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 A B S T R A C T

Measuring sustainability as an efficient tool to achieve sustainable development and improve economic, social, 
and environmental aspects is always fraught with complications. In this sense, developing a suitable approach 
for evaluating and recognizing the strengths and weaknesses across these dimensions is paramount. Given the 
inherent uncertainty in data for many real-world applications, the primary aim of this paper is to present a data 
envelopment analysis (DEA) model for evaluating sustainability within a stochastic environment. The proposed 
model is non-radial and incorporates undesirable outputs, enabling the assessment of overall sustainability as 
well as each of the economic, social, and environmental dimensions simultaneously. This multi-dimensional 
evaluation capability is a key advantage of the proposed model. Additionally, the proposed model is based 
on input excesses and output shortfalls. Another notable advantage is the incorporation of the assumption 
of managerial disposability when dealing with undesirable outputs. To demonstrate the applicability of the 
proposed model, data from 59 diverse countries across Africa, Europe, North America, and Asia were analyzed 
over a 12-year period (2010–2022). The country selection was designed to capture global heterogeneity in 
development levels, policies, and environmental conditions, allowing for robust cross-continental comparisons. 
Key findings reveal that: (1) Europe achieves the highest stochastic sustainability scores, while North America 
performs poorest; (2) Environmental sustainability shows the most success cases globally, whereas social 
sustainability lags; (3) Significant trade-offs exist between economic growth and environmental protection.
. Introduction

Sustainability has emerged as a central concept in addressing global 
hallenges related to balancing economic growth, social equity, and 
nvironmental preservation. It emphasizes the need to ensure that 
ystems and processes can persist over time without depleting natural 
esources or compromising the well-being of future generations. The 
oncept gained widespread recognition with the publication of the 
rundtland Commission’s report in 1987, which defined sustainable 
evelopment as ‘‘meeting the needs of the present without compromis-
ng the ability of future generations to meet their own needs’’. This 
efinition remains a cornerstone in sustainability discourse and has 
uided numerous studies and policies aimed at achieving sustainable
evelopment. 

∗ Corresponding author at: Research Center of Performance and Productivity Analysis, Istinye University, Istanbul, Turkey.
E-mail address: tofigh.allahviranloo@istinye.edu.tr (T. Allahviranloo).

In recent decades, sustainability assessment has become a critical 
tool for evaluating the performance of systems and processes across 
economic, environmental, and social dimensions [1]. One of the most 
widely used methods for such assessments is Data Envelopment Anal-
ysis (DEA), a non-parametric technique that evaluates the relative 
efficiency of decision-making units (DMUs) without requiring a prede-
fined production function. DEA’s flexibility in handling multiple inputs 
and outputs has made it a popular choice for sustainability research, 
particularly in contexts where traditional parametric methods may not 
be applicable. 

However, sustainability assessment at the country level is inherently 
affected by temporal variability and uncertainty. Economic indica-
tors fluctuate due to business cycles and policy changes, environmen-
tal indicators are influenced by climatic and ecological shocks, and 
ttps://doi.org/10.1016/j.dajour.2026.100680
eceived 16 October 2025; Received in revised form 26 December 2025; Accepted 
vailable online 21 January 2026
772-6622/© 2026 The Author(s). Published by Elsevier Inc. This is an open acces
http://creativecommons.org/licenses/by-nc-nd/4.0/).
16 January 2026

s article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.dajour.2026.100680
https://www.elsevier.com/locate/dajour
https://www.elsevier.com/locate/dajour
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dajour.2026.100680&domain=pdf
mailto:tofigh.allahviranloo@istinye.edu.tr
https://doi.org/10.1016/j.dajour.2026.100680
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Amirteimoori, T. Allahviranloo, M. Nematizadeh et al. Decision Analytics Journal 18 (2026) 100680
social indicators evolve gradually but unevenly over time. Relying 
solely on deterministic average values may therefore obscure important 
information regarding the stability, resilience, and vulnerability of 
sustainability performance.

Incorporating stochasticity into sustainability assessment allows for 
distinguishing between countries that exhibit consistently stable per-
formance and those whose apparent efficiency is driven primarily by 
favorable average outcomes but remains vulnerable to fluctuations. 
This distinction is particularly relevant for policy makers; as long-term 
sustainability depends not only on performance levels but also on their 
robustness over time.

Despite the growing body of literature, significant gaps remain in 
the comprehensive evaluation of sustainability, particularly in stochas-
tic environments where uncertainty and variability are inherent. Ignor-
ing uncertainty may lead to efficiency rankings that are insensitive to 
volatility, thereby limiting their relevance for policy design and long-
term sustainability planning. As will be discussed in detail in Section 2, 
many studies have focused on individual dimensions of sustainability, 
such as environmental efficiency [2], economic performance [3], or 
social aspects [4], while neglecting the interconnectedness of these 
dimensions. Furthermore, the handling of undesirable outputs — often 
byproducts of industrial activities — has received limited attention, 
despite their critical role in achieving sustainable development.

The primary objective of this study is to address these gaps by 
proposing a novel model for assessing sustainability in stochastic en-
vironments, incorporating undesirable outputs across economic, en-
vironmental, and social dimensions. Using the Slacks-Based Measure 
(SBM) model and the managerial disposability assumption, this re-
search provides a unified approach that captures both efficiency levels 
and their sensitivity to uncertainty. By explicitly accounting for stochas-
tic variation, the proposed framework enhances the interpretability 
of sustainability scores and offers a more realistic representation of 
country-level performance.

To operationalize this objective, the study addresses the following 
research questions:

– How can an SBM-DEA-based framework capture sustainability 
performance under uncertainty while explicitly accounting for 
undesirable outputs?

– How do economic, environmental, and social sustainability inter-
act under stochastic conditions, and how can they be evaluated 
simultaneously?

– What role does the managerial disposability assumption play 
in improving the accuracy of sustainability assessments when 
undesirable outputs are present?

– What regional disparities in sustainability performance emerge 
when applying this model to 59 countries across diverse conti-
nents?

The rest of the paper is structured as follows: Section 2 provides a 
comprehensive literature review, highlighting the evolution of sustain-
ability assessment and the role of DEA in this domain. Section 3 offers 
a concise review of the managerial disposability assumption, the SBM 
model, and the stochastic BCC model. In Section 4, we introduced the 
proposed model for assessing sustainability in a stochastic environment, 
incorporating undesirable outputs. Section 5 delves into an analysis 
of the stochastic sustainability of 59 countries across four continents, 
demonstrating the proposed approach. Finally, Section 6 concludes the 
paper.

2. Literature review

Surveys on the applications of DEA in sustainability indicate that 
many studies in the field of sustainability assessment have focused 
solely on one of the environmental, economic, or social dimensions.
Among these dimensions, the environmental dimension has received 
2

the most attention. For example, Sueyoshi and Goto [2] introduced 
models to assess environmental sustainability using the DEA approach. 
Their methodology incorporated radial and non-radial models under 
managerial and natural disposability assumptions. Similarly, Sueyoshi 
and Goto [5] employed managerial and natural disposability assump-
tions to develop a radial model for assessing the environmental ef-
ficiency of Japanese industries. Building on these works, Sueyoshi 
and Yuan [4] combined radial and non-radial models to create an 
intermediate model, which they applied to measure the social sustain-
ability of 30 Chinese provinces. Additionally, Sueyoshi et al. [6] con-
ducted a comprehensive review of DEA-based studies on environmental 
performance over four decades.

In the context of social sustainability, Zhang et al. [7] employed 
both radial and non-radial DEA approaches to assess the social sustain-
ability of Chinese provinces from 2005 to 2014. Their methodology 
incorporated managerial and natural disposability concepts. On the 
other hand, Mahdiloo et al. [8] formulated a multi-objective program-
ming model to evaluate environmental and eco-efficiency, applying 
their method to suppliers of Hyundai steel companies. Omrani et al. 
[9] later modified this model, presenting a version with fewer cal-
culations. Their common weight DEA-based model not only assesses 
environmental efficiency but also evaluates social efficiency, as demon-
strated in their application to the Iranian railway. More recently, Shu 
et al. [3] evaluated energy efficiency across 168 economies using a 
super-efficiency SBM-DEA model, highlighting the importance of en-
ergy performance in achieving global sustainability goals. Similarly, 
Yang et al. [10] reassessed industrial eco-efficiency in China using 
a meta two-stage parallel entropy dynamic DDF-DEA model, aligning 
their analysis with the Sustainable Development Goals (SDGs) and pro-
viding insights into improving industrial sustainability. D’Adamo et al. 
[11] applied a multiple criteria analysis approach for assessing regional 
and territorial progress toward achieving the Sustainable Development 
Goals in Italy.

While the above studies have primarily focused on the environ-
mental dimension, some research has examined sustainability from all 
three perspectives—economic, environmental, and social. For instance, 
Chang et al. [12] evaluated the sustainability of 16 industrial sectors 
in North America over a three-year period from 2003 to 2005. Galán-
Martín et al. [13] introduced a model for evaluating the sustainability 
of units and making comparisons, which simultaneously investigates 
sustainability from economic, environmental, and social perspectives. 
They applied their model to assess the sustainability of electricity 
generation in the United Kingdom. Li et al. [14] categorized social, 
economic, and environmental indicators to assess the sustainability of 
oil refining enterprises. Amirteimoori et al. [15] introduced a multi-
period sustainability assessment model and applied it to gas companies, 
employing the weak disposability assumption to account for undesir-
able outputs. Jahani Sayyad Noveiri and Kordrostami [16] developed 
a model for evaluating multi-period sustainability, considering discrete 
and bounded data, and applied it to Iranian gas companies from 2013 
to 2015. Tajbakhsh and Shamsi [17] examined the sustainability of 133 
countries, considering social, economic, and environmental aspects. 
Moghaddas et al. [18] introduced a model for evaluating urban trans-
portation systems, incorporating non-optional, negative, non-negative, 
and undesirable data.

Given the significant role of network structures in real-world ap-
plications, many studies have focused on sustainability assessment in 
such contexts. Tajbakhsh and Hassini [19] introduced a model to assess 
the sustainability of supply chains, considering social, economic, and 
environmental aspects, and applied it to a case study in the beverage 
industry. Badiezadeh et al. [20] defined supply chain sustainability 
based on optimistic and pessimistic efficiency scores. Izadikhah and 
Saen [21] introduced cooperative and non-cooperative models for a 
two-stage structure that includes undesirable outputs. They later refor-
mulated these models in a stochastic environment and applied them 
to evaluate the sustainability of the pasta supply chain, incorporating 
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economic, social, and environmental indicators. Zhao et al. [22] in-
vestigated sustainability using a two-stage structure, considering series 
and parallel forms, with the first stage encompassing economic and 
environmental dimensions and the second stage focusing on the social 
dimension. They applied their model to calculate the sustainability 
of 30 Chinese cities. Fallah and Hosseinzadeh Lotfi [23] assessed the 
financial efficiency and sustainability of Iranian petrochemical com-
panies with network structures during 2015–2016. Nematizadeh and 
Nematizadeh [24] employed the directional distance function to eval-
uate the multi-period sustainability of a two-stage network structure in 
the presence of undesirable outputs. Izadikhah and Farzipoor Saen [25] 
introduced a centralized approach to assess the sustainability of a two-
stage structure, applying it to the welding industry. Fathi and Saen [26] 
proposed a novel approach combining network DEA with a common 
set of weights and Shannon’s entropy to evaluate sustainability in 
transportation supply chains, addressing challenges such as zero inputs 
in the data.

The above-mentioned studies have primarily been conducted in 
deterministic environments, ignoring the stochasticity and uncertainty 
inherent in real-world data. However, real-world applications often 
involve uncertain or stochastic data, necessitating the use of chance-
constrained programming. Sengupta [27] pioneered the development 
of the stochastic edition of the DEA model in this field. For further 
insight into stochastic DEA, readers are referred to Banker [28], Cooper 
et al. [29,30], Land et al. [31], Olesen and Petersen [32], Simar and 
Wilson [33], Azadi and Saen [34], Heesche and Asmild [35], Costa 
et al. [36], and Amirteimoori et al. [37].

In the last decade, researchers have explored sustainability assess-
ment in stochastic environments. For example, Tavassoli et al. [38] 
introduced four models for evaluating the efficiency of units using 
deterministic, stochastic, and fuzzy data, encompassing economic, en-
vironmental, and social factors. Jahani Sayyad Noveiri et al. [39] 
introduced a stochastic model from both optimistic and pessimistic 
perspectives to assess the sustainability of gas companies. Sarkar et al. 
[40] developed a Z-Number SBM-DEA model for sustainable supplier 
selection, offering a robust framework for decision-making under un-
certainty. Wang [41] focused on long-term sustainability by measuring 
power consumption efficiency in electromechanical systems using a 
combination of fuzzy DEA and TOPSIS, demonstrating the applicability 
of DEA in dynamic and uncertain environments.

In the realm of economics, enhancing efficiency is often associated 
with increasing production. However, certain industrial activities may 
generate undesirable outputs at higher production levels, leading to 
economic losses. The identification and mitigation of these undesirable 
factors within the production process have become critical concerns 
and research priorities. Various approaches have been proposed to 
address these undesirable factors. For example, Hailu and Veeman 
[42] introduced the concept of treating undesirable outputs as inputs. 
Seiford and Zhu [43] proposed a mathematical programming model 
for performance evaluation that considered the inverse of undesirable 
outputs. Färe and Grosskopf [44] contested the approach of Hailu and 
Veeman [42], citing its contradiction with physical laws, and proposed 
an alternative approach. Kuosmanen [45] introduced a modified model 
to address the limitations of previous methods when dealing with 
undesirable outputs. Korhonen and Luptacik [46] defined efficiency as 
the ratio of the weighted sum of desirable and undesirable outputs to 
the weighted sum of inputs, assigning negative weights to undesirable 
outputs. Sueyoshi and Goto [47] introduced the concept of managerial 
disposability, which allows for increasing inputs to enhance desirable 
outputs while simultaneously reducing undesirable outputs. This study 
leverages the assumption of managerial disposability to address un-
desirable outputs in the proposed model. For further references on 
efficiency analysis in the presence of undesirable outputs, readers are 
referred to Zoroufchi et al. [48], Azadi et al. [49], and Amirteimoori 
et al. [50].
3

Despite these advances, three important limitations remain in the 
existing literature. First, most stochastic DEA-based sustainability stud-
ies are conducted at the firm, industry, or supply-chain level, while 
country-level sustainability assessment under stochastic conditions re-
mains relatively underexplored. Second, many studies focus on a single 
sustainability dimension or provide only an aggregate sustainability 
score, thereby limiting insights into the heterogeneous behavior of 
economic, environmental, and social dimensions under uncertainty. 
Third, undesirable outputs are typically incorporated only within the 
environmental dimension, whereas their presence in economic and 
social dimensions is rarely modeled explicitly.

These gaps suggest the need for a unified stochastic framework that 
simultaneously evaluates sustainability across all three dimensions at 
the country level, while allowing both an overall assessment and a 
dimension-specific analysis that accounts for undesirable outputs and 
performance volatility over time.

