a tetrahedral arrangement, with

343

Fig. 57. Schematic representation of 333-343.

(aIMe)(Mes)2] (339) [201]. Fluorination of the bidentate pyridyl-
carbene B(Mes) adduct with BF3-EtyO yielded the unprecedented
example of a Lewis-acid-induced ring expansion ByCoNg heterocycle 340
[202]. An attempt to oxidize a boryl-nitroxide radical with AgBF, led to
the formation of BF adduct 341 [203]. The reaction successfully
oxidized the boryl NO radical to the boryl oxoammonium cation.
However, the instability of the cation triggered a substitution reaction to
341, which was characterized as the observable product [203]. The
reactivity of the electron-rich B=C units in the adduct supported by
strong o-donating oxazol-2-ylidene was investigated toward NFSI. The
reaction afforded the boronium fluoride species 342 [204].The same
group also investigated the reactivity of borylene metal complexes with
NFSI, which produced the ionic species 343 regardless of the metal
complex used [205].

the two carbene ligands connected to the Al center by the backbone to
form the C4Al; core, as shown in Fig. 60 [208].
The NHC-stabilized Al fluoride adduct 348 (Fig. 59) was prepared

Fig. 58. View of the structure of 344, redrawn from ref. [206].
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Fig. 59. Schematic representation of 345-356.

Fig. 60. View of the structure of 347, redrawn from ref. [208].

from the corresponding Al=Se compound by treatment with CgFe. The
Al-Se unit exhibited ambiphilic character, capable of cleaving 6 C-F
bonds in small molecules such as CgFg [209]. The C-F bond of fluo-
robenzene is also cleaved by the dialumene [(MeZIiPr)(Si(Me(tBu)z))
AI:AI(Si(Me(tBu)z))(MeinPr)] compound, enabling the synthesis of
formal oxidative addition products at single or double Al centers. First,
the Al-Al compound 349 formed as the major product, which over time

converted to the monomeric Al(III) compound 350. The dialumene also
reacts with more activated difluorobenzenes, proceeding more rapidly
than with fluorobenzene and leading to various AI(III) products. The use
of 1,4-difluorobenzene resulted in the formation of 351, 1,3-difluoro-
benzene produced 352, while 1,2-difluorobenzene formed a mixture
of 353 and 354 in a 2:1 ratio [210]. The reaction of [AIH(CgF5)2(IDipp)]
with fluorobenzene in the presence of [PhyC][B(CeF5)4] led to nearly
quantitative formation of the [AI(F-Ph)(CgFs)2(IDipp)][B(CgFs)4] salt
(355). This compound can act as a Lewis superacid and abstract fluoride
from [SbFg]~, forming [AlF(CgFs)2(IDipp)] (356) [211]. Both com-
pounds were structurally characterized, revealing a tetrahedral
arrangement at the Al center, which is typical for Al(II) compounds
[211]. Finally, the NHC-stabilized Al compound 357 was also charac-
terized, where the Al atom is connected to F atoms of the anion. The
structure of 357 is shown in Fig. 61 [212].

Based on known crystal structures of NHC-stabilized Al fluorides, the
NHC-AIl bond lengths in adducts are usually between 1.99 and 2.11 A,
while the Al-F bond lengths typically range from 1.67 to 1.71 A. The
bridging AI-F bonds are generally longer, with a length of 1.88 A for 355
[211] and 2.14 A for 357 [212].

5.1.3. Gallium

The first NHC-stabilized Ga fluoride adduct, [GaF3(IDipp)] (358),
was prepared in 2014. Its crystal structure revealed a tetrahedral
arrangement at the Ga center, which is typical for group XIII M(III)
adducts (Fig. 62) [213]. Adduct 358 was formed by reacting the

Fig. 61. View of the structure of 357, redrawn from ref. [212].
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Fig. 62. View of the structure of 358, redrawn from ref. [213].

corresponding chloride with 3 equiv of AgBF,4. The same reaction with 1
equiv of AgBF4 led to the formation of [Ga(F-BF3)Cly(IDipp)] (359),
while the reaction with 1 equiv of AgSbFg resulted in [Ga(F-SbFs)
Cly(IDipp)] (360) (Fig. 63). Notably, the reaction of the free carbene
with GaF3 did not yield adduct 358, but instead produced the corre-
sponding [(IDipp)H][GaF4] salt [213].

