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Abstract

End-of-Line (EoL) quality control plays a crucial role in ensuring the reliability, safety, and
performance of electric motors in modern industrial production. Increasing product com-
plexity, tighter manufacturing tolerances, and rising production quantities have exposed
the limitations of conventional EoL inspection systems, which rely primarily on manually
crafted features, expert-defined thresholds, and rule-based decision logic. In recent years,
artificial intelligence (AI) techniques, including machine learning (ML), deep learning
(DL), and transfer learning (TL), have emerged as promising solutions to overcome these
limitations by enabling data-driven, adaptive, and scalable quality inspection. This paper
presents a comprehensive and structured review of the latest advances in intelligent EoL
quality inspection for electric motor production. It systematically surveys the non-invasive
measurement techniques that are commonly employed in industrial environments and
examines the evolution from traditional signal processing-based inspection to Al-based
approaches. ML methods for feature selection and classification, DL models for raw signal-
based fault detection, and TL strategies for data-efficient model adaptation are critically
analyzed in terms of their effectiveness, robustness, interpretability, and industrial appli-
cability. Furthermore, this work identifies key challenges that prevent the widespread
adoption of Al-based EoL inspection systems, including dependence on expert knowledge,
limited availability of labeled fault data, generalization between motor variants and pro-
duction condition, and the lack of standardized evaluation methodologies. Based on the
identified research gaps, this review outlines research directions and emerging concepts for
developing robust, interpretable, and data-efficient intelligent inspection systems suitable
for real-world manufacturing environments. By synthesizing recent advances and high-
lighting open challenges, this review aims to support researchers and experts in designing
next-generation intelligent EoL quality control systems that enhance production efficiency,
reduce operational costs, and improve product reliability.

Keywords: end of line quality inspection; fault detection; artificial intelligence; machine
learning; deep learning; condition monitoring; electric motor manufacturing

1. Introduction

Electric motors are indispensable key components that power a wide range of indus-
trial, automotive, and consumer applications worldwide. They play a crucial role in manu-
facturing systems, transportation, robotics, household appliances, and energy infrastruc-
ture. As global demand for electrification continues to grow, electric motors are expected
to provide higher energy efficiency, operational reliability, and functional safety. These
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expectations are further raised by increasingly strict regulations [1-3]. Compliance with
these standards, combined with intense market competition, has significantly increased the
complexity of electric motor design, manufacturing, and quality inspection processes.

Modern electric motors are no longer simple electromechanical assemblies built only
using stators and rotors. In most industrial applications, they are integrated with power
electronics, sensors, control units, gearboxes, and mechanical actuators, forming complex
mechatronic systems. Due to increasing system complexity, increasing production quan-
tities, and tightening mechanical tolerances that achieve high precision, manufacturing
processes are becoming increasingly sensitive to disturbances. Minor deviations—such
as winding faults, rotor eccentricity, bearing defects, or assembly inaccuracies—can lead
to excessive noise and vibration, reduced efficiency, accelerated wear, or premature fail-
ure [1,4-9]. Undetected faults can cause failure downstream systems, resulting in costly
recalls, production downtime, safety incidents, and long-term damage to a manufacturer’s
reputation [10-13].

To avoid these risks, End-of-Line (EoL) quality control has become a crucial stage in
electric motor production. EoL inspection serves as the final quality gate, ensuring that
every manufactured motor meets functional, performance, and reliability requirements
before being released to the market. Unlike in-process monitoring, which focuses on
statistical trends and early detection of process deviations, EoL inspection must provide
a reliable decision for each individual unit. In mass-producing industrial environments,
inspection times are typically limited to only a few seconds per motor while maintaining
extremely high fault detection sensitivity and low false-rejection rates [4,14-20].

Modern EoL inspection systems rely on non-invasive measurement techniques, in-
cluding vibration and acoustic analysis, electrical signal evaluation, and rotational speed
or torque measurements. These signals are acquired during short, standardized test
cycles and provide crucial information about the mechanical, electrical, and electro-
magnetic behavior of electric motors. However, the resulting data are inherently high-
dimensional, noisy, and often non-stationary, posing significant challenges for reliable
interpretation [9,21-25]. Traditional EoL inspection systems address this complexity with
handcrafted signal processing pipelines, where domain experts design features in the time,
frequency, or time—frequency domains and define decision thresholds based on empirical
knowledge and experience [6,24,26-28].

However, while such methods have proven effective in stable and well-defined man-
ufacturing environments, they have fundamental limitations in modern manufacturing
environments. Relying on expert-defined features and thresholds leads to long commis-
sioning times and high maintenance effort. Furthermore, rule-based systems are dif-
ficult to adapt to the growing number of product variants, gradual process drift, and
the capture of complex or subtle fault signals that do not result in simple threshold
violations [11,13,29-31]. As manufacturing systems become more flexible and product
lifecycles shorten, these limitations constrain the robustness, adaptability, and economic
viability of traditional EoL quality control systems at an increasing rate.

In response to this, artificial intelligence (AI) has emerged as a transformative and
powerful paradigm for industrial quality inspection. Advances in machine learning (ML),
deep learning (DL), and transfer learning (TL) have enabled data-driven approaches that
learn discriminative patterns directly from captured signals. Classical ML methods, such
as decision trees, and ensemble algorithms have been widely explored for feature selection
and classification tasks, offering improved robustness, reduced system complexity, and
improved interpretability [14,15,32-34]. Deep learning methods, including convolutional
and recurrent neural networks, further extend these capabilities by enabling automated
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feature learning from raw or minimally processed data, thereby reducing dependence on
manual feature engineering and expert intervention [16,29,35-37].

