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ABSTRACT

This paper explores the applications of Intuitionistic Fuzzy Graphs (¥ % &) representing uncertainty and impre-
cision in complex systems through the analysis of correlation and regression coefficients (¢ 2% s) with focus on
the maximal product. The study examines the relationships between the edges of the graph by analysing the
line graph derived from .# # ¥, facilitating a deeper understanding of the network’s dynamics. The construction
of adjacency matrices that incorporate both membership and non-membership values enables the calculation of
energy and weight scores, quantifying the strength and predictive correlations among variables. Furthermore,
the study discusses the complement of Intuitionistic Fuzzy Line Graphs (¥ % £¥), using maximal product anal-
ysis to uncover concealed relationships within the network. MATLAB is used to generate heatmaps that visually
represent the importance of correlation to critical network characteristics. The practical importance is demon-
strated in a healthcare context, particularly in predicting diabetes risk by modelling factors of glucose levels,
body mass index (BMI), and insulin. Heatmaps can be effectively visualized to show interrelationships between
these features, aiding in the interpretation of network patterns.

1. Introduction

Fuzzy graph (Fg) theory is a generalisation of the classical graph
theory, introduced by A. Rosenfeld [1] in 1975, which incorporates
fuzziness to account for uncertainty and imprecise relationships among
models in graph structures. The origin of Intuitionistic Fuzzy Graphs
(FFZ) traces back to 1986, when Krassimir Atanassov [2] introduced
intuitionistic fuzzy sets (IFS), which generalised Zadeh’s [3] famous
fuzzy sets. Its applications lie in addressing issues in social networks,
decision-making, and optimisation problems. The key operations in
graph theory, such as line graphs and complement graphs, are essen-
tial for understanding the relationships within networks. A line graph
turns the edges into vertices of a graph, providing insights into edge
adjacencies. Complement F, on the other hand, emphasises association
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by depicting edges that were not formed in a graph. This can only be
realised while acquiring further significance along with 7, as these re-
veal an uncertainty in some degree of ordinality among vertices. This
paper will strive to discuss in detail the structure of Intuitionistic Fuzzy
Line Graphs (F# £¥) and a complement of .# ¥ in developing com-
plex networks as representations under any uncertain scenario. Akula
and Basha [4] have shown the regression coefficient measure of ¥ % &
and its applications in agricultural planning to determine soil choice
for the superior paddy crop, with efficacy proven through practical,
scenario-based applications. Akula and Shaik [5] investigated correla-
tion coefficient measures of .## ¢ and their applications to financial
decision-making, such as money investment schemes, providing insights
into applying Fy in economics. Bajaj and Kumar [6] proposed a novel
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\begin {equation*}\mathcal {K}(\mathbb {S}_i^{(r)}, \mathbb {G}_i^{(r)}) = \sqrt {\mathbb {R}_{(\mathbb {G}_i^{(r)}, \mathbb {S}_i^{(r)})} \times \mathbb {R}_{(\mathbb {S}_i^{(r)}, \mathbb {G}_i^{(r)})}}\end {equation*}


$\mathscr {IFG}$


$\mathbb {M}_1$


$\mathbb {M}_2$


$\mathbb {M}_1\times _m\mathbb {M}_2$


\begin {align*}\mathcal {E}(\mathbb {G_L}_1^{(r)}) = \begin {pmatrix} 6.8764 & 2.1362 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


\begin {equation*}\mathbb {A}^{(r)}_{\hat {\mu }}= \begin {pmatrix} 0 & 0.7 & 0 & 0.7 & 0 & 0 \\[3pt] 0.7 & 0 & 0.7 & 0 & 0.7 & 0 \\[3pt] 0 & 0.7 & 0 & 0 & 0 & 0.7 \\[3pt] 0.7 & 0 & 0 & 0 & 0.6 & 0 \\[3pt] 0 & 0.7 & 0 & 0.6 & 0 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0.6 & 0 \\ \end {pmatrix}\end {equation*}


\begin {equation*}\mathbb {A}^{(r)}_{\hat {\nu }}= \begin {pmatrix} 0 & 0.2 & 0 & 0.2 & 0 & 0 \\[3pt] 0.2 & 0 & 0.2 & 0 & 0.2 & 0 \\[3pt] 0 & 0.2 & 0 & 0 & 0 & 0.2 \\[3pt] 0.2 & 0 & 0 & 0 & 0.3 & 0 \\[3pt] 0 & 0.2 & 0 & 0.3 & 0 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0.3 & 0 \\ \end {pmatrix}\end {equation*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathcal {E}(\mathbb {G}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


\begin {align*}\mathcal {E}(\mathbb {G}_1^{(r)}) = \begin {pmatrix} 5.077 & 1.8142 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {S}_1^{(r)}$


$\mathcal {E}(\mathbb {G}_1^{(r)})$


\begin {align*}\mathcal {W}(\mathbb {S}_1^{(r)}) = \begin {pmatrix} 0.7367 & 0.263 \end {pmatrix}\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$CC(\mathbb {G}_1^{(r)},\mathbb {S}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


$\mathbb {S}_1^{(r)}$


\begin {align*}\text {CC}(\mathbb {G}_1^{(r)},\mathbb {S}_1^{(r)}) =\frac {4.2173}{4.2163} =1.000\\[-24pt]\end {align*}


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathbb {G}_1^{(r)}$


$\mathbb {S}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {G}_1^{(r)}, \mathbb {S}_1^{(r)})} =\frac {4.2173}{29.065}=0.14509\\[-24pt]\end {align*}


$\mathbb {S}_1^{(r)})$


$\mathbb {G}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {S}_1^{(r)}),\mathbb {G}_1^{(r)})} = \frac {4.2173}{0.6118}=6.8932\\[-24pt]\end {align*}


$\mathscr {CRC}$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


$\mathscr {CRCs}$


$\mathbb {M}_1 \times _m \mathbb {M}_2$


\begin {align*}\mathcal {K}(\mathbb {G}_1^{(r)}, \mathbb {S}_1^{(r)}) = \sqrt {{0.1450}\times {0.6118}}=1.000\\[-24pt]\end {align*}


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFG}$


$L(\mathbb {G}_1)$


$\left ( (\sigma _{L(\mathbb {G}_1)}^1, \sigma _{L(\mathbb {G}_1)}^2), (\hat {\mu }_{L(\mathbb {G}_1)}^1, \hat {\mu }_{L(\mathbb {G}_1)}^2) \right )$


$L(\mathbb {G}_2)$


$\left ( (\sigma _{L(\mathbb {G}_2)}^1, \sigma _{L(\mathbb {G}_2)}^2), (\hat {\mu }_{L(\mathbb {G}_2)}^1, \hat {\mu }_{L(\mathbb {G}_2)}^2) \right )$


$\mathscr {IFLG}$


$\mathbb {G}_1$


$(\mathscr {V}_1, \mathscr {E}_1)$


$\mathbb {G}_2$


$(\mathscr {V}_2, \mathscr {E}_2)$


$\mathscr {\mathscr {IFG}}$


$\mathscr {IFLG}$


$L(\mathbb {G}_1)$


$L(\mathbb {G}_2)$


$L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)$


${\mathbb {M}_\mathbb {L}}_1\times _m{\mathbb {M}_\mathbb {L}}_2$


\begin {align*}& \mathscr {V}_{L(\mathbb {G}_1)} \times _m \mathscr {V}_{L(\mathbb {G}_2)} = \{(\mathscr {s}_{\mathscr {x}}, \mathscr {s}_{\mathscr {y}}) \mid \mathscr {s}_{\mathscr {x}} \in \mathscr {V}_{L(\mathbb {G}_1)}, \mathscr {s}_{\mathscr {y}} \in \mathscr {V}_{L(\mathbb {G}_2)} \}.\\[3pt] & \mathscr {E}_{L(\mathbb {G}_1)} \times _m \mathscr {E}_{L(\mathbb {G}_2)} = \{((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2})) \mid \mathscr {s}_{\mathscr {x}_1}\\ &\qquad \qquad \qquad \quad \, = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)} \text {or } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)} \}.\\[3pt] & \sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1}) = \sigma _{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1}) \vee \sigma _{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1}),\\[3pt] & \sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {x}_1},\mathscr {s}_{\mathscr {y}_1}) = \sigma _{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1}) \wedge \sigma _{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1}),\end {align*}


$(\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1}) \in \mathscr {V}_{L(\mathbb {G}_1)} \times \mathscr {V}_{L(\mathbb {G}_2)}$