3. Theoretical and methodological foundations

In this section, we will briefly review the managerial disposability 
assumption, the SBM model and stochastic BCC model.

3.1. Managerial disposability

In economic strategies, the primary objective is often to boost in-
come, which requires increasing production. The general expectation is 
that higher input consumption leads to greater output and improved ef-
ficiency. However, certain industrial activities present scenarios where 
an increase in output results in economic losses, referred to as unde-
sirable outputs. In 2012, Sueyoshi and Goto introduced the concept 
of managerial disposability to address these outputs. According to this 
assumption, it becomes feasible to augment inputs to enhance desirable 
outputs while simultaneously diminishing undesirable outputs.

Suppose there are 𝐽 decision-making units (DMUs), and each 𝐷𝑀𝑈𝑗
employs 𝐼 inputs to yield 𝑅 desirable outputs and 𝑁 undesirable out-
puts. The production possibility set under the managerial disposability 
assumption is defined as follows: 

𝑇 =

{

(𝑥,𝑤, 𝑣)|
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 ≥ 𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑣𝑟𝑗 ≥ 𝑣𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗𝑤𝑛𝑗 ≤ 𝑤𝑡𝑜, 𝑛 = 1,… , 𝑁,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝐽
}

.

(1)

The first I constraints are related to the inputs and indicate that 
inputs must be increased to reduce undesirable outputs. The second R
constraints stand for desirable outputs and indicate that the desirable 
outputs must be increased. The third N constraints are related to unde-
sirable outputs. Finally, the last constraint is convexity constraint. The 
decision to use greater and smaller symbols for inputs and undesirable 
outputs is influenced by the assumption of managerial disposability.

3.2. Slack-based measure model

The slack-based measure (SBM) model of Tone [51] is introduced 
as an alternative efficiency analysis model to evaluate the technical 
efficiency of the DMUs. The mathematical formulation of SBM model 
of Tone [51] is:

𝜌∗𝑜 = 𝑀𝑖𝑛
1 − 1

𝐼
∑𝐼

𝑖=1
𝑠−𝑖
𝑥𝑖𝑜

1 + 1 ∑𝑅 𝑠+𝑟

𝑅 𝑟=1 𝑣𝑟𝑜
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𝑠.𝑡.

𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 + 𝑠−𝑖 = 𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑣𝑟𝑗 − 𝑠+𝑟 = 𝑣𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝜆𝑗 , 𝑠
−
𝑖 , 𝑠

+
𝑟 ≥ 0 ∀𝑗, 𝑖, 𝑟.

(2)

In the above model, 𝑠−𝑖 , 𝑠+𝑟 , and 𝜆𝑗 for each 𝑖, 𝑟, 𝑗 are unknown variables. 
Additionally, inputs (𝑥𝑖𝑗 ∶ 𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝐽 ) and outputs (𝑣𝑟𝑗 ∶ 𝑟 =
1,… , 𝑅, 𝑗 = 1,… , 𝐽 ) are non-negative parameters of the model. Model 
(2) is given in constant returns to scale environment and by imposing 
the convexity constraint ∑𝐽

𝑗=1 𝜆𝑗 = 1, it can be transformed into a model 
that operates under variable returns to scale conditions. The objective 
function of the model remains unchanged with respect to a unit change 
in inputs and outputs. Furthermore, it is monotonically increasing for 
inputs or outputs. In simpler terms, any increase in output variables 
enhances efficiency, while any decrease in input variables diminishes 
efficiency.

Definition 1. 𝐷𝑀𝑈𝑜 is SBM-efficient if and only if 𝜌∗𝑜 = 1 which is 
equivalent to 𝑠−𝑖 = 𝑠+𝑟 = 0.

3.3. Stochastic BCC model

Suppose there are 𝐽 DMUs, and each 𝐷𝑀𝑈𝑗 ∶ 𝑗 = 1,… , 𝐽 uses the 
random inputs 𝑥𝑖𝑗 ∶ 𝑖 = 1,… , 𝐼 to produce random outputs 𝑦𝑟𝑗 ∶ 𝑟 =
1,… , 𝑅. All random input/output variables are assumed to be dis-
tributed normally with known mean and variance. The following en-
velopment DEA model, introduced by Land et al. [31], estimates the 
relative efficiency of a specific 𝐷𝑀𝑈𝑜: 
𝑀𝑖𝑛 𝜃

𝑠.𝑡.

𝑃

{ 𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑥𝑖𝑜

}

≥ 1 − 𝛼, 𝑖 = 1,… , 𝐼,

𝑃

{ 𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜

}

≥ 1 − 𝛼, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, ∀𝑗.

(3)

where 𝛼 ∈ [0, 1] is a user-defined parameter that indicates the confi-
dence level. Assume 𝑥𝑖𝑗 ∶ 𝑖 = 1,… , 𝐼 and 𝑦𝑟𝑗 ∶ 𝑟 = 1,… , 𝑅 are the mean 
values of inputs and outputs for the 𝑗th DMU. Additionally, 𝜙 represents 
the cumulative standard normal distribution function, and 𝜙−1 is its 
inverse. Hence, by applying the central limit theorem, the deterministic 
form of model (3) can be expressed as follows: 
𝑀𝑖𝑛 𝜃

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 − 𝜙−1(𝛼)𝜎𝑖(𝜆, 𝜃) ≤ 𝜃𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 + 𝜙−1(𝛼)𝜎𝑟(𝜆) ≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, ∀𝑗, 𝑖, 𝑟.

(4)

where

𝜎2𝑖 =
𝐽
∑

𝑗=1

𝐽
∑

𝑘=1
𝜆𝑗𝜆𝑘cov(𝑥𝑖𝑗 , 𝑥𝑖𝑘) + 𝜃2var(𝑥𝑖𝑜)

−2𝜃
𝐽
∑

𝜆𝑗cov(𝑥𝑖𝑗 , 𝑥𝑖𝑜), 𝑖 = 1,… ., 𝐼,

𝑗=1

4

𝜎2𝑟 =
𝐽
∑

𝑗=1

𝐽
∑

𝑘=1
𝜆𝑗𝜆𝑘cov(𝑦𝑟𝑗 , 𝑦𝑟𝑘) + var(𝑦𝑟𝑜)

−2
𝐽
∑

𝑗=1
𝜆𝑗cov(𝑦𝑟𝑗 , 𝑦𝑟𝑜), 𝑟 = 1,… ., 𝑅.

By applying the single factor assumption of random variables com-
monly used in economics and finance, model (4) can be converted into 
the following linear form (See [52,53]): 
𝜃∗𝑜 = 𝑀𝑖𝑛 𝜃

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 − 𝜙−1(𝛼)𝜎(𝑝+𝑖 + 𝑝−𝑖 ) ≤ 𝜃𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗 𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜 = 𝑝+𝑖 − 𝑝−𝑖 , 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+𝑟 + 𝑞−𝑟 ) ≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 𝑏𝑟𝑗 − 𝑏𝑟𝑜 = 𝑞+𝑟 − 𝑞−𝑟 , 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 , 𝑞
+
𝑖 , 𝑞

−
𝑖 , 𝑞+𝑟 , 𝑞

−
𝑟 ≥ 0, ∀𝑗, 𝑖, 𝑟.

(5)

In model (5), 𝑝+𝑖 , 𝑝−𝑖 , 𝑞+𝑟  and 𝑞−𝑟  are deviation variables that appeared in 
the linearization process. Moreover, 𝑎𝑖𝑗 and 𝑏𝑟𝑗 are the standard devi-
ations of 𝑥𝑖𝑗 and 𝑦𝑟𝑗 , respectively (The detailed procedure is presented 
in Appendix  A).

Theorem 1.  For any predetermined level of 𝛼 ≤ 0.5, the stochastic 
efficiency score calculated from model (5) ranges between 0 and 1 (See 
[54]).

Definition 2.  The unit under evaluation, 𝐷𝑀𝑈𝑜, is stochastically 
efficient under confidence level 𝛼, if and only is 𝜃∗𝑜 = 1.

4. Stochastic sustainability assessment model

In this section, we present a stochastic model for assessing sustain-
ability based on three aspects: economic, environmental, and social, 
while considering undesirable outputs. Let us assume there are 𝐽 DMUs, 
each depicted as shown in Fig.  1.

To introduce the SBM stochastic model, we start by defining the 
chance-constraint production possibility set. Suppose 𝐷𝑀𝑈𝑗 consumes 
𝐼 random inputs (𝑥𝑖𝑗) to produce 𝑅 random desirable output (𝑣𝑟𝑗), 
and 𝑁 random undesirable output (𝑤̃𝑛𝑗). The stochastic production 
possibility set is defined as follows:
𝑇 =

{

(𝑥, 𝑣, 𝑤̃)|

Economic constraints:
𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑥(𝐸𝐶)

𝑖𝑗 − 𝑠(𝐸𝐶)
𝑖 ≥ 𝑥(𝐸𝐶)

𝑖𝑜

}

≥ 1 − 𝛼, 𝑖 ∈ 𝐼 (𝐸𝐶),

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑣(𝐸𝐶)

𝑟𝑗 − 𝑠(𝐸𝐶)
𝑟 ≥ 𝑣(𝐸𝐶)

𝑟𝑜

}

≥ 1 − 𝛼, 𝑟 ∈ 𝑅(𝐸𝐶),

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑤̃(𝐸𝐶)

𝑛𝑗 + 𝑠(𝐸𝐶)
𝑛 ≤ 𝑤̃(𝐸𝐶)

𝑛𝑜

}

≥ 1 − 𝛼, 𝑛 ∈ 𝑁 (𝐸𝐶),

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 = 1, 𝜆(𝐸𝐶)

𝑗 , 𝑠(𝐸𝐶)
𝑖 , 𝑠(𝐸𝐶)

𝑟 , 𝑠(𝐸𝐶)
𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Environmental constraints:

𝑃

{ 𝐽
∑

𝜆(𝐸𝑁)
𝑗 𝑥(𝐸𝑁)

𝑖𝑗 − 𝑠(𝐸𝑁)
𝑖 ≥ 𝑥(𝐸𝑁)

𝑖𝑜

}

≥ 1 − 𝛼, 𝑖 ∈ 𝐼 (𝐸𝑁),

𝑗=1
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Fig. 1. Structure of 𝐷𝑀𝑈𝑗 ∶ 𝑗 = 1,… , 𝐽 .
𝐽

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑣(𝐸𝑁)

𝑟𝑗 − 𝑠(𝐸𝑁)
𝑟 ≥ 𝑣(𝐸𝑁)

𝑟𝑜

}

≥ 1 − 𝛼, 𝑟 ∈ 𝑅(𝐸𝑁), (6)

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑤̃(𝐸𝑁)

𝑛𝑗 + 𝑠(𝐸𝑁)
𝑛 ≤ 𝑤̃(𝐸𝑁)

𝑛𝑜

}

≥ 1 − 𝛼, 𝑛 ∈ 𝑁 (𝐸𝑁),

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 = 1, 𝜆(𝐸𝑁)

𝑗 , 𝑠(𝐸𝑁)
𝑖 , 𝑠(𝐸𝑁)

𝑟 , 𝑠(𝐸𝑁)
𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Social constraints:
𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑥(𝑆𝑂)

𝑖𝑗 − 𝑠(𝑆𝑂)
𝑖 ≥ 𝑥(𝑆𝑂)

𝑖𝑜

}

≥ 1 − 𝛼, 𝑖 ∈ 𝐼 (𝑆𝑂),

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑣(𝑆𝑂)

𝑟𝑗 − 𝑠(𝑆𝑂)
𝑟 ≥ 𝑣(𝑆𝑂)

𝑟𝑜

}

≥ 1 − 𝛼, 𝑟 ∈ 𝑅(𝑆𝑂),

𝑃

{ 𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑤̃(𝑆𝑂)

𝑛𝑗 + 𝑠(𝑆𝑂)
𝑛 ≤ 𝑤̃(𝑆𝑂)

𝑛𝑜

}

≥ 1 − 𝛼, 𝑛 ∈ 𝑁 (𝑆𝑂),

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 = 1, 𝜆(𝑆𝑂)

𝑗 , 𝑠(𝐸𝐶)
𝑖 , 𝑠(𝐸𝑁)

𝑟 , 𝑠(𝑆𝑂)
𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.}

The production possibility set in (6) is a probabilistic mathematical 

programming problem. In this model, ̃𝑥𝑖𝑗 , ̃𝑣𝑟𝑗 and 𝑤̃𝑛𝑗 are the input/out-
put parameters and 𝜆(𝐸𝐶)

𝑗 , 𝜆(𝐸𝑁)
𝑗 , 𝜆(𝑆𝑂)

𝑗  represent intensity variables for 
the economic, environmental, and social dimensions. Moreover, 𝛼 takes 
values between 0 and 1, indicating the confidence level.

The production possibility set (6) was established under the as-
sumption of managerial disposability, indicating that as inputs increase, 
desirable outputs increase while undesirable outputs decrease simulta-
neously. To taking three different dimensions (economic, environmen-
tal, and social) into consideration, three different groups of constraints 
are defined.