Despite their growing use, Al-based EoL inspection systems face several practical
challenges in industrial environments. These include limited availability of labeled fault
data (especially for newly launched motor types), high class imbalance, strict real-time
execution requirements, and the need for transparent and explainable decision-making.
Transfer learning has therefore attracted increasing attention as a strategy to reuse knowl-
edge from existing models, enabling faster commissioning, reduced data requirements,
and improved performance in low-data regimes [38—-42]. Together, ML, DL, and TL form a
complementary set of techniques that address different aspects of scalability, adaptability,
and data efficiency in intelligent EoL quality control systems [14-16,43-45].

This review provides a comprehensive review of the latest advances in intelligent
End-of-Line quality inspection for electric motor production. It systematically examines
traditional inspection methods and compares them with emerging Al-based methods, high-
lighting their advantages, limitations, and areas of application. Particular focus is placed on
industrially relevant aspects, including non-invasive sensing, real-time constraints, commis-
sioning effort, and robustness to production variability. By summarizing current research
trends and identifying open challenges, this review aims to support both researchers and
experts in the development and deployment of next-generation intelligent EoL quality
inspection systems.

A graphical abstract is provided to visually summarize the transition from tra-
ditional rule-based inspection systems to intelligent Al-driven End-of-Line quality
control approaches.

The remainder of this article is organized as follows:

e  Section 2 presents a review methodology used in this study.

e  Section 3 reviews conventional End-of-Line quality control practices in electric
motor production.

e  Section 4 compares traditional inspection approaches with Al-based methods, empha-
sizing their conceptual and practical differences.

e  Section 5 surveys machine learning, deep learning, and transfer learning techniques
applied in industrial quality inspection, with a focus on electric motors.

e  Section 6 discusses open challenges, research gaps, and future directions for intelligent
EoL quality control.

e  Section 7 concludes the review.

2. Review Methodology

This review follows a structured yet pragmatic methodology for identifying, analyzing,
and synthesizing relevant literature on EoL quality inspection based on Al for electric motor
manufacturing. The goal is to provide a comprehensive overview of current methods,
industrial challenges, and emerging research directions.

2.1. Literature Sources

The literature search was conducted using multiple scientific databases to ensure
wide coverage of both academic research and industry-relevant studies. Primary sources
included Scopus, Web of Science, IEEE Xplore, ScienceDirect and ResearchGate. These
databases were selected for their extensive coverage of peer-reviewed journals and con-
ference proceedings in the fields of manufacturing systems, signal processing, machine
learning, and industrial automation.
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In addition, selected references were also identified using backward and forward
citation tracking of key publications to capture important articles that were not directly
found through keyword searches.

2.2. Search Strategy and Timeframe

The search strategy combined keywords related to EoL inspection, electric motor
manufacturing, and artificial intelligence techniques. Representative search terms included
the following keywords:

Electric motor manufacturing;
EoL quality inspection;
Condition monitoring;

Fault diagnosis;

Fault detection;

Machine learning;

Deep learning;

Transfer learning;

Non-invasive inspection, etc.

The main timeframe we were looking at covered publications from 2015 to 2025,
with a special focus on recent works published from 2020 onwards, reflecting the rapid
development of Al-based inspection methods and their growing importance in the industry.

2.3. Inclusion and Exclusion Criteria
Publications were included if they met the following criteria:

e  Peer-reviewed journal articles or conference papers;

e  Focused on quality inspection, fault diagnosis, or condition monitoring relevant to
electric motors or closely related rotating machinery;

e Discussed the application of signal-based methods using vibration, acoustic, electrical,
or rotational measurements;

e Involved machine learning, deep learning, transfer learning, or hybrid Al approaches
with relevance to industrial environments.

Studies were excluded if they:

e Focused solely on simulation or theoretical modeling without experimental or
practical relevance;

e Addressed unrelated application domains with no transferable relevance to
EoL inspection;

e  Lacked sufficient methodological detail to support meaningful analysis.

2.4. Analysis and Synthesis Approach

The selected literature was qualitatively analyzed and classified into thematic cate-
gories corresponding to conventional review methods, feature-based machine learning,
deep learning, transfer learning, and emerging artificial intelligence approaches. Particular
focus was placed on the advantages, limitations, and practical aspects of application, such
as data requirements, robustness, interpretability, and real-time performance.

Instead of focusing on quantitative meta-analysis, this review takes a comparative and
critical synthesis approach that aims to identify repeated challenges, technological trends,
and open gaps in research. These insights provide a basis for discussing future research
directions and industrial applications of intelligent systems for EoL quality inspection,
which are presented in the following chapters.
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3. End-of-Line Quality Control in Electric Motor Production
3.1. Role and Objectives of EoL Quality Inspection

The EoL quality inspection provides the final stage of quality inspection in the produc-
tion of electric motors and is the last fault detection step before products are released to the
market. Unlike monitoring during production, which focuses primarily on statistical pro-
cess control and early detection of systematic deviations, EoL inspection must provide a re-
liable assessment for every individual motor within strict cycle-time constraints [7,15,20,46].
In mass production environments, inspection times are typically limited to a few seconds
per unit, placing stringent requirements on both diagnostic accuracy and computational
efficiency [11,17,18,43,47].

The main goal of EoL quality inspection is to verify that each motor meets predefined
requirements for performance, capability, and reliability. This includes verifying proper
electromechanical operation, noise and vibration compliance, and absence of hidden faults
that could cause premature failure during operation [1,3-5,7]. Typical fault categories
addressed during EoL inspection include mechanical defects such as bearing faults, ro-
tor imbalance, and shaft misalignment; electrical faults such as winding short circuits,
phase asymmetry, and insulation degradation; and assembly-related issues including loose
components or improper mounting [6,9,27,48,49].