$((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2})) \in \mathscr {E}_{L(\mathbb {G}_1)} \times _m \mathscr {E}_{L(\mathbb {G}_2)}$


\begin {align*}&\sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^1((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2}))\\[4pt] &\qquad = \begin {cases} \sigma _{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1}) \vee \hat {\mu }_{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2}), & \text {if } \mathscr {s}_{\mathscr {x}_1} = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)}, \\[4pt] \hat {\mu }_{L(\mathbb {G}_1)}^1(\mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2}) \vee \sigma _{L(\mathbb {G}_2)}^1(\mathscr {s}_{\mathscr {y}_1}), & \text {if } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)}. \end {cases}\\ &\sigma _{L(\mathbb {G}_1) \times _m L(\mathbb {G}_2)}^2((\mathscr {s}_{\mathscr {x}_1}, \mathscr {s}_{\mathscr {y}_1})(\mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_2}))\\[4pt] &\qquad = \begin {cases} \sigma _{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1}) \wedge \hat {\mu }_{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2}), & \text {if} \mathscr {s}_{\mathscr {x}_1} = \mathscr {s}_{\mathscr {x}_2}, \mathscr {s}_{\mathscr {y}_1} \mathscr {s}_{\mathscr {y}_2} \in \mathscr {E}_{L(\mathbb {G}_2)}, \\[4pt] \hat {\mu }_{L(\mathbb {G}_1)}^2(\mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2}) \wedge \sigma _{L(\mathbb {G}_2)}^2(\mathscr {s}_{\mathscr {y}_1}), & \text {if } \mathscr {s}_{\mathscr {y}_1} = \mathscr {s}_{\mathscr {y}_2}, \mathscr {s}_{\mathscr {x}_1} \mathscr {s}_{\mathscr {x}_2} \in \mathscr {E}_{L(\mathbb {G}_1)}. \end {cases}\end {align*}


$\mathscr {IFG}$


$\mathbb {M}_1\times _m\mathbb {M}_2$


$\mathscr {IFLG}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


\begin {equation*}\mathbb {A}^{L}_{\hat {\mu }} = \begin {pmatrix} 0 & 0.7 & 0.7 & 0.7 & 0 & 0 & 0 \\[2pt] 0.7 & 0 & 0 & 0.7 & 0.7 & 0 & 0 \\[2pt] 0.7 & 0 & 0 & 0 & 0 & 0.7 & 0 \\[2pt] 0.7 & 0.7 & 0 & 0 & 0 & 0.7 & 0.7 \\[2pt] 0 & 0.7 & 0 & 0 & 0 & 0 & 0.7 \\[2pt] 0 & 0 & 0.7 & 0.7 & 0 & 0 & 0.6 \\[2pt] 0 & 0 & 0 & 0.7 & 0.7 & 0.6 & 0 \end {pmatrix}\end {equation*}


\begin {equation*}\mathbb {A}^{L}_{\hat {\nu }} = \begin {pmatrix} 0 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 \\[2pt] 0.2 & 0 & 0 & 0.2 & 0.2 & 0 & 0 \\[2pt] 0.2 & 0 & 0 & 0 & 0 & 0.2 & 0 \\[2pt] 0.2 & 0.2 & 0 & 0 & 0 & 0.2 & 0.2 \\[2pt] 0 & 0.2 & 0 & 0 & 0 & 0 & 0.2 \\[2pt] 0 & 0 & 0.2 & 0.2 & 0 & 0 & 0.3 \\[2pt] 0 & 0 & 0 & 0.2 & 0.2 & 0.3 & 0 \end {pmatrix}\end {equation*}


\begin {equation*}(\mathscr {u}_1,\mathscr {u}_2) \in \mathbb {E}(\mathscr {IFG}) \quad \text {or} \quad (\mathscr {v}_1, \mathscr {v}_2) \in \mathbb {E}(\mathscr {IFG}^c).\end {equation*}


${\mathbb {M}_\mathbb {L}}_1 \times _m{\mathbb {M}_\mathbb {L}}_2$


$\mathcal {E}(\mathbb {G_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathbb {S_L}_1^{(r)}$


$\mathcal {E}(\mathbb {G_L}_1^{(r)})$


\begin {align*}\mathcal {W_L}(\mathbb {S_L}_1^{(r)}) = \begin {pmatrix} 0.7629 & 0.2370 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$CC(\mathbb {G_L}_1^{(r)},\mathbb {S_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


$\mathbb {S_L}_1^{(r)}$


\begin {align*}\text {CC}(\mathbb {G_L}_1^{(r)},\mathbb {S_L}_1^{(r)}) =\frac {2.655}{2.652} =1.000\\[-24pt]\end {align*}


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathbb {G_L}_1^{(r)}$


$\mathbb {S_L}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {G_L}_1^{(r)}, \mathbb {S_L}_1^{(r)})} =\frac {2.655}{215.748}=0.01230\end {align*}


$\mathbb {S_L}_1^{(r)})$


$\mathbb {G_L}_1^{(r)}$


\begin {align*}\mathbb {R}_{(\mathbb {S_L}_1^{(r)}),\mathbb {G_L}_1^{(r)})} = \frac {2.655}{0.03265}=81.316\\[-24pt]\end {align*}


$\mathscr {CRC}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


$\mathscr {CRCs}$


${\mathbb {M}_\mathbb {L}}_1 \times _m {\mathbb {M}_\mathbb {L}}_2$


\begin {equation*}\mathcal {K}(\mathbb {G_L}_1^{(r)}, \mathbb {S_L}_1^{(r)}) = \sqrt {{0.0123}\times {81.316}}=1.000\end {equation*}


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


${\mathbb {M}_\mathbb {L}}^{c}_1 \times _m {\mathbb {M}_\mathbb {L}}^{c}_2$


\begin {equation*}\mathbb {A}^{c(L)}_{\hat {\mu }} = \begin {pmatrix} 0 & 0 & 0 & 0 & 0.7 & 0.6 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0 & 0.6 & 0.6 \\[3pt] 0 & 0.7 & 0 & 0.7 & 0.7 & 0 & 0.6 \\[3pt] 0 & 0 & 0.7 & 0 & 0.7 & 0 & 0 \\[3pt] 0.7 & 0 & 0.7 & 0.7 & 0 & 0.7 & 0 \\[3pt] 0.6 & 0.6 & 0 & 0 & 0.7 & 0 & 0 \\[3pt] 0.6 & 0.6 & 0.6 & 0 & 0 & 0 & 0 \\ \end {pmatrix}\end {equation*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


\begin {equation*}\mathbb {A}^{c(L)}_{\hat {\nu }} = \begin {pmatrix} 0 & 0 & 0 & 0 & 0.2 & 0.3 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0 & 0.3 & 0.3 \\[3pt] 0 & 0.2 & 0 & 0.2 & 0.2 & 0 & 0.3 \\[3pt] 0 & 0 & 0.2 & 0 & 0.2 & 0 & 0 \\[3pt] 0.2 & 0 & 0.2 & 0.2 & 0 & 0.2 & 0 \\[3pt] 0.3 & 0.3 & 0 & 0 & 0.2 & 0 & 0 \\[3pt] 0.3 & 0.3 & 0.3 & 0 & 0 & 0 & 0 \\ \end {pmatrix}\end {equation*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) = \begin {pmatrix} 6.8752 & 2.5709 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


$\mathcal {E}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


\begin {align*}\mathcal {W}^c_\mathcal {L}({\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) = \begin {pmatrix} 0.7278 & 0.2721 \end {pmatrix}\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$CC({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)},{\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}\text {CC}({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)},{\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}) =\frac {3.5000}{5.7025} =0.61\\[-24pt]\end {align*}


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}{\mathbb {R}^{\mathbbm {c}}}_{({\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}, {\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})} =\frac {3.5000}{53.877}=0.0649\\[-24pt]\end {align*}


${\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})$


${\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}$


\begin {align*}{\mathbb {R}^{\mathbbm {c}}}_{({\mathbb {S}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)}),{\mathbb {G}^{\mathbbm {c}}_{\mathbb {L}}}_1^{(r)})} = \frac {3.5000}{0.7769}=4.5050\\[-24pt]\end {align*}


$\mathscr {CRC}$


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


$\mathscr {CRCs}$


${\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_1 \times _m {\mathbb {M}^{\mathbbm {c}}_{\mathbb {L}}}_2$


