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A B S T R A C T

This paper explores the applications of Intuitionistic Fuzzy Graphs (ℐℱ𝒢 ) representing uncertainty and impre­

cision in complex systems through the analysis of correlation and regression coefficients (𝒞ℛ𝒞𝓈) with focus on 

the maximal product. The study examines the relationships between the edges of the graph by analysing the 

line graph derived from ℐℱ𝒢 , facilitating a deeper understanding of the network’s dynamics. The construction 

of adjacency matrices that incorporate both membership and non-membership values enables the calculation of 

energy and weight scores, quantifying the strength and predictive correlations among variables. Furthermore, 

the study discusses the complement of Intuitionistic Fuzzy Line Graphs (ℐℱℒ𝒢 ), using maximal product anal­

ysis to uncover concealed relationships within the network. MATLAB is used to generate heatmaps that visually 

represent the importance of correlation to critical network characteristics. The practical importance is demon­

strated in a healthcare context, particularly in predicting diabetes risk by modelling factors of glucose levels, 

body mass index (BMI), and insulin. Heatmaps can be effectively visualized to show interrelationships between 

these features, aiding in the interpretation of network patterns.

1 . Introduction

Fuzzy graph (𝒢 ) theory is a generalisation of the classical graph 

theory, introduced by A. Rosenfeld [1] in 1975, which incorporates 

fuzziness to account for uncertainty and imprecise relationships among 

models in graph structures. The origin of Intuitionistic Fuzzy Graphs 

(ℐℱ𝒢 ) traces back to 1986, when Krassimir Atanassov [2] introduced 

intuitionistic fuzzy sets (IFS), which generalised Zadeh’s [3] famous 

fuzzy sets. Its applications lie in addressing issues in social networks, 

decision-making, and optimisation problems. The key operations in 

graph theory, such as line graphs and complement graphs, are essen­

tial for understanding the relationships within networks. A line graph 

turns the edges into vertices of a graph, providing insights into edge 

adjacencies. Complement 𝒢 , on the other hand, emphasises association 

by depicting edges that were not formed in a graph. This can only be 

realised while acquiring further significance along with 𝒢 , as these re­

veal an uncertainty in some degree of ordinality among vertices. This 

paper will strive to discuss in detail the structure of Intuitionistic Fuzzy 

Line Graphs (ℐℱℒ𝒢 ) and a complement of ℐℱ𝒢  in developing com­

plex networks as representations under any uncertain scenario. Akula 

and Basha [4] have shown the regression coefficient measure of ℐℱ𝒢
and its applications in agricultural planning to determine soil choice 

for the superior paddy crop, with efficacy proven through practical, 

scenario-based applications. Akula and Shaik [5] investigated correla­

tion coefficient measures of ℐℱ𝒢  and their applications to financial 

decision-making, such as money investment schemes, providing insights 

into applying 𝒢  in economics. Bajaj and Kumar [6] proposed a novel 
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$\mathbb {S}_i^{(r)}$


$\mathbb {G}_i^{(r)}$


$\mathbb {R}_{(\mathbb {S}_i^{(r)}, \mathbb {G}_i^{(r)})} = \frac {\text {Cov}(\mathbb {G}_i^{(r)}, \mathbb {S}_i^{(r)})}{{(\mathbb {S}_i^{(r)})}^2}$


$\mathbb {CRC}s$


\begin {equation*}\mathcal {K}(\mathbb {S}_i^{(r)}, \mathbb {G}_i^{(r)}) = \sqrt {\mathbb {R}_{(\mathbb {G}_i^{(r)}, \mathbb {S}_i^{(r)})} \times \mathbb {R}_{(\mathbb {S}_i^{(r)}, \mathbb {G}_i^{(r)})}}\end {equation*}


$\mathscr {IFG}$


$\mathbb {M}_1$


$\mathbb {M}_2$


$\mathbb {M}_1\times _m\mathbb {M}_2$


\begin {align*}\mathcal {E}(\mathbb {G_L}_1^{(r)}) = \begin {pmatrix} 6.8764 & 2.1362 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


\begin {equation*}\mathbb {A}^{(r)}_{\hat {\mu }}= \begin {pmatrix} 0 & 0.7 & 0 & 0.7 & 0 & 0 \\[3pt] 0.7 & 0 & 0.7 & 0 & 0.7 & 0 \\[3pt] 0 & 0.7 & 0 & 0 & 0 & 0.7 \\[3pt] 0.7 & 0 & 0 & 0 & 0.6 & 0 \\[3pt] 0 & 0.7 & 0 & 0.6 & 0 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0.6 & 0 \\ \end {pmatrix}\end {equation*}


\begin {equation*}\mathbb {A}^{(r)}_{\hat {\nu }}= \begin {pmatrix} 0 & 0.2 & 0 & 0.2 & 0 & 0 \\[3pt] 0.2 & 0 & 0.2 & 0 & 0.2 & 0 \\[3pt] 0 & 0.2 & 0 & 0 & 0 & 0.2 \\[3pt] 0.2 & 0 & 0 & 0 & 0.3 & 0 \\[3pt] 0 & 0.2 & 0 & 0.3 & 0 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0.3 & 0 \\ \end {pmatrix}\end {equation*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathcal {E}(\mathbb {G}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


\begin {align*}\mathcal {E}(\mathbb {G}_1^{(r)}) = \begin {pmatrix} 5.077 & 1.8142 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {S}_1^{(r)}$


$\mathcal {E}(\mathbb {G}_1^{(r)})$


\begin {align*}\mathcal {W}(\mathbb {S}_1^{(r)}) = \begin {pmatrix} 0.7367 & 0.263 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$CC(\mathbb {G}_1^{(r)},\mathbb {S}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


$\mathbb {S}_1^{(r)}$


\begin {align*}\text {CC}(\mathbb {G}_1^{(r)},\mathbb {S}_1^{(r)}) =\frac {4.2173}{4.2163} =1.000\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {G}_1^{(r)}$


$\mathbb {S}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {G}_1^{(r)}, \mathbb {S}_1^{(r)})} =\frac {4.2173}{29.065}=0.14509\\[-24pt]\end {align*}


$\mathbb {S}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {S}_1^{(r)}),\mathbb {G}_1^{(r)})} = \frac {4.2173}{0.6118}=6.8932\\[-24pt]\end {align*}


$\mathscr {CRC}$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathscr {CRCs}$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


\begin {align*}\mathcal {K}(\mathbb {G}_1^{(r)}, \mathbb {S}_1^{(r)}) = \sqrt {{0.1450}\times {0.6118}}=1.000\\[-24pt]\end {align*}


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFG}$


$L(\mathbb {G}_1)$


$\left ( (\sigma _{L(\mathbb {G}_1)}^1, \sigma _{L(\mathbb {G}_1)}^2), (\hat {\mu }_{L(\mathbb {G}_1)}^1, \hat {\mu }_{L(\mathbb {G}_1)}^2) \right )$


$L(\mathbb {G}_2)$


$\left ( (\sigma _{L(\mathbb {G}_2)}^1, \sigma _{L(\mathbb {G}_2)}^2), (\hat {\mu }_{L(\mathbb {G}_2)}^1, \hat {\mu }_{L(\mathbb {G}_2)}^2) \right )$


$\mathscr {IFLG}$


$\mathbb {G}_1$


$(\mathscr {V}_1, \mathscr {E}_1)$


$\mathbb {G}_2$


$(\mathscr {V}_2, \mathscr {E}_2)$


$\mathscr {\mathscr {IFG}}$


$\mathscr {IFLG}$


$L(\mathbb {G}_1)$


$L(\mathbb {G}_2)$


$L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)$


${\mathbb {M}_\mathbb {L}}_1\times _m{\mathbb {M}_\mathbb {L}}_2$


\begin {align*}& \mathscr {V}_{L(\mathbb {G}_1)} \times _m \mathscr {V}_{L(\mathbb {G}_2)} = \{(\mathscr {s}_{\mathscr {x}}, \mathscr {s}_{\mathscr {y}}) \mid \mathscr {s}_{\mathscr {x}} \in \mathscr {V}_{L(\mathbb {G}_1)}, \mathscr {s}_{\mathscr {y}} \in \mathscr {V}_{L(\mathbb {G}_2)} \}.\\[3pt] & \mathscr {E}_{L(\mathbb {G}_1)} \times _m \mathscr {E}_{L(\mathbb {G}_2)} = \{((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2})) \mid \mathscr {s}_{\mathscr {x}_1}\\ &\qquad \qquad \qquad \quad \, = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)} \text {or } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)} \}.\\[3pt] & \sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1}) = \sigma _{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1}) \vee \sigma _{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1}),\\[3pt] & \sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {x}_1},\mathscr {s}_{\mathscr {y}_1}) = \sigma _{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1}) \wedge \sigma _{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1}),\end {align*}


$(\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1}) \in \mathscr {V}_{L(\mathbb {G}_1)} \times \mathscr {V}_{L(\mathbb {G}_2)}$


$((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2})) \in \mathscr {E}_{L(\mathbb {G}_1)} \times _m \mathscr {E}_{L(\mathbb {G}_2)}$


\begin {align*}&\sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^1((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2}))\\[4pt] &\qquad = \begin {cases} \sigma _{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1}) \vee \hat {\mu }_{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2}), & \text {if } \mathscr {s}_{\mathscr {x}_1} = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)}, \\[4pt] \hat {\mu }_{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2}) \vee \sigma _{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1}), & \text {if } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)}. \end {cases}\\ &\sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^2((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2}))\\[4pt] &\qquad = \begin {cases} \sigma _{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1}) \wedge \hat {\mu }_{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2}), & \text {if} \mathscr {s}_{\mathscr {x}_1} = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)}, \\[4pt] \hat {\mu }_{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2}) \wedge \sigma _{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1}), & \text {if } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)}. \end {cases}\end {align*}


$\mathscr {IFG}$


$\mathbb {M}_1\times _m\mathbb {M}_2$


$\mathscr {IFLG}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


\begin {equation*}\mathbb {A}^{L}_{\hat {\mu }} = \begin {pmatrix} 0 & 0.7 & 0.7 & 0.7 & 0 & 0 & 0 \\[2pt] 0.7 & 0 & 0 & 0.7 & 0.7 & 0 & 0 \\[2pt] 0.7 & 0 & 0 & 0 & 0 & 0.7 & 0 \\[2pt] 0.7 & 0.7 & 0 & 0 & 0 & 0.7 & 0.7 \\[2pt] 0 & 0.7 & 0 & 0 & 0 & 0 & 0.7 \\[2pt] 0 & 0 & 0.7 & 0.7 & 0 & 0 & 0.6 \\[2pt] 0 & 0 & 0 & 0.7 & 0.7 & 0.6 & 0 \end {pmatrix}\end {equation*}