The Ga fluoride adduct 361 was obtained from the corresponding
triflate by additing KF in the presence of 18-crown-6 [214], while the
bis-gallylene reacted with aryl fluorides to give cis- and trans-Ga(III)
compounds through C-F bond activation [215]. Compounds 362-365
adopt a tetrahedral arrangement at the Ga center, with two carbene li-
gands connected to Ga by the backbone to form the C4Gay cone, similar
to the Al counterpart in Fig. 60 [215].

Based on known crystal structures of NHC-stabilized Ga fluorides,
the NHC-Ga bond lengths in adducts are usually between 1.99 and 2.05
A, while the Ga-F bond lengths are typically in the range of 1.79-1.84 A.
The bridging Ga—F bonds are usually longer, with lengths of 1.87 A for
359, and 1.92 A for 360 [213].

5.1.4. Indium

Only one structure is known for an NHC-stabilized In fluoride. The
fluorine-bridged compound [In(F-SbFs5)Bry(IDipp)] (366) is formed by
combining the corresponding NHC-stabilized InBrs with one equiv of
AgSbFg. Its crystal structure (Fig. 64) shows a tetrahedral arrangement
at the In center, with an NHC-In bond distance of 2.178(2) A and a
bridging In-F bond distance of 2.189(2) A [216].

5.2. GROUP XIV

The chemistry of Si and Ge halides with neutral electron-donating
ligands is well developed and extensively reviewed in ref. [32]. Group
XIV metal fluorides stabilized with NHC ligands are mostly found in the
+4 oxidation state. Upon reduction, rare examples in the +2 state and
only one in the +3 state have been prepared.

_ - N~
Dipp/NYN\Dipp Dipp/NYN‘Dipp 'Pr’NYN\‘Pr
Ga _Ga_ Ga O
98 CI" 1 F=X
F # F Cl F N/Ies .
358 359; X = BF3; 361 O
360; X = SbFg
Dlpp Fgg AT Plpp Dlpp Ar Dlpp
Ph—< I I )—Ph and Ph— I I )—Ph
Dlpp A F D|pp D|pp A F blpp
cis- trans-
362; Ar = p(CF3)CgF5
363; AI’=CGF5

364; Ar = CsNF,
365; Ar = CGHF4

Fig. 63. Schematic representation of 358-365.
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Fig. 64. View of the structure of 366, redrawn from ref. [216].

5.2.1. Silicon

The first NHC-stabilized Si fluoride adducts were prepared by
reacting a free carbene with SiF4. Using 1 equiv of NHC afforded the
pentacoordinated [SiF4(IDipp)] (367), while using 2 equiv of NHC
resulted in the formation of the hexacoordinated [SiF4(IDipp)2] (368)
(Fig. 65) [217]. Using the same procedure, [SiF4(IiPr)2] (369) was also
prepared [218]. In the crystal structure, compound 367 adopts a
trigonal bipyramidal arrangement at the Si center with the NHC ligand
in the axial position, while compound 368 adopts an octahedral coor-
dination at the Si center with both NHC ligands in trans positions [217].
The same octahedral arrangement was also observed in the crystal
structure of [SiF4(IMes),] (370), published as a CSD Communication
(No. 611491) [219]. In contrast, a trigonal bipyramidal arrangement
with the carbene ligand in the equatorial position was observed in the
crystal structure of [SiFgPh(MeCAAC)] (371), published as a CSD
Communication (No. 2149531) [220].