EoL inspection systems must therefore carefully balance sensitivity and selectivity.
High sensitivity is necessary to detect even the smallest faults, while high selectivity is
essential to reduce the number of false rejects, which would otherwise lead to unnecessary
rework or rejects [7,31,50,51]. Achieving this balance is particularly challenging due to
the natural variability in manufacturing processes and the increasing diversity of motor
designs being produced on the same production lines [11,17,18,48]. Figure 1 shows an
example of an EoL inspection system installed in a production environment.

Figure 1. Typical End-of-Line quality inspection for electric motor production.

3.2. Non-Invasive Measurement Techniques

To meet industrial requirements for speed, repeatability, and cost efficiency, EoL qual-
ity inspection systems rely primarily on non-invasive measurement techniques [16,19,25,52].
These techniques allow motors to be inspected without disassembly or physical modifica-
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tion, making them suitable for 100% inspection in automated production environments.
Some of these techniques are illustrated in Figure 2.
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Figure 2. Overview of non-invasive measurement modalities in EoL quality inspection.

Among the most widely used sensing methods are vibration measurements, which
are typically captured using accelerometers installed on the motor block or test bench.
Vibration signals are highly sensitive to mechanical defects such as imbalance, misalign-
ment, and bearing faults [21,23,24,27,49]. Acoustic measurements, captured using micro-
phones, provide additional information about noise and can be particularly effective for
detecting electromagnetic and mechanical anomalies that appear as acoustic or ultrasonic
emissions [22,53-56].

In addition to mechanical and acoustic sensors, electrical measurements also play a
key role in EoL inspection. Stator current and voltage signals can reveal electrical faults,
asymmetries, and electromagnetic irregularities [48,57]. Furthermore, rotational parameters,
such as speed, torque, and angular position, are often monitored to evaluate functional
performance under controlled operating conditions [8,58-61].

These measurements are typically obtained during short, standardized test cycles
that are designed to excite the relevant motor dynamics while reducing inspection time.
However, the results are often high-dimensional, noisy, and non-stationary [24,62-64]. They
can be influenced by many interacting physical events, including mechanical resonances,
electromagnetic forces, and control system dynamics [21,48,65,66]. Therefore, obtaining
reliable diagnostic information from non-invasive measurements represents a key challenge
in EoL quality control.

To complement the individual descriptions of non-invasive sensing methods, a com-
parative analysis is needed to highlight their practical advantages and disadvantages in
EoL quality inspection. In real manufacturing environments, the selection of a sensing
method depends not only on its ability to detect faults, but also on its cost, robustness,
and real-time feasibility under strict cycle time constraints [19,25,46,52]. Tables 1 and 2
provide a comparative overview of the most commonly used non-invasive measurement
techniques for EoL quality control of electric motors, with a focus on detection sensitivity,
cost-effectiveness, and suitability for industrial environments.
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Table 1. Comparison of detection capabilities of non-invasive measurement modalities [19,25,46,52].

Measurement . . Detection
Modality Typical Sensors Typical Detectable Faults Sensitivity
Vibration analysis Accelerometers .Bea}rlng defects, 1mbalanc.e,. High
misalignment, rotor eccentricity
Acoustic analysis Microphones Bearing faults, electromagnetic noise, Medium-High

rubbing, assembly defects

Electrical signal

Current and voltage Winding faults, phase asymmetry,

. rotor bar defects, electromagnetic Medium
analysis sensors .
anomalies
Rotational Encoders, tachometers Torque ripple, speed fluctuation, Medium
measurements imbalance-related effects
Multi-sensor fusion Combination of above Combined mechanical and electrical Very High

faults

Table 2. Industrial feasibility of non-invasive measurement modalities for EoL inspection [19,25,46,52].

Measurement Cost- Real-Time Industrial Kev Limitations
Modality Effectiveness Suitability Maturity y
Sensitive to mounting
Vibration analysis Medium High High conditions;
affected by structural resonances
Acoustic analysis High High Medium-High SeHS}tlve to am'blen.t noses
requires acoustic shielding
Electrical signal . . . Limited sensitivity to purely
analysis High Very High High mechanical faults
Rotational Medium Very High Medium Oftgn 1nd1r§ct fault 1r1c11c.at01.‘s;
measurements requires precise synchronization
Multi-sensor fusion ~ Low-Medium Medium Medium Increased system complexity

and integration effort

The comparison highlights that each non-invasive method has its advantages and
limitations when evaluated against industrial EoL requirements. Vibration and acoustic
measurements provide high sensitivity to mechanical faults, while electrical and rotational
measurements offer real-time feasibility and cost-effectiveness. Multi-sensor approaches
achieve the highest diagnostic coverage but create additional complexity in integration
and maintenance. These trade-offs highlight the importance of selecting measurement
modalities in combination with appropriate Al-based analysis methods to achieve robust
and scalable solutions for EoL quality inspection.

3.3. Industrial Constraints and Challenges

EoL quality inspection systems operate under a unique set of industrial limitations
that heavily influence their design and performance. One of the most critical limitations
is cycle time, as inspection must be completed within the takt time of the production line.
This limits the complexity of data acquisition, signal processing, and decision-making
algorithms, especially in mass production [14,31,67,68].

Another major challenge is production variability. Even motors that fully meet quality
specifications show natural variation in measured signals due to tolerances in materials,
assembly, and environmental conditions. Inspection systems must therefore separate ac-
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ceptable variation from actual defects, which is becoming increasingly difficult as tolerances
decrease and product diversity increases [2,3,7,8,29].

The availability of labeled fault data also presents a major challenge. In many industrial
environments, faulty units are relatively rare, resulting in highly imbalanced datasets. This
issue is particularly pronounced during the commissioning of new motor types or variants,
for which only limited data is available. Moreover, creating labeled fault data can be
expensive and time-consuming, as it may require destructive testing or controlled fault
injection [31,41,67,69].