\begin {equation*}\mathbb {A}^{L}_{\hat {\nu }} = \begin {pmatrix} 0 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 \\[2pt] 0.2 & 0 & 0 & 0.2 & 0.2 & 0 & 0 \\[2pt] 0.2 & 0 & 0 & 0 & 0 & 0.2 & 0 \\[2pt] 0.2 & 0.2 & 0 & 0 & 0 & 0.2 & 0.2 \\[2pt] 0 & 0.2 & 0 & 0 & 0 & 0 & 0.2 \\[2pt] 0 & 0 & 0.2 & 0.2 & 0 & 0 & 0.3 \\[2pt] 0 & 0 & 0 & 0.2 & 0.2 & 0.3 & 0 \end {pmatrix}\end {equation*}


\begin {equation*}(\mathscr {u}_1,\mathscr {u}_2) \in \mathbb {E}(\mathscr {IFG}) \quad \text {or} \quad (\mathscr {v}_1, \mathscr {v}_2) \in \mathbb {E}(\mathscr {IFG}^c).\end {equation*}


${\mathbb {M}_\mathbb {L}}_1 \times _m{\mathbb {M}_\mathbb {L}}_2$


$\mathcal {E}(\mathbb {G_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathbb {S_L}_1^{(r)}$


$\mathcal {E}(\mathbb {G_L}_1^{(r)})$


\begin {align*}\mathcal {W_L}(\mathbb {S_L}_1^{(r)}) = \begin {pmatrix} 0.7629 & 0.2370 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$CC(\mathbb {G_L}_1^{(r)},\mathbb {S_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


$\mathbb {S_L}_1^{(r)}$


\begin {align*}\text {CC}(\mathbb {G_L}_1^{(r)},\mathbb {S_L}_1^{(r)}) =\frac {2.655}{2.652} =1.000\\[-24pt]\end {align*}


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathbb {G_L}_1^{(r)}$


$\mathbb {S_L}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {G_L}_1^{(r)}, \mathbb {S_L}_1^{(r)})} =\frac {2.655}{215.748}=0.01230\end {align*}


$\mathbb {S_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {S_L}_1^{(r)}),\mathbb {G_L}_1^{(r)})} = \frac {2.655}{0.03265}=81.316\\[-24pt]\end {align*}


$\mathscr {CRC}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathscr {CRCs}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


\begin {equation*}\mathcal {K}(\mathbb {G_L}_1^{(r)}, \mathbb {S_L}_1^{(r)}) = \sqrt {{0.0123}\times {81.316}}=1.000\end {equation*}


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


${\mathbb {M}_\mathbb {L}}^{c}_1 \times _m {\mathbb {M}_\mathbb {L}}^{c}_2$


\begin {equation*}\mathbb {A}^{c(L)}_{\hat {\mu }} = \begin {pmatrix} 0 & 0 & 0 & 0 & 0.7 & 0.6 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0 & 0.6 & 0.6 \\[3pt] 0 & 0.7 & 0 & 0.7 & 0.7 & 0 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0.7 & 0 & 0 \\[3pt] 0.7 & 0 & 0.7 & 0.7 & 0 & 0.7 & 0 \\[3pt] 0.6 & 0.6 & 0 & 0 & 0.7 & 0 & 0 \\[3pt] 0.6 & 0.6 & 0.6 & 0 & 0 & 0 & 0 \\ \end {pmatrix}\end {equation*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


\begin {equation*}\mathbb {A}^{c(L)}_{\hat {\nu }} = \begin {pmatrix} 0 & 0 & 0 & 0 & 0.2 & 0.3 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0 & 0.3 & 0.3 \\[3pt] 0 & 0.2 & 0 & 0.2 & 0.2 & 0 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0.2 & 0 & 0 \\[3pt] 0.2 & 0 & 0.2 & 0.2 & 0 & 0.2 & 0 \\[3pt] 0.3 & 0.3 & 0 & 0 & 0.2 & 0 & 0 \\[3pt] 0.3 & 0.3 & 0.3 & 0 & 0 & 0 & 0 \\ \end {pmatrix}\end {equation*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) = \begin {pmatrix} 6.8752 & 2.5709 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


$\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


\begin {align*}\mathcal {W}^c_\mathcal {L}({\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) = \begin {pmatrix} 0.7278 & 0.2721 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$CC({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)},{\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}\text {CC}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)},{\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) =\frac {3.5000}{5.7025} =0.61\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}{\mathbb {R}^{\mathbbm {c}}}_{({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}, {\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})} =\frac {3.5000}{53.877}=0.0649\\[-24pt]\end {align*}


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}{\mathbb {R}^{\mathbbm {c}}}_{({\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}),{\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})} = \frac {3.5000}{0.7769}=4.5050\\[-24pt]\end {align*}


$\mathscr {CRC}$


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$\mathscr {CRCs}$


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


\begin {equation*}\mathcal {K}(\mathbb {G_L}_1^{c(r)}, \mathbb {S_L}_1^{c(r)}) = \sqrt {{0.0649}\times {4.5050}}=0.5406\end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}^c$


\begin {equation*}\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset \end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {G} = (\mathbb {V}, \mathbb {E}, \hat {\mu }, \hat {\nu })$


$\mathscr {IFG}$


$\hat {\mu }: \mathbb {E} \to [0,1]$


$\hat {\nu }: \mathbb {E} \to [0,1]$


$\mathscr {IFG}^c$


\begin {equation*}\hat {\mu }^c(e) = 1 - \hat {\mu }(e), \quad \hat {\nu }^c(e) = 1 - \hat {\nu }(e), \quad \forall e \in \mathbb {E}.\end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}^c$


$\mathbb {V}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \mathbb {V} \times _{\max } \mathbb {V},$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


$\mathscr {IFG} \times _{\max } \mathscr {IFG}^c$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG}) = \{(\mathscr {x,y}) \mid \mathscr {x, y} \in \mathbb {V}, \mathscr {x} \neq \mathscr {y} \}.$


$\mathscr {IFG}^c$


$\mathscr {E}(\mathscr {IFG}^c) = \emptyset .$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


$(\mathscr {u}_1,\mathscr {u}_2) \in \mathbb {E}(\mathscr {IFG})$


$({\mathscr {v}_1, \mathscr {v}_2}) \in \mathbb {E}(\mathscr {IFG}^c)$


$\mathbb {E}(\mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$(\mathscr {u}_1,\mathscr {u}_2)$


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset .$


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}(\mathscr {u}_1,\mathscr {u}_2) \notin \mathbb {E}(\mathscr {IFG}) \quad \text {and} \quad (\mathscr {v}_1, \mathscr {v}_2) \notin \mathbb {E}(\mathscr {IFG}^c).\end {equation*}


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG}^c) = \emptyset $


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\hat {\mu }}_1, \hat {\hat {\nu }}_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


$\mathscr {IFG}$


$\hat {\mu }_1: \mathbb {E}_1 \to [0,1]$


$\hat {\nu }_1: \mathbb {E}_1 \to [0,1]$


$\hat {\mu }_2: \mathbb {E}_2 \to [0,1]$


$\hat {\nu }_2: \mathbb {E}_2 \to [0,1]$


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G}_1^* = (\mathbb {V}_1, \mathbb {E}_1)$


$\mathscr {G}_2^* = (\mathbb {V}_2, \mathbb {E}_2)$


$\mathbb {V}_1 = \{\mathscr {u}_1, \mathscr {u}_2, \dots , \mathscr {u}_m\}$


$\mathbb {V}_2 = \{\mathscr {v}_1, \mathscr {v}_2, \dots , \mathscr {v}_n\}$


$\mathscr {G}_1$


$\mathscr {G}_2$


\begin {align*}& \hat {\mu }_1^{\max }(\mathscr {u}_i, \mathscr {u}_j) > 0, \quad \forall \mathscr {u}_i, \mathscr {u}_j \in \mathbb {V}_1\\[2pt] & \hat {\mu }_2^{\max }(\mathscr {v}_i, \mathscr {v}_j) > 0, \quad \forall \mathscr {v}_i, \mathscr {v}_j \in \mathbb {V}_2\end {align*}


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G} = (\mathbb {V}, \mathbb {E}, \hat {\mu }, \hat {\nu })$


$\mathscr {G}$


\begin {align*}& \mathbb {V} = \mathbb {V}_1 \times \mathbb {V}_2 = \{(\mathscr {u}_i, \mathscr {v}_j) \mid \mathscr {u}_i \in \mathbb {V}_1, \mathscr {v}_j \in \mathbb {V}_2\}\\[2pt] & \hat {\mu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) = \max \{\min (\hat {\mu }_1(\mathscr {u}_i, \mathscr {u}_k), \hat {\mu }_2(\mathscr {v}_j, \mathscr {v}_l)) \}\\[2pt] & \hat {\nu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) = \min \{\max (\hat {\nu }_1(\mathscr {u}_i, \mathscr {u}_k), \hat {\nu }_2(\mathscr {v}_j, \mathscr {v}_l)) \}\end {align*}


$\mathscr {m}$


$\mathscr {G}$


\begin {equation*}\mathbb {V}_i = \{(\mathscr {u}_i, \mathscr {v}_1), (\mathscr {u}_i, \mathscr {v}_2), \dots , (\mathscr {u}_i, \mathscr {v}_n)\}, \quad i = 1, 2, \dots , \mathscr {m}.\end {equation*}


$\mathscr {u}_i$


$\mathscr {G}_2$


$\mathscr {v}_j$


$\mathbb {V}_2$


$\mathscr {G}_1$


$\mathscr {u}_i$


$\mathbb {V}_1$


\begin {equation*}\hat {\mu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) > 0, \quad \forall (\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l) \in \mathbb {E}.\end {equation*}


$\mathscr {G}$


$\mathscr {IFG}$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\mu }_1, \hat {\nu }_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


\begin {equation*}\sigma _1 \leq \hat {\mu }_2,\quad \text {and}\quad \sigma _2 \text {is a constant function with value } c.\end {equation*}


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\mu }_1, \hat {\nu }_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