\begin {equation*}\mathcal {K}(\mathbb {G_L}_1^{c(r)}, \mathbb {S_L}_1^{c(r)}) = \sqrt {{0.0649}\times {4.5050}}=0.5406\end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}^c$


\begin {equation*}\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset \end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {G} = (\mathbb {V}, \mathbb {E}, \hat {\mu }, \hat {\nu })$


$\mathscr {IFG}$


$\hat {\mu }: \mathbb {E} \to [0,1]$


$\hat {\nu }: \mathbb {E} \to [0,1]$


$\mathscr {IFG}^c$


\begin {equation*}\hat {\mu }^c(e) = 1 - \hat {\mu }(e), \quad \hat {\nu }^c(e) = 1 - \hat {\nu }(e), \quad \forall e \in \mathbb {E}.\end {equation*}


$\mathscr {IFG}$


$\mathscr {IFG}^c$


$\mathbb {V}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \mathbb {V} \times _{\max } \mathbb {V},$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


$\mathscr {IFG} \times _{\max } \mathscr {IFG}^c$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG}) = \{(\mathscr {x,y}) \mid \mathscr {x, y} \in \mathbb {V}, \mathscr {x} \neq \mathscr {y} \}.$


$\mathscr {IFG}^c$


$\mathscr {E}(\mathscr {IFG}^c) = \emptyset .$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


$(\mathscr {u}_1,\mathscr {u}_2) \in \mathbb {E}(\mathscr {IFG})$


$({\mathscr {v}_1, \mathscr {v}_2}) \in \mathbb {E}(\mathscr {IFG}^c)$


$\mathbb {E}(\mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$(\mathscr {u}_1,\mathscr {u}_2)$


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset .$


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}(\mathscr {u}_1,\mathscr {u}_2) \notin \mathbb {E}(\mathscr {IFG}) \quad \text {and} \quad (\mathscr {v}_1, \mathscr {v}_2) \notin \mathbb {E}(\mathscr {IFG}^c).\end {equation*}


$\mathscr {IFG}$


$\mathbb {E}(\mathscr {IFG}^c) = \emptyset $


$\mathbb {E}(\mathscr {IFG} \times _{\max } \mathscr {IFG}^c) = \emptyset $


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\hat {\mu }}_1, \hat {\hat {\nu }}_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


$\mathscr {IFG}$


$\hat {\mu }_1: \mathbb {E}_1 \to [0,1]$


$\hat {\nu }_1: \mathbb {E}_1 \to [0,1]$


$\hat {\mu }_2: \mathbb {E}_2 \to [0,1]$


$\hat {\nu }_2: \mathbb {E}_2 \to [0,1]$


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G}_1^* = (\mathbb {V}_1, \mathbb {E}_1)$


$\mathscr {G}_2^* = (\mathbb {V}_2, \mathbb {E}_2)$


$\mathbb {V}_1 = \{\mathscr {u}_1, \mathscr {u}_2, \dots , \mathscr {u}_m\}$


$\mathbb {V}_2 = \{\mathscr {v}_1, \mathscr {v}_2, \dots , \mathscr {v}_n\}$


$\mathscr {G}_1$


$\mathscr {G}_2$


\begin {align*}& \hat {\mu }_1^{\max }(\mathscr {u}_i, \mathscr {u}_j) > 0, \quad \forall \mathscr {u}_i, \mathscr {u}_j \in \mathbb {V}_1\\[2pt] & \hat {\mu }_2^{\max }(\mathscr {v}_i, \mathscr {v}_j) > 0, \quad \forall \mathscr {v}_i, \mathscr {v}_j \in \mathbb {V}_2\end {align*}


$\mathscr {G}_1$


$\mathscr {G}_2$


$\mathscr {G} = (\mathbb {V}, \mathbb {E}, \hat {\mu }, \hat {\nu })$


$\mathscr {G}$


\begin {align*}& \mathbb {V} = \mathbb {V}_1 \times \mathbb {V}_2 = \{(\mathscr {u}_i, \mathscr {v}_j) \mid \mathscr {u}_i \in \mathbb {V}_1, \mathscr {v}_j \in \mathbb {V}_2\}\\[2pt] & \hat {\mu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) = \max \{\min (\hat {\mu }_1(\mathscr {u}_i, \mathscr {u}_k), \hat {\mu }_2(\mathscr {v}_j, \mathscr {v}_l)) \}\\[2pt] & \hat {\nu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) = \min \{\max (\hat {\nu }_1(\mathscr {u}_i, \mathscr {u}_k), \hat {\nu }_2(\mathscr {v}_j, \mathscr {v}_l)) \}\end {align*}


$\mathscr {m}$


$\mathscr {G}$


\begin {equation*}\mathbb {V}_i = \{(\mathscr {u}_i, \mathscr {v}_1), (\mathscr {u}_i, \mathscr {v}_2), \dots , (\mathscr {u}_i, \mathscr {v}_n)\}, \quad i = 1, 2, \dots , \mathscr {m}.\end {equation*}


$\mathscr {u}_i$


$\mathscr {G}_2$


$\mathscr {v}_j$


$\mathbb {V}_2$


$\mathscr {G}_1$


$\mathscr {u}_i$


$\mathbb {V}_1$


\begin {equation*}\hat {\mu }((\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l)) > 0, \quad \forall (\mathscr {u}_i, \mathscr {v}_j), (\mathscr {u}_k, \mathscr {v}_l) \in \mathbb {E}.\end {equation*}


$\mathscr {G}$


$\mathscr {IFG}$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\mu }_1, \hat {\nu }_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


\begin {equation*}\sigma _1 \leq \hat {\mu }_2,\quad \text {and}\quad \sigma _2 \text {is a constant function with value } c.\end {equation*}


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {G}_1 = (\mathbb {V}_1, \mathbb {E}_1, \hat {\mu }_1, \hat {\nu }_1)$


$\mathscr {G}_2 = (\mathbb {V}_2, \mathbb {E}_2, \hat {\mu }_2, \hat {\nu }_2)$


$\mathscr {IFG}$


$\mathscr {G}_1$


$\mathscr {G}_2$


\begin {equation*}\mathbb {V}(\mathscr {G}_1 \times _M \mathscr {G}_2) = \mathbb {V}_1 \times \mathbb {V}_2.\end {equation*}


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}(\mathscr {u}_1 = \mathscr {u}_2) \text {and } (\mathscr {v}_1, \mathscr {v}_2) \in \mathbb {E}_2, \quad \text {or} \quad (\mathscr {v}_1 = \mathscr {v}_2) \text {and } (\mathscr {u}_1, \mathscr {u}_2) \in \mathbb {E}_1.\end {equation*}


$\mathscr {G}_1$


$\mathscr {u} \in \mathbb {V}_1$


$\sigma _1 \leq \hat {\mu }_2$


$(\mathscr {u}, \mathscr {v})$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {u}$


$\mathscr {G}_1$


$\mathscr {v}$


$\mathscr {G}_2$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$(\mathscr {u}_1, \mathscr {v}_1)$


$(\mathscr {u}_2, \mathscr {v}_2)$


\begin {equation*}d_{\mathscr {G}_1 \times _M \mathscr {G}_2}(\mathscr {u}_1, \mathscr {v}_1) = d_{\mathscr {G}_1 \times _M \mathscr {G}_2}(\mathscr {u}_2, \mathscr {v}_2).\end {equation*}


$\mathbb {V}_1$


$\sigma _2$


$c$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {v} \in \mathbb {V}_2$


$\mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {G}_2$


$d_{\mathscr {G}_2}(\mathscr {v})$


$\mathscr {v} \in \mathbb {V}_2$


$\mathscr {u}$


$\in $


$\mathbb {V}_1$


$\mathscr {G}_1$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {IFG}$


$\mathscr {G}_1 \times _M \mathscr {G}_2$


$\mathscr {G}_2$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


$\hat {\mu },\hat {\nu }$


\begin {equation*}\text {membership values} = \begin {pmatrix} 1.0 & 0.975 & 0.8 & 0.4 & 0.7 \\[3pt] 0.5 & 0.8 & 0.6 & 0.3 & 0.0 \\[3pt] 0.7 & 0.9 & 0.7 & 0.2 & 0.6 \\[3pt] 0.2 & 0.85 & 0.4 & 0.0 & 0.0 \\[3pt] 0.2 & 0.95 & 0.6 & 0.5 & 0.0 \end {pmatrix}\end {equation*}


