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Abstract

Given a smooth, open, oriented surface X endowed with a family of complex structures
{Jp}pep depending continuously on the parameter b in a metrisable space B, we
construct a continuous family of proper holomorphic maps Fj, : (X, J,) — C2,
b e B.
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1 Introduction

Every smooth, open, oriented surface X endowed with an almost complex structure J
is a Riemann surface. Therefore, by choosing a continuously varying family of almost
complex structures (J;)pe p for some parameter space B, we determine a family of open
Riemann surfaces (X, Jp)pep. In 2025, Forstneri€ [7] initiated the study of continuous
maps F from B x X to Euclidean space, or more generally, to an Oka manifold, such
that for each b € B the map F (b, -) is holomorphic on the Riemann surface (X, Jp).
In this framework, he obtained the Runge and Mergelyan approximation theorems, as
well as the Weierstrass interpolation theorem.

Our main result answers in part the question raised by Forstneri¢ [7, Problem 8.7
(a)] concerning the existence of proper holomorphic maps in this setting:

Theorem 1.1 Let X be a smooth, connected, open, oriented surface, B a metrisable
space, and {Jypep a continuous family of complex structures on X of class C %%
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withk € 74,0 < a < 1. Then there exists a continuous map F : B x X — C? such
that for every b € B the map F (b, -) : (X, Jp) — C? is proper holomorphic.

Precise definitions will be given in the next section. It is classical that for every
open Riemann surface there is a proper holomorphic immersion into C? and a proper
holomorphic embedding into C3, see [6, Theorem 2.4.1] and the references therein.

By increasing the dimension of the target Euclidean space by one, we obtain a
family of proper holomorphic immersions:

Corollary 1.2 Let X be a smooth, connected, open, oriented surface, B a finite CW
complex or a smooth manifold, and {Jp}pep a continuous family of complex structures
on X of class C*kD yithk > 1,0 < a < 1. Then there exists a continuous map
G : B x X — C3 such that for every b € B the map G(b,-) : (X, Jp) - Cisa
proper holomorphic immersion.

Proof By [7,Corollary 8.3] there exists a continuous function 2 : Bx X — Csuch that
h(b, ") : (X, Jp) — Cisaholomorphic immersion foreveryb € B.Let F : Bx X —
C? be a continuous map such that for every b € B the map F (b, -) : (X, Jp) — C?is
proper holomorphic, provided by Theorem 1.1. Then the map (F, k) : B x X — C3
is continuous and for every b € B the map (F, h)(b, ) : (X, Jp) — Clisa proper
holomorphic immersion. O

We extend to families the result of Forstneri¢ and Globevnik [8, Theorem 1.4],
Alarcén and Loépez [3, Corollary 1.1], and Andrist and Wold [4, Theorem 5.6] on
proper harmonic maps from open Riemann surfaces to R:

Theorem 1.3 Let X be a smooth, connected, open, oriented surface, B a metrisable
space, and {Jy)pep a continuous family of complex structures on X of class C %%
withk € Zy,0 < a < 1. There exists a continuous map H : B x X — R? such that
for every b € B the map H(b, ") : (X, Jp) — RZ? is proper harmonic.

The proof relies on the proof of Theorem 1.1 and we postpone it to Section 3.

By Remmert’s proper mapping theorem, the image of an analytic subvariety under a
proper holomorphic map is an analytic subvariety. Therefore, the following corollary
provides, in particular, a path of complex analytic subvarieties in C> from the one
parametrised by the complex line to the one parametrised by the unit disc.

Corollary 1.4 Let X be a smooth, connected, open, oriented surface. Let Jy, J| be
complex structures on X of class C%% with k € 74,0 < a < 1. There exist
a continuous family {Jp}pe[o,1] of complex structures on X of class C *®) and a
continuous map F : [0, 1] x X — C2 such that for every b € [0, 1] the map F (b, -) :
(X, Jp) — C2 is proper Jy-holomorphic.