$\mathscr {IFG}$


$\mathscr {G}_1$


$\mathscr {G}_2$


\begin {equation*}\mathbb {V}(\mathscr {G}_1 \times _M \mathscr {G}_2) = \mathbb {V}_1 \times \mathbb {V}_2.\end {equation*}


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}(\mathscr {u}_1 = \mathscr {u}_2) \text {and } (\mathscr {v}_1, \mathscr {v}_2) \in \mathbb {E}_2, \quad \text {or} \quad (\mathscr {v}_1 = \mathscr {v}_2) \text {and } (\mathscr {u}_1, \mathscr {u}_2) \in \mathbb {E}_1.\end {equation*}


$\mathscr {G}_1$


$\mathscr {u} \in \mathbb {V}_1$


$\sigma _1 \leq \hat {\mu }_2$


$(\mathscr {u}, \mathscr {v})$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {u}$


$\mathscr {G}_1$


$\mathscr {v}$


$\mathscr {G}_2$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}d_{\mathscr {G}_1 \times _M \mathscr {G}_2}(\mathscr {u}_1, \mathscr {v}_1) = d_{\mathscr {G}_1 \times _M \mathscr {G}_2}(\mathscr {u}_2, \mathscr {v}_2).\end {equation*}


$\mathbb {V}_1$


$\sigma _2$


$c$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {v} \in \mathbb {V}_2$


$\mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {G}_2$


$d_{\mathscr {G}_2}(\mathscr {v})$


$\mathscr {v} \in \mathbb {V}_2$


$\mathscr {u}$


$\in $


$\mathbb {V}_1$


$\mathscr {G}_1$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {IFG}$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


\begin {equation*}\text {membership values} = \begin {pmatrix} 1.0 & 0.975 & 0.8 & 0.4 & 0.7 \\[3pt] 0.5 & 0.8 & 0.6 & 0.3 & 0.0 \\[3pt] 0.7 & 0.9 & 0.7 & 0.2 & 0.6 \\[3pt] 0.2 & 0.85 & 0.4 & 0.0 & 0.0 \\[3pt] 0.2 & 0.95 & 0.6 & 0.5 & 0.0 \end {pmatrix}\end {equation*}


\begin {equation*}\text {non- membership values} = \begin {pmatrix} 0.0 & 0.025 & 0.2 & 0.6 & 0.3 \\[3pt] 0.5 & 0.2 & 0.4 & 0.7 & 1.0 \\[3pt] 0.3 & 0.1 & 0.3 & 0.8 & 0.4 \\[3pt] 0.8 & 0.15 & 0.6 & 1.0 & 1.0 \\[3pt] 0.8 & 0.05 & 0.4 & 0.5 & 1.0 \end {pmatrix}\end {equation*}


\begin {equation*}=\frac {3.191}{3.191} =1.00\end {equation*}


$\mathscr {CRC}$


\begin {equation*}\sqrt {{0.156}\times {6.383}}=0.99\end {equation*}


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$
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intuitionistic fuzzy correlation coefficient for multi-criteria decision-

making, enhancing tools for analysing uncertainty in complex decision 

environments. Dey et al. [7] explored operations on the complement of 

𝒢 , contributing to the theoretical understanding of graph complements 

and advancing 𝒢  theory. Meenakshi and Mishra [8] studied the max­

imal product of cubic fuzzy graph structures, offering insights into the 

structural aspects of 𝒢  operations. Meenakshi et al. [9]-[10] studied 

optimal networks using neutrosophic graph products and their applica­

tions in disease prediction. Meenakshi and Shivangi [11] have studied 

the correlation and regression coefficients for SVNGS and their products 

with a focus on their MST. Mohamed and Ali [12] analysed the degree 

of a vertex in the complement of the maximal product of ℐℱ𝒢 , provid­

ing a deeper understanding of vertex properties in 𝒢 . Mohamed and 

Ali [13] also examined the complement of the max product of ℐℱ𝒢 , 

contributing significantly to the theoretical understanding of 𝒢  com­

plements. Mordeson and Peng [14] systematically studied the operations 

on 𝒢 , laying the foundation for understanding the interplay of various 

graph operations. Nagoorgani et al. [15] researched double domination 

in ℐℱ𝒢 , establishing a basis for optimisation within network structures. 

Reddy and Basha [16] proposed the concept of correlation coefficient of 

hesitancy 𝒢 , which can play a significant role in decision-making situ­

ations and problem-solving in complications. Sahoo and Pal [17] have 

discussed in detail the various products for ℐℱ𝒢 , which became a ba­

sis for further investigations on graph operations by Sandeep et al. [18]. 

It sheds light on the complement of 𝒢  and presents certain remarks 

that have been informative in subsequent research on 𝒢  properties. 

Talebi and Rashmanlou [19] illustrated complement, isomorphic, and 

similar bipolar 𝒢  by extending their applications in analysing and mod­

elling complex systems. Ye [20] explored another correlation coefficient 

between single-valued neutrosophic sets. He proposed a method for 

multi-attribute decision-making and addressed uncertainty effectively 

by using the correlation coefficients between single-valued neutrosophic 

sets. Again, Ye [21] developed more effective correlation coefficients of 

IFS, which applied to real-life decision-making challenges, hence push­

ing the fuzzy set theory forward. Yahya Mohamed and Mohamed Ali 

[22] calculated the degree of a vertex in the complement of the maximal 

product of ℐℱ𝒢 , providing crucial information about vertex proper­

ties in graph complements. Repalle et al. [23] studied interval-valued 

ℐℱℒ𝒢  as an extension of fuzzy set theory and IFS for dealing with un­

certainty in graph theory. It introduces new definitions, theorems, and 

assertions, making significant contributions to the theoretical founda­

tion of 𝒢 . The study contributes to a better understanding of isomorphic 

characteristics and homomorphisms in this setting, marking a new ad­

vance in the field. Repalle et al. [24] introduced interval-valued ℐℱℒ𝒢
as a more generalised application of line graph theory to a fuzzy envi­

ronment. It addresses structural features, linkages to existing 𝒢  models, 

and potential applications in uncertainty-based decision-making. Akram 

and Davvaz [25] presented strong ℐℱ𝒢 , which are extensions of ℐℱ𝒢
that include strength metrics to improve decision-making. Akram [26] 

enhanced interval-valued fuzzy line graphs by developing a mathe­

matical framework for investigating 𝒢  architectures in which edge 

uncertainty is expressed as interval values. Kosari et al. [27] studied the 

topological indices. Meenakshi and Babujee [28] studied equitable dom­

ination in graphs, which contributed to optimisation in graph-theoretic 

structures. Shi et al. [29] studied cubic fuzzy graph connectivity to deter­

mine zones of danger for tsunamis. Khan et al. [30] studied picture fuzzy 

hypergraphs in the context of decision-making. Tobaili et al. [31] intro­

duced the edge hub number to characterise influential edges in fuzzy 

graphs under uncertain environments. Imran et al. [32] applied novel 

Sombor-based indices to ℐℱ𝒢  operations, showing their usefulness in 

modelling and optimising routing in uncertain networks. Talebi et al. 

[33] proposed the concept of interval-valued intuitionistic fuzzy soft 

graphs, thus providing a flexible framework that could represent uncer­

tainty with higher accuracy. Similarly, Shi et al. [34] explored various 

structural properties of cubic fuzzy graphs and also proved the applica­

bility of those in a case study. PK et al. [35] proposed a new concept of 

cubic graph and demonstrated its practical utility through applications. 

This paper extends the concepts in the graph theory and offers valuable 

insights in the methodological direction of our research. Furthermore, 

regular 𝒢  have been used to simulate psychology, and domination in 

𝒢  has been applied in medical applications.

1.1 . Motivation

The study examined the 𝒞ℛ𝒞𝓈 of the complement of the maxi­

mal product of an ℐℱℒ𝒢  and found a positive correlation between 

the results. Thus, this approach has significant applications in social 

network analysis, where understanding the strength and dynamics of re­

lationships is crucial. Representing relationships between individuals or 

groups using ℐℱ𝒢  is usually accomplished with a high degree of preci­

sion and involves both certainty and ambiguity. The complement of the 

maximal product of an ℐℱℒ𝒢  allows one to see indirect or hidden in­

teractions in the network that may not be obvious from the structure of 

the main graph. The 𝒞ℛ𝒞𝓈 under fuzzy set conditions have been anal­

ysed, and future research opportunities have been outlined. This work 

aims to contribute methods for network optimisation, predictive mainte­

nance, resource allocation, and decision-making processes. The original 

contributions of this work are described below.

1.2 . Novelty

This research adopts 𝒞ℛ𝒞𝓈 for application to ℐℱ𝒢  through an 

original approach to establish a new mathematical model that charac­

terises dependencies in ambiguous and uncertain systems. The research 

applies the maximal product method to provide the network assess­

ment capabilities and the prediction accuracy in complex systems. The 

present work introduces the line graph analysis of ℐℱ𝒢  together with 

its complementary content as an alternative method to explore edge 

interactions. This method reveals the sophisticated network behaviour 

that standard graph models often miss. Rephrasing this technique in­

volves producing adjacency matrices that incorporate both membership 

and non-membership characteristics as a new approach to measur­

ing network strength. The association and influence evaluation process 

becomes more reliable through weight and energy rating systems in 

network components. The maximum product framework extended to 

ℐℱℒ𝒢  and its complements enables users to discover network pat­

terns and secondary effects that remain invisible to direct graph analysis. 

The application proves most beneficial for analysing networks with high 

levels of indirect relationships. The importance of ℐℱ𝒢  and 𝒞ℛ𝒞𝓈 is 

highlighted by the application of this study to medicine, namely to dia­

betes risk prediction. A new computational approach for risk assessment 

and medical diagnosis modelling and analysis of these crucial compo­

nents using 𝒢  theory. The proposed methodology is adaptable and can 

be applied to a variety of fields, including social network research, fi­

nancial risk analysis, and cybersecurity. The use of maximal product 

analysis in ℐℱℒ𝒢  opens up new possibilities for discovering relational 

patterns in various datasets. This paper advances the theoretical frame­

work for ℐℱ𝒢  products and introduces a computationally feasible tool 

for exploring relational patterns in various datasets. Its methodology is 

versatile and can be applied to other areas, including social network 

analysis, financial risk analysis, and cybersecurity.

1.3 . Structure of the paper

The paper aims to expand the theoretical framework and suggest po­

tential solutions for network optimisation in uncertain environments. 