Now, let 𝑥𝑖𝑗 , 𝑣𝑟𝑗 , and 𝑤𝑛𝑗 represent the mean values of inputs, desir-
able outputs and undesirable outputs of 𝐷𝑀𝑈𝑗 , respectively. According 
to the central limit theorem, technology set (6) can be transformed into 
the deterministic non-linear form, and following Cooper et al. [29], 
it can be converted into the linear form as follows (Here, we did not 
provide the details of linearization procedure. To see the mathematical 
details of the transformation, interested readers can refer to Cooper 
et al. [29]):
𝑇 = {(𝑥, 𝑣,𝑤)|

Economic constraints:
𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑥(𝐸𝐶)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑖 + 𝑞−(𝐸𝐶)

𝑖 ) − 𝑠(𝐸𝐶)
𝑖 = 𝑥(𝐸𝐶)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑎(𝐸𝐶)

𝑖𝑗 − 𝑎(𝐸𝐶)
𝑖𝑜 = 𝑞+(𝐸𝐶)

𝑖 − 𝑞−(𝐸𝐶)
𝑖 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝜆(𝐸𝐶)
𝑗 𝑣(𝐸𝐶)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑟 + 𝑞−(𝐸𝐶)

𝑟 ) − 𝑠(𝐸𝐶)
𝑟 = 𝑣(𝐸𝐶)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝑗=1

5

∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑏(𝐸𝐶)

𝑟𝑗 − 𝑏(𝐸𝐶)
𝑟𝑜 = 𝑞(𝐸𝐶)

𝑟 − 𝑞−(𝐸𝐶)
𝑟 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑤(𝐸𝐶)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑛 + 𝑞−(𝐸𝐶)

𝑛 ) + 𝑠(𝐸𝐶)
𝑛 = 𝑤(𝐸𝐶)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑐(𝐸𝐶)

𝑛𝑗 − 𝑐(𝐸𝐶)
𝑛𝑜 = 𝑞+(𝐸𝐶)

𝑛 + 𝑞−(𝐸𝐶)
𝑛 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 = 1,

𝜆(𝐸𝐶)
𝑗 , 𝑠(𝐸𝐶)

𝑖 , 𝑠(𝐸𝐶)
𝑟 , 𝑠(𝐸𝐶)

𝑛 , 𝑞+(𝐸𝐶)
𝑖 , 𝑞−(𝐸𝐶)

𝑖 , 𝑞+(𝐸𝐶)
𝑟 , 𝑞−(𝐸𝐶)

𝑟 ,

𝑞+(𝐸𝐶)
𝑛 , 𝑞−(𝐸𝐶)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Environmental constraints:
𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑥(𝐸𝑁)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑖 + 𝑞−(𝐸𝑁)

𝑖 ) − 𝑠(𝐸𝑁)
𝑖 = 𝑥(𝐸𝑁)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑎(𝐸𝑁)

𝑖𝑗 − 𝑎(𝐸𝑁)
𝑖𝑜 = 𝑞+(𝐸𝑁)

𝑖 − 𝑞−(𝐸𝑁)
𝑖 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑣(𝐸𝑁)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑟 + 𝑞−(𝐸𝑁)

𝑟 ) − 𝑠(𝐸𝑁)
𝑟 = 𝑣(𝐸𝑁)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑏(𝐸𝑁)

𝑟𝑗 − 𝑏(𝐸𝑁)
𝑟𝑜 = 𝑞+(𝐸𝑁)

𝑟 − 𝑞−(𝐸𝑁)
𝑟 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑤(𝐸𝑁)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑛 + 𝑞−(𝐸𝑁)

𝑛 ) + 𝑠(𝐸𝑁)
𝑛 = 𝑤(𝐸𝑁)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝜎(𝑤(𝐸𝑁)

𝑛𝑗 ) − 𝜎(𝑤(𝐸𝑁)
𝑛𝑜 ) = 𝑞+(𝐸𝑁)

𝑛 + 𝑞−(𝐸𝑁)
𝑛 , 𝑛 ∈ 𝑇𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 = 1,

𝜆(𝐸𝑁)
𝑗 , 𝑠(𝐸𝑁)

𝑖 , 𝑠(𝐸𝑁)
𝑟 , 𝑠(𝐸𝑁)

𝑛 , 𝑞+(𝐸𝑁)
𝑖 , 𝑞−(𝐸𝑁)

𝑖 , 𝑞+(𝐸𝑁)
𝑟 , 𝑞−(𝐸𝑁)

𝑟 ,

𝑞+(𝐸𝑁)
𝑛 , 𝑞−(𝐸𝑁)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Social constraints:
𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑥(𝑆𝑂)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑖 + 𝑞−(𝑆𝑂)

𝑖 ) − 𝑠(𝑆𝑂)
𝑖 = 𝑥(𝑆𝑂)

𝑖𝑜 , 𝑖 ∈ 𝐼𝑆𝑜𝑐𝑖𝑎𝑙 ,

(7)
𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑎(𝑆𝑂)

𝑖𝑗 − 𝑎(𝑆𝑂)
𝑖𝑜 = 𝑞+(𝑆𝑂)

𝑖 − 𝑞−(𝑆𝑂)
𝑖 , 𝑖 ∈ 𝐼𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑣(𝑆𝑂)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑟 + 𝑞−(𝑆𝑂)

𝑟 ) − 𝑠(𝑆𝑂)
𝑟 = 𝑣(𝑆𝑂)

𝑟𝑜 , 𝑟 ∈ 𝑅𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝜆(𝑆𝑂)
𝑗 𝑏(𝑆𝑂)

𝑟𝑗 − 𝑏(𝑆𝑂)
𝑟𝑜 = 𝑞+(𝑆𝑂)

𝑟 − 𝑞−(𝑆𝑂)
𝑟 , 𝑟 ∈ 𝑅𝑆𝑜𝑐𝑖𝑎𝑙 ,
𝑗=1
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𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑤(𝑆𝑂)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑛 + 𝑞−(𝑆𝑂)

𝑛 ) + 𝑠(𝑆𝑂)
𝑛 = 𝑤(𝑆𝑂)

𝑛𝑜 , 𝑛 ∈ 𝑁𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑐(𝑆𝑂)

𝑛𝑗 − 𝑐(𝑆𝑂)
𝑛𝑜 = 𝑞+(𝑆𝑂)

𝑛 + 𝑞−(𝑆𝑂)
𝑛 , 𝑛 ∈ 𝑁𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 = 1,

𝜆(𝑆𝑂)
𝑗 , 𝑠(𝑆𝑂)

𝑖 , 𝑠(𝑆𝑂)
𝑟 , 𝑠(𝑆𝑂)

𝑛 , 𝑞+(𝑆𝑂)
𝑖 , 𝑞−(𝑆𝑂)

𝑖 , 𝑞+(𝑆𝑂)
𝑟 , 𝑞−(𝑆𝑂)

𝑟 ,

𝑞+(𝑆𝑂)
𝑛 , 𝑞−(𝑆𝑂)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.

In the technology set (7), 𝜙−1 is a known parameter and represents 
the inverse of the standard normal distribution function, 𝜎 represents 
the standard normal deviation. 𝑞+𝑟  and 𝑞+𝑟  are deviation variables that 
appeared in the linearization process. Moreover, 𝑎𝑖𝑗 , 𝑏𝑟𝑗 and 𝑐𝑛𝑗 are the 
standard deviations of 𝑥𝑖𝑗 , 𝑣𝑟𝑗 and 𝑤̃𝑛𝑗 , respectively.

Considering the technology set (7), the stochastic SBM efficiency for 
each of the three aspects — economic, environmental, and social — 
can be calculated separately by using the following three models (the 
detailed constraints of these models are provided in the Appendix  B): 

𝛿∗𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑜 =

1 − 1
𝑁 (𝐸𝐶)

(

∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝐶)+𝑅(𝐸𝐶)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

)

𝑠.𝑡.

(8)

the economic constraints of Technology (7). 

𝛿∗𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑜 =

1 − 1
𝑁 (𝐸𝑁)

(

∑𝑁 (𝐸𝑁)

𝑛=1
𝑠(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝑁)+𝑅(𝐸𝑁)

(

∑𝐼 (𝐸𝑁)

𝑖=1
𝑠(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

)

𝑠.𝑡.

(9)

the environment constraints of Technology (7). 

𝛿∗𝑆𝑜𝑐𝑖𝑎𝑙𝑜 =
1 − 1

𝑁 (𝑆𝑂)

(

∑𝑁 (𝑆𝑂)

𝑛=1
𝑠(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

)

1 + 1
𝐼 (𝑆𝑂)+𝑅(𝑆𝑂)

(

∑𝐼 (𝑆𝑂)

𝑖=1
𝑠(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

)

𝑠.𝑡.

(10)

the social constraints of Technology (7).
Models (8)–(10) are feasible across all 𝛼 ∈ [0, 1], as error levels and 

evaluate stochastic efficiency measures from economic, environmental, 
and social perspectives, respectively. In these models, the intensity 
variables 𝜆(𝐸𝐶)

𝑗 , 𝜆(𝐸𝑁)
𝑗  and 𝜆(𝑆𝑂)

𝑗  assign proportional weights to the DMU 
under evaluation, while the slack variables (𝑠(𝐸𝐶)

𝑖 , 𝑠(𝐸𝐶)
𝑟 , 𝑠(𝐸𝐶)

𝑛 , 𝑠(𝐸𝑁)
𝑖 , 

𝑠(𝐸𝑁)
𝑟 , 𝑠(𝐸𝑁)

𝑛 , 𝑠(𝑆𝑂)
𝑖 , 𝑠(𝑆𝑂)

𝑟 , 𝑠(𝑆𝑂)
𝑛 ) quantify inefficiencies originating from 

stochastic constraints. Under the managerial disposability assumption, 
efficiency is enhanced by increasing desirable inputs/outputs or reduc-
ing undesirable outputs. The optimal values 𝛿∗𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐

𝑜 , 𝛿∗𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑜 ,  and 

𝛿∗𝑆𝑜𝑐𝑖𝑎𝑙𝑜  represent the stochastic efficiency scores for the economic, en-
vironmental, and social dimensions at confidence level 𝛼, respectively. 
Consequently, the evaluated unit 𝐷𝑀𝑈𝑜 is classified as stochastically 
efficient in a given dimension at level 𝛼 if and only if its corresponding 
optimal value equals 1. This condition is equivalent to all associated 
slack variables being zero.

Models (8), (9), and (10) are linear fractional programming prob-
lems that can be transformed into a linear form using the manner of 
Charnes and Cooper [55] linear transformation.

Given our primary goal of evaluating stochastic sustainability from 
economic, environmental, and social perspectives, all three dimen-
sions are considered simultaneously according to technology (7). The 
stochastic sustainability model, based on the SBM model, is proposed 
as (the detailed constraints of the model are provided in the Appendix 
B) (see the Eq.  (11) in Box  I): the economic, environmental, and social 
constraints defined in Technology (7).
6

In the above model, the intensity variables 𝜆(𝐸𝐶)
𝑗 , 𝜆(𝐸𝑁)

𝑗 , and 𝜆(𝑆𝑂)
𝑗  al-

locate proportional weights to the DMU under evaluation, whereas the 
slack variables 𝑠(𝐸𝐶)

𝑖 , 𝑠(𝐸𝐶)
𝑟 , 𝑠(𝐸𝐶)

𝑛 , 𝑠(𝐸𝐶)
𝑖 , 𝑠(𝐸𝐶)

𝑟 , 𝑠(𝐸𝐶)
𝑛 , 𝑠(𝐸𝑁)

𝑖 , 𝑠(𝐸𝑁)
𝑟 ,

and 𝑠(𝐸𝑁)
𝑛  measure inefficiencies arising from the stochastic constraints. 

Model (11) is a linear fractional programming problem and proceeding 
with the usual manner of Charnes and Cooper [55], it can easily be 
transformed into a linear format. To do so, make the following changes 
of variables (see the equation in Box  II): 𝛽𝜆(𝐸𝐶)

𝑗 = 𝛾 (𝐸𝐶)
𝑗 , 𝛽𝜆(𝐸𝑁)

𝑗 = 𝛾 (𝐸𝑁)
𝑗 , 

𝛽𝜆(𝑆𝑂)
𝑗 = 𝛾 (𝑆𝑂)

𝑗 , 𝛽𝑞+(𝐸𝐶)
𝑖 = 𝑝+(𝐸𝐶)

𝑖 , 𝛽𝑞+(𝐸𝐶)
𝑟 = 𝑝+(𝐸𝐶)

𝑟 , 𝛽𝑞+(𝐸𝐶)
𝑛 = 𝑝+(𝐸𝐶)

𝑛 , 
𝛽𝑞+(𝐸𝑁)

𝑖 = 𝑝+(𝐸𝑁)
𝑖 , 𝛽𝑞+(𝐸𝑁)

𝑟 = 𝑝+(𝐸𝑁)
𝑟 , 𝛽𝑞+(𝐸𝑁)

𝑛 = 𝑝+(𝐸𝑁)
𝑛 , 𝛽𝑞+(𝑆𝑂)

𝑖 = 𝑝+(𝑆𝑂)
𝑖 , 

𝛽𝑞+(𝑆𝑂)
𝑟 = 𝑝+(𝑆𝑂)

𝑟 , 𝛽𝑞+(𝑆𝑂)
𝑛 = 𝑝+(𝑆𝑂)

𝑛 , 𝛽𝑠(𝐸𝐶)
𝑖 = 𝜂(𝐸𝐶)

𝑖 , 𝛽𝑠(𝐸𝐶)
𝑟 = 𝜂(𝐸𝐶)

𝑟 , 
𝛽𝑠(𝐸𝐶)

𝑛 = 𝜂(𝐸𝐶)
𝑛 , 𝛽𝑠(𝐸𝑁)

𝑖 = 𝜂(𝐸𝑁)
𝑖 , 𝛽𝑠(𝐸𝑁)

𝑟 = 𝜂(𝐸𝑁)
𝑟 , 𝛽𝑠(𝐸𝑁)

𝑛 = 𝜂(𝐸𝑁)
𝑛 , 

𝛽𝑠(𝑆𝑂)
𝑖 = 𝜂(𝑆𝑂)

𝑖 , 𝛽𝑠(𝑆𝑂)
𝑟 = 𝜂(𝑆𝑂)

𝑟 , and 𝛽𝑠(𝑆𝑂)
𝑛 = 𝜂(𝑆𝑂)

𝑛 . Therefore, we have

𝛿∗𝑜 = 𝑀𝑖𝑛 𝛽 − 1
𝑁 (𝐸𝐶) +𝑁 (𝐸𝑁) +𝑁 (𝑆𝑂)

×
⎛

⎜

⎜

⎝

𝑇 (𝐸𝐶)
∑

𝑛=1

𝜂(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

+
𝑇 (𝐸𝐶)
∑

𝑛=1

𝜂(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

+
𝑇 (𝐸𝐶)
∑

𝑛=1

𝜂(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

⎞

⎟

⎟

⎠

𝑠.𝑡.