Finally, traditional EoL inspection systems often rely heavily on human expertise.
Experts typically must select relevant features, define thresholds, and tune decision logic
during commissioning and maintenance. This dependence leads to long ramp-up times,
limited scalability, and challenges in transferring inspection systems across production
lines [13,16,20,43,52]. Figure 3 summarizes key industrial constraints that arise during the
design of an EoL quality inspection system.

O
* Inspection Duration

Limited

Data Availability

» Limited Labeled Fault Data
* Imbalanced Datasets
» High-Speed Processing

* Process Variation

* Diverse Product
Variants

7 * Manual Configuration

* Hard-to-Scale Systems

Figure 3. Key industrial constraints influencing EoL quality inspection system design.

4. Traditional vs. AI-Based Quality Inspection

Due to the increasing complexity of electric motor production and the limitations
of conventional inspection systems, there has been a gradual shift toward data-driven
and Al-based EoL quality inspection approaches [2,16,43,70]. This chapter contrasts tradi-
tional inspection methods with new machine learning-based methods, highlighting their
principles, advantages, and limitations in industrial environments.

4.1. Convectional Inspection Approaches

Traditional EoL quality inspection systems are mostly based on signal processing
combined with rule-based decision logic. In such systems, first, raw sensor signals (typically
vibration, acoustic, or electrical measurements) are preprocessed, which includes filtering,
resampling, normalization, or noise removal. A set of handcrafted features is then extracted
from the processed signals [1,6,24,29].

Often-used features include statistical measures in the time domain (e.g., root mean
square, variance, kurtosis), spectral characteristics in the frequency domain (e.g., harmonic
amplitudes, sideband energy), and time—frequency features obtained through Fourier or
wavelet transforms [6,27,55,56]. These features are selected based on expert knowledge of
motor physics and known fault mechanisms. Final classification is typically performed
using fixed thresholds, decision trees defined by experts, or simple statistical tests [4,7,10,51].
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The main advantage of conventional inspection methods is their simplicity and trans-
parency. Feature definitions and decision rules are straightforward, making them easy to
understand, validate, and verify. Moreover, computational requirements are generally low,
enabling real-time in industrial environments [14,17,19].

However, these advantages come at the cost of limited flexibility and scalability.
The development and commissioning of traditional inspection systems require extensive
collaboration among experts to identify relevant features, tune thresholds, and validate
performance. This process is time-consuming and must often be repeated when motor
designs, materials, or production conditions change [11,13,43,46]. Additionally, handcrafted
features may fail to capture complex, nonlinear fault signatures, especially when faults are
difficult to detect or are masked by normal manufacturing variability [28,32,48,49].

Another limitation is the sensitivity to manufacturing drift and noise. Changes in
sensor placement, environmental conditions, or upstream processes can significantly affect
captured signals, leading to an increase in false-reject rates or missed faults. As production
systems become more flexible and product lifecycles shorten, these limitations increasingly
constrain the effectiveness of EoL inspection systems [2,13,51,68]. Figure 4 illustrates the
sequential stages of a rule-based inspection pipeline.

DEFINITION OF DESIGN OF MEASUREMENT AND
MOTOR INSPECTION DATA ACQUISITION
SPECIFICATIONS PROCESS

- Electrical characteristics
- Electrical - Vacuum pressure

- Test sequences - Vibrations
- Torque, speed |:> - Manipulation :> - Noise
- Geometry

procedures »

- Database structure

E-IO
2 i
BTN )
CLASSIFICATION TASK DATA PROCESSING
- Feature selection - Filtering
- Threshold adjustment and tuning - Averaging )
Feature1 | Feature2 | ... [Featuren Result - Down Samp hng
<::- RMS calculating
Motor 1 4.57068 4.46843 | ... | 0.381305 GOOD
Motor 2 13.2728 13.1211 | ... | 0.292008 BAD . 01‘ ”” )
Motor3 | 5.39507 | 5.28324 | .. |0.491685| GOOD 5 ;) ‘Mmﬂm | "l"“‘l"l"\r."*""“\““V”\\"”“"\“;}
2 L A L
Motor4 | 3.95501 | 4.15309 | ..| NaN | UNDEFINED B s m‘”‘””'l\””hﬂim Ll
-1 o 0. ;)5 0.1
Time [s]
CLASSIFICATION ADAPTATION DATABASE ARCHIVE
- Classifier adaptation for new motor type - Storing diagnostic

results into database

Data archive
Motor State

Motor 1 GOOD
Motor2 | GOOD

Motorn | BAD

Figure 4. Overview of a conventional EoL quality inspection workflow for electric motors.
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4.2. The Use of Machine Learning in EoL Inspection

ML has appeared as a powerful alternative to rule-based inspection methods, as it
allows for data-driven decision making. Instead of relying on fixed thresholds, ML models
learn directly from labeled examples, allowing them to exploit multivariate correlations
between features and improve robustness to noise and variability [2,11,29,43].

Early applications of ML in EoL quality inspection focused on supervised classifiers
such as support vector machines, k-nearest neighbors, and logistic regression. These
methods demonstrated improved fault detection performance compared to threshold-
based systems, particularly in scenarios involving overlapping feature distributions or
multiple fault classes [13,14,35,51,71]. However, their effectiveness still depended on the
quality and relevance of the selected features.

Subsequently, ensemble methods such as random forests, bagging, and boosting
algorithms, gained popularity in industrial inspection tasks. These methods combine
multiple weak learners to improve generalization and robustness [12,13,34,35,51]. A key
advantage of tree-based ensemble models is their ability to provide feature importance
metrics, enabling systematic feature selection and dimensionality reduction. By identifying
the most informative features, ML-based systems can reduce computational complexity,
simplify diagnostic pipelines, and improve interpretability [14,15,72,73].