This manuscript is organised as follows: Section 2 presents the basic 

definitions relevant to our research. Section 3, examines the 𝒞ℛ𝒞𝓈
of ℐℱ𝒢  using maximal product. Section 4 focuses on a deeper anal­

ysis of 𝒞ℛ𝒞𝓈 regarding the maximal product of an ℐℱℒ𝒢 . Section 5 

introduces the 𝒞ℛ𝒞𝓈 associated with the complement of an ℐℱℒ𝒢
using the maximal product. Section 6 discusses the applications of so­

cial network analysis. Section 7 concludes the research and looks ahead 

to future efforts. Table 1 summarizes the key notations used in this work.
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Table 1 

List of Abbreviations.

Abbreviation Expansion

𝒢 Fuzzy Graph

ℐℱ𝒢 Intutionistic Fuzzy Graph

𝐼𝐹𝑆 Intutionistic Fuzzy Set

𝒞ℛ𝒞 Correlation and Regression Coefficients

ℐℱℒ𝒢 Intutionistic Fuzzy Line Graph

2 . Preliminaries

This section presents definitions and some common working termi­

nology through remarks and illustrations.

Definition 1. [3] A fuzzy set ̃ in 𝒳  is defined by a membership func­

tion 𝜇̃ ∶ 𝑤 → [0, 1], which assigns to each element 𝑤 ∈ 𝒳  a real number 

𝜇̃(𝑤) representing the degree of membership of 𝑤 in ̃. The fuzzy set 

̃ is represented as

̃ = {(𝑤, 𝜇̃(𝑤)) ∣ 𝑤 ∈ 𝒳},

where 𝜇̃(𝑤) represents the value between 0 and 1.

Definition 2. [1] A Fuzzy graph (𝒢 ), G = (𝜎, 𝜇̂) is a pair of functions, 

with vertex set  and edge set  . Let 𝜎 ∶ 𝒱 → {0, 1} and 𝜇̂ ∶  ×  →
{0, 1} such that 𝜇̂(𝓊,𝓋) ≤ 𝜎(𝓊) ∧ 𝜎(𝓋) for every 𝓊,𝓋 ∈ 𝒱 .

Definition 3. [2] An IFS 𝐵 = ⟨𝑥, 𝜇̂𝐵(𝑥), 𝜈̂𝐵(𝑥)⟩𝑥∈𝑋  in a universe of 

discourse 𝒳  is characterised by a membership function 𝜇̂𝐵  and a non-

membership function 𝜈̂𝐵 , as follows: 𝜇̂𝐵 ∶ 𝒳 → [0, 1], 𝜈̂𝐵 ∶ 𝒳 → [0, 1],
and 𝜇̂𝐵(𝑥) + 𝜈̂𝐵(𝑥) ≤ 1 for all 𝑥 ∈ 𝒳 .

Definition 4. [7] The complement of a 𝒢  with G = (𝜎, 𝜇̂) is also a 

𝒢  and it is denoted as G. The membership function for the comple­

ment G = (𝜎, 𝜇̂), where 𝜎(𝑥𝑖) = 𝜎(𝑥𝑖) and 𝜇̂(𝑥𝑖, 𝑥𝑗 ) = 𝜎(𝑥𝑖) ∧ 𝜎(𝑥𝑗 ) −
𝜇̂(𝑥𝑖, 𝑥𝑗 ) ∀ 𝑥𝑖, 𝑥𝑗 ∈ ℰ  where the membership values of the vertices 𝑥𝑖
and 𝑥𝑗  are represented by 𝜎(𝑥𝑖) and 𝜎(𝑥𝑗 ) respectively, and the mem­

bership values of the edge between vertices 𝑥𝑖 and 𝑥𝑗  are indicated by 

𝜇̂(𝑥𝑖, 𝑥𝑗 ).

Definition 5. [4] An Intuitionistic Fuzzy Graph (ℐℱ𝒢 ) is of the form 

G = (𝒱 ,ℰ ), where

1. 𝒱 = {𝑥1, 𝑥2,… , 𝑥𝑛}, such that 𝜎1 ∶ 𝒱 → [0, 1] and 𝜎2 ∶ 𝒱 →
[0, 1] denote the degree of membership and non-membership of the 

element 𝑥𝑖 ∈ 𝒱 , respectively. It holds that 0 ≤ 𝜎1(𝑥𝑖) + 𝜎2(𝑥𝑖) ≤ 1
for all 𝑥𝑖 ∈ 𝒱  (𝑖 = 1, 2,… , 𝑛).

2. ℰ ⊆ 𝒱 ×𝒱 , such that 𝜇̂1 ∶ 𝒱 ×𝒱 → [0, 1] and 𝜇̂2 ∶ 𝒱 ×𝒱 → [0, 1]
denote the degree of membership and degree of non-membership 

of the edge (𝑥𝑖, 𝑥𝑗 ), respectively.

𝜇̂1(𝑥𝑖, 𝑥𝑗 ) ≤ min(𝜇̂1(𝑥𝑖), 𝜇̂1(𝑥𝑗 )),

𝜇̂2(𝑥𝑖, 𝑥𝑗 ) ≤ max(𝜈̂1(𝑥𝑖), 𝜈̂1(𝑥𝑗 )),

and 0 ≤ 𝜇̂1(𝑥𝑖, 𝑥𝑗 ) + 𝜇̂2(𝑥𝑖, 𝑥𝑗 ) ≤ 1 for all (𝑥𝑖, 𝑥𝑗 ) ∈ ℰ .

Definition 6. [11] The complement of an ℐℱ𝒢 G = (𝒱 ,ℰ ) is an ℐℱ𝒢
G = ((𝜎1, 𝜎2), (𝜇̂1, 𝜇̂2)), where (𝜎1, 𝜎2) = (𝜎1, 𝜎2) and

̄̂𝜇1(𝑥𝑦) = 𝜎1(𝑥) ∧ 𝜎1(𝑦) − 𝜇̂1(𝑥𝑦),

̄̂𝜇2(𝑥𝑦) = 𝜎2(𝑥) ∨ 𝜎2(𝑦) − 𝜇̂2(𝑥𝑦), ∀𝑥𝑦 ∈ ℰ .

Definition 7. [4] The intuitionistic energies of two ℐℱ𝒢 G1 and G2
are described as:

𝐸ℐℱ𝒢 (G1) =
𝑛
∑

𝑖=1

(

𝜇̂2
G1

(𝑥𝑖) + 𝜈̂2G1
(𝑥𝑖)

)

=
𝑛
∑

𝑗=1
𝜆2𝑗 (G1)

and

𝐸ℐℱ𝒢 (G2) =
𝑛
∑

𝑖=1

(

𝜇̂2
G2

(𝑥𝑖) + 𝜈̂2G2
(𝑥𝑖)

)

=
𝑛
∑

𝑗=1
𝜆2𝑗 (G2).

The covariance of the ℐℱ𝒢 G1 and G2 is defined as:

𝐶ℐℱ𝒢 (G1,G2) =
𝑛
∑

𝑖=1

[

𝜇̂G1
(𝑥𝑖)𝜇̂G2

(𝑥𝑖) + 𝜈̂G1
(𝑥𝑖)𝜈̂G2

(𝑥𝑖)
]

.

Therefore, the correlation coefficient measure of ℐℱ𝒢 G1 and G2 is 

given by

𝐾ℐℱ𝒢 (G1,G2) =
𝐶ℐℱ𝒢 (G1,G2)

𝐸ℐℱ𝒢 (G1)𝐸ℐℱ𝒢 (G2)

=

∑𝑛
𝑖=1

[

𝜇̂G1
(𝑥𝑖)𝜇̂G2

(𝑥𝑖) + 𝜈̂G1
(𝑥𝑖)𝜈̂G2

(𝑥𝑖)
]

(

∑𝑛
𝑖=1

(

𝜇̂2
G1

(𝑥𝑖) + 𝜈̂2G1
(𝑥𝑖)

)

∑𝑛
𝑖=1

(

𝜇̂2
G2

(𝑥𝑖) + 𝜈̂2G2
(𝑥𝑖)

)) .

Definition 8. [12] Let G1 =
(

(𝜎G1
1 , 𝜎G1

2 ), (𝜇̂G1
1 , 𝜇̂G1

2 )
)

 and G2 =
(

(𝜎G2
1 , 𝜎G2

2 ), (𝜇̂G2
1 , 𝜇̂G2

2 )
)

 be two ℐℱ𝒢 . The maximal product of G1 and 

G2, denoted by G1 ×𝑚 G2 = (𝒱1 ×𝑚 𝒱2,ℰ1 ×𝑚 ℰ2), is defined as follows:

𝒱1 ×𝑚 𝒱2 = {(𝓍1,𝓎1) ∣ 𝓍1 ∈ 𝒱1and 𝓎1 ∈ 𝒱2}.

ℰ1 ×𝑚 ℰ2 = {((𝓍1,𝓎1)(𝓍2,𝓎2)) ∣ 𝓍1 = 𝓍2,𝓎1𝓎2 ∈ ℰ2or 𝓎1

= 𝓎2,𝓍1𝓍2 ∈ ℰ1}.

𝜎G1×𝑚G2
1 (𝓍1,𝓎1) = 𝜎G1

1 (𝓍1) ∨ 𝜎G2
1 (𝓎1),

𝜎G1×𝑚G2
2 (𝓍1,𝓎1) = 𝜎G1

2 (𝓍1) ∧ 𝜎G2
2 (𝓎1),

for all (𝓍1,𝓎1) ∈ 𝒱1 ×𝒱2.

For any pair of edges ((𝓍1,𝓎1)(𝓍2,𝓎2)) ∈ ℰ1 ×𝑚 ℰ2:

𝜇̂G1×𝑚G2
1 ((𝓍1,𝓎1)(𝓍2,𝓎2))

=

⎧

⎪

⎨

⎪

⎩

𝜎G1
1 (𝓍1) ∨ 𝜇̂G2

1 (𝓎1𝓎2), if 𝓍1 = 𝓍2, 𝓎1𝓎2 ∈ ℰ2,

𝜇̂G1
1 (𝓍1𝓍2) ∨ 𝜎G2

1 (𝓎1), if 𝓎1 = 𝓎2, 𝓍1𝓍2 ∈ ℰ1.

𝜇̂G1×𝑚G2
2 ((𝓍1,𝓎1)(𝓍2,𝓎2))

=

⎧

⎪

⎨

⎪

⎩

𝜎G1
2 (𝓍1) ∧ 𝜇̂G2

2 (𝓎1𝓎2), if 𝓍1 = 𝓍2, 𝓎1𝓎2 ∈ ℰ2,

𝜇̂G1
2 (𝓍1𝓍2) ∧ 𝜎G2

2 (𝓎1), if 𝓎1 = 𝓎2, 𝓍1𝓍2 ∈ ℰ1.