\begin {equation*}\text {non- membership values} = \begin {pmatrix} 0.0 & 0.025 & 0.2 & 0.6 & 0.3 \\[3pt] 0.5 & 0.2 & 0.4 & 0.7 & 1.0 \\[3pt] 0.3 & 0.1 & 0.3 & 0.8 & 0.4 \\[3pt] 0.8 & 0.15 & 0.6 & 1.0 & 1.0 \\[3pt] 0.8 & 0.05 & 0.4 & 0.5 & 1.0 \end {pmatrix}\end {equation*}


\begin {equation*}=\frac {3.191}{3.191} =1.00\end {equation*}


$\mathscr {CRC}$


\begin {equation*}\sqrt {{0.156}\times {6.383}}=0.99\end {equation*}


$\mathscr {IFLG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFG}$


$\mathscr {CRCs}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFLG}$


$\mathscr {IFG}$
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intuitionistic fuzzy correlation coefficient for multi-criteria decision-
making, enhancing tools for analysing uncertainty in complex decision
environments. Dey et al. [7] explored operations on the complement of
Fy, contributing to the theoretical understanding of graph complements
and advancing Fy theory. Meenakshi and Mishra [8] studied the max-
imal product of cubic fuzzy graph structures, offering insights into the
structural aspects of F operations. Meenakshi et al. [9]-[10] studied
optimal networks using neutrosophic graph products and their applica-
tions in disease prediction. Meenakshi and Shivangi [11] have studied
the correlation and regression coefficients for SVNGS and their products
with a focus on their MST. Mohamed and Ali [12] analysed the degree
of a vertex in the complement of the maximal product of ¥ % &, provid-
ing a deeper understanding of vertex properties in 7. Mohamed and
Ali [13] also examined the complement of the max product of ¥ F,
contributing significantly to the theoretical understanding of 7 com-
plements. Mordeson and Peng [14] systematically studied the operations
on Fg, laying the foundation for understanding the interplay of various
graph operations. Nagoorgani et al. [15] researched double domination
in S F ¢, establishing a basis for optimisation within network structures.
Reddy and Basha [16] proposed the concept of correlation coefficient of
hesitancy F¢, which can play a significant role in decision-making situ-
ations and problem-solving in complications. Sahoo and Pal [17] have
discussed in detail the various products for .# % ¥, which became a ba-
sis for further investigations on graph operations by Sandeep et al. [18].
It sheds light on the complement of 7 and presents certain remarks
that have been informative in subsequent research on 7y properties.
Talebi and Rashmanlou [19] illustrated complement, isomorphic, and
similar bipolar 7y, by extending their applications in analysing and mod-
elling complex systems. Ye [20] explored another correlation coefficient
between single-valued neutrosophic sets. He proposed a method for
multi-attribute decision-making and addressed uncertainty effectively
by using the correlation coefficients between single-valued neutrosophic
sets. Again, Ye [21] developed more effective correlation coefficients of
IFS, which applied to real-life decision-making challenges, hence push-
ing the fuzzy set theory forward. Yahya Mohamed and Mohamed Ali
[22] calculated the degree of a vertex in the complement of the maximal
product of FF ¥, providing crucial information about vertex proper-
ties in graph complements. Repalle et al. [23] studied interval-valued
SJFZLE as an extension of fuzzy set theory and IFS for dealing with un-
certainty in graph theory. It introduces new definitions, theorems, and
assertions, making significant contributions to the theoretical founda-
tion of F¢,. The study contributes to a better understanding of isomorphic
characteristics and homomorphisms in this setting, marking a new ad-
vance in the field. Repalle et al. [24] introduced interval-valued ¥ # &
as a more generalised application of line graph theory to a fuzzy envi-
ronment. It addresses structural features, linkages to existing 7, models,
and potential applications in uncertainty-based decision-making. Akram
and Davvaz [25] presented strong .¥ # &, which are extensions of ¥ &
that include strength metrics to improve decision-making. Akram [26]
enhanced interval-valued fuzzy line graphs by developing a mathe-
matical framework for investigating F architectures in which edge
uncertainty is expressed as interval values. Kosari et al. [27] studied the
topological indices. Meenakshi and Babujee [28] studied equitable dom-
ination in graphs, which contributed to optimisation in graph-theoretic
structures. Shi et al. [29] studied cubic fuzzy graph connectivity to deter-
mine zones of danger for tsunamis. Khan et al. [30] studied picture fuzzy
hypergraphs in the context of decision-making. Tobaili et al. [31] intro-
duced the edge hub number to characterise influential edges in fuzzy
graphs under uncertain environments. Imran et al. [32] applied novel
Sombor-based indices to . # ¢ operations, showing their usefulness in
modelling and optimising routing in uncertain networks. Talebi et al.
[33] proposed the concept of interval-valued intuitionistic fuzzy soft
graphs, thus providing a flexible framework that could represent uncer-
tainty with higher accuracy. Similarly, Shi et al. [34] explored various
structural properties of cubic fuzzy graphs and also proved the applica-
bility of those in a case study. PK et al. [35] proposed a new concept of
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cubic graph and demonstrated its practical utility through applications.
This paper extends the concepts in the graph theory and offers valuable
insights in the methodological direction of our research. Furthermore,
regular F, have been used to simulate psychology, and domination in
Fy has been applied in medical applications.

1.1. Motivation

The study examined the %% of the complement of the maxi-
mal product of an FFZ¥ and found a positive correlation between
the results. Thus, this approach has significant applications in social
network analysis, where understanding the strength and dynamics of re-
lationships is crucial. Representing relationships between individuals or
groups using ¥ F ¢ is usually accomplished with a high degree of preci-
sion and involves both certainty and ambiguity. The complement of the
maximal product of an .# F Z ¥ allows one to see indirect or hidden in-
teractions in the network that may not be obvious from the structure of
the main graph. The 2% s under fuzzy set conditions have been anal-
ysed, and future research opportunities have been outlined. This work
aims to contribute methods for network optimisation, predictive mainte-
nance, resource allocation, and decision-making processes. The original
contributions of this work are described below.

1.2. Novelty

This research adopts €#2% s for application to .FF¥ through an
original approach to establish a new mathematical model that charac-
terises dependencies in ambiguous and uncertain systems. The research
applies the maximal product method to provide the network assess-
ment capabilities and the prediction accuracy in complex systems. The
present work introduces the line graph analysis of ¥ # & together with
its complementary content as an alternative method to explore edge
interactions. This method reveals the sophisticated network behaviour
that standard graph models often miss. Rephrasing this technique in-
volves producing adjacency matrices that incorporate both membership
and non-membership characteristics as a new approach to measur-
ing network strength. The association and influence evaluation process
becomes more reliable through weight and energy rating systems in
network components. The maximum product framework extended to
SFSFZLE and its complements enables users to discover network pat-
terns and secondary effects that remain invisible to direct graph analysis.
The application proves most beneficial for analysing networks with high
levels of indirect relationships. The importance of ¥ %% and € 2% s is
highlighted by the application of this study to medicine, namely to dia-
betes risk prediction. A new computational approach for risk assessment
and medical diagnosis modelling and analysis of these crucial compo-
nents using Fy, theory. The proposed methodology is adaptable and can
be applied to a variety of fields, including social network research, fi-
nancial risk analysis, and cybersecurity. The use of maximal product
analysis in F F £ ¥ opens up new possibilities for discovering relational
patterns in various datasets. This paper advances the theoretical frame-
work for % & products and introduces a computationally feasible tool
for exploring relational patterns in various datasets. Its methodology is
versatile and can be applied to other areas, including social network
analysis, financial risk analysis, and cybersecurity.

1.3. Structure of the paper

The paper aims to expand the theoretical framework and suggest po-
tential solutions for network optimisation in uncertain environments.
This manuscript is organised as follows: Section 2 presents the basic
definitions relevant to our research. Section 3, examines the €% s
of % ¥ using maximal product. Section 4 focuses on a deeper anal-
ysis of € %2€ s regarding the maximal product of an .F F £ . Section 5
introduces the ¥ 2% s associated with the complement of an .S FZ ¢
using the maximal product. Section 6 discusses the applications of so-
cial network analysis. Section 7 concludes the research and looks ahead
to future efforts. Table 1 summarizes the key notations used in this work.
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Table 1
List of Abbreviations.
Abbreviation Expansion
Fy Fuzzy Graph
IFG Intutionistic Fuzzy Graph
IFS Intutionistic Fuzzy Set
CRC Correlation and Regression Coefficients
IFLG Intutionistic Fuzzy Line Graph

2. Preliminaries

This section presents definitions and some common working termi-
nology through remarks and illustrations.