Economic constraints:
𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑥(𝐸𝐶)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝐶)
𝑖 + 𝑝−(𝐸𝐶)

𝑖 ) − 𝜂(𝐸𝐶)
𝑖 = 𝛽𝑥(𝐸𝐶)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑎(𝐸𝐶)

𝑖𝑗 − 𝛽𝑎(𝐸𝐶)
𝑖𝑜 = 𝑝+(𝐸𝐶)

𝑖 − 𝑝−(𝐸𝐶)
𝑖 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑣(𝐸𝐶)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝐶)
𝑟 + 𝑝−(𝐸𝐶)

𝑟 ) − 𝜂(𝐸𝐶)
𝑟 = 𝑣(𝐸𝐶)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑏(𝐸𝐶)

𝑟𝑗 − 𝛽𝑏(𝐸𝐶)
𝑟𝑜 = 𝑝(𝐸𝐶)

𝑟 − 𝑝−(𝐸𝐶)
𝑟 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑤(𝐸𝐶)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝐶)
𝑛 + 𝑝−(𝐸𝐶)

𝑛 ) + 𝜂(𝐸𝐶)
𝑛 = 𝑤(𝐸𝐶)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 𝑐(𝐸𝐶)

𝑛𝑗 − 𝑐(𝐸𝐶)
𝑛𝑜 = 𝑝+(𝐸𝐶)

𝑛 + 𝑝−(𝐸𝐶)
𝑛 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝐶)
𝑗 = 𝛽,

𝛾 (𝐸𝐶)
𝑗 , 𝜂(𝐸𝐶)

𝑖 , 𝜂(𝐸𝐶)
𝑟 , 𝜂(𝐸𝐶)

𝑛 , 𝑝+(𝐸𝐶)
𝑖 , 𝑝−(𝐸𝐶)

𝑖 , 𝑝+(𝐸𝐶)
𝑟 , 𝑝−(𝐸𝐶)

𝑟 ,

𝑝+(𝐸𝐶)
𝑛 , 𝑝−(𝐸𝐶)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Environmental constraints:
𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑥(𝐸𝑁)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝑁)
𝑖 + 𝑝−(𝐸𝑁)

𝑖 ) − 𝜂(𝐸𝑁)
𝑖 = 𝛽𝑥(𝐸𝑁)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑎(𝐸𝑁)

𝑖𝑗 − 𝛽𝑎(𝐸𝑁)
𝑖𝑜 = 𝑝+(𝐸𝑁)

𝑖 − 𝑝−(𝐸𝑁)
𝑖 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑣(𝐸𝑁)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝑁)
𝑟 + 𝑝−(𝐸𝑁)

𝑟 ) − 𝜂(𝐸𝑁)
𝑟 = 𝛽𝑣(𝐸𝑁)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑏(𝐸𝑁)

𝑟𝑗 − 𝛽𝑏(𝐸𝑁)
𝑟𝑜 = 𝑝+(𝐸𝑁)

𝑟 − 𝑝−(𝐸𝑁)
𝑟 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑤(𝐸𝑁)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑝+(𝐸𝑁)
𝑛 + 𝑝−(𝐸𝑁)

𝑛 ) + 𝜂(𝐸𝑁)
𝑛 = 𝛽𝑤(𝐸𝑁)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 𝑐(𝐸𝑁)

𝑛𝑗 − 𝛽𝑐(𝐸𝑁)
𝑛𝑜 = 𝑝+(𝐸𝑁)

𝑛 + 𝑝−(𝐸𝑁)
𝑛 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝛾 (𝐸𝑁)
𝑗 = 𝛽,

𝛾 (𝐸𝑁)
𝑗 , 𝜂(𝐸𝑁)

𝑖 , 𝜂(𝐸𝑁)
𝑟 , 𝜂(𝐸𝑁)

𝑛 , 𝑝+(𝐸𝑁)
𝑖 , 𝑝−(𝐸𝑁)

𝑖 , 𝑝+(𝐸𝑁)
𝑟 , 𝑝−(𝐸𝑁)

𝑟 ,

+(𝐸𝑁) −(𝐸𝑁)
𝑝𝑛 , 𝑝𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,
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𝛿∗𝑜 = 𝑀𝑖𝑛
1 − 1

𝑁 (𝐸𝐶)+𝑁 (𝐸𝑁)+𝑁 (𝑆𝑂)

(

∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

+
∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

+
∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝐶)+𝐼 (𝐸𝑁)+𝐼 (𝑆𝑂)+𝑅(𝐸𝐶)+𝑅(𝐸𝑁)+𝑅(𝑆𝑂)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

)

s.t.

(11)

Box I. 
1

1 + 1
𝐼 (𝐸𝐶)+𝐼 (𝐸𝑁)+𝐼 (𝑆𝑂)+𝑅(𝐸𝐶)+𝑅(𝐸𝑁)+𝑅(𝑆𝑂)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

) = 𝛽(> 0),

Box II. 
Social constraints
𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑥(𝑆𝑂)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝑆𝑂)
𝑖 + 𝑝−(𝑆𝑂)

𝑖 ) − 𝜂(𝑆𝑂)
𝑖 = 𝛽𝑥(𝑆𝑂)

𝑖𝑜 , 𝑖 ∈ 𝐼𝑆𝑂 ,

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑎(𝑆𝑂)

𝑖𝑗 − 𝛽𝑎(𝑆𝑂)
𝑖𝑜 = 𝑝+(𝑆𝑂)

𝑖 − 𝑝−(𝑆𝑂)
𝑖 , 𝑖 ∈ 𝐼𝑆𝑂 ,

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑣(𝑆𝑂)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑝+(𝑆𝑂)
𝑟 + 𝑝−(𝑆𝑂)

𝑟 ) − 𝜂(𝑆𝑂)
𝑟 = 𝛽𝑣(𝑆𝑂)

𝑟𝑜 , 𝑟 ∈ 𝑅𝑆𝑂 ,

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑏(𝑆𝑂)

𝑟𝑗 − 𝛽𝑏(𝑆𝑂)
𝑟𝑜 = 𝑝+(𝑆𝑂)

𝑟 − 𝑝−(𝑆𝑂)
𝑟 , 𝑟 ∈ 𝑅𝑆𝑂 , (12)

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑤(𝑆𝑂)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑝+(𝑆𝑂)
𝑛 + 𝑝−(𝑆𝑂)

𝑛 ) + 𝜂(𝑆𝑂)
𝑛 = 𝛽𝑤(𝑆𝑂)

𝑛𝑜 , 𝑛 ∈ 𝑁𝑆𝑂 ,

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 𝑐(𝑆𝑂)

𝑛𝑗 − 𝛽𝑐(𝑆𝑂)
𝑛𝑜 = 𝑝+(𝑆𝑂)

𝑛 + 𝑝−(𝑆𝑂)
𝑛 , 𝑛 ∈ 𝑁𝑆𝑂 ,

𝐽
∑

𝑗=1
𝛾 (𝑆𝑂)
𝑗 = 𝛽,

𝛾 (𝑆𝑂)
𝑗 , 𝜂(𝑆𝑂)

𝑖 , 𝜂(𝑆𝑂)
𝑟 , 𝜂(𝑆𝑂)

𝑛 , 𝑝+(𝑆𝑂)
𝑖 , 𝑝−(𝑆𝑂)

𝑖 , 𝑝+(𝑆𝑂)
𝑟 , 𝑝−(𝑆𝑂)

𝑟 ,

𝑝+(𝑆𝑂)
𝑛 , 𝑝−(𝑆𝑂)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Generic constraints: 
𝛽 + 1

𝐼 (𝐸𝐶) + 𝐼 (𝐸𝑁) + 𝐼 (𝑆𝑂) + 𝑅(𝐸𝐶) + 𝑅(𝐸𝑁) + 𝑅(𝑆𝑂)

⎛

⎜

⎜

⎝

𝐼 (𝐸𝐶)
∑

𝑖=1

𝜂(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
𝐼 (𝐸𝐶)
∑

𝑖=1

𝜂(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
𝐼 (𝐸𝐶)
∑

𝑖=1

𝜂(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
𝑅(𝐸𝐶)
∑

𝑟=1

𝜂(𝐸𝐶)
𝑟

𝑣(𝐸𝐶)
𝑟𝑜

+
𝑅(𝐸𝑁)
∑

𝑟=1

𝜂(𝐸𝑁)
𝑟

𝑣(𝐸𝑁)
𝑟𝑜

+
𝑅(𝑆𝑂)
∑

𝑟=1

𝜂(𝑆𝑂)
𝑟

𝑣(𝑆𝑂)
𝑟𝑜

⎞

⎟

⎟

⎠

= 1,

𝛽 > 0.

In model (12), the intensity variables 𝛾 (𝐸𝑁)
𝑗 , 𝛾 (𝑆𝑂)

𝑗 ,  and 𝛾 (𝐸𝐶)
𝑗  determine 

the proportional contributions of the DMUs, while the slack vari-
ables 𝜂(𝐸𝐶)

𝑖 , 𝜂(𝐸𝐶)
𝑟 , 𝜂(𝐸𝐶)

𝑛 , 𝜂(𝐸𝑁)
𝑖 , 𝜂(𝐸𝑁)

𝑟 , 𝜂(𝐸𝑁)
𝑛 𝜂(𝑆𝑂)

𝑖 , 𝜂(𝑆𝑂)
𝑟 , and 𝜂(𝑆𝑂)

𝑛  capture 
inefficiencies induced by stochastic constraints.

Definition 3. 𝐷𝑀𝑈𝑜 is stochastic sustainable if and only if 𝛿∗𝑜 = 1, 
indicating that all optimal slack variables are zero (𝜂∗(𝐸𝐶)

𝑖 = 𝜂∗(𝐸𝐶)
𝑟 =

𝜂∗(𝐸𝐶) = 𝜂∗(𝐸𝑁) = 𝜂∗(𝐸𝑁) = 𝜂∗(𝐸𝑁) = 𝜂∗(𝑆𝑂) = 𝜂∗(𝑆𝑂) = 𝜂∗(𝑆𝑂) = 0).
𝑛 𝑖 𝑟 𝑛 𝑖 𝑟 𝑛
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According to Model (12), stochastic sustainability for three aspects: 
economic, environmental, and social, can be obtained as follows: 

𝛿∗𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑜 =

1 − 1
𝑁 (𝐸𝐶)

(

∑𝑁 (𝐸𝐶)

𝑛=1
𝑠∗(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝐶)+𝑅(𝐸𝐶)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠∗(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠∗(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

) (13)

𝛿∗𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑜 =

1 − 1
𝑁 (𝐸𝑁)

(

∑𝑁 (𝐸𝑁)

𝑛=1
𝑠∗(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝑁)+𝑅(𝐸𝑁)

(

∑𝐼 (𝐸𝑁)

𝑖=1
𝑠∗(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠∗(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

) (14)

𝛿∗𝑆𝑜𝑐𝑖𝑎𝑙𝑜 =
1 − 1

𝑁 (𝑆𝑂)

(

∑𝑁 (𝑆𝑂)

𝑛=1
𝑠∗(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

)

1 + 1
𝐼 (𝑆𝑂)+𝑅(𝑆𝑂)

(

∑𝐼 (𝑆𝑂)

𝑖=1
𝑠∗(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠∗(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

) (15)

Given that 𝛽 is positive, 𝑠∗(𝐸𝐶)
𝑖 , 𝑠∗(𝐸𝐶)

𝑟 , 𝑠∗(𝐸𝐶)
𝑛 , 𝑠∗(𝐸𝑁)

𝑖 , 𝑠∗(𝐸𝑁)
𝑟 , 𝑠∗(𝐸𝑁)

𝑛 , 𝑠∗(𝑆𝑂)
𝑖 ,

𝑠∗(𝑆𝑂)
𝑟 , and 𝑠∗(𝑆𝑂)

𝑛  can be obtained from the optimal values of Model 
(12) as 𝑠∗(𝐸𝐶)

𝑖 =
𝜂∗(𝐸𝐶)
𝑖
𝛽∗ , 𝑠∗(𝐸𝐶)

𝑟 = 𝜂∗(𝐸𝐶)
𝑟
𝛽∗ , 𝑠∗(𝐸𝐶)

𝑛 = 𝜂∗(𝐸𝐶)
𝑛
𝛽∗ , 𝑠∗(𝐸𝑁)

𝑖 =
𝜂∗(𝐸𝑁)
𝑖
𝛽∗ , 

𝑠∗(𝐸𝑁)
𝑟 = 𝜂∗(𝐸𝑁)

𝑟
𝛽∗ , 𝑠∗(𝐸𝑁)

𝑛 = 𝜂∗(𝐸𝑁)
𝑛
𝛽∗ , 𝑠∗(𝑆𝑂)

𝑖 =
𝜂∗(𝑆𝑂)
𝑖
𝛽∗ , 𝑠∗(𝑆𝑂)

𝑟 = 𝜂∗(𝑆𝑂)
𝑟
𝛽∗ , 

𝑠∗(𝑆𝑂)
𝑛 = 𝜂∗(𝑆𝑂)

𝑛
𝛽∗ .

Definition 4. 𝐷𝑀𝑈𝑜 is stochastically economic sustainable if and only 
if 𝛿∗𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐

𝑜 = 1.

Definition 5. 𝐷𝑀𝑈𝑜 is stochastically environmentally sustainable if 
and only if 𝛿∗𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝑜 = 1.

Definition 6. 𝐷𝑀𝑈𝑜 is stochastically social sustainable if and only if 
𝛿∗𝑆𝑜𝑐𝑖𝑎𝑙𝑜 = 1.

Based on the above definitions, 𝐷𝑀𝑈𝑜 is stochastically sustainable 
if and only if it is sustainable from all three aspects.

5. An illustrative application

Assessing the sustainability of countries is crucial for policymak-
ers to identify areas for improvement, monitor progress over time, 
and make informed decisions to promote sustainable development. 
Given the significance of this issue, this section aims to investigate 
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the sustainability of 59 countries spanning four continents — Africa, 
Europe, North America, and Asia — over a 12-year period from 2010 
to 2022. The analysis focuses on evaluating country-level performance; 
accordingly, each country is treated as a DMU. The initial data were 
sourced from the World Bank (https://www.worldbank.org/), and after 
necessary modifications, we obtained data for 59 countries across these 
four continents. For illustrative purposes, all input and output variables 
are treated as stochastic. We first checked the Normality of the data 
set. Toward this end, we performed ‘‘Goodness of fit’’ test to check if 
the data follows Normal distribution. After the test, we concluded that 
there is no evidence to reject the Normal distribution assumption of 
the data. In this case, the parameters of the distribution (the means 
and standard deviations) are calculated across the 12-year period for 
each country.

Incorporating stochasticity, particularly through the use of variance, 
enhances the modeling process by capturing the inherent uncertainty 
in the data. This approach allows for a clearer distinction between 
countries that demonstrate consistent performance across time and 
those whose efficiency is more volatile and susceptible to fluctuations, 
which might be overlooked in deterministic models that rely solely on 
mean values. In the subsequent subsections, we will introduce inputs 
and outputs, followed by the presentation of results. 
5.1. Description of variables and data

The selection of indicators for economic, environmental, and social 
dimensions was guided by two main criteria: (i) availability and relia-
bility of data from reputable sources such as the World Bank, and (ii) 
alignment with sustainability concepts as evidenced in previous litera-
ture (see Section 2). Indicators were chosen to cover different aspects of 
each dimension — inputs, desirable outputs, and undesirable outputs — 
while ensuring consistency and comparability across countries. Inputs 
and outputs for each dimension — economic, environmental, and social 
— are introduced as follows: (Please note that descriptions are based 
on data from the  World Bank.)

⬥ Economic dimension

∙ Inputs
– Imports of goods and services represent the value of all goods 
and other market services received from the rest of the 
world.

∙ Desirable Outputs
– GDP is the total monetary or market value of all the finished 
goods and services produced within a country’s borders in 
a specific period.

–  GNI is the sum of value added by all resident producers 
plus any product taxes (less subsidies) not included in the 
valuation of output plus net receipts of primary income 
(compensation of employees and property income) from 
abroad.

– Exports of goods and services represent the value of all goods 
and other market services provided to the rest of the world.

∙ Undesirable Output
– Inflation: Inflation as measured by the consumer price index 
reflects the annual percentage change in the cost to the av-
erage consumer of acquiring a basket of goods and services 
that may be fixed or changed at specified intervals, such as 
yearly.

⬥ Environmental dimension

∙ Inputs
– Energy use refers to use of primary energy before transforma-
tion to other end-use fuels, which is equal to indigenous pro-
duction plus imports and stock changes, minus exports and 
fuels supplied to ships and aircraft engaged in international 
transport. 
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∙ Desirable Outputs
– Agriculture, forestry, and fishing, value added encompass ac-
tivities such as forestry, hunting, and fishing, as well as the 
cultivation of crops and livestock production.

– Undesirable Output
– PM2.5 Air pollution is defined as the percentage of the 
population exposed to ambient concentrations of PM2.5 that 
exceed the WHO guideline value.