Definition 9. [11] The complement of the max product of two ℐℱ𝒢
G1 = ((𝜎G1

1 , 𝜎G1
2 ), (𝜇̂G1

1 , 𝜇̂G1
2 )) and G2 = ((𝜎G2

1 , 𝜎G2
2 ), (𝜇̂G2

1 , 𝜇̂G2
2 )) is an ℐℱ𝒢

G1 ×𝑚 G2 = ((𝜎G1
1 ×𝑚 𝜎G2

1 )(𝜎G1
2 ×𝑚 𝜎G2

2 ), (𝜇̂G1
1 ×𝑚 𝜇̂G2

1 )(𝜇̂G1
2 ×𝑚 𝜇̂G2

2 )) on 

G∗ = (𝒱 ,ℰ ), where 𝒱1 ×𝑚 𝒱2 = 𝒱1 ×𝑚 𝒱2 and

ℰ1 ×𝑚 ℰ2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝓍1 = 𝓍2,𝓎1𝓎2 ∈ ℰ2or 
𝓎1 = 𝓎2,𝓍1𝓍2 ∈ ℰ1or 
𝓍1𝓍2 ∈ ℰ1,𝓎1𝓎2 ∉ ℰ2or 
𝓍1𝓍2 ∉ ℰ1,𝓎1𝓎2 ∈ ℰ2or 
𝓍1𝓍2 ∈ ℰ1,𝓎1𝓎2 ∈ ℰ2or 
𝓍1𝓍2 ∉ ℰ1,𝓎1𝓎2 ∉ ℰ2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

The membership functions are defined as:

(𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍1,𝓎1) = 𝜎G1
1 (𝓍1) ∨ 𝜎G2

1 (𝓎1),
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(𝜎G1
2 ×𝑚 𝜎G2

2 )(𝓍1,𝓎1) = 𝜎G1
2 (𝓍1) ∧ 𝜎G2

2 (𝓎1),

where 𝓍1 ∈ 𝒱1 and 𝓎1 ∈ 𝒱2.

𝜇̂G1
1 ×𝑚 𝜇̂G2

1 ((𝓍1,𝓎1), (𝓍2,𝓎2))

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍1,𝓎1) ∧ (𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍2,𝓎2) − 𝜇̂G1
1

×𝑚𝜇̂
G2
1 ((𝓍1,𝓎1), (𝓍2,𝓎2)), if 𝓍1 = 𝓍2,𝓎1𝓎2 ∈ ℰ2

(𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍1,𝓎1) ∧ (𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍2,𝓎2) − 𝜇̂G1
1

×𝑚𝜇̂
G2
1 ((𝓍1,𝓎1), (𝓍2,𝓎2)), if 𝓎1 = 𝓎2,𝓍1𝓍2 ∈ ℰ1

(𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍1,𝓎1) ∧ (𝜎G1
1

×𝑚𝜎
G2
1 )(𝓍2,𝓎2), otherwise

𝜇̂G1
2 ×𝑚 𝜇̂G2

2 ((𝓍1,𝓎1), (𝓍2,𝓎2))

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝜎G1
2 ×𝑚 𝜎G2

2 )(𝓍1,𝓎1) ∨ (𝜎G1
2 ×𝑚 𝜎G2

2 )(𝓍2,𝓎2) − 𝜇̂G1
2

×𝑚𝜇̂
G2
2 ((𝓍1,𝓎1), (𝓍2,𝓎2)), if 𝓍1 = 𝓍2,𝓎1𝓎2 ∈ ℰ2

(𝜎G1
2 ×𝑚 𝜎G2

2 )(𝓍1,𝓎1) ∨ (𝜎G1
2 ×𝑚 𝜎G2

2 )(𝓍2,𝓎2) − 𝜇̂G1
2

×𝑚𝜇̂
G2
2 ((𝓍1,𝓎1), (𝓍2,𝓎2)), if 𝓎1 = 𝓎2,𝓍1𝓍2 ∈ ℰ1

(𝜎G1
1 ×𝑚 𝜎G2

1 )(𝓍1,𝓎1) ∨ (𝜎G1
1

×𝑚𝜎
G2
1 )(𝓍2,𝓎2), otherwise

3 . 𝓒𝓡𝓒𝓼 of 𝓘𝓕𝓖 using maximal product

In this section, we conducted an in-depth analysis of correlation 

and regression coefficients (𝒞ℛ𝒞𝓈) in the setting of ℐℱ𝒢 , employ­

ing the maximal product in particular. This technique allowed us to 

simulate complicated interactions between nodes and edges while keep­

ing the system’s uncertainty intact. Using the maximal product, we 

investigated how the structural aspects of ℐℱ𝒢  affect network ac­

tivity, providing a more nuanced means of assessing connectedness, 

strength, and influence in the graph. Our findings highlight the pre­

dictive potential of ℐℱ𝒢  and their applications in real-world com­

plex systems, such as healthcare analytics and decision-making pro­

cesses. Furthermore, we investigated the usage of adjacency matrices 

containing membership and non-membership values in the calcula­

tion of energy and weight scores, which improve network structure

interpretability.

3.1 . Working procedure

Below is a working procedure to find the 𝒞ℛ𝒞𝓈 of ℐℱ𝒢  using 

Maximal Product.

Step 1: Let M1 = (𝜎1, 𝜇̂1) and M2 = (𝜎2, 𝜇̂2) be two ℐℱ𝒢  of G1 =
(𝒱1,ℰ1) and G2 = (𝒱2,ℰ2), respectively. Construct a maximal product of 

M1 and M2, denoted as M1 ×𝑚 M2. Then, find the adjacency matrix of 

M1 ×𝑚 M2.

Step 2: Compute the energy (G(𝑟)
𝑖 ) of an adjacency matrix G(𝑟)

𝑖  where 

(G(𝑟)
𝑖 ) =

∑𝑛
𝑖=1 |𝜆𝑖|

Step 3: Compute the weight scores (S(𝑟)𝑖 ) determined by (G(𝑟)
𝑖 )

(S(𝑟)𝑖 ) =

(

(G(𝑟)
1 )

∑2
𝑟=1 (G

(𝑟)
𝑖 )

,
(G(𝑟)

2 )
∑2

𝑟=1 (G
(𝑟)
𝑖 )

)

Fig. 1. Intuitionistic fuzzy graph M1.

Fig. 2. Intuitionistic fuzzy graph M2.

Fig. 3. Maximal product of Intuitionistic fuzzy graph M1 ×𝑚 M2.

Step 4: Compute correlation coefficient 𝐶𝐶(G(𝑟)
𝑖 ,S(𝑟)𝑖 ) between G(𝑟)

𝑖
and S(𝑟)𝑖 .

𝐶𝐶(G(𝑟)
𝑖 ,S(𝑟)𝑖 ))

=

∑𝑛
𝑖=1(TG(𝑟)

𝑖
(𝑡𝑖)TS(𝑟)𝑖

(𝑡𝑖) + FG(𝑟)
𝑖
(𝑡𝑖)FS(𝑟)𝑖

(𝑡𝑖))
√

∑𝑛
𝑖=1(TG(𝑟)

𝑖
(𝑡𝑖)

2 + FG(𝑟)
𝑖
(𝑡𝑖)

2)
√

∑𝑛
𝑖=1(TS(𝑟)𝑖

(𝑡𝑖)
2 + FS(𝑟)𝑖

(𝑡𝑖)
2)

step 5: Find the regression coefficient R(G(𝑟)
𝑖 ,S(𝑟)𝑖 ) of M1 ×𝑚 M2. The 

regression coefficient of G(𝑟)
𝑖  on S(𝑟)𝑖  is defined as:

R(G(𝑟)
𝑖 ,S(𝑟)𝑖 ) =

Cov(G(𝑟)
𝑖 , S(𝑟)𝑖 )

(G(𝑟)
𝑖 )

2

The regression coefficient of S(𝑟)𝑖  on G(𝑟)
𝑖  is defined as R(S(𝑟)𝑖 ,G(𝑟)

𝑖 ) =

Cov(G(𝑟)
𝑖 ,S(𝑟)𝑖 )

(S(𝑟)𝑖 )
2

step 6: Calculate the relationship between the CRC𝑠

(S(𝑟)𝑖 ,G(𝑟)
𝑖 ) =

√

R(G(𝑟)
𝑖 ,S(𝑟)𝑖 ) × R(S(𝑟)𝑖 ,G(𝑟)

𝑖 )

Example 1. Consider the ℐℱ𝒢 M1 and M2 as shown in Figs. 1 and 2 

and their maximal product M1 ×𝑚 M2 as shown in Fig. 3.
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3.2 . Illustration of M1 ×𝑚 M2

Adjacency matrix of M1 ×𝑚 M2

A(𝑟)
𝜇̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.7 0 0.7 0 0

0.7 0 0.7 0 0.7 0

0 0.7 0 0 0 0.7

0.7 0 0 0 0.6 0

0 0.7 0 0.6 0 0.6

0 0 0.7 0 0.6 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A(𝑟)
𝜈̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.2 0 0.2 0 0

0.2 0 0.2 0 0.2 0

0 0.2 0 0 0 0.2

0.2 0 0 0 0.3 0

0 0.2 0 0.3 0 0.3

0 0 0.2 0 0.3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Energy of M1 ×𝑚 M2
The energy (G(𝑟)

1 ) of an adjacency matrix G(𝑟)
1 :

(G(𝑟)
1 ) =

(

5.077 1.8142
)

Weight score of M1 ×𝑚 M2
Score function of M1 star M2 The weight of the score function S(𝑟)1  is 

determined by (G(𝑟)
1 ):

(S(𝑟)1 ) =
(

0.7367 0.263
)

Correlation coefficient of M1 ×𝑚 M2
To compute correlation coefficient 𝐶𝐶(G(𝑟)

1 , S(𝑟)1 ) between G(𝑟)
1  and 

S(𝑟)1 :

CC(G(𝑟)
1 ,S(𝑟)1 ) = 4.2173

4.2163
= 1.000

Regression coefficients of M1 ×𝑚 M2
The regression coefficient measure of G(𝑟)

1  in S(𝑟)1  is calculated as:

R(G(𝑟)
1 ,S(𝑟)1 ) =

4.2173
29.065

= 0.14509

The regression coefficient measure of S(𝑟)1 ) in G(𝑟)
1  calculated as:

R(S(𝑟)1 ),G(𝑟)
1 ) =

4.2173
0.6118

= 6.8932

Relationship between 𝒞ℛ𝒞 s of M1 ×𝑚 M2
The relationship between 𝒞ℛ𝒞𝓈 of M1 ×𝑚 M2.