The use of ML methods has significantly reduced the dependence on manual thresh-
old tuning and improved scalability across motor variants. Nevertheless, feature-based
ML systems still require feature engineering and sufficient labeled training data. Their
performance may degrade when they are applied to new motor types or operating con-
ditions that differ significantly from the training dataset, highlighting the need for more
adaptive learning strategies [14,15,35,39,41,69]. Figure 5 illustrates the integration of ML
into a conventional EoL inspection workflow.

DEFINITION OF MOTOR SPECIFICATIONS
@ MACHINE LEARNING
ENHANCED
DESIGN OF INSPECTION PROCES
CLASSIFICATION MODULE
MEASUREMENT AND DATA ACQUISITION :J_\> FEATURE IMPORTANCE
SIGNAL PROCESSING s
FEATURE SELECTION
RULE - BASED CLASSIFICATION @
AUTOMATED THRESHOLDS ADJUSTMENT
DATABASE ARCHIVE <: |_|

Figure 5. Integration of ML into conventional EoL quality inspection workflow.
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4.3. Limitations of Traditional and ML-Based Approaches

Although ML represents a significant advancement over traditional inspection meth-
ods, both approaches have certain limitations when applied in industrial EoL environments.
A key challenge is the dependence on labeled fault data, which are often scarce, especially
during preproduction or ramp-up phases. Fault data are typically imbalanced, with defec-
tive units representing only a small fraction of total production, making model training
and evaluation difficult [11,14,31,39,74].

Another challenge is related to generalization and adaptability. Feature-based ML
models may have trouble transferring knowledge across different motor families or pro-
duction lines without retraining or manual adaptation [7,8,14,15,75]. This can result in
repeated commissioning and limit the adaptability of inspection systems across global
manufacturing environments.

Furthermore, the increased complexity of the system raises concerns about inter-
pretability and trust. While conventional systems are transparent by nature, ML models
may behave like black boxes from production engineers’ perspective. Ensuring reliable
operation, traceability, and compliance with industrial standards remains a key require-
ment [11,13,46,48].

4.4. Transition Toward Intelligent Inspection Systems

The limitations of both conventional and classical ML-based inspection methods
have led to a shift toward intelligent EoL quality inspection systems that integrate more
advanced Al techniques. These systems are designed to reduce human intervention,
improve adaptability, and enhance fault detection performance in real industrial environ-
ments [11,13,14,70].

In fact, the rise of DL and TL has made it possible to automatically learn features
directly from raw or minimally processed signals and has made it easier to reuse knowledge
across different motor types [15,38,75-77]. These developments mark a paradigm shift from
expert-driven inspection to data-driven, scalable, and increasingly autonomous quality
inspection systems.

5. Machine Learning, Deep Learning, and Transfer Learning in Industry

The limitations of traditional feature-based inspection systems have led to the in-
creasing use of advanced Al methods in industrial EoL quality inspection. In recent
years, ML, DL, and TL have emerged as alternative methods for improving fault detec-
tion accuracy, reducing commissioning effort, and improving flexibility across product
variants [14-16,32,37]. This section describes the role of these methods in industrial quality
inspection, with a focus on electric motor production.

5.1. Deep Learning for Signal-Based Quality Inspection

DL has attracted significant attention in industrial environments due to its ability to
automatically learn feature representations from raw or minimally processed data. Unlike
traditional feature-based ML approaches, DL models do not require explicit manual feature
engineering, making them especially suitable for complex signal analysis tasks in which it
is difficult to analytically define fault features [11,48,78-80].

In the context of EoL quality inspection, DL is most commonly used to create time—
frequency representations of vibration and acoustic signals. Spectrograms obtained from
short-time Fourier transforms, wavelet transforms, or Mel-frequency filter banks convert
one-dimensional time series into two-dimensional representations that capture both spectral
and temporal characteristics [6,55,56,77,81]. Convolutional neural networks (CNNs) are
then used to extract spatial patterns associated with different fault conditions [23,47,61,76,82].
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The use of Mel-frequency spectrograms (MFSs) has attracted increasing interest, as
they provide a compact and perceptually motivated representation of frequency content.
Originally developed for speech recognition [17,55,56,83], MFSs emphasize lower-frequency
bands while reducing dimensionality, which can improve robustness and computational
efficiency. When combined with CNNs, MFSs enable effective classification of subtle fault
patterns in acoustic and vibration signals [16,54,84].

To capture temporal dependencies and dynamic behavior, CNNs are often combined
with recurrent neural networks (RNNs), such as long short-term memory (LSTM) units or
bidirectional gated recurrent units (BiGRUs) [16,54]. Hybrid architectures allow models to
learn both local spectral features and long-term temporal dependencies, which are espe-
cially important in the diagnostics of rotating machinery [17,79,80,85,86]. Such architectures
have proven to achieve a strong performance in detecting mechanical and electromagnetic
faults under various operating conditions [9,21,36,61].

Despite their advantages, DL methods face several challenges in industrial environ-
ments. They typically require large labeled datasets for training, which may be difficult
to obtain in practice [7,14,40,69]. Moreover, their high computational demands can limit
their use in real time, and their black-box nature raises concerns about interpretability and
trust [43,48,70,72]. Addressing these issues remains an active area of research in indus-
trial Al Figure 6 illustrates a DL-based approach for signal-driven EoL quality inspection
that combines MFSs with a hybrid neural network architecture. The proposed pipeline
replaces conventional handcrafted feature extraction and threshold-based decision logic
with automated representation learning and data-driven classification. This approach, orig-
inally introduced in [16], serves as the methodological foundation for the DL framework
considered in this work.
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Figure 6. DL pipeline for signal-based EoL quality inspection [16].
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5.2. Transfer Learning for Industrial Applications

A constant challenge in industrial EoL quality inspection is the limited availability of
labeled fault data, especially during the commissioning of new motor types or variants. In
many cases, production data mainly consist of healthy units, while faulty units are rare or
unavailable. TL has proven to be an effective strategy to address this challenge by reusing
knowledge from related tasks or previously trained models [15,38,39,41,87].