⬥ Social dimension

∙ Inputs
– Prevalence of moderate or severe food insecurity in the pop-
ulation: The percentage of people in the population who 
live in households classified as moderately or severely food 
insecure.

– Cost of business start-up procedures: The cost to register a 
business is normalized by presenting it as a percentage of 
gross national income (GNI) per capita.

∙ Desirable Outputs
– Life expectancy at birth indicates the number of years a 
newborn infant would live if prevailing patterns of mortality 
at the time of its birth were to stay the same throughout its 
life.

– Current health expenditure estimates of current health ex-
penditures include healthcare goods and services consumed 
during each year. This indicator does not include capital 
health expenditures such as buildings, machinery, IT and 
stocks of vaccines for emergency or outbreaks.

– Human capital index: The HCI calculates the contributions of 
health and education to worker productivity. The final index 
score ranges from zero to one and measures productivity 
as the future potential of a child born today relative to the 
benchmark of full health and complete education.

∙ Undesirable Output
– Unemployment refers to the share of the labor force that 
is without work but available for and seeking employ-
ment. Definitions of labor force and unemployment differ 
by country.

The selected indicators are macro-level variables that are inher-
ently influenced by economic cycles, policy interventions, institutional 
changes, environmental conditions, and external shocks. Consequently, 
these variables exhibit intertemporal variability and measurement un-
certainty, making a stochastic representation more appropriate than a 
purely deterministic treatment.

It is important to note that we incorporated the social input of 
‘‘Prevalence of moderate or severe food insecurity in the population’’ 
under the assumption of natural disposability, indicating that the men-
tioned input was decreased. The statistical summary, including the 
mean and standard deviation of variables for each dimension, is pro-
vided in Tables  1 and 2.

5.2. Results of stochastic sustainability assessment for countries

To assess the stochastic sustainability of 59 countries, we considered 
five confidence levels (0.1, 0.2, 0.3, 0.4, and 0.5). Cooper et al. [56] 
suggest that, in general, the tolerance level of chance constraints should 
satisfy 0 < 𝛼 ≤ 0.5, for which technical efficiency scores lie between 
zero and one. When the data involve high levels of uncertainty and 
0.5 ≤ 𝛼 < 1, the efficiency frontier shifts toward the observed data, 
leading many observations to attain unity or near-unity efficiency 
scores. Under such conditions, the results of the chance-constrained 
program may be questioned. For this reason, most studies in stochastic 
settings consider confidence levels within the interval 0 < 𝛼 ≤ 0.5. The 
detailed results for stochastic sustainability across all three aspects — 

https://www.worldbank.org/
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Table 1
Statistical summary of mean of variables in economic, environmental, and social dimensions.
 Dimension Type of variables Variables Min Mean Max S. D. Q1 Median Q3  
 

Economic

Input Imports of goods and 
services

2.02E+01 4.87E+01 1.57E+02 2.59E+01 2.02E+01 4.12E+01 5.89E+01 

 

Desirable outputs

GNI 6.55E+09 3.28E+11 3.90E+12 6.33E+11 6.55E+09 7.20E+10 3.09E+11 
 GDP 6.40E+09 3.28E+11 3.76E+12 6.21E+11 6.40E+09 7.35E+10 2.91E+11 
 Exports of goods and 

services
9.76E+00 4.70E+01 1.89E+02 3.13E+01 9.76E+00 3.94E+01 5.83E+01 

 Undesirable output Inflation 2.26E−01 4.70E+00 3.40E+01 5.30E+00 2.26E−01 2.92E+00 4.81E+00 
 
Environmental

Input Energy use 1.35E+02 2.56E+03 1.77E+04 2.84E+03 1.35E+02 1.94E+03 3.28E+03 
 Desirable output Agriculture, forestry, and 

fishing, value added
2.42E−01 8.88E+00 3.75E+01 9.21E+00 2.42E−01 4.73E+00 1.23E+01 

 Undesirable output PM2.5 Air pollution 1.84E−01 8.83E+01 1.00E+02 2.75E+01 1.84E−01 1.00E+02 1.00E+02 
 

Social

Inputs

Prevalence of moderate or 
severe food insecurity in 
the population

2.46E+00 2.46E+01 8.69E+01 2.33E+01 2.46E+00 1.21E+01 4.26E+01 

 Cost of business start-up 
procedures

4.00E−01 9.40E+01 3.54E+03 4.55E+02 4.00E−01 1.59E+01 3.65E+01 

 
Desirable outputs

Life expectancy at birth 5.76E+01 7.34E+01 8.32E+01 7.57E+00 5.76E+01 7.47E+01 8.07E+01 
 Current health expenditure 2.38E+00 6.70E+00 1.14E+01 2.49E+00 2.38E+00 6.70E+00 8.83E+00 
 Human capital index 3.17E−01 6.07E−01 8.11E−01 1.43E−01 3.17E−01 6.23E−01 7.43E−01 
 Undesirable output Unemployment 5.53E−01 6.90E+00 2.22E+01 4.54E+00 5.53E−01 5.57E+00 9.23E+00 
Table 2
Statistical summary of standard deviation of variables in economic, environmental, and social dimensions.
 Dimension Type of variables Variables Min Mean Max S. D. Q1 Median Q3  
 

Economic

Input Imports of goods and 
services

1.37E+00 5.30E+00 1.44E+01 2.77E+00 1.37E+00 4.67E+00 6.38E+00 

 

Desirable outputs

GNI 1.08E+09 3.12E+10 2.55E+11 5.08E+10 1.08E+09 1.46E+10 2.93E+10 
 GDP 1.07E+09 3.43E+10 3.34E+11 5.79E+10 1.07E+09 1.36E+10 3.29E+10 
 Exports of goods and 

services
1.55E+00 4.88E+00 1.51E+01 2.63E+00 1.55E+00 4.63E+00 5.88E+00 

 Undesirable output Inflation 9.64E−01 3.98E+00 5.92E+01 7.55E+00 9.64E−01 2.25E+00 3.66E+00 
 
Environmental

Input Energy use 2.51E+00 1.22E+02 7.57E+02 1.45E+02 2.51E+00 7.76E+01 1.50E+02 
 Desirable output Agriculture, forestry, and 

fishing, value added
2.77E−02 9.57E−01 5.66E+00 1.24E+00 2.77E−02 4.01E−01 1.11E+00 

 Undesirable output PM2.5 Air pollution 0.00E+00 2.00E+00 1.75E+01 4.16E+00 0.00E+00 1.93E−02 1.57E+00 
 

Social

Inputs

Prevalence of moderate or 
severe food insecurity in 
the population

8.16E−02 2.11E+00 8.36E+00 1.94E+00 8.16E−02 1.43E+00 2.73E+00 

 Cost of business start-up 
procedures

1.50E−01 8.93E+01 3.58E+03 4.63E+02 1.50E−01 5.82E+00 1.81E+01 

 
Desirable outputs

Life expectancy at birth 3.48E−01 9.31E−01 4.81E+00 6.40E−01 3.48E−01 7.11E−01 1.13E+00 
 Current health expenditure 1.12E−01 5.03E−01 1.36E+00 2.55E−01 1.12E−01 5.02E−01 6.18E−01 
 Human capital index 0.00E+00 1.63E+00 5.75E+00 1.42E+00 0.00E+00 1.12E+00 2.31E+00 
 Undesirable output Unemployment 1.37E+00 5.30E+00 1.44E+01 2.77E+00 1.37E+00 4.67E+00 6.38E+00 
economic, environmental, and social — are presented in the Appendix 
C, Tables  3, 4, 5, and 6.

Among the continents of Europe, Africa, and Asia, Sweden, Ethiopia, 
and Kuwait exhibit the highest levels of stochastic sustainability across 
all confidence levels, respectively. Notably, Ethiopia and Kuwait
demonstrate stochastic environmental sustainability, while Sweden 
showcases stochastic social sustainability.

Ethiopia’s high environmental efficiency contrasts with its lower 
economic performance, reflecting that resource-dependent economies 
may achieve environmental gains primarily due to limited industrial 
activity rather than proactive environmental management. Sweden’s 
strong social efficiency aligns with well-developed welfare systems, 
emphasizing the role of institutional capacity in supporting social 
outcomes.

In North America, Ecuador achieves maximum stochastic sustain-
ability at confidence levels of 0.1 and 0.2, El Salvador at 0.3, and 
9

Guatemala at 0.4 and 0.5. However, none of these countries exhibit 
stochastic sustainability across any aspect. The African continent shows 
the lowest values for stochastic sustainability, with Algeria recording 
minimum values at confidence levels 0.1 and 0.2, and Angola spanning 
confidence levels 0.3 to 0.5. In Europe, Serbia holds the minimum value 
at 0.1 confidence level, while Spain demonstrates minimum values 
across confidence levels ranging from 0.2 to 0.5. Turning to North 
America, Mexico shows the minimum value for stochastic sustainabil-
ity at confidence level 0.1, whereas the Dominican Republic records 
minimum values across confidence levels 0.2 to 0.5. Furthermore, in 
Asia, Uzbekistan and Lebanon display the minimum values of stochastic 
sustainability, with two (0.1 and 0.2) and three (0.3, 0.4, and 0.5) 
confidence levels, respectively.

These patterns reveal structural vulnerabilities: North American 
countries, despite relatively high HDI, show lower resilience under 
stochastic evaluation, likely due to environmental pressures or social 
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Fig. 2. Average stochastic sustainability.
disparities. African countries with lower HDI, like Algeria and Angola, 
display sporadic resilience in specific dimensions, indicating that con-
ventional development metrics alone do not fully capture sustainability 
under uncertainty. Asia presents mixed outcomes, with countries such 
as Kuwait and Cambodia showing strong performance in environmental 
and social dimensions respectively, aligned with intermediate HDI 
levels.

Across the three dimensions, the social dimension had the fewest 
sustainable countries. Only Europe and Asia had stochastic social sus-
tainable countries among the four continents. Specifically, Finland and 
Sweden from Europe, with five confidence levels, and Cambodia from 
Asia, with a confidence level of 0.1, are stochastic social sustainable. In 
contrast, the environmental dimension exhibited the highest number of 
sustainable countries. Ethiopia, an African nation, achieved stochastic 
sustainability at five confidence levels, while Niger and Benin attained 
stochastic sustainability at four confidence levels. In Europe, Finland, 
Iceland, and Norway demonstrated stochastic sustainability across all 
five confidence levels, while Estonia achieved it across four confidence 
levels. Additionally, Cambodia and Kuwait displayed stochastic sustain-
ability with all five confidence levels. Notably, no country in North 
America demonstrated stochastic sustainability.

Regarding the economic dimension, Lebanon was the only country 
in Asia that demonstrated stochastic sustainability at just two levels. 
In Europe, Bosnia and Herzegovina and Greece achieved stochastically 
sustainability with three confidence levels, while Germany, Luxem-
bourg, Malta, Moldova and Switzerland achieved it with all confidence 
levels. Unlike the two aforementioned continents, Africa and North 
America lacked any instances of stochastic sustainability. 

5.3. Results of stochastic sustainability assessment for continents

In this section, the results of the stochastic sustainability assessment 
for four continents — Africa, Europe, North America, and Asia — are 
presented. The evaluation was conducted across five confidence levels 
(0.1, 0.2, 0.3, 0.4, and 0.5). Fig.  2 illustrates the average stochas-
tic sustainability across all confidence levels for the four continents. 
According to this figure, Europe exhibits the highest level of stochas-
tic sustainability, reflecting its strong performance across economic,
social, and environmental dimensions. In contrast, North America 
shows the lowest level of sustainability, indicating significant chal-
lenges in achieving balanced development across these dimensions. 
These results highlight the varying levels of progress among continents 
in achieving sustainable development goals.

Fig.  3 illustrates the economic dimension of stochastic sustainability 
across the four continents. Europe consistently achieves the highest 
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economic sustainability scores across all confidence levels, reflecting 
its strong economic performance, stability, and effective management 
of key economic indicators. Asia follows closely, demonstrating rela-
tively high economic sustainability, which indicates effective economic 
policies and resource management. Africa shows gradual improvement 
across confidence levels, suggesting progress in economic policies and 
resource management, though it still lags behind Europe and Asia. In 
contrast, North America exhibits the lowest scores, highlighting signif-
icant economic challenges such as inflation, reliance on raw material 
exports, and limited economic diversification. These results underscore 
the importance of robust economic policies and targeted interventions 
to enhance sustainability, particularly in regions like North America 
and Africa, where economic performance falls short of global standards.

Fig.  4 displays regional environmental sustainability performance.
Asia leads with strong green policies and renewable energy invest-
ments. Africa, despite developmental challenges, shows good results 
due to limited industrialization and traditional sustainable agricul-
ture. Europe demonstrates moderate performance, indicating room for 
improved policy implementation. Meanwhile, North America ranks 
lowest, hindered by unsustainable consumption patterns and fossil fuel 
dependence.

Fig.  5 presents the social dimension of stochastic sustainability.
Africa achieves the highest scores, reflecting robust community-based 
social structures and equitable development initiatives. Asia and Eu-
rope follow closely, with Europe’s advanced social welfare systems 
nearly matching Asia’s rapid improvements in quality-of-life
indicators—though both regions face persistent inequities. North Amer-
ica trails significantly, its scores undermined by systemic disparities 
in healthcare access, income inequality, and social mobility. These 
contrasts reveal how institutional frameworks and cultural priorities 
shape social sustainability, urging targeted policy interventions in 
underperforming regions.

To further contextualize these results, continent-level stochastic 
sustainability outcomes are compared with trends in the Human Devel-
opment Index (HDI) over the period 2010–2022 (source: UNDP, Hu-
man Development Report, https://hdr.undp.org/data-center/human-
development-index). Europe and North America exhibit relatively high 
HDI growth compared to the global average, but their stochastic 
sustainability rankings differ substantially, particularly under higher 
confidence levels. This divergence indicates that improvements in 
human development do not necessarily translate into resilience under 
uncertainty.

Conversely, Africa shows moderate HDI growth relative to other 
continents but continues to lag in economic and social stochastic

https://hdr.undp.org/data-center/human-development-index
https://hdr.undp.org/data-center/human-development-index
https://hdr.undp.org/data-center/human-development-index
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Fig. 3. Average stochastic sustainability of the economic dimension.

Fig. 4. Average stochastic sustainability of the environmental dimension.

Fig. 5. Average stochastic sustainability of the social dimension.

11
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sustainability, suggesting that development gains alone are insufficient 
to ensure balanced sustainability performance. Asia demonstrates in-
termediate HDI growth and generally consistent sustainability across 
dimensions, highlighting the potential alignment between human de-
velopment progress and stochastic resilience. Overall, this comparison 
confirms that the proposed stochastic DEA framework captures struc-
tural aspects of sustainability that are not reflected in conventional 
development indices.