Proof Each complex structure determines a compatible Riemannian metric on X of the
same smoothness class. Convex combinations of these metrics yield a path connecting
the two, which in turn induces a corresponding path of almost complex structures on X
of the same smoothness class; see, for example [2, Lemma 1.9.1]. Then the conclusion
follows from Theorem 1.1. O

@ Springer



Families of proper holomorphic maps Page30of18 102

The main idea in the proof is constructing a convergent sequence of maps on an
exhausting sequence of Runge compact sets of X in a way similar to constructionsin[1,
3, 5]. In [3], Alarcén and Lépez constructed a proper conformal minimal immersion
from any open Riemann surface M into R? with its image in a wedge, and in [1],
Alarcén and Forstneri¢ obtained a proper holomorphic immersion from any open
Riemann surface M into C? directed by an Oka cone. The main tool in our construction
is the Mergelyan approximation theorem for proper families of compact Runge sets
recently proven by Forstneri¢ [7]. When the parameter space B is not compact, one
has to deal with nonconstant proper families of compact Runge subsets of X, which
are present already in the noncritical case, i.e., when the topology of X is trivial.

2 Preliminaries

We use the notations N = {1,2,3,...}and Z = {0, 1, 2, 3, .. .} for the set of natural
numbers, respectively the set of nonnegative integers. If K is a compact topological
space and f : K — C is a continuous function, we denote by || f||x the supremum
norm of f on K.

Throughout the paper, we denote by X a smooth, connected, open, oriented, Haus-
dorff, second countable surface. We are interested in families of complex structures on
X, parametrised by some topological space B as defined in [7]. A complex structure on
X isgivenby asection J € I'(End(7 X)) of the bundle of endomorphisms End(7" X)) of
the tangent bundle 7' X of X that satisfies the condition J> = —Id. We always assume
that J induces on X the given orientation of X. Since the tangent bundle 7' X is trivial,
the bundle End(7 X) is isomorphic to the trivial bundle X x End(R?). If we choose a
trivialisation of End(7 X)), we can identify sections of End(7 X) with functions from
X to End(R2). If we furthermore choose a Riemannian metric on X, we can define
Banach spaces [ *)(End(T X)|g) of sections of End(7 X) of Holder class C%-®) ()
forany k € Z4+,0 < o < 1 and any relatively compact domain 2 C X. A complex
structure J € I'(End(T X)) is locally of class C&® if J|q € T**) (End(T X)|q) for
every relatively compact domain Q2 C X.

Definition 2.1 Let B be a topological space, k € Z4 and 0 < « < 1. A continuous
family of complex structures on X of class C*%), parametrised by B, is a family of
complex structures J = {Jp}pep on X, which are locally of class C k.2 'such that for
every relatively compact domain  C X the map b — Jp|q € T®®)(End(T X)|q) is
continuous.

A continuous family J = (Jp)pep of complex structures on X furnishes us with a
Riemann surface (X, Jp) forevery b € B. A function f : X — Cis J,-holomorphic
if it is holomorphic with respect to the complex structure J, on X and the standard
complex structure on C.

Let B be a topological space and let A be a subset of B x X. For every b € B we
denote

Ap={xe X : (b,x) e A}.
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If f: A — Cisafunctionand b € B, we denote by f; : A, — C the function, given
by
fo(x) = f(b, x)

for x € Ap. We are interested in continuous families of holomorphic functions.

Definition 2.2 Let B be a topological space, k € Z;,0 < o < 1 andlet J = (Jp)pen
be a continuous family of complex structures on X of class C%%), parametrised by B.

(1) Let U C B x X be an open subset. A continuous function f : U — C is
J-holomorphic, if the function f, : Up, — Cis Jy-holomorphic for every b € B. The
vector space of all J-holomorphic functions on U is denoted by O (U). We similarly
define a J-holomorphic map f : U — M, where M is a complex manifold.

(2) Now let Z C B x X be a closed subset. A continuous function f : Z — Cis
J-holomorphic if there exist an open set U C B x X, containing Z, and f € O;(U)
such that f|z = f. The vector space of all J-holomorphic functions on Z is denoted
by O;(Z). The vector space of all continuous functions f : Z — C, for which the
function f, : Int (Z,) — Cis Jy-holomorphic for every b € B, is denoted by A (Z).

For our construction, we need to consider continuous functions on proper families
of compact subsets of X, which we recall below.