TL can be applied at different levels. In feature-based ML systems, TL may involve
reusing feature importance rankings, selected feature subsets, or optimized hyperparame-
ters from one motor type to another. This approach reduces the need for extensive retraining
and expert intervention when deploying inspection systems for new variants [14,15,29,31].

In DL applications, TL is often performed by initializing a neural network with weights
pretrained on a related dataset and fine-tuning it using limited new data. Lower layers of
the network, which capture general signal characteristics, can be reused, while higher layers
are adapted to the specific fault patterns of the new motor type. This strategy significantly
reduces training time and improves performance in low-data scenarios [15,38,44,78,81].

Although TL is widely used in fields such as computer vision and natural language
processing, its application in industrial EoL quality inspection remains relatively unex-
plored. However, current studies suggest strong potential for reducing commissioning
time, lowering data acquisition costs, and improving scalability across product families
and production lines [15,39,70].

Key challenges related to TL include selecting appropriate input and output data,
avoiding negative transfer when domains differ significantly, and ensuring that transferred
models remain reliable and interpretable in safety-critical industrial
environments [11,38,39,48,72]. Figure 7 illustrates the integration of ML into a conventional
EoL inspection workflow.

TRANSFER
LEARNING MODULE
:
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Figure 7. Integration of TL into conventional EoL quality inspection workflow.

5.3. Industrial Case Studies and Reported Deployment

Although ML, DL, and TL techniques show strong potential in research environments,
their successful integration in industrial EoL inspection systems depends on several practi-
cal considerations. The most important is real-time performance, as inspection algorithms
must operate within strict cycle-time constraints. This often necessitates model simplifica-
tion, hardware acceleration, or hybrid architectures that combine lightweight ML models
with more complex DL components [13,14,31]. Industrial case studies confirm that satisfy-
ing cycle-time requirements is a crucial for adoption. For example, Al-based EoL inspection
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tests for highly varied production of geared motors have shown that algorithmic complexity
must be carefully balanced with process flow constraints to ensure continuous operation
without bottlenecks [17,18]. Similar conclusions have been reported for high-speed glass
tube production lines, where real-time performance directly determines the feasibility of
Al-based inspection solutions [67].

Robustness and reliability are equally important. Inspection systems must maintain
consistent performance despite changes in production conditions, sensor noise, and envi-
ronmental impacts. This requires careful validation, continuous monitoring, and, in some
cases, regular model recalibration [7,11,20,46]. Real-world evidence shows that long-term
robustness remains a key challenge, especially in highly diverse manufacturing environ-
ments. Reported industrial EoL applications highlight the need for continuous performance
monitoring and adaptive maintenance strategies to prevent degradation due to 481 process
variations, sensor aging, or mechanical tolerances [17,18,70].

Another important aspect is interpretability and transparency. Production engineers
and quality managers must understand and trust inspection decisions, especially in reg-
ulated industries. Feature-based ML models and visualization techniques can provide
diagnostic insight, while ongoing research in explainable Al (XAI) aims to improve the
transparency of DL models [11,30,48,70]. Industrial studies of EoL highlight that trans-
parent decision-making logic significantly improves acceptance by operators and quality
engineers, particularly during commissioning and fault analysis. In practice, systems that
provide interpretable intermediate outputs or feature relevance are easier to integrate into
existing EoL inspection systems [61,70].

Finally, integration with existing automation infrastructure plays a crucial role in
industrial application. Al-based inspection systems must be seamlessly connected with
programmable logic controllers (PLCs), manufacturing execution systems, and quality
databases. Easy installation, maintenance, and scalability across multiple production lines
are essential for realizing the full benefits of intelligent EoL quality control [13,31,46]. The
reported deployment frameworks for electric motor and rotating machinery inspection
demonstrate that modular system architectures and standardized communication inter-
faces are key factors for integration with PLC- and MES-based production environments.
Industrial case studies further show that scalability across multiple lines and sites can only
be achieved when Al components are designed as flexible modules within the existing
501 automation infrastructure [61,70].

5.4. Emerging Al Concepts for EoL Quality Inspection

In contrast to conventional feature-based ML, DL, and TL, several new Al concepts
are gaining importance as potential enablers for more robust, data-efficient, and useable
EoL inspection systems. These approaches are particularly relevant for electric motor man-
ufacturing, where diagnostic decisions must be made under strict cycle-time constraints,
limited fault labeling, and frequent domain changes between different motor variants.

5.4.1. Physics-Informed and Physics-Guided Al

A key challenge of models based exclusively on data is their sensitivity to domain
changes and dependence on large labeled datasets. Physically informed approaches address
this by incorporating prior knowledge (e.g., failure mechanisms, vibration characteristics, or
constraints derived from physical models) into learning objectives, architectures, or decision
rules. A typical example is physics-informed deep learning for bearing fault detection,
where physics-motivated rules are combined with CNN-based learning via customized loss
functions, improving robustness when labeled fault data is limited [65]. Related physics-
informed approaches incorporate physical reasoning directly into the structure of the
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neural model; for example, by constraining the learning process for fault identification (e.g.,
rotor imbalance), which improves generalization and interpretability [66]. For industrial
EoL inspection, physically informed methods are promising because they can reduce
data requirements while improving stability under changing tolerances and operating
conditions [65,88].