5.4. Policy implications

Our findings carry significant policy implications for sustainable 
development, environmental indicators, and economic growth, aligning 
closely with several Sustainable Development Goals (SDGs). From a 
theoretical and modeling perspective, the results underscore the impor-
tance of confidence levels in determining efficiency and highlight the 
necessity of considering all dimensions of sustainability — economic, 
environmental, and social — when assessing performance. Focusing on 
a single dimension fails to provide a comprehensive understanding of 
a region’s sustainability, as the interplay between these dimensions is 
critical for achieving balanced development.

The study reveals that certain regions have achieved notable success 
in specific dimensions of sustainability. For instance, some regions 
in Africa and Asia have demonstrated strong environmental sustain-
ability, while others in Europe have excelled in social sustainability. 
These regions can serve as benchmarks for others striving to improve 
their sustainability performance. However, the analysis also identi-
fies a recurring challenge: regions that perform well economically 
often struggle with environmental sustainability, and vice versa. This 
misalignment between economic development and environmental pro-
tection, particularly in more developed regions, underscores the need 
for integrated policies that address these trade-offs.

Among the three dimensions, social sustainability emerges as the 
most challenging, with fewer regions achieving significant progress in 
this area. Key social factors such as food insecurity, barriers to business 
start-ups, life expectancy, healthcare expenditure, human capital devel-
opment, and unemployment rates require urgent attention, especially 
in regions where social sustainability lags. In contrast, environmen-
tal sustainability shows the highest number of successful cases, with 
several regions effectively managing natural resources and reducing 
pollution. However, the study highlights that economic sustainability 
often comes at the expense of environmental health, indicating that 
economic growth and environmental preservation have not yet been 
harmonized in many regions.

These findings emphasize the importance of adopting a multidimen-
sional approach to sustainability. Policymakers must design strategies 
that simultaneously address economic, environmental, and social chal-
lenges, ensuring that progress in one dimension does not undermine 
efforts in another. By learning from regions that have achieved success 
in specific dimensions and addressing the gaps in others, it is pos-
sible to move closer to the global goals of sustainable development. 
This requires not only targeted interventions but also a commitment 
to long-term, integrated planning that aligns economic growth with 
environmental stewardship and social equity.

6. Concluding remarks

Sustainability assessment has become a central focus for researchers 
in recent years. Surveys indicate that the majority of studies con-
centrate on sustainability from a singular perspective, with only a 
few conducting comprehensive analyses across economic, social, and 
environmental dimensions. Recognizing the stochastic and uncertain 
nature of data in various applications, this study introduces a model 
for evaluating sustainability within a stochastic environment using the 
DEA technique.
12
The proposed model explores sustainability from economic, so-
cial, and environmental standpoints, incorporating the assumption of 
managerial disposability to address undesirable factors. Applied to 
assess the sustainability of 59 countries across Africa, Europe, North 
America, and Asia, the results revealed that among the four conti-
nents, Europe exhibited the highest levels of stochastic sustainabil-
ity, while North America demonstrated the lowest. Furthermore, Eu-
rope, Asia, and Africa showcased the highest levels of sustainability 
in the economic, environmental, and social dimensions, respectively. 
Notably, North America lacked stochastic sustainability across all men-
tioned dimensions, while Africa lacked it in the social and economic 
dimensions.

While this study contributes to literature by providing a compre-
hensive stochastic DEA model for sustainability assessment, it is not 
without limitations. First, the selection of variables was constrained 
by data availability, which may have influenced the breadth of the 
analysis. Second, the inclusion of diverse countries, while offering 
a global perspective, introduces heterogeneity that could affect the 
comparability of results. In particular, differences in the number and 
characteristics of countries selected from each continent may have 
influenced the DEA outcomes. Since DEA assumes homogeneity among 
DMUs, such regional disparities, especially between countries from 
Africa or Asia, could pose a challenge to this assumption. Due to 
data limitations, we conducted our analysis based on available data; 
however, future research may benefit from continent-specific models 
or clustering of countries with similar development levels to ensure 
more homogeneous comparisons. Additionally, the use of alternative 
indicators or more granular data could enhance the robustness of the 
findings.
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Appendix A

Let the stochastic inputs and outputs be expressed as 𝑥𝑖𝑗 = 𝑥𝑖𝑗 +
𝑎𝑖𝑗𝜀𝑖𝑗 and 𝑦𝑟𝑗 = 𝑦𝑟𝑗 + 𝑏𝑟𝑗𝜏𝑟𝑗 , respectively. Here, 𝑥𝑖𝑗 and 𝑦𝑟𝑗 denote 
the expected input and output levels, while 𝑎𝑖𝑗 and 𝑏𝑟𝑗 represent the 
standard deviations of 𝑥𝑖𝑗 and 𝑦𝑟𝑗 , respectively. Furthermore, suppose 
that all the inputs and outputs are uncorrelated, i.e. for each 𝑗 ≠ 𝑘, 
cov(𝑥𝑖𝑗 , 𝑥𝑖𝑘) = 0 and cov(𝑦𝑟𝑗 , 𝑦𝑟𝑘) = 0. Therefore, the stochastic inputs 
and outputs are assumed to follow  normal distributions, such that 
𝑥𝑖𝑗 ∼ 𝑁(𝑥𝑖𝑗 , 𝜎2𝑎2𝑖𝑗 ) and 𝑦𝑟𝑗 ∼ 𝑁(𝑦𝑟𝑗 , 𝜎2𝑏2𝑟𝑗 ).

For each 𝑗 = 1,… , 𝐽 , let 𝜀𝑖 = 𝜀𝑖𝑗 , 𝜏𝑟 = 𝜏𝑟𝑗 and let 𝜎 = 1. Now, 
consider the 𝑖th input chance constraint in model (3) as follows:

𝑃

{ 𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 ≤ 𝜃𝑥𝑖𝑜

}

≥ 1 − 𝛼, 𝑖 = 1,… , 𝐼.

By substituting ℎ̃𝑖 =
∑𝑗

𝑗=1 𝜆𝑗𝑥𝑖𝑗 − 𝜃𝑥𝑖𝑜, and under the assumptions of 
normality, the specified error structure, and the absence of correlation 
among inputs and outputs, we have:
ℎ𝑖 =

𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 − 𝜃𝑥𝑖𝑜 + 𝜀𝑖(

𝐽
∑

𝑗=1
𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜) where 

ℎ̃𝑖 ∼ 𝑁

( 𝐽
∑

𝜆𝑗𝑥𝑖𝑗 − 𝜃𝑥𝑖𝑜, 𝜎2(
𝐽
∑

𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜)2
)

.

𝑗=1 𝑗=1
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Therefore, the deterministic form of the input constraint becomes 
∑𝐽

𝑗=1 𝜆𝑗𝑥𝑖𝑗−𝜙−1(𝛼)𝜎 |

|

|

∑𝐽
𝑗=1 𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜

|

|

|

≤ 𝜃𝑥𝑖𝑜. Similarly, the determinis-
tic form of the output chance constraint of model (3) can be expressed 
as ∑𝐽

𝑗=1 𝜆𝑗𝑦𝑟𝑗 −𝜙−1(𝛼)𝜎 |

|

|

∑𝐽
𝑗=1 𝜆𝑗𝑏𝑟𝑗 − 𝑏𝑟𝑜

|

|

|

≤ 𝑦𝑟𝑜. Consequently, model (3) 
can be expressed in its deterministic form as 

𝑀𝑖𝑛 𝜃

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 − 𝜙−1(𝛼)𝜎

|

|

|

|

|

|

𝐽
∑

𝑗=1
𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜

|

|

|

|

|

|

≤ 𝜃𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 + 𝜙−1(𝛼)𝜎

|

|

|

|

|

|

𝐽
∑

𝑗=1
𝜆𝑗𝑏𝑟𝑗 − 𝑏𝑟𝑜

|

|

|

|

|

|

≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 ≥ 0, ∀𝑗, 𝑖, 𝑟.

(16)

Model (16) is nonlinear due to the presence of absolute terms and is 
linearized through the following transformations:
|

|

|

|

|

|

𝐽
∑

𝑗=1
𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜

|

|

|

|

|

|

= 𝑝+𝑖 + 𝑝−𝑖 (∀𝑖),

𝐽
∑

𝑗=1
𝜆𝑗𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜 = 𝑝+𝑖 − 𝑝−𝑖 (∀𝑖),

𝑝+𝑖 𝑝
−
𝑖 = 0(∀𝑖),

|

|

|

|

|

|

𝐽
∑

𝑗=1
𝜆𝑗𝑏𝑟𝑗 − 𝑏𝑟𝑜

|

|

|

|

|

|

= 𝑞+𝑟 + 𝑞−𝑟 (∀𝑟),

𝐽
∑

𝑗=1
𝜆𝑗𝑏𝑟𝑗 − 𝑏𝑟𝑜 = 𝑞+𝑟 − 𝑞−𝑟 (∀𝑟),

𝑞+𝑟 𝑞
−
𝑟 = 0(∀𝑟),

𝑝+𝑖 , 𝑝
−
𝑖 , 𝑞

+
𝑟 , 𝑞

−
𝑟 ≥ 0(∀𝑖, 𝑟).

The constraints 𝑝+𝑖 𝑝−𝑖 = 0 and 𝑞+𝑟 𝑞−𝑟 = 0 make problem (?) nonlinear. 
Dropping these constraints yields a linear programming problem. If 
an optimal solution exists, it occurs at an extreme point where at 
least one of 𝑝+𝑖  or 𝑝−𝑖 , and one of 𝑞+𝑟  or 𝑞−𝑟 , is zero. Thus, solving 
the linear program via the simplex method identifies such an extreme 
point, allowing the constraints 𝑝+𝑖 𝑝−𝑖 = 0 and 𝑞+𝑟 𝑞−𝑟 = 0 to be implicitly 
satisfied. Consequently, model (16) can be rewritten as follows (see the 
equation in Box  III): 

𝜃∗𝑜 = 𝑀𝑖𝑛 𝜃

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 − 𝜙−1(𝛼)𝜎(𝑝+𝑖 + 𝑝−𝑖 ) ≤ 𝜃𝑥𝑖𝑜, 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗 𝑎𝑖𝑗 − 𝜃𝑎𝑖𝑜 = 𝑝+𝑖 − 𝑝−𝑖 , 𝑖 = 1,… , 𝐼,

𝐽
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+𝑟 + 𝑞−𝑟 ) ≥ 𝑦𝑟𝑜, 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 𝑏𝑟𝑗 − 𝑏𝑟𝑜 = 𝑞+𝑟 − 𝑞−𝑟 , 𝑟 = 1,… , 𝑅,

𝐽
∑

𝑗=1
𝜆𝑗 = 1,

𝜆𝑗 , 𝑞
+
𝑖 , 𝑞

−
𝑖 , 𝑞+𝑟 , 𝑞

−
𝑟 ≥ 0,∀𝑗, 𝑖, 𝑟.

(17)
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𝛿∗𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐
𝑜 =

1 − 1
𝑁 (𝐸𝐶)

(

∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝐶)+𝑅(𝐸𝐶)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

)

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑥(𝐸𝐶)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑖 + 𝑞−(𝐸𝐶)

𝑖 ) − 𝑠(𝐸𝐶)
𝑖 = 𝑥(𝐸𝐶)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑎(𝐸𝐶)

𝑖𝑗 − 𝑎(𝐸𝐶)
𝑖𝑜 = 𝑞+(𝐸𝐶)

𝑖 − 𝑞−(𝐸𝐶)
𝑖 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑣(𝐸𝐶)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑟 + 𝑞−(𝐸𝐶)

𝑟 ) − 𝑠(𝐸𝐶)
𝑟 = 𝑣(𝐸𝐶)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑏(𝐸𝐶)

𝑟𝑗 − 𝑏(𝐸𝐶)
𝑟𝑜 = 𝑞(𝐸𝐶)

𝑟 − 𝑞−(𝐸𝐶)
𝑟 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑤(𝐸𝐶)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑛 + 𝑞−(𝐸𝐶)

𝑛 ) + 𝑠(𝐸𝐶)
𝑛 = 𝑤(𝐸𝐶)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑐(𝐸𝐶)

𝑛𝑗 − 𝑐(𝐸𝐶)
𝑛𝑜 = 𝑞+(𝐸𝐶)

𝑛 + 𝑞−(𝐸𝐶)
𝑛 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 = 1,

𝜆(𝐸𝐶)
𝑗 , 𝑠(𝐸𝐶)

𝑖 , 𝑠(𝐸𝐶)
𝑟 , 𝑠(𝐸𝐶)

𝑛 , 𝑞+(𝐸𝐶)
𝑖 , 𝑞−(𝐸𝐶)

𝑖 , 𝑞+(𝐸𝐶)
𝑟 , 𝑞−(𝐸𝐶)

𝑟 ,

𝑞+(𝐸𝐶)
𝑛 , 𝑞−(𝐸𝐶)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.

(18)

𝛿∗𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑜 =

1 − 1
𝑁 (𝐸𝑁)

(

∑𝑁 (𝐸𝑁)

𝑛=1
𝑠(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝑁)+𝑅(𝐸𝑁)

(

∑𝐼 (𝐸𝑁)

𝑖=1
𝑠(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

)

𝑠.𝑡.
𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑥(𝐸𝑁)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑖 + 𝑞−(𝐸𝑁)

𝑖 ) − 𝑠(𝐸𝑁)
𝑖 = 𝑥(𝐸𝑁)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑎(𝐸𝑁)

𝑖𝑗 − 𝑎(𝐸𝑁)
𝑖𝑜 = 𝑞+(𝐸𝑁)

𝑖 − 𝑞−(𝐸𝑁)
𝑖 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑣(𝐸𝑁)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑟 + 𝑞−(𝐸𝑁)

𝑟 ) − 𝑠(𝐸𝑁)
𝑟 = 𝑣(𝐸𝑁)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑏(𝐸𝑁)

𝑟𝑗 − 𝑏(𝐸𝑁)
𝑟𝑜 = 𝑞+(𝐸𝑁)

𝑟 − 𝑞−(𝐸𝑁)
𝑟 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑤(𝐸𝑁)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑛 + 𝑞−(𝐸𝑁)

𝑛 ) + 𝑠(𝐸𝑁)
𝑛 = 𝑤(𝐸𝑁)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝜎(𝑤(𝐸𝑁)

𝑛𝑗 ) − 𝜎(𝑤(𝐸𝑁)
𝑛𝑜 ) = 𝑞+(𝐸𝑁)

𝑛 + 𝑞−(𝐸𝑁)
𝑛 , 𝑛 ∈ 𝑇𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 = 1,

𝜆(𝐸𝑁)
𝑗 , 𝑠(𝐸𝑁)

𝑖 , 𝑠(𝐸𝑁)
𝑟 , 𝑠(𝐸𝑁)

𝑛 , 𝑞+(𝐸𝑁)
𝑖 , 𝑞−(𝐸𝑁)

𝑖 , 𝑞+(𝐸𝑁)
𝑟 , 𝑞−(𝐸𝑁)

𝑟 ,

𝑞+(𝐸𝑁)
𝑛 , 𝑞−(𝐸𝑁)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.