By passing SiF; gas through a THF solution of MCAAC carbene,
[SiF4(MeCAAC)] (372) was prepared (Fig. 65). Subsequent reduction of
372 with 2 equiv of KCg in the presence of 1 equiv of free M*CAAC
afforded [Sin(MeCAAC)g] (373) [16]. The same reduction starting from
the [SiF4(NHC)] adduct did not yield the [SiFo(NHC),]. The different
performance of the CAAC- and NHC-stabilized adducts was attributed to
the stronger c-donating and m-accepting abilities of CAAC carbenes
compared to NHCs [16]. In addition, 372 reacted with 1 equiv of KCg in
THF to form the monoradical product [SiF3(MCAAC)] (374), which is
stable at room temperature. In its crystal structure, the Si center adopts a
distorted tetrahedral geometry, as shown in Fig. 66 [16].

Based on known crystal structures of NHC-stabilized Si fluorides, the
NHC-Si bond lengths of adducts are usually between 1.80 and 2.03 A,
while the Si-F bond lengths typically range from 1.58 to 1.69 A.

5.2.2. Germanium

The first NHC-stabilized Ge fluoride compound was the germylene
derivative [GeF,(M®2I'Pr)] (375) (Fig. 67). It was prepared from the

Dipp R R .

N R F N R F N | _R
L5 Lo—st< ] i

N f N FF N N EF

Dipp R R Dipp
367 368; R = Dipp 371;R=Ph
369; R =Pr 372;R=F
Dipp RF S Dipp ~ 370; R = Mes

. F
Si—F
N F
Dipp
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Fig. 65. Schematic representation of 367-374.
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Fig. 66. View of the structure of 374, redrawn from ref. [16].
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Fig. 67. Schematic representation of 375-377.

corresponding chloride by fluorination with KF in the presence of 18-
crown-6, and its structure was confirmed by single-crystal structural
analysis [221]. Additionally, the NHC-stabilized Ge(IV) fluoride com-
plex [GeF4(SIMe)] (376) was synthesized by oxidative addition of 2,2-
difluoro-1,3-dimethylimidazolidine to GeCly-dioxane. However, an
excess of the difluoro reagent leads to the formation of the salt [(SIMe)F]
[GeFs5(SIMe)] (377) [222]. The structurally related acyclic analogue was
obtained by the same procedure using bis(dimethylamino)difluoro-
methane as the reagent. The crystal structure of 376 revealed a trigonal
bipyramidal geometry at the Ge center, with the NHC ligand in the
equatorial position, as shown in Fig. 68, while the crystal structure of
the NHC-stabilized anionic part of 377 adopts an octahedral geometry
[222].

Based on the known crystal structures of NHC-stabilized Ge fluo-
rides, the NHC-Ge bond lengths in neutral adducts are usually between
1.98 and 2.12 A, while the Ge—F bond lengths are typically in the range
of 1.78-1.83 A.

5.2.3. Tin

The NHC-stabilized SnF4 compound [SnF4(MezliPr)2] (378) (Fig. 69)
was prepared by reacting free NHC with SnFy. In its crystal structure, the
Sn atom adopts octahedral coordination, with the two NHC ligands in
trans positions [223]. In contrast, SnF, reacts with 2,2-difluoro-1,3-
dimethylimidazolidine to form the salt [(SIMe)F][SnF5(SIMe)] (379)
(Fig. 70) [222]. The structurally related acyclic analogue was also ob-
tained by the same procedure using bis(dimethylamino)difluoro-
methane as the reagent [222].

Fig. 68. View of the structure of 376, redrawn from ref. [222].
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Fig. 69. Schematic representation of 378 and 379.

Fig. 70. View of the structure of 379, redrawn from ref. [222].

Based on known crystal structures of NHC-stabilized Sn fluorides, the
NHC-Sn bond lengths are usually between 1.97 and 1.98 A, while the
Sn-F bond lengths are typically in the range of 1.97-1.98 A.