(G(𝑟)
1 , S(𝑟)1 ) =

√

0.1450 × 0.6118 = 1.000

4 . 𝓒𝓡𝓒𝓼 of 𝓘𝓕𝓛𝓖 using maximal product

In this section, we present the maximal product of an ℐℱ𝒢 , incor­

porating the concept of a line graph and its 𝒞ℛ𝒞𝓈, that characterise the 

relationship between the elements of the ℐℱ𝒢  and its corresponding 

line graph.

Definition Let 𝐿(G1) = 
(

(𝜎1𝐿(G1)
, 𝜎2𝐿(G1)

), (𝜇̂1
𝐿(G1)

, 𝜇̂2
𝐿(G1)

)
)

 and 𝐿(G2)

= 
(

(𝜎1𝐿(G2)
, 𝜎2𝐿(G2)

), (𝜇̂1
𝐿(G2)

, 𝜇̂2
𝐿(G2)

)
)

 be two ℐℱℒ𝒢 , where G1 = 

(𝒱1,ℰ1) and G2 = (𝒱2,ℰ2) are the ℐℱ𝒢 . The maximal product of the 

Fig. 4. Intuitionistic fuzzy Line graph ML1 ×𝑚 ML2.

ℐℱℒ𝒢  of 𝐿(G1) and 𝐿(G2), denoted by 𝐿(G1) ×𝑚 𝐿(G2), is defined as 

follows:

𝒱𝐿(G1) ×𝑚 𝒱𝐿(G2) = {(𝓈𝓍, 𝓈𝓎) ∣ 𝓈𝓍 ∈ 𝒱𝐿(G1), 𝓈𝓎 ∈ 𝒱𝐿(G2)}.

ℰ𝐿(G1) ×𝑚 ℰ𝐿(G2) = {((𝓈𝓍1
, 𝓈𝓎1

)(𝓈𝓍2
, 𝓈𝓎2

)) ∣ 𝓈𝓍1

= 𝓈𝓍2
, 𝓈𝓎1

𝓈𝓎2
∈ ℰ𝐿(G2)or 𝓈𝓎1

= 𝓈𝓎2
, 𝓈𝓍1

𝓈𝓍2
∈ ℰ𝐿(G1)}.

𝜎1𝐿(G1)×𝑚𝐿(G2)
(𝓈𝓍1

, 𝓈𝓎1
) = 𝜎1𝐿(G1)

(𝓈𝓍1
) ∨ 𝜎1𝐿(G2)

(𝓈𝓎1
),

𝜎2𝐿(G1)×𝑚𝐿(G2)
(𝓈𝓍1

, 𝓈𝓎1
) = 𝜎2𝐿(G1)

(𝓈𝓍1
) ∧ 𝜎2𝐿(G2)

(𝓈𝓎1
),

for all (𝓈𝓍1
, 𝓈𝓎1

) ∈ 𝒱𝐿(G1) ×𝒱𝐿(G2).

For any pair of edges ((𝓈𝓍1
, 𝓈𝓎1

)(𝓈𝓍2
, 𝓈𝓎2

)) ∈ ℰ𝐿(G1) ×𝑚 ℰ𝐿(G2):

𝜎1𝐿(G1)×𝑚𝐿(G2)
((𝓈𝓍1

, 𝓈𝓎1
)(𝓈𝓍2

, 𝓈𝓎2
))

=

⎧

⎪

⎨

⎪

⎩

𝜎1𝐿(G1)
(𝓈𝓍1

) ∨ 𝜇̂1
𝐿(G2)

(𝓈𝓎1
𝓈𝓎2

), if 𝓈𝓍1
= 𝓈𝓍2

, 𝓈𝓎1
𝓈𝓎2

∈ ℰ𝐿(G2),

𝜇̂1
𝐿(G1)

(𝓈𝓍1
𝓈𝓍2

) ∨ 𝜎1𝐿(G2)
(𝓈𝓎1

), if 𝓈𝓎1
= 𝓈𝓎2

, 𝓈𝓍1
𝓈𝓍2

∈ ℰ𝐿(G1).

𝜎2𝐿(G1)×𝑚𝐿(G2)
((𝓈𝓍1

, 𝓈𝓎1
)(𝓈𝓍2

, 𝓈𝓎2
))

=

⎧

⎪

⎨

⎪

⎩

𝜎2𝐿(G1)
(𝓈𝓍1

) ∧ 𝜇̂2
𝐿(G2)

(𝓈𝓎1
𝓈𝓎2

), if𝓈𝓍1
= 𝓈𝓍2

, 𝓈𝓎1
𝓈𝓎2

∈ ℰ𝐿(G2),

𝜇̂2
𝐿(G1)

(𝓈𝓍1
𝓈𝓍2

) ∧ 𝜎2𝐿(G2)
(𝓈𝓎1

), if 𝓈𝓎1
= 𝓈𝓎2

, 𝓈𝓍1
𝓈𝓍2

∈ ℰ𝐿(G1).

Example 2. Consider the ℐℱ𝒢  of maximal product M1×𝑚M2 as shown 

in Fig. 3 and their ℐℱℒ𝒢 .

Adjacency matrix of ML1 ×𝑚 ML2

A𝐿
𝜇̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.7 0.7 0.7 0 0 0
0.7 0 0 0.7 0.7 0 0
0.7 0 0 0 0 0.7 0
0.7 0.7 0 0 0 0.7 0.7
0 0.7 0 0 0 0 0.7
0 0 0.7 0.7 0 0 0.6
0 0 0 0.7 0.7 0.6 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

A𝐿
𝜈̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0.2 0.2 0.2 0 0 0
0.2 0 0 0.2 0.2 0 0
0.2 0 0 0 0 0.2 0
0.2 0.2 0 0 0 0.2 0.2
0 0.2 0 0 0 0 0.2
0 0 0.2 0.2 0 0 0.3
0 0 0 0.2 0.2 0.3 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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Energy of ML1 ×𝑚 ML2
The energy (GL

(𝑟)
1 ) of an adjacency matrix GL

(𝑟)
1 :

(GL
(𝑟)
1 ) =

(

6.8764 2.1362
)

Weight score of ML1 ×𝑚 ML2
Score function of M1 star M2 The weight of the score function SL

(𝑟)
1

is determined by (GL
(𝑟)
1 ):

(SL
(𝑟)
1 ) =

(

0.7629 0.2370
)

Correlation coefficient of ML1 ×𝑚 ML2
To compute correlation coefficient 𝐶𝐶(GL

(𝑟)
1 , SL

(𝑟)
1 ) between GL

(𝑟)
1

and SL
(𝑟)
1 :

CC(GL
(𝑟)
1 , SL

(𝑟)
1 ) = 2.655

2.652
= 1.000

Regression coefficients of ML1 ×𝑚 ML2
The regression coefficient measure of GL

(𝑟)
1  on SL

(𝑟)
1  is calculated as:

R(GL
(𝑟)
1 ,SL

(𝑟)
1 ) =

2.655
215.748

= 0.01230

The regression coefficient measure of SL
(𝑟)
1 ) on GL

(𝑟)
1  is computed as:

R(SL
(𝑟)
1 ),GL

(𝑟)
1 ) =

2.655
0.03265

= 81.316

Relationship between 𝒞ℛ𝒞 s of ML1 ×𝑚 ML2
We defined the relationship between 𝒞ℛ𝒞𝓈 of ML1 ×𝑚 ML2.

(GL
(𝑟)
1 ,SL

(𝑟)
1 ) =

√

0.0123 × 81.316 = 1.000

5 . 𝓒𝓡𝓒𝓼 of complement of 𝓘𝓕𝓛𝓖 using the maximal product

In this section, we present the concept of the complement of the max­

imal product of an ℐℱℒ𝒢  and provide calculations for the 𝒞ℛ𝒞𝓈. We 

define the complement of the maximal product of an ℐℱℒ𝒢 . The com­

plement of a maximal product graph is useful for studying structural and 

connectivity changes when edge interactions are reversed. The comple­

ment allows us to discuss how dominance, connectedness, and general 

graph attributes are influenced in a fuzzy framework.

Furthermore, we present step-by-step calculations of the (𝒞ℛ𝒞𝓈) 

from the complement of the maximal product of ℐℱℒ𝒢 . This in­

cludes the computation of adjacency matrices, energy values, weight 

scores, and other relevant statistical measurements such as correlation 

and regression coefficients. These factors help quantify the impact of 

complement structures on graph-based prediction models. The results 

of these computations provide insights into the relative performance of 

the initial maximal product and its complement under various decision

dilemmas.

Example 3. Consider a complement of the maximal product of an 

ℐℱℒ𝒢 Fig. 4 using definition as shown in Fig. 5.

Adjacency matrix of ML
𝑐
1 ×𝑚 ML

𝑐
2

A𝑐(𝐿)
𝜇̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0.7 0.6 0.6

0 0 0.7 0 0 0.6 0.6

0 0.7 0 0.7 0.7 0 0.6

0 0 0.7 0 0.7 0 0

0.7 0 0.7 0.7 0 0.7 0

0.6 0.6 0 0 0.7 0 0

0.6 0.6 0.6 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 5. Complement Intuitionistic fuzzy Line graph M𝕔
L1 ×𝑚 M𝕔

L2.