Definition 2.3 Let B be a topological space and let 7 : B x X — B be the projection
onto the first factor. A family of compact subsets of X, parametrised by B, is given
by a closed subset K C B x X, for which K} is a compact subset of X for every
b € B (note that K}, may be empty). A family of compact subsets K is proper if the
map 7 |x : K — B is proper, it is wide if K}, is non-empty for every b € B, and it is
called Runge if K} is Runge for every b € B.

Recall that a continuous map between topological spaces is proper if the preimage
of every compact subset is compact, and that a compact subset K C X is Runge if
the complement X \ K has no relatively compact connected components. A Runge
compact set K is holomorphically convex in every complex structure on X.

Asnoted in [7], we have the following characterization of proper families of compact
subsets:

Proposition 2.4 Let B be a Hausdorff topological space and let K C B x X be a
closed subset. Then K is a proper family of compact subsets of X if and only if the
following two conditions hold:

(1) For every b € B the fiber K}, is compact,

(2) For every by € B and every open subset U C X containing Ky, there is a
neighbourhood By of by in B such that K, C U for every b € B.

Let us now take a look at some examples.

Example 2.5 (1) For every compact subset Ko C X we have the constant family
K = B x K of compact subsets of X for which K;, = K for every b € B. More
generally, let K C B x X be a closed subset for which | : K — B is a fiber bundle
with a compact fiber. Then K is a proper family of compact subsets of X.
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(2) A proper family of compact subsets of X need not have all fibers homeomorphic.
As an example, consider the case when B =R, X = C = R? and denote byD c C
the closed unit disk. The set

K = (00,01 x D) U ([0, 50) x (0

is then a proper family of compact subsets of X. On the other hand, let us define the
set
K = ((—00,0] x {0 U {(x, 1) |x € (0,00)}.

The set K defines a family of compact subsets of X which is not a proper family.

To show that a given set is a proper family of compact subsets of X we easily obtain
the following useful criteria.

Proposition 2.6 Let B be a topological space.

(1) Let K C B x X be a proper family of compact subsets of X and let K’ be a closed
subset of K. Then K' is a proper family of compact subsets of X as well.

(2) Let K1, Ko C B x X be proper families of compact subsets of X. Then K1 U K,
is a proper family of compact subsets as well.

Let K C B x X be a wide, proper family of compact subsets of X andletn : K —
(0, o0) be a positive continuous function. Since K, is non-empty for every b € B,
there exists the minimum

min(n)(b) = min{n(b,x) : x € Kp} > 0.

We thus obtain a function min(n) : B — (0, c0), whichis continuous if K is a constant
or a locally trivial family. In general, however, the function min(#n) is only lower
semicontinuous, but we can always find a continuous minorant m(n) : B — (0, 00)
of min(n):

Proposition 2.7 Let B be a metrisable space, K C B x X a wide, proper family of
compact subsets of X and let n : K — (0, 00) be a continuous function.

(1) The function min(n) : B — (0, 00) is lower semicontinuous.

(2) There exists a continuous function m(n) : B — (0, 00), such that m(n)(b) <
min(n)(b) holds for every b € B. If B is a smooth manifold, we can in addition
ensure that the function m is smooth.

Proof (a) Let ¢ > 0 and by € B. We have to prove that there exists an open neigh-
bourhood Uj, of by in B such that min(»n)(b) > min(n)(by) — € for every b € Uy,.
Suppose, on the contrary, that such a neighbourhood does not exist for some by. Then
there exists a sequence (b, x,) of points in K such that n(b,, x,,) < min(n)(bg) — €
for every n € N and nli)rréo b, = by. The set L = {b,, |n € Z,} is a compact subset of

B, hence (r|g) (L) is a compact subset of K. We may therefore assume, that the
sequence (by, x,) is convergent with limit (bg, xg) € K. But then we have

min(n)(bg) < n(bo, xo) < min(n)(by) — €,
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which leads us to a contradiction.