5.3. GROUP XV

The chemistry of P halides with neutral electron-donating ligands is
well established and extensively reviewed in references [18, 30, 224].
Group XV metal fluorides stabilized with NHC ligands are mostly found
in the +5 and +3 oxidation states. The latter possess one lone pair of
electrons at the group XV element center, which may be stereochemi-
cally active.

5.3.1. Phosphorus

NHC-stabilized P(V) fluorides have been widely studied. A broad
variety of synthetic methods are used for their preparation.

The first [PF4(Ph)(IMes)] (380) adduct (Fig. 71) was prepared by the
direct reaction of the free NHC with PhPF4 in THF solution [225]. The
adduct 380 was also structurally characterized, revealing octahedral
coordination at the P center [225]. In contrast, PFs5 reacts with IMes to
form a mixture of [PFs(IMes)] (381) and the salt [(IMes)H][PFg].
Product formation depends on the nucleophilic nature of the carbene.
The more nucleophilic “?IMes reacts with PFs to form exclusively the
[PF5(C121Mes)] (382) adduct [139]. [PF5(IMe)] (383) was prepared
using the same procedure, while the structurally related [PF4(Ph)(IMe)]
(384) was obtained by reacting K[PFs(Ph)] with imidazolium iodide salt
and n-BuLi [226]. In the second procedure, a free NHC is formed in situ
and subsequently reacts with the phosphate anion to form adduct 384
[226]. Initially, the cis-384 product was formed and characterized by
NMR spectroscopy. Heating the compound to 66 °C triggered isomeri-
zation to the trans-384 product, which was also structurally character-
ized [226].

Starting from PFy(CoFs); and free NHCs, a series of
[PF2(C2F5)3(NHC)] adducts (NHC = IMe 385, I"Pr 386, I'Pr 387, I'PrMe
388, Me21Me 389, Me2"pr 390, Me21ipr 391, M2[EtMe 392) (Fig. 71)
were produced [227]. The use of more sterically demanding carbenes
led to the slow formation of abnormal adducts [PF5(CoFs)3(aNHC)]
(NHC = IDipp 393, I'Bu 394, Mes 395), although the synthesis of 395



E. Gruden and G. Tavéar

Coordination Chemistry Reviews 555 (2026) 217604

X X H R
= = [\ NN - =N HN_ N
Mes~N<N~Mes Mes/NYN‘Mes —N N~ R1~ "Ry R1I-NNR, R’Nw/ B C,F YC F
Fol F Fol F Fol F CoFs. ) CoFs CoFs< ) -CoFs CoFs ) CoFs |BuN N~ ||=2rs5p =2
>PC “P ~PC e P >PL F'IF
F"I°F F7L°F F"L°F F7lF F71F F71F C.F
Ph F R CFs CFs CoFs i
380 381: X =H 383;R=F 385 R1=R2=Me 389: R1=R2 = Me 393; R = Dipp 396
382; X = Cl 384,R=Ph  386:R1=R2="Pr 390; R1=R2="Pr 394;R="Bu
387;R1=R2=Pr 391; R1=R2 = Pr 395; R = Mes
[\ i\ [\ 388;R1="Pr,R2=Me 392;R1=Et R2=M
N_N-g NN NN ’ ’ °
S S o S
) r o N _N-i N__N O FsP Nivle =
397; R = (CH,)sCHs 400; R = Et Pr— YPr R” ~ pent? 409 N Ny
398; R = (CH,);CHs 399 401;R=Bn Fsp-F Fsp-F H. _Boc Yo
402; R = 4-Br-Bn F L F7LF N PFs
403;R = Ph F F o 4
404; R = CH,CH=CH, 406 407, R = Et 410

405; R = CH,CH,Cl

408; R =Bn

Fig. 71. Schematic representation of 380-410.