(19)

𝛿∗𝑆𝑜𝑐𝑖𝑎𝑙𝑜 =
1 − 1

𝑁 (𝑆𝑂)

(

∑𝑁 (𝑆𝑂)

𝑛=1
𝑠(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

)

1 + 1
𝐼 (𝑆𝑂)+𝑅(𝑆𝑂)

(

∑𝐼 (𝑆𝑂)

𝑖=1
𝑠(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

)

𝑠.𝑡
𝐽
∑

𝜆(𝑆𝑂)
𝑗 𝑥(𝑆𝑂)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑖 + 𝑞−(𝑆𝑂)

𝑖 ) − 𝑠(𝑆𝑂)
𝑖 = 𝑥(𝑆𝑂)

𝑖𝑜 , 𝑖 ∈ 𝐼𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝑗=1
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𝛿∗𝑜 = 𝑀𝑖𝑛
1 − 1

𝑁 (𝐸𝐶)+𝑁 (𝐸𝑁)+𝑁 (𝑆𝑂)

(

∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝐶)
𝑛

𝑤(𝐸𝐶)
𝑛𝑜

+
∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝐸𝑁)
𝑛

𝑤(𝐸𝑁)
𝑛𝑜

+
∑𝑁 (𝐸𝐶)

𝑛=1
𝑠(𝑆𝑂)
𝑛

𝑤(𝑆𝑂)
𝑛𝑜

)

1 + 1
𝐼 (𝐸𝐶)+𝐼 (𝐸𝑁)+𝐼 (𝑆𝑂)+𝑅(𝐸𝐶)+𝑅(𝐸𝑁)+𝑅(𝑆𝑂)

(

∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝐶)
𝑖

𝑥(𝐸𝐶)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝐸𝑁)
𝑖

𝑥(𝐸𝑁)
𝑖𝑜

+
∑𝐼 (𝐸𝐶)

𝑖=1
𝑠(𝑆𝑂)
𝑖

𝑥(𝑆𝑂)
𝑖𝑜

+
∑𝑅(𝐸𝐶)

𝑟=1
𝑠(𝐸𝐶)
𝑟
𝑣(𝐸𝐶)
𝑟𝑜

+
∑𝑅(𝐸𝑁)

𝑟=1
𝑠(𝐸𝑁)
𝑟
𝑣(𝐸𝑁)
𝑟𝑜

+
∑𝑅(𝑆𝑂)

𝑟=1
𝑠(𝑆𝑂)
𝑟
𝑣(𝑆𝑂)
𝑟𝑜

)

Box III. 

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑎(𝑆𝑂)

𝑖𝑗 − 𝑎(𝑆𝑂)
𝑖𝑜 = 𝑞+(𝑆𝑂)

𝑖 − 𝑞−(𝑆𝑂)
𝑖 , 𝑖 ∈ 𝐼𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑣(𝑆𝑂)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑟 + 𝑞−(𝑆𝑂)

𝑟 ) − 𝑠(𝑆𝑂)
𝑟 = 𝑣(𝑆𝑂)

𝑟𝑜 , 𝑟 ∈ 𝑅𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑏(𝑆𝑂)

𝑟𝑗 − 𝑏(𝑆𝑂)
𝑟𝑜 = 𝑞+(𝑆𝑂)

𝑟 − 𝑞−(𝑆𝑂)
𝑟 , 𝑟 ∈ 𝑅𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑤(𝑆𝑂)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑛 + 𝑞−(𝑆𝑂)

𝑛 ) + 𝑠(𝑆𝑂)
𝑛 = 𝑤(𝑆𝑂)

𝑛𝑜 , 𝑛 ∈ 𝑁𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑐(𝑆𝑂)

𝑛𝑗 − 𝑐(𝑆𝑂)
𝑛𝑜 = 𝑞+(𝑆𝑂)

𝑛 + 𝑞−(𝑆𝑂)
𝑛 , 𝑛 ∈ 𝑁𝑆𝑜𝑐𝑖𝑎𝑙 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 = 1,

𝜆(𝑆𝑂)
𝑗 , 𝑠(𝑆𝑂)

𝑖 , 𝑠(𝑆𝑂)
𝑟 , 𝑠(𝑆𝑂)

𝑛 , 𝑞+(𝑆𝑂)
𝑖 , 𝑞−(𝑆𝑂)

𝑖 , 𝑞+(𝑆𝑂)
𝑟 , 𝑞−(𝑆𝑂)

𝑟 ,

𝑞+(𝑆𝑂)
𝑛 , 𝑞−(𝑆𝑂)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.

(20)s.t. 
Economic constraints:
𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑥(𝐸𝐶)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑖 + 𝑞−(𝐸𝐶)

𝑖 ) − 𝑠(𝐸𝐶)
𝑖 = 𝑥(𝐸𝐶)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑎(𝐸𝐶)

𝑖𝑗 − 𝑎(𝐸𝐶)
𝑖𝑜 = 𝑞+(𝐸𝐶)

𝑖 − 𝑞−(𝐸𝐶)
𝑖 , 𝑖 ∈ 𝐼𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑣(𝐸𝐶)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑟 + 𝑞−(𝐸𝐶)

𝑟 ) − 𝑠(𝐸𝐶)
𝑟 = 𝑣(𝐸𝐶)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑏(𝐸𝐶)

𝑟𝑗 − 𝑏(𝐸𝐶)
𝑟𝑜 = 𝑞(𝐸𝐶)

𝑟 − 𝑞−(𝐸𝐶)
𝑟 , 𝑟 ∈ 𝑅𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑤(𝐸𝐶)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝐶)
𝑛 + 𝑞−(𝐸𝐶)

𝑛 ) + 𝑠(𝐸𝐶)
𝑛 = 𝑤(𝐸𝐶)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 𝑐(𝐸𝐶)

𝑛𝑗 − 𝑐(𝐸𝐶)
𝑛𝑜 = 𝑞+(𝐸𝐶)

𝑛 + 𝑞−(𝐸𝐶)
𝑛 , 𝑛 ∈ 𝑁𝐸𝐶 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝐶)
𝑗 = 1,

𝜆(𝐸𝐶)
𝑗 , 𝑠(𝐸𝐶)

𝑖 , 𝑠(𝐸𝐶)
𝑟 , 𝑠(𝐸𝐶)

𝑛 , 𝑞+(𝐸𝐶)
𝑖 , 𝑞−(𝐸𝐶)

𝑖 , 𝑞+(𝐸𝐶)
𝑟 , 𝑞−(𝐸𝐶)

𝑟 ,

+(𝐸𝐶) −(𝐸𝐶)
𝑞𝑛 , 𝑞𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

14
Environmental constraints:
𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑥(𝐸𝑁)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑖 + 𝑞−(𝐸𝑁)

𝑖 ) − 𝑠(𝐸𝑁)
𝑖 = 𝑥(𝐸𝑁)

𝑖𝑜 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑎(𝐸𝑁)

𝑖𝑗 − 𝑎(𝐸𝑁)
𝑖𝑜 = 𝑞+(𝐸𝑁)

𝑖 − 𝑞−(𝐸𝑁)
𝑖 , 𝑖 ∈ 𝐼𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑣(𝐸𝑁)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑟 + 𝑞−(𝐸𝑁)

𝑟 ) − 𝑠(𝐸𝑁)
𝑟 = 𝑣(𝐸𝑁)

𝑟𝑜 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑏(𝐸𝑁)

𝑟𝑗 − 𝑏(𝐸𝑁)
𝑟𝑜 = 𝑞+(𝐸𝑁)

𝑟 − 𝑞−(𝐸𝑁)
𝑟 , 𝑟 ∈ 𝑅𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝑤(𝐸𝑁)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝐸𝑁)
𝑛 + 𝑞−(𝐸𝑁)

𝑛 ) + 𝑠(𝐸𝑁)
𝑛 = 𝑤(𝐸𝑁)

𝑛𝑜 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 𝜎(𝑤(𝐸𝑁)

𝑛𝑗 ) − 𝜎(𝑤(𝐸𝑁)
𝑛𝑜 ) = 𝑞+(𝐸𝑁)

𝑛 + 𝑞−(𝐸𝑁)
𝑛 , 𝑛 ∈ 𝑁𝐸𝑁 ,

𝐽
∑

𝑗=1
𝜆(𝐸𝑁)
𝑗 = 1,

𝜆(𝐸𝑁)
𝑗 , 𝑠(𝐸𝑁)

𝑖 , 𝑠(𝐸𝑁)
𝑟 , 𝑠(𝐸𝑁)

𝑛 , 𝑞+(𝐸𝑁)
𝑖 , 𝑞−(𝐸𝑁)

𝑖 , 𝑞+(𝐸𝑁)
𝑟 , 𝑞−(𝐸𝑁)

𝑟 ,

𝑞+(𝐸𝑁)
𝑛 , 𝑞−(𝐸𝑁)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛,

Social constraints:

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑥(𝑆𝑂)

𝑖𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑖 + 𝑞−(𝑆𝑂)

𝑖 ) − 𝑠(𝑆𝑂)
𝑖 = 𝑥(𝑆𝑂)

𝑖𝑜 , 𝑖 ∈ 𝐼𝑆𝑂 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑎(𝑆𝑂)

𝑖𝑗 − 𝑎(𝑆𝑂)
𝑖𝑜 = 𝑞+(𝑆𝑂)

𝑖 − 𝑞−(𝑆𝑂)
𝑖 , 𝑖 ∈ 𝐼𝑆𝑂 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑣(𝑆𝑂)

𝑟𝑗 + 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑟 + 𝑞−(𝑆𝑂)

𝑟 ) − 𝑠(𝑆𝑂)
𝑟 = 𝑣(𝑆𝑂)

𝑟𝑜 , 𝑟 ∈ 𝑅𝑆𝑂 ,

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑏(𝑆𝑂)

𝑟𝑗 − 𝑏(𝑆𝑂)
𝑟𝑜 = 𝑞+(𝑆𝑂)

𝑟 − 𝑞−(𝑆𝑂)
𝑟 , 𝑟 ∈ 𝑅𝑆𝑂 , (21)

𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 𝑤(𝑆𝑂)

𝑛𝑗 − 𝜙−1(𝛼)𝜎(𝑞+(𝑆𝑂)
𝑛 + 𝑞−(𝑆𝑂)

𝑛 ) + 𝑠(𝑆𝑂)
𝑛 = 𝑤(𝑆𝑂)

𝑛𝑜 , 𝑛 ∈ 𝑁𝑆𝑂 ,

𝐽
∑

𝜆(𝑆𝑂)
𝑗 𝑐(𝑆𝑂)

𝑛𝑗 − 𝑐(𝑆𝑂)
𝑛𝑜 = 𝑞+(𝑆𝑂)

𝑛 + 𝑞−(𝑆𝑂)
𝑛 , 𝑛 ∈ 𝑁𝑆𝑂 ,
𝑗=1
Table 3
Results of stochastic sustainability.
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Africa

Algeria 0.4875 0.4867 0.4981 0.4979 0.4979 
 Angola 0.4902 0.4945 0.4963 0.4966 0.4967 
 Benin 0.5038 0.503 0.5023 0.5016 0.501  
 Cameroon 0.5031 0.501 0.5005 0.5002 0.5006 
 Congo, Dem. Rep. 0.5025 0.5024 0.5014 0.4991 0.4974 
 Congo, Rep. 0.4992 0.499 0.4989 0.4987 0.4986 
 Cote d’Ivoire 0.505 0.5046 0.5039 0.503 0.5013 
 Ethiopia 0.5061 0.5064 0.5047 0.5033 0.502  
 Ghana 0.4982 0.5012 0.5004 0.5 0.4999 
 Niger 0.5034 0.5031 0.5029 0.5025 0.5021 
 Senegal 0.5023 0.5019 0.5015 0.5008 0.5003 
 Togo 0.5005 0.5004 0.5004 0.5002 0.5001 
 (continued on next page)
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Table 3 (continued).
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Europe

Austria 0.5482 0.5417 0.5368 0.5325 0.5291 
 Belgium 0.5271 0.5153 0.5135 0.511 0.5084 
 Bosnia and Herzegovina 0.501 0.5171 0.5153 0.4985 0.4987 
 Croatia 0.5045 0.5021 0.5047 0.503 0.5014 
 Czechia 0.5421 0.5367 0.5306 0.5246 0.5158 
 Denmark 0.5394 0.5376 0.5357 0.536 0.5188 
 Estonia 0.5112 0.5107 0.509 0.5071 0.5036 
 Finland 0.5944 0.592 0.5893 0.5844 0.5808 
 Germany 0.5571 0.5543 0.5524 0.551 0.5494 
 Greece 0.5178 0.5113 0.5022 0.4913 0.4836 
 Hungary 0.5123 0.508 0.5144 0.5083 0.5024 
 Iceland 0.504 0.5037 0.5034 0.5032 0.5031 
 Latvia 0.4983 0.4988 0.4975 0.4927 0.4896 
 Italy 0.5027 0.5041 0.5024 0.5011 0.4992 
 Lithuania 0.5008 0.501 0.501 0.5006 0.5003 
 Luxembourg 0.5046 0.5023 0.5006 0.497 0.4924 
 Malta 0.5234 0.5204 0.5184 0.5168 0.5155 
 Moldova 0.5256 0.5224 0.5109 0.5072 0.5051 
 Netherlands 0.5774 0.5746 0.5717 0.5658 0.5428 
 Norway 0.6137 0.6016 0.5902 0.5793 0.566  
 Poland 0.5427 0.5427 0.5323 0.5136 0.4948 
 Portugal 0.5223 0.5179 0.5089 0.4944 0.4908 
 Romania 0.501 0.5007 0.5002 0.5 0.4999 
 Serbia 0.4974 0.4989 0.4998 0.499 0.4989 
 Slovak Republic 0.52 0.5087 0.5131 0.5096 0.5034 
 Slovenia 0.5168 0.5122 0.5063 0.5022 0.5003 
 Spain 0.5023 0.4909 0.4793 0.4607 0.446  
 Sweden 0.6263 0.6182 0.6102 0.5973 0.5887 
 Switzerland 0.57 0.5604 0.5542 0.5498 0.5449 
 Ukraine 0.4992 0.5001 0.5 0.4999 0.4998 
 

North America

Dominican Republic 0.4935 0.4933 0.4931 0.4963 0.4958 
 Ecuador 0.5057 0.5039 0.4998 0.4994 0.4993 
 El Salvador 0.5013 0.5015 0.5009 0.5001 0.4986 
 Guatemala 0.5012 0.5021 0.501 0.5004 0.5  
 Haiti 0.4985 0.4989 0.4984 0.4989 0.4987 
 Honduras 0.4984 0.4983 0.4993 0.499 0.4989 
 Mexico 0.4828 0.4987 0.4995 0.4996 0.4996 
 

Asia

Cambodia 0.5078 0.5036 0.5031 0.5028 0.5026 
 Indonesia 0.5125 0.5111 0.5237 0.5197 0.5087 
 Kazakhstan 0.5084 0.507 0.5059 0.5044 0.503  
 Kuwait 0.53 0.527 0.5302 0.5259 0.5225 
 Lebanon 0.5246 0.5139 0.4983 0.4935 0.4896 
 Mongolia 0.4996 0.4997 0.4995 0.4991 0.4988 
 Myanmar 0.5114 0.5108 0.51 0.5094 0.5087 
 Philippines 0.5025 0.4986 0.4993 0.4994 0.4994 
 Russian Federation 0.5001 0.5016 0.5004 0.5001 0.4999 
 Uzbekistan 0.4987 0.4979 0.5017 0.5014 0.5008 
Table 4
Results of stochastic economic sustainability.
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Africa