(b) We have shown that for every by € B we can find a neighbourhood Uy, of
by in B and a number €5, > 0 such that €5, < min(n)(b) for every b € Up,.
Since B is paracompact, we can find a subset B’ C B and for every b € B’ an
open subset V;, C Up, such that {V},},cp is a locally finite open cover of B. Choose
a continuous partition of unity {pp}pcp’, subordinated to the cover {V,}pcp. The
function m(n) : B — (0, 00), defined by

m(n) = Z €bPb

beB’
is then continuous and satisfies 0 < m(n)(b) < min(n)(b) for every b € B. O

Classical versions of Runge and Mergelyan approximation theorems show us that
we can approximate a holomorphic function on a Runge compact set K arbitrarily
closely on K with global holomorphic functions on X. In the construction of families
of proper holomorphic maps, we use the following Mergelyan theorem for proper
families of compact Runge sets (see Corollary 5.2 and Remark 5.7 in [7]).

Theorem 2.8 (Mergelyan theorem for proper families of Runge compacts) Let B be
a paracompact Hausdorff space, k € Z4, 0 < o < 1 and let J = {Jp}pep be a
continuous family of complex structures on X of class C*® | parametrised by B. Let
K C B x X be a proper family of Runge compacts in X and let € : B — (0, 00) be a
continuous function. Thenforevery f € Aj(K) there exists afunction F € Oj(BxX)
such that || Fp, — fyllk, < €(b) for every b € B.

In our construction, we need the following combination of the Mergelyan theorem
and Proposition 2.7.

Proposition 2.9 Let B be a metrisable space, k € Z+,0 < o < landlet J = {Jp}pen
be a continuous family of complex structures on X of class C*®, parametrised by
B. Letn € Nandlet K1, K>, ..., K, C B x X be wide, proper families of compact
subsets of X such that their union is contained in a proper family K of Runge compacts
in X. Suppose f € A;(K) is a function that satisfies conditions R f > C; on K;
for some positive constants C; for 1 < i < n. Then for every continuous function
€ : B — (0, 00) there exists a function F € Oj(B x X) such that RF > C; on K;
forl <i <nand||Fy— fpllg, <€) foreveryb € B.

Proof For 1 < i < n the function i f — C; is continuous and positive on K;. By
Proposition 2.7, there exist continuous functions 6; : B — (0, oo) such that for every
(b,x) € K; we have R f(b,x) — §;(b) > C;. Now define a continuous function

8 = min{éy, 62, ...,68,, €} : B — (0, 0o0). From Mergelyan’s theorem, it follows that
there exists a function F € O;(B x X) such that ||F, — fpllg, < §(b) for every
b € B. This function F satisfies the conditions. O
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3 Construction of families of proper holomorphic maps

We first recall how we can reduce the construction of a family of proper holomorphic
maps to the construction of a converging sequence on an exhausting family of compact
sets in X.

Proposition 3.1 Let B be a topological space, k € Z4,0 < o < landlet J = {Jp}pen
be a continuous family of complex structures on X of class C*®), parametrised by B.
Let) = Koy C K1 C Ky C K3 C ... bean exhaustion of X by compact sets such that
K, C Int K, for every n € N. Suppose that for every n € Z. we have functions

Fu1, Fpo € Aj(B x Ky), such that for every n € N it holds:
(@n |Fni(b, x) = Fy1i(b, x)| < 57 for every (b, x) € B x K,y andi = 1,2,
(b)n max{NFy, 1(b,x), RF,2(b,x)} >n—1forevery (b,x) € Bx (K, \IntK,_1).
Then there exist functions Fi, F» € O (B x X) suchthat F = (Fy, F>) : Bx X — C?

is a continuous J-holomorphic map, for which F, : X — C? is a proper map for
everyb € B.

Proof 1t follows from the condition (a), that the sequences (F;, 1)nen and (F; 2)neN

converge uniformly on the sets of the form B x K, where K C X is a compact

subset. For the limit functions F; = lim Fj,; and F> = lim F, 2, we have that
n—oo n—oo

Fi,F, € O;(B x X).
Forn > 1 andi = 1, 2 it then follows from (a),, that

1
+. .:—_1<lf0r(b,x)eB><K,,

1
|[Fi(b,x) — Fyi(b, x)| <2_n+ﬁ . o

and further from (b),, that
max{NF(b, x), NF>(b,x)} >n—2for (b,x) € B x (K, \IntK,_1),

which implies that F;, : X — C? is a proper map for every b € B. O
We now consider the case X = R?, where the topology is trivial:

Theorem 3.2 Let B be a metrisable topological space, k € 7, 0 < a < 1 and let
J = {Jp}pep be a continuous family of complex structures on R? of class C*&®),
parametrised by B. Then there exists a J-holomorphic map F : B x R? — C? for
which Fj, : R?> — C? is a proper map for every b € B.