did not result in clean adduct formation. In contrast, using the I'BuMe
NHC carbene resulted in the formation of salt 396 [227]. All compounds
were crystallized and structurally characterized featuring octahedral
coordination at the P center with the two fluorine atoms in a trans
arrangement, as shown in Fig. 72 for compound 393 [227].
Imidazolium-based hexafluorophosphate salts have proven to be
effective precursors for NHC-stabilized PFs adducts. At elevated tem-
peratures, [(NHC)H][PF¢] undergoes dehydrofluorination to form
[PF5(NHC)] adducts. At temperatures above 327 °C, compounds 397
and 398 were obtained (Fig. 71) [161], while [PF5(IMe)] (383) formed
at 300-400 °C [162]. In contrast, heating the bis-imidazolium hexa-
fluorophosphate salt at 300-400 °C resulted in thermolytic decomposi-
tion of the bis-imidazolium compound, producing a 1:1 mixture of
[PF5(NHC)] (399) and the imidazole N-stabilized PFs adduct [228].
Furthermore, the silylimidazolium hexafluorophosphate salt was con-
verted to the corresponding NHC-stabilized PFs adducts 381, 383, 398,
and 400-406 by heating the salt at 190-200 °C in the presence of LiPFg
[165]. The Lewis acidic nature of silanes enables the defluorinative
decomposition of [PFg]™ to PFs5 by forming the fluorosilane byproduct.
Desilylation of the silylimidazolium salts generated NHC and PFs in situ,
which subsequently formed the [PF5(NHC)] adduct in high yields. Using
LiPFg in catalytic quantities ensured high conversion rates to the desired
[PF5(NHC)] adducts; otherwise, byproduct formation was observed. The
silyl-NHC adducts 407 and 408, as well as their corresponding imida-
zolium salts [(NHC)H][PF¢], formed by bimolecular proton transfer

Fig. 72. View of the structure of 393, redrawn from ref. [227].
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between the free NHC and silylimidazolium salt [165]. Additionally,
adduct 401 was subsequently functionalized using a standard Suzu-
ki-Miyaura cross-coupling reaction to yield 409, while 404 was func-
tionalized using a thiol-ene reaction to form 410 [165].

Oxidative addition of 2,2-difluoroimidazolidine reagents to P species
is another widely used method to prepare NHC-stabilized P(V) fluorides.
Using 2,2-difluoro-1,3-dimethylimidazolidine, [PF4R(SIMe)] (R = F
411, Me 412, Ph 413) (Fig. 73) were prepared from PF3, PCl;Me, and
PCl,Ph, respectively [229]. The structurally related acyclic PF5 analogue
was obtained by the same procedure using the bis(dimethylamino)
difluoromethane reagent [229], and other (difluoroorganyl)dimethyl-
amine reagents [230]. The 2,2-difluoro-1,3-dimethylimidazolidine also
reacted with PX5(CF3), PX5(CoF5), and PX(CoFs)s (X = F, Cl, Br) to form
the corresponding NHC-stabilized PF4(CF3) 414, PF4(CyFs) 415, and
PF3(CoF5)2 416 [231]. The structurally related acyclic analogues of 414,
415, and 416 were also prepared by the same method using acyclic bis
(dimethylamino)difluoromethane [231]. Oxidative addition of 2,2-
difluoroimidazolidines to PX3 or PX5R (X = F, Cl) was also used to
obtain more sterically encumbered P(V) adducts 417-421 [232]. Fluo-
rination of [PCl3(SIMe)] with EtsN-3HF in the presence of additional
EtsN resulted in the formation of [PF4H(SIMe)] (422). During the re-
action, chloride/fluoride metathesis occurs, followed by the addition of
HF [233].

Oxidation of the corresponding precursors with XeF, led to the for-
mation of various salts. The phosphine salts [PRy(SIMes)][B(CgFs)4]
reacted with XeFs to yield salts containing [PFoR2(SIMes)] T cations (R =
Ph 423, Me 424, Et 425) (Fig. 74). Subsequent fluoride abstraction from
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Fig. 73. Schematic representation of 411-422.
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these compounds produced salts with [PFth(SIMes)]2+ cations (R = Ph
426, Me 427, Et 428) [234,235].