Algeria 0.3539 0.3524 0.4834 0.5365 0.5759 
 Angola 0.3686 0.4287 0.5177 0.5756 0.6177 
 Benin 0.2944 0.2942 0.2936 0.2925 0.2918 
 Cameroon 0.3007 0.3016 0.3017 0.3017 0.3166 
 Congo, Dem. Rep. 0.3175 0.3179 0.3098 0.2926 0.2903 
 Congo, Rep. 0.296 0.2952 0.2947 0.2942 0.2941 
 Cote d’Ivoire 0.3265 0.3261 0.3192 0.319 0.3068 
 Ethiopia 0.2948 0.2969 0.293 0.2898 0.2868 
 Ghana 0.3401 0.4991 0.6638 0.7403 0.7875 
 Niger 0.2914 0.2912 0.2909 0.2904 0.2908 
 Senegal 0.3264 0.3257 0.3229 0.3116 0.3099 
 Togo 0.2878 0.2877 0.2876 0.2874 0.2872 
 (continued on next page)
𝐽
∑

𝑗=1
𝜆(𝑆𝑂)
𝑗 = 1,

𝜆(𝑆𝑂)
𝑗 , 𝑠(𝑆𝑂)

𝑖 , 𝑠(𝑆𝑂)
𝑟 , 𝑠(𝑆𝑂)

𝑛 , 𝑞+(𝑆𝑂)
𝑖 , 𝑞−(𝑆𝑂)

𝑖 , 𝑞+(𝑆𝑂)
𝑟 , 𝑞−(𝑆𝑂)

𝑟 ,
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𝑞+(𝑆𝑂)
𝑛 , 𝑞−(𝑆𝑂)

𝑛 ≥ 0,∀𝑗, 𝑖, 𝑟, 𝑛.
Appendix C

See Tables  3–6.
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Table 4 (continued).
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Europe

Austria 0.5562 0.5581 0.5587 0.5568 0.5572 
 Belgium 0.751 0.9013 0.8975 0.8813 0.868  
 Bosnia and Herzegovina 1 1 1 0.3029 0.2971 
 Croatia 0.3478 0.3448 0.3841 0.3824 0.3826 
 Czechia 0.4636 0.4612 0.4487 0.4753 0.4912 
 Denmark 0.5499 0.5612 0.5679 0.5891 0.7358 
 Estonia 0.2999 0.3 0.2977 0.2936 0.2904 
 Finland 0.3696 0.3672 0.3647 0.36 0.3566 
 Germany 1 1 1 1 1  
 Greece 1 1 1 0.7813 0.7665 
 Hungary 0.379 0.3772 0.4222 0.4388 0.4447 
 Iceland 0.2892 0.2889 0.2887 0.2886 0.2883 
 Latvia 0.8153 0.8237 0.8451 0.8345 0.8281 
 Italy 0.3726 0.4547 0.5671 0.5574 0.8435 
 Lithuania 0.2907 0.291 0.3465 0.3754 0.4002 
 Luxembourg 0.3368 0.3354 0.3251 0.3089 0.2949 
 Malta 1 1 1 1 1  
 Moldova 1 1 1 1 1  
 Netherlands 0.7339 0.7337 0.7269 0.7057 0.7236 
 Norway 0.4149 0.4031 0.4145 0.4392 0.4661 
 Poland 0.5613 0.5668 0.6064 0.6822 0.7777 
 Portugal 0.4714 0.4891 0.5819 0.7853 0.8037 
 Romania 0.546 0.9836 0.9944 0.9891 0.9911 
 Serbia 0.341 0.4015 0.5674 0.8493 0.913  
 Slovak Republic 0.4252 0.3873 0.4121 0.4229 0.4203 
 Slovenia 0.3408 0.3307 0.3275 0.3097 0.3067 
 Spain 0.6919 0.6983 0.6962 0.6441 0.6014 
 Sweden 0.4893 0.4851 0.4763 0.4551 0.4418 
 Switzerland 1 1 1 1 1  
 Ukraine 0.6028 0.8766 0.9872 0.9912 0.993  
 

North America

Dominican Republic 0.3152 0.315 0.3143 0.3731 0.3848 
 Ecuador 0.3655 0.505 0.8814 0.9186 0.9368 
 El Salvador 0.3095 0.3563 0.4408 0.5231 0.7729 
 Guatemala 0.3061 0.3293 0.391 0.435 0.4694 
 Haiti 0.2992 0.2977 0.2965 0.3459 0.3612 
 Honduras 0.3059 0.3056 0.3728 0.3983 0.4276 
 Mexico 0.718 0.9329 0.9768 0.9851 0.9889 
 

Asia

Cambodia 0.2906 0.2906 0.2901 0.2897 0.2892 
 Indonesia 0.4737 0.4818 0.546 0.5792 0.684  
 Kazakhstan 0.2872 0.2873 0.2872 0.2855 0.284  
 Kuwait 0.3339 0.3278 0.3573 0.3734 0.3873 
 Lebanon 1 1 0.31 0.295 0.2866 
 Mongolia 0.2897 0.2884 0.2869 0.2863 0.2859 
 Myanmar 0.2874 0.288 0.2873 0.2867 0.2862 
 Philippines 0.5171 0.8548 0.9427 0.9617 0.9705 
 Russian Federation 0.8182 0.9299 0.9739 0.9819 0.9858 
 Uzbekistan 0.2926 0.2933 0.4241 0.4935 0.5379 
Table 5
Results of stochastic environmental sustainability.
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Africa

Algeria 0.4828 0.4863 0.6171 0.6699 0.7073 
 Angola 0.4273 0.4949 0.6185 0.6731 0.7121 
 Benin 0.9999 1 1 1 1  
 Cameroon 0.9231 0.8971 0.8815 0.8699 0.6697 
 Congo, Dem. Rep. 0.686 0.676 0.7543 0.9894 0.9881 
 Congo, Rep. 0.9074 0.9086 0.9094 0.9101 0.9043 
 Cote d’Ivoire 0.6669 0.6654 0.7386 0.7302 0.89  
 Ethiopia 1 1 1 1 1  
 Ghana 0.5705 0.722 0.8987 0.9754 0.9801 
 Niger 1 1 1 1 0.9807 
 Senegal 0.5938 0.5964 0.6098 0.6975 0.7058 
 Togo 0.9993 0.9992 0.9994 0.9994 0.9994 
 (continued on next page)
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Table 5 (continued).
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Europe

Austria 0.2885 0.2846 0.2828 0.2812 0.2814 
 Belgium 0.2228 0.1982 0.1967 0.2051 0.213  
 Bosnia and Herzegovina 0.1857 0.2311 0.3755 0.8204 0.8716 
 Croatia 0.5965 0.605 0.6798 0.7463 0.8482 
 Czechia 0.435 0.4319 0.4338 0.5313 0.5536 
 Denmark 0.3298 0.311 0.3098 0.3342 0.2885 
 Estonia 1 1 1 1 0.9733 
 Finland 1 1 1 1 1  
 Germany 0.204 0.2016 0.2 0.1985 0.1974 
 Greece 0.2327 0.323 0.4722 0.5806 0.6952 
 Hungary 0.4736 0.4787 0.5556 0.5895 0.6827 
 Iceland 1 1 1 1 1  
 Latvia 0.2908 0.3098 0.3748 0.4219 0.461  
 Italy 0.7415 0.8092 0.9076 0.9725 0.9723 
 Lithuania 0.9897 0.9899 0.9924 0.993 0.9934 
 Luxembourg 0.6485 0.6526 0.6997 0.794 0.8767 
 Malta 0.1836 0.181 0.1798 0.1788 0.178  
 Moldova 0.2677 0.3257 0.4854 0.581 0.6698 
 Netherlands 0.2624 0.2593 0.2579 0.2561 0.2241 
 Norway 1 1 1 1 1  
 Poland 0.378 0.3856 0.4491 0.4915 0.6466 
 Portugal 0.6577 0.6764 0.7696 0.7799 0.8145 
 Romania 0.6924 0.9234 0.9852 0.9907 0.9928 
 Serbia 0.7828 0.8282 0.9096 0.9318 0.9816 
 Slovak Republic 0.4358 0.5001 0.5753 0.6422 0.8169 
 Slovenia 0.6139 0.6732 0.687 0.8801 0.8909 
 Spain 0.2737 0.2613 0.2656 0.2705 0.2763 
 Sweden 0.5433 0.5182 0.51 0.5249 0.5338 
 Switzerland 0.213 0.2071 0.2033 0.1996 0.1972 
 Ukraine 0.8877 0.9797 0.9952 0.997 0.9979 
 

North America

Dominican Republic 0.6697 0.6677 0.6688 0.7252 0.8164 
 Ecuador 0.6887 0.7981 0.93 0.9521 0.9628 
 El Salvador 0.8586 0.8816 0.9198 0.9322 0.9299 
 Guatemala 0.8326 0.9099 0.9639 0.9679 0.9705 
 Haiti 0.7952 0.8111 0.8098 0.842 0.8505 
 Honduras 0.726 0.7279 0.7848 0.9401 0.9449 
 Mexico 0.5078 0.8546 0.9609 0.9745 0.9807 
 

Asia

Cambodia 1 1 1 1 1  
 Indonesia 0.381 0.3563 0.3989 0.4201 0.4008 
 Kazakhstan 0.8455 0.8397 0.8376 0.8346 0.832  
 Kuwait 1 1 1 1 1  
 Lebanon 0.1734 0.1945 0.7614 0.8592 0.8588 
 Mongolia 0.9293 0.9545 0.9765 0.9808 0.9803 
 Myanmar 0.9941 0.9937 0.9934 0.9931 0.9914 
 Philippines 0.3438 0.7384 0.958 0.9867 0.9897 
 Russian Federation 0.8285 0.939 0.9834 0.9893 0.9918 
 Uzbekistan 0.9944 0.9832 0.9854 0.9978 0.9983 
Table 6
Results of stochastic social sustainability.
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Africa

Algeria 0.8052 0.8055 0.4673 0.4153 0.3883 
 Angola 0.8228 0.582 0.4353 0.3915 0.3687 
 Benin 0.9561 0.9541 0.9564 0.9606 0.9624 
 Cameroon 0.9456 0.9338 0.9341 0.9351 0.9434 
 Congo, Dem. Rep. 0.9249 0.928 0.9265 0.9238 0.9218 
 Congo, Rep. 0.9568 0.9593 0.961 0.9625 0.9643 
 Cote d’Ivoire 0.9199 0.921 0.9139 0.9152 0.9111 
 Ethiopia 0.8907 0.9031 0.9039 0.9049 0.9059 
 Ghana 0.8217 0.4348 0.3406 0.3186 0.3103 
 Niger 0.978 0.978 0.9785 0.9804 0.9811 
 Senegal 0.9614 0.9607 0.9649 0.9667 0.9681 
 Togo 0.9897 0.9901 0.9901 0.9908 0.9908 
 (continued on next page)
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Table 6 (continued).
 Continent Country name 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4 𝛼 = 0.5 
 

Europe

Austria 0.9716 0.951 0.9311 0.9164 0.8884 
 Belgium 0.8916 0.8697 0.8754 0.7868 0.7242 
 Bosnia and Herzegovina 0.6079 0.5234 0.3906 0.9658 0.9759 
 Croatia 0.891 0.8885 0.6469 0.6128 0.5763 
 Czechia 0.799 0.7956 0.8039 0.5843 0.5205 
 Denmark 0.846 0.8656 0.8315 0.6981 0.5807 
 Estonia 0.9704 0.9637 0.9695 0.9719 0.9749 
 Finland 1 1 1 1 1  
 Germany 0.9714 0.9724 0.9731 0.9751 0.9748 
 Greece 0.5127 0.4106 0.3406 0.3413 0.3197 
 Hungary 0.8818 0.8725 0.6398 0.5621 0.5041 
 Iceland 0.9775 0.9797 0.98 0.9802 0.9809 
 Latvia 0.4701 0.4453 0.396 0.3723 0.3572 
 Italy 0.6506 0.4754 0.3779 0.3742 0.3029 
 Lithuania 0.9561 0.9604 0.6237 0.5457 0.4996 
 Luxembourg 0.9112 0.9062 0.9186 0.9247 0.9426 
 Malta 0.949 0.9579 0.9568 0.9568 0.9559 
 Moldova 0.5362 0.4447 0.3477 0.3244 0.3113 
 Netherlands 0.9412 0.9427 0.944 0.9448 0.9395 
 Norway 0.8523 0.8231 0.7185 0.6182 0.5426 
 Poland 0.7341 0.6989 0.5217 0.4218 0.3418 
 Portugal 0.556 0.5137 0.4006 0.3201 0.3107 
 Romania 0.4162 0.2921 0.2873 0.2872 0.2868 
 Serbia 0.7023 0.5263 0.3727 0.3038 0.2939 
 Slovak Republic 0.8496 0.8547 0.6744 0.5865 0.5208 
 Slovenia 0.9742 0.9714 0.9531 0.9477 0.9485 
 Spain 0.6059 0.5794 0.5276 0.491 0.4625 
 Sweden 1 1 1 1 1  
 Switzerland 0.9826 0.9793 0.977 0.9817 0.9769 
 Ukraine 0.3598 0.2989 0.287 0.2865 0.2863 
 

North America

Dominican Republic 0.9007 0.9031 0.9059 0.6034 0.5486 
 Ecuador 0.6987 0.4276 0.3007 0.2952 0.2926 
 El Salvador 0.8909 0.6327 0.4622 0.393 0.3146 
 Guatemala 0.9023 0.7133 0.5185 0.4555 0.4221 
 Haiti 0.9638 0.9788 0.9814 0.6543 0.6019 
 Honduras 0.9427 0.9437 0.5917 0.5079 0.4664 
 Mexico 0.3513 0.3005 0.2898 0.2883 0.2876 
 

Asia

Cambodia 1 0.9763 0.9749 0.9749 0.9751 
 Indonesia 0.6688 0.6855 0.5698 0.5162 0.4455 
 Kazakhstan 0.9687 0.9687 0.9689 0.9687 0.9685 
 Kuwait 0.8291 0.8319 0.6796 0.6131 0.5694 
 Lebanon 0.7705 0.6323 0.9484 0.9433 0.9487 
 Mongolia 0.9814 0.9891 0.9888 0.9885 0.9883 
 Myanmar 0.9898 0.9886 0.9878 0.9873 0.9865 
 Philippines 0.6219 0.3145 0.2912 0.2883 0.2876 
 Russian Federation 0.3207 0.2991 0.29 0.2884 0.2877 
 Uzbekistan 0.8557 0.8579 0.465 0.4032 0.3776 
Data availability

Data will be made available on request.
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