To prove Theorem 3.2 we first introduce some notations, where we identify R? and
C for convenience. We choose the exhaustion of C by closed disks

K,=nD={ze€C: |z] <n}

for n € N, and denote by
Ay =K, \IntK,_;

the closed annulus in C between circles of radii n — 1 and n. Also let Ko = @.
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Definition 3.3 (1) Let n € N and suppose we have k € Nangles0 < ¢ < ... <
¢r < 2. We then define the following subsets of C:

Yy Adr, ... i) = {re"f” crelnn+11,¢ €{gr, ..., ol
P A1, ..., i) = {ne'® : ¢ € {1, ..., i}

The set y(n, {¢1,...,¢r}) is the union of radial line segments at angles in
{é1, ..., dr}, while their inner endpoints form the set p(n, {¢1, ..., ¢r}).

(2) Let n € N and suppose ¢1, ¢2 € [0, 2] are such that 0 < ¢» — ¢p1 < 2. We
then define:

D(n, ¢1,¢2) = {re'® : r e [n,n+11,¢ € [¢1, P21},
a(n, 1, ¢) = (ne' : ¢ € [¢1, hal).

The set D(n, ¢1, ¢2) C C is the part of the annulus A,, which lies between angles
¢1 and ¢». Its inner boundary arc is denoted by «(n, @1, ¢2).

(3) Letn € N, let ¢1, ¢ € [0, 2] be such that 0 < ¢» — ¢1 < 27 and suppose
that) < 6 < %min{l, ¢> — ¢1}. We then define:

L(n,8,¢1,¢2) ={ré"® :ren+8,n+11,¢ € (p1 +8, ¢ — 81},
W, 38, ¢1,¢2) = D(n, ¢1,$2) \ L(n, 8, ¢1, ¢2).

The set W (n, 8, ¢1, ¢2) is the closed §-neighbourhood of y (n, {¢1, $2}) U (n, p1, ¢2)

in D(n, ¢1, ¢2).
(4) Let n, k € N and suppose 0 = ¢; < ¢ < ... < ¢x < 2m. Furthermore, let
0<d< %min{l, b2 — P1, 03 — b2, ..., P — Pr—1, 2T — ¢r}. We then define:

W, 8, {p1,d2, ... k) = Wn, 8, ¢1,92) U...UW0n, 8, ¢p_1, ) UWn,S$, ¢, 2m),
L(n,8,{p1.¢2,....0}) = L1, 8,91, ¢2) U...UL®, 6, pp_1, ) UL(n,3, ¢y, 2m).

(5) Letn € N and suppose 0 = ¢1 < ¢ < ... < ¢ < 2w, where k is an even
number. We then define:

Doga(m, {¢1, 92, ..., 1)) = D(n, 1, ¢92) UD(n, ¢3,¢4) U...U D, dr—1, Pr),
Deven(n, {¢1, @2, ..., ¢k}) = D(n, 2, $3) U D(n, ¢, p5) U ... U D(n, ¢y, 27).

In a similar fashion we define the sets aodd, @evens Lodd, Leven, Wodd and Weyen.

All of the above sets are compact subsets of C as shown in Figure 1.

Next we extend the above definitions to the setting of B x C, where B is a topological
space.If¢; : B — [0,2x]and$ : B — (0, %) are continuous functions that satisfy the
conditions (1) — (5) in Definition 3.3 pointwise, we can define families of compact
subsets of C whose fibres are the corresponding sets. We denote such a family by
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Fig. 1 Pictures of sets from Definition 3.3

adding a subscript B. For example, if n € N and ¢1, ¢ : B — [0, 2] are continuous
functions such that 0 < ¢ (b) — ¢1(b) < 2x for every b € B, then Dp(n, ¢1, ¢2) is
a subset of B x C, which is implicitly defined by

(Dp(n, ¢1,92))p = D(n, ¢1(b), p2(b)) C C
for every b € B.