A𝑐(𝐿)
𝜈̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0.2 0.3 0.3

0 0 0.2 0 0 0.3 0.3

0 0.2 0 0.2 0.2 0 0.3

0 0 0.2 0 0.2 0 0

0.2 0 0.2 0.2 0 0.2 0

0.3 0.3 0 0 0.2 0 0

0.3 0.3 0.3 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Energy of M𝕔
L1 ×𝑚 M𝕔

L2
The energy (G𝕔

L
(𝑟)
1 ) of an adjacency matrix G𝕔

L
(𝑟)
1 :

(G𝕔
L
(𝑟)
1 ) =

(

6.8752 2.5709
)

Weight score of M𝕔
L1 ×𝑚 M𝕔

L2
The weight of the score function S𝕔L

(𝑟)
1  is determined by (G𝕔

L
(𝑟)
1 ):

𝑐
(S

𝕔
L
(𝑟)
1 ) =

(

0.7278 0.2721
)

Correlation coefficient of M𝕔
L1 ×𝑚 M𝕔

L2
To compute correlation coefficient 𝐶𝐶(G𝕔

L
(𝑟)
1 , S𝕔L

(𝑟)
1 ) between G𝕔

L
(𝑟)
1

and S𝕔L
(𝑟)
1 :

CC(G𝕔
L
(𝑟)
1 ,S𝕔L

(𝑟)
1 ) = 3.5000

5.7025
= 0.61

Regression coefficients of M𝕔
L1 ×𝑚 M𝕔

L2
The regression coefficient measure of G𝕔

L
(𝑟)
1  on S𝕔L

(𝑟)
1  is calculated as:

R𝕔
(G𝕔

L
(𝑟)
1 ,S𝕔L

(𝑟)
1 ) =

3.5000
53.877

= 0.0649

The regression coefficient measure of S𝕔L
(𝑟)
1 ) on G𝕔

L
(𝑟)
1  computed as:

R𝕔
(S𝕔L

(𝑟)
1 ),G𝕔

L
(𝑟)
1 ) =

3.5000
0.7769

= 4.5050

Relationship between 𝒞ℛ𝒞 s of M𝕔
L1 ×𝑚 M𝕔

L2
We defined the relationship between 𝒞ℛ𝒞𝓈 of M𝕔

L1 ×𝑚 M𝕔
L2.

(GL
𝑐(𝑟)
1 , SL

𝑐(𝑟)
1 ) =

√

0.0649 × 4.5050 = 0.5406

Theorem 1. The maximal product of ℐℱ𝒢  and its complement (ℐℱ𝒢 𝑐) 

satisfies:

E(ℐℱ𝒢 ×max ℐℱ𝒢 𝑐) = ∅

if and only if the maximal product of ℐℱ𝒢  is a complete ℐℱ𝒢 .
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Proof. Let 𝒢 = (V,E, 𝜇̂, 𝜈̂) be an ℐℱ𝒢  where 𝜇̂ ∶ E → [0, 1] represents 

the membership function and 𝜈̂ ∶ E → [0, 1] represents the non-

membership function. The complement of maximal product of ℐℱ𝒢 𝑐  is 

defined such that:

𝜇̂𝑐 (𝑒) = 1 − 𝜇̂(𝑒), 𝜈̂𝑐 (𝑒) = 1 − 𝜈̂(𝑒), ∀𝑒 ∈ E.

The maximal product of ℐℱ𝒢  and ℐℱ𝒢 𝑐  is defined with the vertex 

set: V(ℐℱ𝒢 ×max ℐℱ𝒢 𝑐 ) = V ×max V, there exists an edge between the 

two vertices (𝓊1,𝓋1) and (𝓊2,𝓋2) in ℐℱ𝒢 ×max ℐℱ𝒢 𝑐  if and only if:

(𝓊1,𝓊2) ∈ E(ℐℱ𝒢 ) or (𝓋1,𝓋2) ∈ E(ℐℱ𝒢 𝑐 ).

Assume ℐℱ𝒢  is a complete ℐℱ𝒢 . Then, every pair of distinct ver­

tices in ℐℱ𝒢  is connected by an edge: E(ℐℱ𝒢 ) = {(𝓍,𝓎) ∣ 𝓍,𝓎 ∈
V,𝓍 ≠ 𝓎}. Since ℐℱ𝒢 𝑐  is its complement, it contains no edges: 

ℰ (ℐℱ𝒢 𝑐 ) = ∅. Now, there is an edge between the maximal product 

(𝓊1,𝓋1) and (𝓊2,𝓋2) if (𝓊1,𝓊2) ∈ E(ℐℱ𝒢 ), or (𝓋1,𝓋2) ∈ E(ℐℱ𝒢 𝑐 ). 
Since E(ℐℱ𝒢 𝑐 ) = ∅, the converse is true. However, since ℐℱ𝒢  is 

complete, for any pair (𝓊1,𝓊2), an edge always exists in ℐℱ𝒢 . Hence 

E(ℐℱ𝒢 ×max ℐℱ𝒢 𝑐 ) = ∅.
Conversely, let E(ℐℱ𝒢 ×max ℐℱ𝒢 𝑐 ) = ∅. This means no edges exist 

in the maximal product of ℐℱ𝒢  so for every pair (𝓊1,𝓋1) and (𝓊2,𝓋2):

(𝓊1,𝓊2) ∉ E(ℐℱ𝒢 ) and (𝓋1,𝓋2) ∉ E(ℐℱ𝒢 𝑐 ).

This condition holds for all vertex pairs if ℐℱ𝒢  is complete, 

E(ℐℱ𝒢 𝑐 ) = ∅.

Thus, E(ℐℱ𝒢 ×max ℐℱ𝒢 𝑐 ) = ∅ if and only if ℐℱ𝒢  is a complete 

ℐℱ𝒢 , proving the theorem.

Theorem 2. The maximal product of two connected intuitionistic fuzzy 

graphs is always a connected intuitionistic fuzzy graph.

Proof. Let 𝒢1 = (V1,E1, ̂̂𝜇1, ̂̂𝜈1) and 𝒢2 = (V2,E2, 𝜇̂2, 𝜈̂2) be two con­

nected ℐℱ𝒢 , where: 𝜇̂1 ∶ E1 → [0, 1] and 𝜈̂1 ∶ E1 → [0, 1] and 

𝜇̂2 ∶ E2 → [0, 1] and 𝜈̂2 ∶ E2 → [0, 1] represent the membership and 

non-membership functions in 𝒢1and and 𝒢2 respectively. The under­

lying crisp graphs of 𝒢1 and 𝒢2 are denoted by 𝒢 ∗
1 = (V1,E1) and 

𝒢 ∗
2 = (V2,E2), respectively.

Let V1 = {𝓊1,𝓊2,… ,𝓊𝑚} and V2 = {𝓋1,𝓋2,… ,𝓋𝑛}. Since 𝒢1 and 𝒢2
are connected, we have:

𝜇̂max
1 (𝓊𝑖,𝓊𝑗 ) > 0, ∀𝓊𝑖,𝓊𝑗 ∈ V1

𝜇̂max
2 (𝓋𝑖,𝓋𝑗 ) > 0, ∀𝓋𝑖,𝓋𝑗 ∈ V2

Consider the maximal product of 𝒢1 and 𝒢2, denoted as 𝒢 =
(V,E, 𝜇̂, 𝜈̂). The vertex set of 𝒢  is given by:

V = V1 × V2 = {(𝓊𝑖,𝓋𝑗 ) ∣ 𝓊𝑖 ∈ V1,𝓋𝑗 ∈ V2}

𝜇̂((𝓊𝑖,𝓋𝑗 ), (𝓊𝑘,𝓋𝑙)) = max{min(𝜇̂1(𝓊𝑖,𝓊𝑘), 𝜇̂2(𝓋𝑗 ,𝓋𝑙))}

𝜈̂((𝓊𝑖,𝓋𝑗 ), (𝓊𝑘,𝓋𝑙)) = min{max(𝜈̂1(𝓊𝑖,𝓊𝑘), 𝜈̂2(𝓋𝑗 ,𝓋𝑙))}

Now, consider the 𝓂 subgraphs of 𝒢 , where each subgraph has 

vertex sets:

V𝑖 = {(𝓊𝑖,𝓋1), (𝓊𝑖,𝓋2),… , (𝓊𝑖,𝓋𝑛)}, 𝑖 = 1, 2,… ,𝓂.

Every subgraph is connected by the same first component, 𝓊𝑖. Since 

𝒢2 is connected, every 𝓋𝑗  is adjacent to at least one other vertex in V2.

Similarly, since 𝒢1 is connected, each 𝓊𝑖 is adjacent to at least one 

vertex in V1. Thus, there exists at least one edge between any two 

subgraphs, ensuring that:

𝜇̂((𝓊𝑖,𝓋𝑗 ), (𝓊𝑘,𝓋𝑙)) > 0, ∀(𝓊𝑖,𝓋𝑗 ), (𝓊𝑘,𝓋𝑙) ∈ E.

Therefore, 𝒢  is a connected ℐℱ𝒢 .

Theorem 3. Let 𝒢1 = (V1,E1, 𝜇̂1, 𝜈̂1) be a partially regular intuitionistic 

fuzzy graph and 𝒢2 = (V2,E2, 𝜇̂2, 𝜈̂2) be an intuitionistic fuzzy graph such 

that

𝜎1 ≤ 𝜇̂2, and 𝜎2is a constant function with value 𝑐.

Then, the maximal product 𝒢1 ×𝑀 𝒢2 is regular if and only if 𝒢2 is regular.

Proof. Let 𝒢1 = (V1,E1, 𝜇̂1, 𝜈̂1) and 𝒢2 = (V2,E2, 𝜇̂2, 𝜈̂2) be two ℐℱ𝒢 . 

The maximal product of 𝒢1 and 𝒢2 is defined as:

V(𝒢1 ×𝑀 𝒢2) = V1 × V2.

The edge set is determined by the condition that there is an edge between 

(𝓊1,𝓋1) and (𝓊2,𝓋2) if and only if:

(𝓊1 = 𝓊2)and (𝓋1,𝓋2) ∈ E2, or (𝓋1 = 𝓋2)and (𝓊1,𝓊2) ∈ E1.

Since 𝒢1 is partially regular, every vertex 𝓊 ∈ V1 has a constant 

degree in its regular subgraph. Given that 𝜎1 ≤ 𝜇̂2, the degree of any 

vertex (𝓊,𝓋) in 𝒢1 ×𝑀 𝒢2 depends on the degrees of 𝓊 in 𝒢1 and 𝓋 in 𝒢2.

Now, assume that 𝒢1 ×𝑀 𝒢2 is regular. This means that for any two 

vertices (𝓊1,𝓋1) and (𝓊2,𝓋2), their degrees must be equal:

𝑑𝒢1×𝑀𝒢2
(𝓊1,𝓋1) = 𝑑𝒢1×𝑀𝒢2

(𝓊2,𝓋2).

All vertices in V1 have the same degree contribution since 𝜎2 is a constant 

function with value of 𝑐.
Thus, for 𝒢1 ×𝑀 𝒢2 to be regular, the degree of each vertex 𝓋 ∈ V2

in 𝒢2 must likewise be constant, i.e. 𝒢2 must be regular.