The molecular structure of [PFyPhy(SIMes)]™ in 423 exhibits a dis-
torted trigonal bipyramidal geometry at the P center, with the two F
atoms in axial positions. In contrast, the molecular structure of the
dicationic [PFth(SIMes)]2+ in 426 displays a distorted tetrahedral
geometry, as shown in Fig. 75 [234]. The same tetrahedral arrangement
was also observed in the crystal structures of the [PF(MeZIMe)(Ph)2]2+,
[PF(M€2IMe)(CeFs)2]%", and [PF(M®2IMe)o(Ph)]3" cations in the corre-
sponding triflate salts 429, 430, and 431. These three compounds were
published as part of the Thesis and can be found in the CSD database
(No. 2051028, 2051030, and 2051040, respectively) [236-238].

By oxidation with XeFs, other phosphine cations were converted to
difluorophosphorane cations stabilized by imidazolylidene, CAAC, and
triazolylidene ligands in compounds 432-435 (Fig. 76) [239]. Among
these, only compound 434 was structurally characterized. It crystallized
in the presence of AgCl, forming the [AgCly] ™ salt 435 [239]. The aNHC-
stabilized PPh; cations were also oxidized by XeF; to the corresponding
[PFoR2(aNHCO)]™ (R = Cy, Ph) in compounds 436 and 437, which, upon
fluoride abstraction, form the dicationic [PFRz(aNHC)]2+ (R = Cy, Ph)
in compounds 438 and 439, respectively [240]. The dicationic com-
pound 439 further reacted with PPhj to form the chlorophosphonium

Fig. 75. View of the structure of the cationic [PF,Ph,(SIMes)]™ in 423 (left)
and the dicationic [PFPh2(SIMes)]2+ in 426 (right), redrawn from ref. [234].
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Fig. 76. Schematic representation of 432-446.

salt [PCIPh3][OTf] and the NHC carbene 440, which, upon addition of
AuCl and AgF, formed complexes 441 and 442, respectively [240]. In
contrast, oxidation of the [PI;H(NHC)] compounds with XeF; was un-
selective. The authors suggested that the reaction with XeF; first pro-
ceeds via oxidative I/F and H/F exchange to afford cationic phosphines,
which are then oxidized to phosphoranides 443-446 [241].

Based on the known crystal structures of NHC-stabilized P fluorides,
the NHC-P bond lengths strongly depend on the charge of the NHC-
stabilized P fluoride fragment. For neutral compounds, the NHC-P
bond lengths are usually between 1.87 and 1.99 A; for monocationic
compounds, they range from 1.81 to 1.89 A; and for dicationic com-
pounds, from 1.77 to 1.85 A. In contrast, the P-F bond lengths of all
compounds are typically in the range of 1.53-1.66 A. Notably, the
dicationic compounds have slightly shorter P-F bond lengths (1.53-1.56
1:\) compared to the monocationic and neutral compounds (1.59-1.66
A).

5.3.2. Arsenic & Antimony

To date, only one NHC-stabilized As fluoride compound, [AsFs(-
ClzIMes)] (447), is known. It was synthesized by adding free carbene to
AsFs. The reaction was carried out in 1,3-bis(trifluoromethyl)benzene
and resulted in a 65% yield. The complex was structurally character-
ized, revealing an octahedral geometry at the As center, with an NHC-As
bond length of 2.00 A, an average equatorial As—F bond length of 1.72 A,
and an axial As-F bond in the trans position relative to the NHC of 1.71 A
[139]. The structure of 447 is schematically presented in Fig. 77.