Definition 1. [3] A fuzzy set R in & is defined by a membership func-
tion pp @ w — [0, 1], which assigns to each element w € 2 a real number
Uz (w) representing the degree of membership of w in R. The fuzzy set
R is represented as

R = {(w, uzpw)) | w e I},

where uj (w) represents the value between 0 and 1.

Definition 2. [1] A Fuzzy graph (Fg), G = (o, /i) is a pair of functions,
with vertex set ¥ and edge set £. Leto : 7 — {0,1} and fi : VXV —
{0, 1} such that f(«, ») < 6(«) A o(v) for every w,v € 7.

Definition 3. [2] An IFS B = (x,/p(x),Vp(x))cx in a universe of
discourse X is characterised by a membership function /i and a non-
membership function 9, as follows: gz : £ - [0,1], V5 : X — [0,1],
and fig(x)+ Pp(x) <1 forallx e .

Definition 4. [7] The complement of a Fy, with G = (o, ) is also a
Fg and it is denoted as G. The membership function for the comple-
ment G = (0. /1), where o(x;) = o(x,) and fi(x;.x;) = o(x;) A o(x;) —
A(x;,x;) Vx;,x; € & where the membership values of the vertices x;
and x; are represented by o(x;) and o(x;) respectively, and the mem-
bership values of the edge between vertices x; and x; are indicated by

ﬁ(xi,xj).

Definition 5. [4] An Intuitionistic Fuzzy Graph (¥ % %) is of the form
G = (7, &), where

1. 7 = {x,x,....x,}, such that 6y : 7 - [0,1]and o, : 7 —
[0, 1] denote the degree of membership and non-membership of the
element x; € 7/, respectively. It holds that 0 < o (x;) + o,(x;) < 1
forallx, e 7 (i=1,2,...,n).

2. EC V¥ x7,suchthat g, : X7 - [0,11and 4, : 7" X7 — [0,1]
denote the degree of membership and degree of non-membership
of the edge (x;, x;), respectively.
ﬁl(xi, xj) < min(ﬁl(xi), ﬁ](xj)),

Ao (x;, x;) < max(¥(x;), U1(x;)),

and 0 < 1y (x;, x;) + fip (x;, x;) < 1 for all (x;,x;) € &.

Beﬁnition 6. [11] The complementofan ¥ F € G = (7, &)isan S F &
G = ((o1,07), (41, i), where (51, 0,) = (0,0,) and

ﬁl(XY) =01(x) Ao () — Ay (xy),

Ao (xy) = 0,(x) V 0,(») = Aa(xy),  Vxy € &.

Definition 7. [4] The intuitionistic energies of two S %% G, and G,
are described as:

n

Es54(G)) = Z (ﬁé] (xp) + Oél(xi)> = Z ﬂ?(Gl)
=l

i=1
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and

n

E55(G) = Y, (2, () +92,(x)) = X 2Go).
j=1

i=1

The covariance of the ## € G, and G, is defined as:
Crrg(G1.6) = X [fig, (ke () + Vg, (50, (x|
i=1

Therefore, the correlation coefficient measure of ¥ € G, and G, is
given by

CJ??(GI’ GZ)

K ;5 =
77516 E;545(G)Es54(Gy)

By e, (e, () + 06, ()06, ()]

(Z’Ll (ﬁé’l i) + %231 (x/-)) Ziei (ﬂéz (i) + Oéz(xi)>) |

Definition 8. [12] Let G, = ((o,".0y").(" Ay")) and G, =

((a?z, af’z), (ﬁf}’z, ﬁf’ﬁ) be two F €. The maximal product of G, and
G,, denoted by G, X,, G, = (7] X,, 73, &, X,, &,), is defined as follows:

V\ X V= (1, y)) | 21 € Viand y| € 7, }.

& X & = {((z1, y1) (@2, 42)) | 1 = 22, 4142 € E0r g4

=y z1Zy € & }.
Gy X G G G
o @y, y) = 0, (@) Vo, (1),

G G G G
0, V(g y)) = 0, (@) Aoy (g,
for all (z,y,) € 7} X 7>.

For any pair of edges (z, ¥ )(#1.%3)) € &, X,, &

~G 1%, G
I (CRTN CoN7)

G e .
o @) VA iy, it =2, 4142 €&,

G G .
i@y Vo Py, iy =y 22y €&

e
I (IR CoN72))

G .G .
o, (@) AR (g T2y =20, 41y, €%,

-G G .
iy (@) Aoy (y ), iy =y 220 €8

Definition 9. [11] The complement of the max product of two S FZ
G, Gy, AG; G Gy Gyy AGy AGpy, s
Gy =Wo,",0,") (0", N and G, = (6,7, 0,%),(#,%, 4,)%)) isan FF G
G G,\, G Gyy G .Gy, AG .G
Gy X Gy = (6, Xy 0,7)0," Xy 0,20, (] Xy 1,7)(f)" X, 4,7)) OD

G* = (7, %), where 7] x,, 7, = 7} X,, 7> and

Z| = Xy, Y 1Y € Eor
Y1 = Y2 T @y € 01
2%y € &,y 1Yy & Eor
z\2y & 81,y 142 € E0r
x 2y € &1,y 1Y € Eyor
z 2y E 81814 EE

&) Xy & =

The membership functions are defined as:

G G G G
(0, Xy o, N@y y) =0 () Ve (),
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G G G G
(05" X 0, W@, 71) = 05 (@) Aoy (),

where 2z, € 7, and y, € 7.

~G ~G
Hy ' X Hy (21, %1)s (22, %))

(6(1&1 X G;Gz)(ml,yl) A ((7(1[;1 X GiGz)(mz,yz) - ﬁ?‘
Xmﬂ?z((zl»yl)’(xz,yz))» ifz) =z,y19 €&

((7(1&' X 6?2)(w1,y1) A ((7?' X 6?2)(w2,y2) - ﬁ?l
Xmﬁ?z((xlvyl)’(xbyZ))’ ify) =yp 2122 €8

G G, G
(6" X 0, )@ 7)Ao

G .
X0, W@, 1), otherwise

~G ~G
Hy ' X Hy H(CTN7DINCINT))!

G G G G ~G
(05" X 0, W@ 1, gV (6" Xy 0, W@ ) = fly |

.G .
Kby > (@1, 41), (22, 42)), ifz)=2zy,y1y, €&

Gy

(o,

G G G ~G
X 0y W21,y )V (0, Xy 0, W @0, 92) = !

.G .
Xy > (@1, 91), (@2, %2))s ify; =y 212, €8
Gy

G; G
R (IR A G

(o

otherwise

G
X0, N @2, %),

3. #Es of FFE using maximal product

In this section, we conducted an in-depth analysis of correlation
and regression coefficients (%% 3) in the setting of FF &, employ-
ing the maximal product in particular. This technique allowed us to
simulate complicated interactions between nodes and edges while keep-
ing the system’s uncertainty intact. Using the maximal product, we
investigated how the structural aspects of fF¥ affect network ac-
tivity, providing a more nuanced means of assessing connectedness,
strength, and influence in the graph. Our findings highlight the pre-
dictive potential of FF ¥ and their applications in real-world com-
plex systems, such as healthcare analytics and decision-making pro-
cesses. Furthermore, we investigated the usage of adjacency matrices
containing membership and non-membership values in the calcula-
tion of energy and weight scores, which improve network structure
interpretability.

3.1. Working procedure

Below is a working procedure to find the ¥2%s of FF & using
Maximal Product.

Step 1: Let M, = (oy, ;) and M, = (05, 1) be two SFZ of G| =
(71, &) and G, = (75, &,), respectively. Construct a maximal product of
M, and M,, denoted as M, x,, Ml,. Then, find the adjacency matrix of
M X, M.

Step 2: Compute the energy S(GY)) of an adjacency matrix GI(.’) where
EG) = T, 141

Step 3: Compute the weight scores W(S?')) determined by & (G?’))

EGY) £GY)
wE?) = ’
Y EG) T £GP
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m 0.5,0.4 m
0ro2e @04 o 205,04

Fig. 1. Intuitionistic fuzzy graph M,.