Proposition 3.4 Let B be a topological space. The sets yp, pp, Dp,ap, Lp and Wg
are all proper families of compact subsets of C. The same is true for their odd and
even versions.

Proof All these sets are subsets of the constant family B x K41, so by Proposition
2.6 it suffices to prove they are closed subsets. This follows from the fact that their
complements in B x C are open since the functions ¢; and § are continuous. O

To be able to use the Mergelyan theorem to construct the sequence of functions
from Proposition 3.1, we need the following result.

Proposition 3.5 Let B be a metrisable topological space, n € N and let ¢, ¢> : B —
[0, 27w] be continuous functions such that 0 < ¢2(b) — ¢p1(b) < 27 for every b € B.
Suppose f : Dp(n, ¢1, ¢p2) — C is a continuous function such that:

(1) Rf >nonypn, {$1,$2}) Uag(n, 1, ¢2),
(2) Nf >n+1onpp(n+1,{¢1, ¢}).

Then there exists a continuous function § : B — (0, %), satisfying 6 < % min{l, ¢ —
¢1} and such that:
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(1) Rf >nonWg(n,3s,¢1, ¢),
2) Rf>n+lonapmn+1,¢1,01 +6) Uapn+1,¢2 — 6, ¢2).

Proof Let us define

K" ={(b,x) € Dp(n, g1, ¢2) : R f(b,x) <n}U{(b,x) €apn+1,1,¢2)
Rf(D,x) <n+ D).

The set K’ is a closed subset of the proper family of compact subsets Dg (1, ¢1, ¢2),
hence K’ is a proper family as well. Since K’ may have empty fibers, we enlarge it to
a proper family of compact subsets

K=K'Upgn+1,{3(¢1+¢)),

for which K, # () for every b € B. Then K is a wide, proper family of compact
subsets of C which is disjoint from y (1, {¢1, ¢2}) U ap(n, o1, ¢2).

For any (b, x) € K we can write x in the form x = re'? for unique r € (n,n + 1]
and ¢ € (¢1(b), ¢2(b)). The functions ¢ — ¢, ¢ — ¢1 and r — n are continuous and
positive on K. By Proposition 2.7, we can find a function § : B — (0, co) such that
for every (b, re'?) € K we have:

rem+48b),n+1],
¢ € (@1(b) +8(b), pa(b) — 5(b)).

If needed, we can make § smaller, so that§ < % min{l, ¢ —¢1}. Wethenhave R f > n

on Wg(n,$,¢1,¢2)andNf > n+lonag(n+1, ¢1, 1 +8)Uag(n+1, ¢2—38, ¢2).
o

Proof of Theorem 3.2 Letl,, = 3"~ ! forn € N. According to Proposition 3.1, it suffices
to construct a sequence of functions Fj, 1, F,, 2 € Aj(B x K,) that for every n € N
satisfy the conditions:

@y |Fuib,x) — Fy—1,i(b,x)| < 2,,1—_, for every (b,x) € B x K,_1andi =1, 2,
(b), max{NF, 1(b,x), RF,2(b,x)} >n —1forevery (b,x) € B x A,.

We construct such a sequence inductively, together with the sequence of continuous
families of angles: These angles are defined by continuous functions ¢, ; : B —
[0,27] for j € {1, ..., 2l, + 1}, which satisfy for every n € N the following condi-
tions:

©n 0=0n1(0) < Pp2(b) < -+ < Pp2,(b) <21 = ¢p2,+1(b) forevery b € B,
(d)n NFy 1 > non (codd) (1, {@n,1, Pn2y -+ Gn21, ),
an,Z > 1 on (Qeven) B (1, {¢n,lv ¢n,21 ey ¢n,21,,})-

To start with the induction, we define constant functions ¢; 1, ¢12,¢13 : B —
[0, 2] by
011 =0, 910 =m, ¢13=2m
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and choose any functions Fp 1, Fo2 € Aj(B x Ko) and Fi 1, F12 € A;j(B x K1)
that satisfy the conditions (a)1, (b); and (d);. (For example, we could just choose
appropriate constant functions Fy 1, Fo 2, F1,1 and Fj2.)