Using the same procedure, the group also prepared [SbFs5(%2IMes)]
(448) in 77% yield (Fig. 77) [139]. Recently, [SbF5(IMe)] (449) was
prepared from the silylimidazolium hexafluoroantimonate salt by
heating at 180 °C. This method circumvents the use of SbFs as a reagent
but still allows isolation of the carbene SbFs adduct [165]. The adduct
449 was also structurally characterized, revealing the octahedral coor-
dination of Sb, as shown in Fig. 78 (left) [165]. In addition, adduct 450
was prepared by deprotonation of imidazolium hexafluoroantimonate
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Fig. 77. Schematic representation of 447-452.

salt with LIHMDS [242].

The NHC-stabilized SbF3 compound [SbF3(IDipp)] was detected in
solution during the reaction of [SbF3(tmen)] with IDipp carbene.
However, this intermediate complex is unstable and undergoes auto-
ionization, leading to the formation of [SbFy(IDipp)(alDipp)][SbF4]
(451). During autoionization, one of the IDipp ligands rearranges to the
abnormal carbene [243]. The cationic complex is the first example in
which a carbon-based ligand is coordinated to the SbF, moiety [243]. Its
structure is shown in Fig. 78 (right). The NHC-stabilized Sb fluoride
motif is also found in [SbF(Cp*)(IMes)][B(CgF5)4] (452). The group
attempted to trap the highly reactive [SbF(Cp*)]* fragment by stabi-
lizing it with IMes carbene, which enabled the isolation of 452 [244].

Based on known crystal structures of NHC-stabilized Sb fluorides, the
NHC-Sb and Sb-F bond lengths strongly depend on the geometry and
charge of the NHC-stabilized Sb fluoride fragment. For neutral com-
pounds with octahedral geometry, the NHC-Sb bond lengths are usually
between 2.14 and 2.18 A, while the Sb-F bond lengths range from 1.86
to 1.90 A. In cationic species, the NHC-Sb bond lengths range from 2.17
to 2.41 A, and the Sb-F bond lengths range from 1.89 to 2.03 A.

5.4. GROUP XVI

Group XVI chalcogen fluorides stabilized with NHC ligands are
extremely rare. To the best of our knowledge, only two references in the
literature describe complexes in the +2 and +4 oxidation states.

5.4.1. Sulfur, Selenium, & Tellurium

Reaction of NHC-stabilized SCl, with AgF led to the isolation of the
first [SFZ(MeZIiPr)] (453) complex (Fig. 79) [245]. Compound 453 was
characterized only by spectroscopic methods [245].
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In 2022, Beckmann’s group systematically tested the reactivity of
group XVI NHC complexes. Oxidation of IDipp=S and IDipp=Se with
XeF; resulted in the formation of S(II) and Se(II) compounds, [SFy(I-
Dipp)] (454) and [SeFy(IDipp)] (455) (Fig. 79), respectively. The Se
analogue could be further oxidized with another equiv of XeF; to form
the Se(IV) adduct [SeF4(IDipp)] (456). Alternatively, 456 could be
prepared by direct reaction of SeF4 with free carbene. However, in the
presence of excess XeF, or at elevated temperature (80 °C), 456 de-
composes to the [(IDipp)F][SeFs] salt [246]. In contrast, the chemistry
of Te differs from that of its lighter congeners. The Te(I) fluoride
complex could not be prepared from NHC=Te and 1 equiv of XeF,.
Instead, the reaction led to the formation of [TeF3(IDipp)2][TeFs] (457),
whether 1 or 2 equiv of XeF, were used. Alternatively, 457 could be
prepared by direct reaction of TeF4 with free carbene. Over time, com-
pound 457 converted to the mesoionic complex 458 following a normal-
to-abnormal coordination switch [246]. Compounds 454-458 were
structurally characterized. The M(II) complexes adopt a T-shaped ge-
ometry in the solid state, while the M(IV) compounds adopt a square
pyramidal arrangement. Selected structures are presented in Fig. 80
[246].