(0.5,0.2)x4 (0.5,0.3)

x,(0.6,0.3)

(0.5,0.4) x5

Fig. 2. Intuitionistic fuzzy graph M,.

Max mqx, (0.7,0.2)
0.7,02) 1T~’ 0.7,02) T (0.7,0.2)——@ M1X3(0.7,02)
3 = ®
$h ° N
o o o
& &
(0.6,0.3). 0603 @
(0.5,0.4) M3X4 mayx, m3X3(0.5,0.4)

(0.6,0.3)

Fig. 3. Maximal product of Intuitionistic fuzzy graph M, X,, M.

Step 4: Compute correlation coefficient CC(G‘(.’),SE’)) between Gl(.r)
(r)
and S;".

cc@,s)
>l (TGY) (ti)Tsﬁ’) () + ]FGY) (l,- )FS‘(A )

\/ X (T (6 + Fn >2>\/ P (T (02 + Fo (1)

step 5: Find the regression coefficient R
(r) ()
i i

@50 of M, x,, M,. The

regression coefficient of G;"” on S."” is defined as:

Cov(G\”,8")
RC Ch——"
G

The regression coefficient of S\” on G\ is defined as Rgn oy =
Cov(G" 5"

6

step 6: Calculate the relationship between the CRCs

(r) @y _
KS7, G =, /R(GEV)SY)) X R(SY}@E"))

Example 1. Consider the .F %% M, and M, as shown in Figs. 1 and 2
and their maximal product M, x,, M, as shown in Fig. 3.
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3.2. Illustration of M, X,, M,

Adjacency matrix of M, x,, M,

0o 07 0 07 O
07 0 07 0 07
A0 0 07 0 07
# 07 0 0 0 06 O
07 0 06 0 06
0o 07 0 06 O
0 02 0 02 O
02 0 02 0 02
A0 0 02 O 0 0 02
v 02 0 0 0 03 O
02 0 03 0 03
0o 02 0 03 O

Energy of M, X,, M,

The energy €(<G(1’)) of an adjacency matrix GY):
EGY) = (5077 1.8142)
Weight score of M, x,, M,

Score function of M1 star M2 The weight of the score function S(lr) is
determined by &€ ((G(]’)):

wE?) = (07367 0.263)

Correlation coefficient of M, x,, M,
To compute correlation coefficient CC(G({),SY)) between (G(I') and

(r).
S

4.2173

CcC (")’S(") -
(Gl 1) 4.2163

= 1.000

Regression coefficients of M, x,, M,
The regression coefficient measure of G(I') in S(l’) is calculated as:

4.2173

Na\ = Tz
@) T 29.065
The regression coefficient measure of S(l')) in G(lr) calculated as:

R =0.14509

4.2173

R . ), =~
s T 0.6118

=6.8932

Relationship between € Z€'s of M x,, M,
The relationship between € 2€ s of M, x,, M,.

G, 8V) = 1/0.1450 x 0.6118 = 1.000

4. CREs of FFZXE using maximal product

In this section, we present the maximal product of an ¥ % ¥, incor-
porating the concept of a line graph and its € %% s, that characterise the
relationship between the elements of the % & and its corresponding
line graph.

Definition Let L(G,) = ((61

2 ~l n2
L ) P,y i) and LGy)

1 2 S| -2 o> _
(("Lmz)’”u@z))’(”L(Gz)’”L(GZ))) be two SJFZE, where G,

(71,8)) and G, = (7,,&,) are the #F&. The maximal product of the
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(0.7,0.2) m; 4 T\ (0.7,0.2). ﬂm’_2 (0.7,0.2)
=S ~
S /o?o »\9“'\ _?4

(0.7,0.2) mg3 + my 4(0.7,0.2) + my 5 (0.7,0.2)
-~ (7] -~
> S
:2 o} 2, ~

(0.6,0.3, (0.6,0.3)
mge mgz

(4
2
%
k

(0.6,0.3)

Fig. 4. Intuitionistic fuzzy Line graph M | x,, M ,.

IFZE of L(G,) and L(G,), denoted by L(G,) X,, L(G,), is defined as
follows:

V@) Xm 71,y = {0603 192 €7@y 3y € Py )-

ELG)) *m By = (0294032, 94,)) | 32y
=90y 3y19y, € BLEYOT Iy = 3yy2 92,92, € B -

1

IV o6, Ty

1 _ 1
”L(G])XML(GZ)("m 3y = "L(Gn(%l

2

YA GG, Ty s

2 )
LG, L(Gz)(%] 3y = LG, NP

forall (3,,,4,,) € V) X V1@,
For any pair of edges ((3,,,9,,)34,-3,,)) € 1)) Xm ELGy:

1
TR R\ CRREPDICHREIN)

1 ol . _
01 Pa) VLG, Gy dy) 92 =94,.9,,9, € ey

o1 1 : _
ArepBa92,)V 0pe,y(By)s 113y =3,),3, 92, € €1,

2
OLGxy LGy By 34 )3 2y0 3y, )

2 -2 . _
JL(G,)(%])A”L(Gz)(jyljyz)’ ifa, =3.,.94,3y, €8sy

-2 2 : _
”L(Gl)(dzlJzz)/\o-L(Gz)(()yl)’ ifa, =3y,.9, 92, € &g

Example 2. Consider the .# % ¥ of maximal product M, x,, M, as shown
in Fig. 3 and their ¥ F Z¥Z.

Adjacency matrix of My, x,, My,

0 07 07 07 0 0 O

07 0 0 07 07 0 0

07 0 0 0 0 07 0

Aé ={o7 07 o o0 0 07 07
07 0 0 0 0.7

0 07 07 0 0.6

0 0 0 07 07 06 O

02 0 0 02 02 0 O

02 0 0 0 02 0
Af=]02 02 0 0 02 02
0 02 0 0 0 02

0 02 02 0 0 03
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Energy of My, X, M,

The energy £(G."

| ) of an adjacency matrix (G]L(l’):

EGLY) = (68764 2.1362)

Weight score of M | x,, M,
Score function of M1 star M2 The weight of the score function Sy,

is determined by 5(GL(1’)):

(r)
1

W) = (07629 0.2370)

Correlation coefficient of My | x,, M,
To compute correlation coefficient CC(G]L(I’),SL({)) between Gp,

and SLY):

(r)
1

cc@,,5,") = 2933 _ 1 000

1 1 2.652
Regression coefficients of My ; X,, M ,

The regression coefficient measure of Gy, is calculated as:

(r) r)
L onSp
2.655

R G M = T oo
@5 T 215748

=0.01230

The regression coefficient measure of S]L(lr)) on Gy |’ is computed as:

G
1
2.655

R 0 ) =
©L™M6L) T 0.03265

=81.316

Relationship between € £%'s of My | X,, M,
We defined the relationship between €%£% 4 of My | X,, M ,.

K(GL".8.") = v/0.0123 x 81316 = 1.000

5. €2 €3 of complement of ¥ FZE using the maximal product

In this section, we present the concept of the complement of the max-
imal product of an . # £ ¢ and provide calculations for the €%2€s. We
define the complement of the maximal product of an .¥ % #¥¢. The com-
plement of a maximal product graph is useful for studying structural and
connectivity changes when edge interactions are reversed. The comple-
ment allows us to discuss how dominance, connectedness, and general
graph attributes are influenced in a fuzzy framework.

Furthermore, we present step-by-step calculations of the (€ #2% 3)
from the complement of the maximal product of Y% %¥. This in-
cludes the computation of adjacency matrices, energy values, weight
scores, and other relevant statistical measurements such as correlation
and regression coefficients. These factors help quantify the impact of
complement structures on graph-based prediction models. The results
of these computations provide insights into the relative performance of
the initial maximal product and its complement under various decision
dilemmas.

Example 3. Consider a complement of the maximal product of an
I FZLE Fig. 4 using definition as shown in Fig. 5.

Adjacency matrix of M| x,, M3

0 0 0 07 06 06
0 07 0 0 06 06
0 07 0 07 07 0 06
Af;” =|o 07 0 07 0
07 0 07 07 0 07 0
06 06 0 0 07 0
06 06 06 0 0 0
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(0.7,0.2)m; 4

(0.7,0.2) my 3 my 5 (0.7,0.2)

(0.6,0.3) my 4 m;7(0.6,0.3)

Fig. 5. Complement Intuitionistic fuzzy Line graph M7 | x,, My .