5.4.2. Semi-Supervised and Self-Supervised Learning

Industrial EoL datasets typically contain large amounts of healthy samples, while
labeled faulty units are rare, making semi- and self-supervised methods attractive. Semi-
supervised learning exploits limited labeled samples together with abundant unlabeled
data and has been applied for the diagnosis of rotating machines using graphical neural
models to learn a more robust class structure at low labeling rates [89]. Self-supervised
learning extends this concept by learning representations from unlabeled data through
virtual tasks (e.g., contrastive targets), followed by lightly supervised fine-tuning. Recent
studies show that self-supervised contrastive learning can significantly improve the effec-
tiveness of bearing fault diagnostics when labeled data is scarce—a realistic environment in
industry for newly introduced products or ramp-up phases [90]. From an EoL perspective,
these approaches support faster commissioning and reduce dependence on an extensive
fault database [91-93].

5.4.3. Unsupervised Anomaly Detection for Open-Set Inspection

In practice, EoL systems must deal with unknown or previously unseen faults. Un-
supervised methods address this by modeling “normal” behavior and detecting deviations
without requiring labeled fault classes. Self-supervised anomaly detection has been evalu-
ated on a vibration dataset from rotating machinery and is increasingly viewed as a practical
complement to supervised classifiers, especially when fault coverage is incomplete or con-
stantly changing [91,94-97]. In industrial EoL systems, such methods can act as a safety
layer for detecting conditions that are not in line with distribution and trigger expert review
or additional testing, instead of forcing a potentially unreliable multi-class decision.

5.4.4. Explainable Al and Human-in-the-Loop Diagnostics

Challenges to adoption in industry are often related to trust, explainability, and
debugging Al decisions. XAI methods such as feature attribution, surrogate models, or
explanation by example are becoming increasingly prevalent in machine fault diagnosis,
in which they are used to help operators understand causes and increase their acceptance.
Recent reviews and frameworks suggest that XAl is not just a model-side technique, but
also an interface and workflow problem: explanations must be relevant to engineers
and must align with maintenance and quality procedures [72]. For EoL inspection, XAI
is particularly important for reducing false rejections, accelerating commissioning, and
enabling systematic troubleshooting when deviations from the process occur [43,45].

5.4.5. Reinforcement Learning for Inspection

Although reinforcement learning (RL) is less mature when it comes to direct clas-
sification of EoL faults, it is becoming a more common tool for optimizing inspection
and maintenance strategies in industrial production systems. Deep RL has been used to
optimize inspection and maintenance planning in production line environments, providing
a formal framework for balancing cost, availability, and intervention time [98]. For EoL
quality control, RL is best viewed as a new layer on top of diagnostics—optimizing when
to tighten thresholds, trigger additional measurements, or schedule recalibration based on
risk and operational constraints.
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Overall, these emerging concepts point to a transition toward data-efficient, physics-
aware, and development-oriented Al. However, the impact on industry will depend on
standardized evaluation protocols, robust handling of changes in the domain, and transpar-
ent integration into factory automation and quality workflows. Recent research on deep TL
for fault diagnosis highlights this trend toward flexibility and industrial readiness, further
reinforcing the need for practical validation in realistic environments [40,44,69].

6. Research Gaps and Motivation for Further Work

Although significant progress has been made in EoL quality inspection for electric mo-
tor manufacturing, several critical research gaps remain, limiting the widespread industrial
application of intelligent Al-driven inspection systems. Although ML, DL, and TL methods
have shown promising results in controlled experimental environments, their integration in
real-world manufacturing environments still faces methodological, practical, and organiza-
tional challenges [13,14,48,99,100]. This chapter summarizes the key limitations identified
in the reviewed literature and outlines the motivation for further research.

6.1. Dependence on Expert Knowledge and Manual Configuration

A common limitation of both traditional and Al-based inspection systems is their per-
sistent reliance on human experts during system design and commissioning. Feature-based
ML pipelines typically require expert selection of signal preprocessing steps, handcrafted
feature definitions, and decision thresholds. Even in systems that employ automated
feature selection, expert intervention is often crucial to validate model behavior and ensure
robustness under varying production conditions [10,28,29,99,101].

While DL reduces the need for manual feature engineering, it does not fully eliminate
expert involvement. The selection of network architectures, hyperparameters, input rep-
resentations, and training strategies remains largely heuristic and experience based. This
dependence on domain expertise slows down commissioning, increases costs, and limits
scalability, especially in environments with high variability and low production quantities,
where frequent model adjustments are necessary [11,48,70].

6.2. Limited Data Availability and Class Imbalance

The lack of data remains one of the biggest challenges. In industrial environments,
high-quality labeled datasets containing different types of faults are rare, especially in
preproduction stages. Due to quality requirements, the number of faulty units is often
deliberately reduced, resulting in a severe class imbalance and incomplete fault cover-
age [28,43,99,102].

Many studies rely on laboratory-generated fault data or artificially induced faults,
which may not accurately reflect real industrial conditions. As a result, models
trained on such data are often difficult to generalize when applied to production lines.
While TL and data augmentation techniques have shown promising results in reduc-
ing these issues, systematic evaluations under realistic industrial environments are still
limited [15,38,44,100,102].

6.3. Generalization and Robustness Across Motor Variants

Another challenge concerns the ability to generalize Al-based inspection systems to
different motor types, variants, and operating conditions. Most published studies focus on
a single motor type or a narrowly defined operating regime, limiting the applicability of
their findings in real-world manufacturing environments [11,21,48,99,103].

Changes in motor geometry, materials, assembly tolerances, or sensor configurations
can significantly change signal characteristics, leading to degraded model performance. Ro-
bust inspection systems must therefore accommodate changes in the domain and changing
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production conditions without requiring complete retraining. While TL offers promising
solutions, there is still lack of standardized methodologies and validation protocols for
assessing robustness [15,39,70,104,105].