Based on known crystal structures of NHC-stabilized S, Se, and Te
fluorides, the NHC-M bond length is 1.73 A for S, between 1.88 and 1.97
A for Se, and ranges from 2.12 to 2.29 A for Te. In contrast, the M-F bond
length is 1.82 A for S, between 1.85 and 1.94 A for Se, and ranges from
1.94 to 1.98 A for Te.
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NoF ‘ N F N FE
[ >—s  [r—s Lo [ )
N F ] N F N F
'Pr Dipp Dipp Dipp
453 454 455 456
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Fig. 79. Schematic representation of 453-458.

Fig. 78. View of the structure of 449 (left) and the cationic [SbF,(IDipp)(aIDipp)]* in 451, redrawn from ref. [165, 243].
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Fig. 80. View of the structure of 455 (above) and the cationic 458 (below),
redrawn from ref. [246].

6. Conclusions

Despite a slow start, N-heterocyclic carbene (NHC) coordination
chemistry with metal and non-metal fluorides has become an increas-
ingly active and promising research area. A search of the CCDC crystal-
structure database returns only 255 fluoride coordination compounds
bearing NHC ligands, 17 with abnormal NHCs, and 11 with cyclic (alkyl)
(amino)carbenes (CAACs), compared to roughly 8,650 NHC-halide
structures overall (CCDC). This pronounced disparity largely reflects the
intrinsic challenges of fluorides: many are poorly soluble, poorly reac-
tive toward direct ligand substitution, and can be highly lattice-
stabilized, all of which impede straightforward preparation of
NHC-fluoride complexes.

Recent methodological advances, however, have begun to overcome
these obstacles. Two-step or “precoordination—fluorination” strategies
are now widely used: an NHC is first coordinated to a more labile halide
or an organic precursor (e.g., silyl, alkyl, aryl, or pseudohalide), and this
complex is then converted to the fluoride by a targeted fluorination step
(Selectfluor, NFSI, XeF,, EtsN-3HF, CsF with electrophilic activation,
etc.). Alternative approaches include metathesis from soluble fluoride
sources (e.g., tetraalkylammonium fluoride), fluoride abstraction or
transfer from strong Lewis acids or fluorinating agents, and use of sol-
uble fluoride surrogates (e.g., SF4 derivatives, nucleophilic fluoride in
polar aprotic solvents) or ionic liquid media to improve solubility and
reactivity. Careful choice of solvent, counterion, and fluorinating re-
agent, combined with steric and electronic tuning of the carbene, has
enabled isolation and crystallographic characterization of many previ-
ously inaccessible species.

Opportunities for expansion remain significant. Excluding transient
intermediates in catalytic cycles, many elemental fluorides and their
NHC complexes have yet to be reported; examples include late-row
transition metals (e.g. Pt), group 12 metals (Zn, Cd, Hg), and others.
The oxyfluoride domain is particularly underexplored since only two
coordination-compound crystal structures are currently cataloged
despite oxyfluorides’ unique bonding and electronic properties, which
could yield new structural motifs and reactivity. Exploration of mixed
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halide/oxide or fluoride-bridged architectures also promises novel
multinuclear assemblies and catalytic behavior.

Ligand design offers another promising avenue for progress. CAACs,
abnormal NHCs, and strongly donating or bulky variants can signifi-
cantly alter metal-fluoride bonding, stabilize low-coordinate or high-
oxidation-state centers, and affect reactivity toward migratory inser-
tion or fluoride transfer. For example, CAACs have been implicated in
the stabilization of SiF5 and SiF3 species and could enable the isolation of
small, highly electrophilic fluorinated fragments that are otherwise
elusive with classical NHCs. Redox-active carbene frameworks and
multifunctional ligands (hemilabile donors, pendant Lewis bases/acids)
may further enable cooperative stabilization and activation of fluoride
ligands.

Advances in synthetic techniques, choice of fluorinating reagents,
and ligand design have begun to close the gap between NHC-fluoride
and NHC-halide chemistry, but substantial unexplored territory re-
mains. Focused efforts on underrepresented elements, oxyfluorides, and
nonclassical carbene ligands should yield new structures, bonding mo-
tifs, and catalytic applications.
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