0 0 02 03 03

02 0 0 03 03
02 0 02 02 O 03
0 02 0 02
02 0 02 02 0 02
03 03 0 0 02
03 03 03 O 0

S o o o

AL —
o=

(==

Energy of MEI X MEZ
The energy 8(Gﬁ°‘<l’)) of an adjacency matrix GE({):

£GE) = (68752 2.5709)

Weight score of My | x,, M,
The weight of the score function SE(I') is determined by 8(@&3’)):

WSty = (07278 0.2721)

. . c o
Correlation coefficient of M | X, M,
To compute correlation coefficient CC(GE(I”,SE({)) between GE(I')
c(r).
and Sp

35000

=0.61
5.7025 06

cee -

, . c ¢
Regression coefficients of My | X, M

c(r)

The regression coefficient measure of G |

on Sﬁ‘i(l” is calculated as:

. 13,5000
@ese ) T 53.877

The regression coefficient measure of SE({)) on GE({) computed as:

R = 0.0649

3.5000

R® c(y ey = S 70
(5 ))’G]L(l )T 07769

= 4.5050

Relationship between € Z€’s of M | X, M},
We defined the relationship between €2%3s of M | X, M[ ,.

K(GL,8.77) = 1/0.0649 x 4.5050 = 0.5406
Theorem 1. The maximal product of ¥ F & and its complement (¥ F &°)
satisfies:

E(IFE Xy TFE) =0

max

if and only if the maximal product of ¥ & is a complete S F E.
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Proof. Let & = (V,E, ji,0) be an S F & where 4 : E — [0, 1] represents
the membership function and ¥ E — [0,1] represents the non-
membership function. The complement of maximal product of ¥ F ¢ is
defined such that:
ae)=1-je), (e)=1-9(e), VeeRE.

The maximal product of ¥ & and S F ¢ is defined with the vertex
set: V(I F G Xpax FFE) =V Xy V., there exists an edge between the
two vertices («,¢) and («,, ) in FFE X, S F &€ if and only if:
(w1, 1)) EE(FIFE) or (v),v,) € B(IFFZO).

Assume F F ¢ is a complete .# F &. Then, every pair of distinct ver-
tices in S F ¥ is connected by an edge: E(FF %) = {(z,y) | =,y €
V,z # y}. Since SFE° is its complement, it contains no edges:
E(FFE) = ¥. Now, there is an edge between the maximal product
(wy,v) and (wy,vy) if (v, u,) € E(FFE), or (v1,v,) € E(IFEC).
Since E(SF %) = #, the converse is true. However, since SFE is
complete, for any pair («,,«,), an edge always exists in % . Hence
E(IFE Xppay SFE) =0.

Conversely, let E(JS F € X, JF &) = 0. This means no edges exist
in the maximal product of . F € so for every pair («, ) and («,, #,):

(1, 1)) €E(IFE) and (v, 0,) g H(IFGE).

This condition holds for all vertex pairs if FF¢ is complete,
E(FFE°) =0.

Thus, BE(SFE Xy SFE) = @ if and only if FFE is a complete
JFE, proving the theorem.

Theorem 2. The maximal product of two connected intuitionistic fuzzy
graphs is always a connected intuitionistic fuzzy graph.

Proof. Let &, = (V..E../,.0)) and &, = (V,,E,, ,,9,) be two con-
nected FF¥¢, where: g; : E;, - [0,1] and 9, : E; — [0,1] and
A, : E; - [0,1] and ¥, : E, — [0, 1] represent the membership and
non-membership functions in ¥,and and ¥, respectively. The under-
lying crisp graphs of ¥, and ¥, are denoted by & = (V,E,) and
) = (Vy, Ey), respectively.

Let V| = {w),uy,....u,} and V, = {v), vy, ...
are connected, we have:

,v,}. Since ¢, and &,

Amax

A (e, w;) >0, Ve u; €V

ﬁ;"‘“(vi,vj) >0, Ve,v; €V,

Consider the maximal product of ¥, and ¥,, denoted as & =
(V,E, 4,9). The vertex set of € is given by:

V=V, xVy = {(«,v) | u; €V, v; €V,)
A, v)), (e, vp)) = max{min(@; («;, wy), f (v, v)))}
W(wjv)), (g, vp)) = min{max(V; («;, &), Vy(zj, )}

Now, consider the 7z subgraphs of ¥, where each subgraph has
vertex sets:
Vi={(wp o), (@i v), o ()}, i= 12,000, m.

Every subgraph is connected by the same first component, «;. Since
Y, is connected, every v; is adjacent to at least one other vertex in V,.

Similarly, since €, is connected, each v, is adjacent to at least one
vertex in V,. Thus, there exists at least one edge between any two
subgraphs, ensuring that:

ﬁ((u,-,vj), (2, 7)) > 0, V(ui,vj),(uk,v,) e E.

Therefore, ¥ is a connected S F .
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Theorem 3. Let &, = (V,,E,, 4i;,9,) be a partially regular intuitionistic
fuzzy graph and €, = (V,,E,, f,, ;) be an intuitionistic fuzzy graph such
that

oy < fi,, and o,is a constant function with value c.

Then, the maximal product &, X,, &, is regular if and only if &, is regular.
Proof. Let ¢, = (V|,E;,4,,0;) and &, = (V,,E,, fi,,7,) be two JFE.
The maximal product of &, and ¥, is defined as:

V(& Xy &) =V, xXV,.

The edge set is determined by the condition that there is an edge between
(w1, v;) and (»,, v,) if and only if:

(e = wuy)and (v, 1) €E,, or (¢ =wy)and (v, u,) € E;.

Since ¥, is partially regular, every vertex « € V, has a constant
degree in its regular subgraph. Given that o, < f,, the degree of any
vertex («, ¢) in €| X, ¥, depends on the degrees of « in ¥, and » in &,.

Now, assume that &, x,, &, is regular. This means that for any two
vertices («, ) and («,, v,), their degrees must be equal:

dg x, %, (w1, v1) = dg x5, (@2, v2).

All vertices in V| have the same degree contribution since o, is a constant
function with value of c.

Thus, for &, x,; €, to be regular, the degree of each vertex v € V,
in ¥, must likewise be constant, i.e. &, must be regular.

Conversely, if &, is regular, then the degree dg, () is constant for
every v € V,. The degree of each « € V, in its regular subgraph is
constant. Since ¥, is partially regular. As a result, &, X,, %, is a regular
J F & with a constant degree for each vertex.

Hence, the maximal product of &; x;, %, is regular if and only if &,
is regular.

5.1. Flowchart for 6 #6s of SFLTE

Construct adjacency matrix A of maximal product of ¥ FZL&

l

Calculate energy £ (GFL’)) for T, and [Ff)

l

Calculate weight score function W(S; i) using € (G[(Lr) )

l

Calculate correlation coefficient CC(GE), Sg_r))

l

Compute regression coefficient R(GEL’),S[ )

l

Compute relationship between € ZE€ 4: IC(G(” s S[(L'))

l

End
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5.2. Flowchart for € #€ s of complement of ¥ FLE

Construct adjacency matrix .A¢ of maximal product of complement of ¥ # Z&

!

Calculate energy E(GEL")) for Tf'), and [Ff')

]

Calculate weight score function W(SEL")) using E(GFLC’))

]

Calculate correlation coefficient CC(GEL"), S:L"))

]

Compute regression coefficient R(G{”,S‘[”)

|

Compute relationship between € Z€ 4: IC(GEL"), SEL"))