6.4. Interpretability and Trustworthiness of Al Models

The limited interpretability of complex Al models remains a critical challenge in indus-
trial environments, especially in safety-critical and regulated applications. DL models are
often treated as black boxes, making it difficult to understand the logic behind classification
decisions or diagnose fault modes [11,28,48,99,100].

Although visualization techniques and XAI methods have been suggested, their
integration into industrial inspection workflows is still in its early stages. There is a clear
need for approaches that balance predictive performance with transparency, enabling
engineers to validate, debug, and trust Al-driven inspection systems [28,29,70,99,100].

6.5. Evaluation of Methodology and Benchmarking

The lack of standardized evaluation frameworks presents another challenge. Many
studies report performance using limited datasets, single train—test splits, or metrics that
do not fully capture industrial requirements such as false rejection rates, inspection cycle
time, or long-term stability [14,31,43,99,100].

Robust evaluation strategies, including cross-validation, confidence interval estima-
tion, and long-term monitoring, are rarely applied. Furthermore, direct comparisons
between traditional inspection methods and Al-based approaches under identical condi-
tions are rare, making it difficult to quantify the true added value of intelligent inspection
systems [13,29,44,99,100].

6.6. Motivation for Future Research

The presented gaps highlight the need for research that goes beyond proof of con-
cept and focuses on available, adaptable, and reliable industrial solutions. Future work
should focus on reducing dependence on human expertise, improving data efficiency,
and enhancing robustness across product variants. In particular, hybrid approaches that
combine automated feature selection, DL, and TL offer a promising solution for establish-
ing flexible EoL inspection systems that are capable of adapting to changing production
demands [14,15,48,70,104,105].

Equally important is the development of transparent and interpretable Al models, along
with more strict validation methods aligned with industrial standards. Addressing these
challenges is essential to realizing the full potential of intelligent EoL quality control and
ensuring its successful integration into modern manufacturing environments [13,28,98,99,106].

7. Conclusions

This review has surveyed the current state of EoL quality control for electric motor
production, with a special focus on the transition from traditional inspection systems to
intelligent Al-driven solutions. As electric motors become increasingly complex and their
production volumes continue to grow, conventional rule-based inspection methods are
increasingly unable to meet industrial demands for scalability, adaptability, and diagnostic
reliability. In this context, Al has emerged as a key enabler for next-generation EoL quality
inspection systems, capable of addressing both technical and organizational challenges.

The review began by highlighting the critical role of EoL quality inspection as a final
safeguard against manufacturing faults, emphasizing the importance of non-invasive mea-
surement techniques such as vibration, acoustic, and electrical signal analysis. Although
these measurement methods provide rich diagnostic information, their effective use in
the past has been based on manually crafted features and thresholds. Such approaches,
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although well established and widely deployed, exhibit limited robustness to process drift,
struggle to deal with process variability, tightening tolerances, and increasing product di-
versity, which constrains their long-term viability in modern manufacturing environments.

ML methods have introduced more systematic and data-driven approaches by en-
abling automated feature selection, improved fault discrimination, and better interpretabil-
ity compared to rule-based systems. Ensemble-based classifiers have demonstrated strong
performance and robustness in industrial environments while supporting systematic
reduction in feature sets and inspection complexity. However, these methods remain
dependent on carefully engineered features and sufficiently labeled data, limiting their
applicability in low-data regimes during early production phases or rapidly changing
production environments.

DL approaches address several of these limitations by learning discriminative represen-
tations directly from raw sensor signals, reducing the reliance on manual feature engineer-
ing. Techniques based on CNN and RNN, often combined with time—frequency representa-
tions such as spectrograms, have shown superior fault detection performance in complex
and noisy industrial scenarios. Nevertheless, their deployment in real-world EoL inspec-
tion remains challenged by data availability, computational constraints, and limited model
interpretability, which are critical concerns in industrial and safety-relevant applications.

TL has proven to be a promising strategy to address the lack of data and commis-
sioning challenges, particularly during preproduction phases or for new motor types.
By utilizing knowledge gained from previously trained models, TL enables faster model
adaptation, improved performance under limited data conditions, and reduced commis-
sioning time. Despite these advantages, the lack of standardized TL methodologies, vali-
dation protocols, and robustness assessment frameworks highlights the need for further
systematic investigation.

Across all reviewed approaches, several persistent challenges were identified. These
include reliance on expert knowledge during system design, limited generalization across
motor types and production lines, insufficient transparency of complex models, and a lack
of standardized evaluation metrics aligned with industrial performance indicators such
as false-rejection rates, cycle time, and long-term stability. Addressing these challenges
is essential for the transition of Al-based EoL inspection from experimental applications
to reliable, widespread industrial use or pilot deployments aimed at reliable and scalable
industrial solutions.

To conclude, intelligent EoL quality control represents a critical component of mod-
ern electric motor manufacturing. The integration of ML, DL, and TL has the potential
to significantly improve inspection accuracy, efficiency, and flexibility while reducing
costs and the amount of human intervention required. Future research should focus
on data-efficient learning strategies, explainable and trustworthy AI models, and rig-
orous evaluation methodologies grounded in industrial requirements. By addressing
these challenges, intelligent EoL inspection systems can play a central role in ensuring
high-quality, reliable, and sustainable electric motor production in increasingly complex
manufacturing environments.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence.

BiGRU Bidirectional Gated Recurrent Unit.
CNN Convolutional Neural Network.
DL Deep Learning.

EoL End-of-Line.

LSTM  Long Short-Term Memory.

MES Manufacturing Execution System.
MFS Mel-Frequency Spectrogram.

ML Machine Learning.

PINNs Physics-Informed Neural Network.
PLC Programmable Logic Controller.
RL Reinforcement Learning.

RNNs  Recurrent Neural Network.

SVM Support Vector Machines.

STFT Short-Time Fourier Transform.

TL Transfer Learning.

XAI Explainable AL
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