Conversely, if 𝒢2 is regular, then the degree 𝑑𝒢2
(𝓋) is constant for 

every 𝓋 ∈ V2. The degree of each 𝓊 ∈ V1 in its regular subgraph is 

constant. Since 𝒢1 is partially regular. As a result, 𝒢1 ×𝑀 𝒢2 is a regular 

ℐℱ𝒢  with a constant degree for each vertex.

Hence, the maximal product of 𝒢1 ×𝑀 𝒢2 is regular if and only if 𝒢2
is regular.

5.1 . Flowchart for 𝒞ℛ𝒞𝓈 of ℐℱℒ𝒢
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5.2 . Flowchart for 𝒞ℛ𝒞𝓈 of complement of ℐℱℒ𝒢

6 . Applications

The applications of 𝒞ℛ𝒞𝓈 in the analysis of line ℐℱ𝒢  and their 

complements of line ℐℱ𝒢  offer researchers a powerful tool for ex­

ploring and modelling complex relationships between variables. This 

methodology is particularly valuable in healthcare research, especially 

in predicting diabetes risk, as it provides a deeper understanding of 

the inter-dependencies between factors such as glucose levels, blood 

pressure, BMI, and other key health indicators. Researchers can use 

ℐℱℒ𝒢  to visually and mathematically depict positive correlations be­

tween attributes. For instance, a high correlation between glucose and 

BMI helps confirm that patients with elevated glucose levels are like­

lier to have a higher BMI, which is crucial for identifying primary risk 

factors. Regression coefficients on the ℐℱℒ𝒢  also aid in building pre­

dictive models, allowing researchers to predict outcomes like diabetes 

risk based on key attributes. When the regression coefficient between 

glucose and the outcome is high, glucose is a strong predictor, help­

ing researchers design algorithms for early diagnosis and intervention. 

Furthermore, analysing direct relationships through the line ℐℱ𝒢  al­

lows researchers to study causality, such as how higher glucose levels 

lead to a higher likelihood of developing diabetes, and therefore focus 

on managing glucose levels in at-risk populations. The complement of 

ℐℱℒ𝒢  enables researchers to identify indirect relationships, which can 

be equally important. Sometimes, the connection between attributes like 

BMI and blood pressure may not be straightforward. The complements of 

ℐℱℒ𝒢  highlight instances where expected relationships break down, 

such as when a person with a high BMI does not show elevated blood 

pressure, helping researchers understand the anomalies and exceptions. 

Moreover, the complement ℐℱℒ𝒢  uncovers complex interactions that 

might not be immediately visible in the original graph. For example, 

attributes like skin thickness, which may show weak relationships in 

ℐℱℒ𝒢 , can reveal hidden risk factors when analysed in the comple­

ment of ℐℱℒ𝒢 . This deeper exploration of indirect relationships can 

uncover new or overlooked risk factors for conditions like diabetes, 

improving understanding of the disease’s complex aetiology. Anomaly 

detection is another significant application of the complement of line 

ℐℱ𝒢 . In healthcare datasets, cases often deviate from the expected 

patterns, such as patients with high glucose but normal BMI. Using 

non-membership values in the complement of ℐℱℒ𝒢 , researchers can 

identify these anomalies, which may point to previously unrecognised 

risk factors or conditions. This can lead to the early detection of new 

Table 2 

Intuitionistic fuzzy table for the given dataset.

Row
BMI Glucose Blood Pressure Skin Thickness Insulin

(𝜇̂, 𝜈̂) (𝜇̂, 𝜈̂) (𝜇̂, 𝜈̂) (𝜇̂, 𝜈̂) (𝜇̂, 𝜈̂)

1 (1.0, 0.0) (0.975, 0.025) (0.8, 0.2) (0.4, 0.6) (0.7, 0.3)

2 (0.5, 0.5) (0.8, 0.2) (0.6, 0.4) (0.3, 0.7) (0.0, 1.0)

3 (0.7, 0.3) (0.9, 0.1) (0.7, 0.3) (0.2, 0.8) (0.6, 0.4)

4 (0.2, 0.8) (0.85, 0.15) (0.4, 0.6) (0.0, 1.0) (0.0, 1.0)

5 (0.2, 0.8) (0.95, 0.05) (0.6, 0.4) (0.5, 0.5) (0.0, 1.0)

patterns or conditions, such as individuals with low insulin levels and 

high BMI exhibiting higher diabetes risk, which might not be immedi­

ately apparent through standard correlation analysis. Table 2 provides 

the dataset of the five diabetes patients.

membership values =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1.0 0.975 0.8 0.4 0.7

0.5 0.8 0.6 0.3 0.0

0.7 0.9 0.7 0.2 0.6

0.2 0.85 0.4 0.0 0.0

0.2 0.95 0.6 0.5 0.0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

non- membership values =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.0 0.025 0.2 0.6 0.3

0.5 0.2 0.4 0.7 1.0

0.3 0.1 0.3 0.8 0.4

0.8 0.15 0.6 1.0 1.0

0.8 0.05 0.4 0.5 1.0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

To compute the correlation coefficient between membership and 

non-membership functions using energy and weight score:

= 3.191
3.191

= 1.00

Relationship between 𝒞ℛ𝒞 s of membership and non-membership func­

tions:

√

0.156 × 6.383 = 0.99

The ℐℱℒ𝒢  allows researchers to identify key predictors of health out­

comes, such as BMI, glucose, blood pressure, skin thickness, and insulin. 

This has been efficiently represented using heatmaps that show the sig­

nificance of features and their relationships as shown in Figs. 6 and 7. 

Analysing the 𝒞ℛ𝒞𝓈 of ℐℱℒ𝒢  and their complement, is highly ben­

eficial for optimising predictive models. Researchers can prioritise the 

most influential features, leading to more accurate predictive models. 

The complement of ℐℱℒ𝒢  is valuable in assessing secondary predic­

tors that may not be immediately apparent. For example, suppose that 

skin thickness and insulin function appear weakly related to the out­

come in ℐℱℒ𝒢  but show a stronger relationship in the complement. 

Researchers can refine their predictive models to incorporate these 

secondary influences. This iterative model evaluation and adjustment 

process ensures that predictive models are robust and can adapt to new 

insights, improving prediction accuracy in real-world scenarios. The 

visual representation provided by ℐℱ𝒢  helps researchers better under­

stand complex data relationships. These graphs show both the strengths 

(membership) and weaknesses (nonmembership) of connections be­

tween attributes, providing an intuitive and comprehensive framework 

for analysis. The combination of ℐℱℒ𝒢  and its complement provides 

researchers with a complete understanding of the data, showcasing both 

significant direct relationships and subtle indirect interactions.

Finally, the insights gained from the correlation and regression analy­

sis of ℐℱℒ𝒢  have significant implications for healthcare interventions. 

By understanding both strong and weak relationships between at­

tributes, researchers can design more targeted and effective healthcare 
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Fig. 6. Heatmap of ℐℱℒ𝒢  using membership values.

Fig. 7. Heatmap of ℐℱℒ𝒢  using non-membership values.

interventions. For example, if glucose and skin thickness are strongly 

correlated, interventions can focus on managing both glucose levels and 

weight to prevent diabetes. Insights from the complement graph might 

suggest that factors like age or diabetes pedigree function are more criti­

cal in certain subgroups, allowing for personalised healthcare strategies.

This heatmap can be used to visualize the correlation matrix of mem­

bership ℐℱ𝒢 , between a selection of the medical features Insulin, BMI, 

Skin Thickness, Blood Pressure and others, and the Outcome (presence 

of diabetes) as shown in Fig. 8. The strength of correlations is reflected 

according to the colour gradient, with lighter tones showing stronger 

positive correlations. As an example, the BMI is strongly correlated with 

Outcome, but Insulin and Skin Thickness demonstrate a low correlation. 

Though in this case some of the features were selected, other features 

(including Glucose, Age, and Pregnancies) can be utilized to conduct 

a broader analysis. Furthermore, the insights provided by these graphs 

can inform resource allocation decisions. Researchers can prioritise re­

sources for patients at higher risk based on the most influential attributes 

identified from the analysis, ensuring that interventions are both ef­

fective and efficiently targeted. Overall, the applications of 𝒞ℛ𝒞𝓈 in 

ℐℱℒ𝒢  and their complements offer a comprehensive, insightful, and 

actionable approach to healthcare research, particularly in the area of 

diabetes risk prediction and management.
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Fig. 8. Correlation heatmap showing relationships among selected medical parameters in the ℐℱ𝒢 .

7 . Conclusion

The study of 𝒞ℛ𝒞𝓈 of ℐℱℒ𝒢  and their complement can suc­

cessfully evaluate complex networks utilizing the maximal product. 

Such models help identify weak connections, leading to targeted net­

work improvement efforts. This model can be applied to specialised 

marketing tasks such as identifying influential users, improving cam­

paign techniques, and analysing public health and group behaviour. 

Using ℐℱℒ𝒢 , firms can derive insights into consumer behaviour, 

sentiment analysis, and disease dissemination patterns, thereby opti­

mising decision-making. The framework ℐℱℒ𝒢  identifies the most 

important predictors of every health outcome, including glucose lev­

els, blood pressure, skin thickness, and insulin levels. The complement 

of ℐℱℒ𝒢  is useful in evaluating secondary predictors that may not 

be easily identified. The complement of ℐℱℒ𝒢  allows one to anal­

yse secondary predictors, which may not be visible at first glance but 

have a major effect on improving prediction models. The effectiveness 

of this strategy has been demonstrated successfully using heatmaps, 

which display the relevance of features and their relationship to one an­

other, offering a visual representation of complex data. Future research 

opportunities include developing complex algorithms to govern large-

scale social networks while enhancing computational efficiency and 

scalability. Exploring dynamic ℐℱℒ𝒢  may enable real-time network 

interactions, leading to more flexible and responsive decision-making 

paradigms. Additionally, incorporating machine learning approaches 

into ℐℱℒ𝒢  can improve forecast accuracy and bring new insights into 

dynamic network architecture. Although the proposed approach effec­

tively analyses the correlation and regression coefficients of ℐℱ𝒢 , it 

has several drawbacks. The model has been evaluated using a small-

scale healthcare dataset, and its accuracy depends on the correctness 

of the membership and non-membership characteristics. Furthermore, 

the framework currently addresses static systems, and computational 

complexity increases with vast networks. This study may be expanded 

upon in future research to include large-scale application areas and 

dynamic networks.
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