End

6. Applications

The applications of 2% in the analysis of line .## ¢ and their
complements of line FF & offer researchers a powerful tool for ex-
ploring and modelling complex relationships between variables. This
methodology is particularly valuable in healthcare research, especially
in predicting diabetes risk, as it provides a deeper understanding of
the inter-dependencies between factors such as glucose levels, blood
pressure, BMI, and other key health indicators. Researchers can use
JFZE to visually and mathematically depict positive correlations be-
tween attributes. For instance, a high correlation between glucose and
BMI helps confirm that patients with elevated glucose levels are like-
lier to have a higher BMI, which is crucial for identifying primary risk
factors. Regression coefficients on the Y% £ ¢ also aid in building pre-
dictive models, allowing researchers to predict outcomes like diabetes
risk based on key attributes. When the regression coefficient between
glucose and the outcome is high, glucose is a strong predictor, help-
ing researchers design algorithms for early diagnosis and intervention.
Furthermore, analysing direct relationships through the line .S F ¢ al-
lows researchers to study causality, such as how higher glucose levels
lead to a higher likelihood of developing diabetes, and therefore focus
on managing glucose levels in at-risk populations. The complement of
I FFLE enables researchers to identify indirect relationships, which can
be equally important. Sometimes, the connection between attributes like
BMI and blood pressure may not be straightforward. The complements of
JFZE highlight instances where expected relationships break down,
such as when a person with a high BMI does not show elevated blood
pressure, helping researchers understand the anomalies and exceptions.
Moreover, the complement .¥ % ¥ ¥ uncovers complex interactions that
might not be immediately visible in the original graph. For example,
attributes like skin thickness, which may show weak relationships in
SIFZLE, can reveal hidden risk factors when analysed in the comple-
ment of S FZE. This deeper exploration of indirect relationships can
uncover new or overlooked risk factors for conditions like diabetes,
improving understanding of the disease’s complex aetiology. Anomaly
detection is another significant application of the complement of line
JFE. In healthcare datasets, cases often deviate from the expected
patterns, such as patients with high glucose but normal BMI. Using
non-membership values in the complement of .Y F £ ¥, researchers can
identify these anomalies, which may point to previously unrecognised
risk factors or conditions. This can lead to the early detection of new
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Table 2

Intuitionistic fuzzy table for the given dataset.
Row BMI Glucose Blood Pressure  Skin Thickness  Insulin

@, (4,9 @, 9 @9 @,

1 (1.0,0.0) (0.975,0.025) (0.8, 0.2) (0.4, 0.6) (0.7, 0.3)
2 (0.5,0.5) (0.8,0.2) (0.6, 0.4) (0.3, 0.7) (0.0, 1.0)
3 (0.7, 0.3) (0.9, 0.1) (0.7, 0.3) (0.2, 0.8) (0.6, 0.4)
4 (0.2,0.8) (0.85,0.15) (0.4, 0.6) (0.0, 1.0) (0.0, 1.0)
5 (0.2,0.8) (0.95, 0.05) (0.6, 0.4) (0.5, 0.5) (0.0, 1.0)

patterns or conditions, such as individuals with low insulin levels and
high BMI exhibiting higher diabetes risk, which might not be immedi-
ately apparent through standard correlation analysis. Table 2 provides
the dataset of the five diabetes patients.

1.0 0975 08 04 0.7
05 08 06 03 00
membership values =|0.7 09 0.7 02 0.6
02 08 04 00 0.0
02 095 06 05 00

0.0 0.025 02 06 03
05 02 04 07 10
non- membership values =10.3 0.1 03 08 04
08 0.5 06 1.0 1.0
08 005 04 05 1.0

To compute the correlation coefficient between membership and
non-membership functions using energy and weight score:
3.191
==—=— =1.00
3.191
Relationship between € % ¢'s of membership and non-membership func-
tions:

0.156 X 6.383 = 0.99

The ¥ F £ & allows researchers to identify key predictors of health out-
comes, such as BMI, glucose, blood pressure, skin thickness, and insulin.
This has been efficiently represented using heatmaps that show the sig-
nificance of features and their relationships as shown in Figs. 6 and 7.
Analysing the %% s of S FZZ and their complement, is highly ben-
eficial for optimising predictive models. Researchers can prioritise the
most influential features, leading to more accurate predictive models.
The complement of ¥ F £ ¥ is valuable in assessing secondary predic-
tors that may not be immediately apparent. For example, suppose that
skin thickness and insulin function appear weakly related to the out-
come in S FZE but show a stronger relationship in the complement.
Researchers can refine their predictive models to incorporate these
secondary influences. This iterative model evaluation and adjustment
process ensures that predictive models are robust and can adapt to new
insights, improving prediction accuracy in real-world scenarios. The
visual representation provided by .# # & helps researchers better under-
stand complex data relationships. These graphs show both the strengths
(membership) and weaknesses (nonmembership) of connections be-
tween attributes, providing an intuitive and comprehensive framework
for analysis. The combination of ¥ % %% and its complement provides
researchers with a complete understanding of the data, showcasing both
significant direct relationships and subtle indirect interactions.

Finally, the insights gained from the correlation and regression analy-
sis of .S F £ ¢ have significant implications for healthcare interventions.
By understanding both strong and weak relationships between at-
tributes, researchers can design more targeted and effective healthcare
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Heatmap of Intuitionistic Fuzzy Data (Mu values)

H-

- :
) : - -
g ™ - 0.6 05
< - 0.4 0.55 0.5 0.6
m b :
U i
BMI Glucose Blood Pressure Skin Thickness
Fig. 6. Heatmap of .¥ % £ using membership values.
Heatmap of Intuitionistic Fuzzy Data (non-Mu values)
H - : :
~ - 0.5 1
. . -0.6
§ ™ - 0.3 0.4
I ! -0.4
* - :
m - i

Glucose

BMI

|
Blood Pressure

Insulin

'
Skin Thickness

Fig. 7. Heatmap of .Y % £ ¥ using non-membership values.

interventions. For example, if glucose and skin thickness are strongly
correlated, interventions can focus on managing both glucose levels and
weight to prevent diabetes. Insights from the complement graph might
suggest that factors like age or diabetes pedigree function are more criti-
cal in certain subgroups, allowing for personalised healthcare strategies.

This heatmap can be used to visualize the correlation matrix of mem-
bership ¥ # &, between a selection of the medical features Insulin, BMI,
Skin Thickness, Blood Pressure and others, and the Outcome (presence
of diabetes) as shown in Fig. 8. The strength of correlations is reflected
according to the colour gradient, with lighter tones showing stronger
positive correlations. As an example, the BMI is strongly correlated with

Outcome, but Insulin and Skin Thickness demonstrate a low correlation.
Though in this case some of the features were selected, other features
(including Glucose, Age, and Pregnancies) can be utilized to conduct
a broader analysis. Furthermore, the insights provided by these graphs
can inform resource allocation decisions. Researchers can prioritise re-
sources for patients at higher risk based on the most influential attributes
identified from the analysis, ensuring that interventions are both ef-
fective and efficiently targeted. Overall, the applications of %€ in
JFZE and their complements offer a comprehensive, insightful, and
actionable approach to healthcare research, particularly in the area of
diabetes risk prediction and management.
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-10
0.14 _08

0.14 0.2 0.39
0.6

0.034 0.042 0.11

0.034 0.074 0.082
0.4

0.034 0.19 0.18
0.074 0.19 0.44 0.2

-0.082 0.18 0.44

0.0

0.14 0.041  0.089 0.21

—

Insulin

Pregnancies
SkinThickness
BloodPressure -

DiabetesPedigreeFunction

Fig. 8. Correlation heatmap showing relationships among selected medical parameters in the S F €.

7. Conclusion

The study of €2€s of FFZE and their complement can suc-
cessfully evaluate complex networks utilizing the maximal product.
Such models help identify weak connections, leading to targeted net-
work improvement efforts. This model can be applied to specialised
marketing tasks such as identifying influential users, improving cam-
paign techniques, and analysing public health and group behaviour.
Using JFZ€, firms can derive insights into consumer behaviour,
sentiment analysis, and disease dissemination patterns, thereby opti-
mising decision-making. The framework f%Z¢ identifies the most
important predictors of every health outcome, including glucose lev-
els, blood pressure, skin thickness, and insulin levels. The complement
of FFZLE is useful in evaluating secondary predictors that may not
be easily identified. The complement of .¥ % #% allows one to anal-
yse secondary predictors, which may not be visible at first glance but
have a major effect on improving prediction models. The effectiveness
of this strategy has been demonstrated successfully using heatmaps,
which display the relevance of features and their relationship to one an-
other, offering a visual representation of complex data. Future research
opportunities include developing complex algorithms to govern large-
scale social networks while enhancing computational efficiency and
scalability. Exploring dynamic .¥ % #% may enable real-time network
interactions, leading to more flexible and responsive decision-making
paradigms. Additionally, incorporating machine learning approaches
into S F £ ¢ can improve forecast accuracy and bring new insights into
dynamic network architecture. Although the proposed approach effec-
tively analyses the correlation and regression coefficients of FF, it
has several drawbacks. The model has been evaluated using a small-
scale healthcare dataset, and its accuracy depends on the correctness
of the membership and non-membership characteristics. Furthermore,
the framework currently addresses static systems, and computational

10

complexity increases with vast networks. This study may be expanded
upon in future research to include large-scale application areas and
dynamic networks.
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