Suppose that for some n € N we have functions Fy, 1, Fiy2 € Aj(B x K,;) and
Om,j : B —[0,2x] for j € {1, 2, ..., 2l,, + 1} which satisfy conditions (@), (b)m,

(¢)m and (d),, form € {1,2, ..., n}. In the induction step, we construct continuous
functions

Gnt1,1, Pnt1,25 - - Pug1,20,+1 - B — [0, 27],
that satisfy

0=0nt1,1 < Put12 < ... < Pnt120, < 27 = Put1,20p1+1

and functions Fj, 41,1, Fu+1,2 € Aj (B x K, 41) thatsatisfy (a),+1, (b)n+1 and (d) +1.
Before we turn to details let us quickly describe the main idea of the induction
step. We need to construct functions Fy11.1, Fyt12 € Aj(B x K,41) for which
max{RF,41.1, RF412} > non B x A,41. To do that, we split the inductive step
into three parts. In the first part, we use Mergelyan’s theorem to construct func-
tions I:"n,l, 17",,,2 € Oy(B x R2) which satisfy max{.‘RFn,l, ?RI:"n,z} > n on the subset

yB(, {n,1, Pn2, ..., dn2,)) of B x A, 1. Next we use Proposition 3.5 to show that
there exists a continuous function § : B — (0, %) such that max{NF, 1, NF, 2} > n
on the subset Wg(n, {¢n,1, $n2, ..., $n2,}) of B x A,1. In the third part, we use

the idea from the proofs in [1, 3] to obtain functions Fy, 41,1, Fyt+12 € Aj(B X Ky41)
for which max{MF,, 11,1, RFy412} >non B x A,41.

Let us now describe the details. First we construct functions I:ﬂn,l, Fn’z € Oy(B x
RR?) that satisfy:

@ st 1Fui(b.x) = Fyi(b, )| < 57 for (b,x) € B x Ky andi = 1,2,

(B 1t Rt > nonyg@, idu s $n2, ) U @odd) B0 (Dn s - $n2t, D
m{'jn,Z > non yg(n, {¢}’l,la ceey ¢n,21,, D U (ceven) (1, {¢n,1, ceey ¢n,21n R
(dYp1 RE,; >n+1onpg(n+1,{@n1,....¢no,)) fori =1,2.

To do that we first continuously extend the functions F i, F, > from the set
B x K, to the set (B x K,) Uy, {¢n1,....¢n2,}) so that RF,; > n on
vem, {bn,1, ...  Pu2,}) and RNF,; > n+ 1 on pp(n + 1, {¢n,1,..., ¢n2,}) for
i = 1,2. Now note that RF,, 1 > n on the proper family yp(n, {¢n.1, ..., $n2,}) U
(ctodd) B, {Pn,1, - - ., dn,21,)) and that RF, | > n + 1 on the proper family pp(n +
L {én.1, ..., ®n2,}) of compact subsets of R2. The union of these two proper fami-
lies is contained in the proper family (B x K,) U yg(n, {¢u.1, ..., ¢$n,2,}) of Runge
compacts in R?, so by Proposition 2.9 we can find a function I:"n,l € O;(B x R?) that
satisfies (al)n+1, (bl)n+1 and (dl)n+1. In a similar fashion we also obtain a function
sz e Oy(B x RZ) which approximates the function Fj, ».

We now proceed to the second part of the induction step. Consider the function I:"n,l
on the proper family (Dodd) (1, {@n,1, - .., ¢n,21,}) of compact subsets of R2. From
Proposition 3.5 it follows that there exists a continuous function 81 : B — (0, %) such
that:

- RFy1 > non (Wodd) g, 81, {dn1s - -+ s G2ty s
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~ ln
- WP >n+1on U (s + 1, ¢pok—1, Pn2x—1 + 1)U
k=1

ap(n+ 1, ¢k — 81, dn.20)).-

In the sequel, we repeat this argument for the function Fn 20n the (Deven) B (1, {Pn 1, - - - s
®n,21,}) to obtain a function &, : B — (0, 3) such that Fn 2 satisfies conditions:

. an,Z > n on (Weyen) (1, 82, {¢n,1 g oy ¢n,21,1}),
- In
cWFp>n+1on U (ap®n+ 1, ¢p ok, dnok + 62)U
k=1

ap(n + 1, $n2kt1 — 62, n.2k+1))-

Let § = min{éy, 82} and define functions ¢y 1,1, Pnt1.25 -+ Put1,20,41 : B —
[0, 2] by:

Ont1,3k+1 = Pnk+1,
Ont1,3k+2 = Gnk+1 + 6,
Ont1,3k+3 = Gnks2 — 6

fork € {0, 1,...,2l,—1}and ¢, 11,21,,,+1 = 2. Observe that these functions satisfy
the condition (c),+; while functions I:”n 1 I:“n 2 satisfy the conditions:

(az),H_l |I:“n,,'(b,x) — Fi(b,x)| < 2,,+1 forall (b,x) € Bx K, andi =1, 2,
(b2)n+1 max{iﬂFl‘l,l(b3 x)v ERFH,2(b7 -x)} > nforall (b’ -x) € WB(n, 51 {¢n,17 ¢n,2, )
n.20,1)s
[I‘l

(d*)ps1 MF, 1 >n+1on U (e + 1, dpok—1, Pn.2k—1 + SU
ag(m+ 1, gn ok — 3, ¢n,2k)),
- In
NFo>n+1on U (ap(®+1, ¢n ok, dnok + 86U
k=1

ag(n + 1, Gn2kt1 — 8, Pn2kt1)).

In the third part of the induction step, we correct the functions F, 1, I:"n,z so that we
obtain the condition (b),+1 on the set Lg(n, 8, {¢n.1, ..., $n,2,}) as well as the con-
dition (d),+1 on the remaining arcs. Let us define a proper family of Runge compacts
by

(Aodd)n=(Bx K)U(Doaa) B(n, {¢n,1, ceey ¢n,21n DU(Leven) B (1, 8, {¢n,1 y e ¢n,21n b,

see the left part of Figure 2, and define the function f,,,l € Aj((Aodgd)n) by

= Fup 3 (b,x) € (B x Ky) U (Dodd) 51, {1, - -+ s 21, )
Foib,x)=1 " : 2
1. x) { 2 (b, x) € (Leven)5 (1. 8. {1 -« s brat, )

Function F, | satisfies conditions:
< |Fp1(b,x) = Fo1(b,x)| < 3k for (b, x) € B x Ky,
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Fig.2 Regions in the inductive step in the case n = 2

. mzn,l > non(Woad) (1, 8, {Pn.1, - - -, &n,21, DU(Leven) B (1, 8, {15 - -, P21, D)
- MFp 1 >n+1on (edd) B+ 1, {dn+1,1, -+ Put1,20,41 )

By applying Proposition 2.9 to the function fn, 1 with precision at least 2,,% we obtain
a function Fy 41,1 € Oy (B x ]Rz) that satisfies:

(@ Dug1 [Fag1.1(b,x) — Fy1(b, x)| < 57 for (b, x) € B x Ky,

B3 Dpg1 RFup11 > non (Woad) (1, 8, (@1 - - - » b1, DU
(Leven)B (1, 8, {¢n,l’ ey ¢n,21n}),

(@1 RFup11 > n+1on (@ead) B+ 1 AGnri1s -+ oy But1 200 D

Similarly we obtain a function F,, 112 € Oj(B X R?) which satisfies conditions:

(@D pt1 |Fpg1,2(b,x) — F2(b,x)| < 5 for (b, x) € B x K,

(b3'2)n+] ERFn+l,2 > n on (Weyen) B (11, 6, {¢n1 s eees ¢n,21,, hu
(Load)B(n, 8, {u,1, .. Pn 21, ),

(@1 RFpr12 > n+1on (deven) B+ 1 {Bnt 115 s Pu1,20,1 D)-

The areas in B x A, where WF, 11,1 > n respectively R F, 12 > n are shown
in the right part of Figure 2. Condition (a),+1 now follows from conditions (a3’1)n+1
and (a3-2) n+1, condition (b),4+ follows from conditions (b1 )n+1 and (b3'2)n+ 1 while
condition (d), 1 follows from conditions (d>Y),41 and (d3’2)n+ 1. The proof is con-
cluded by applying Proposition 3.1. O

Proof of Theorem 1.1 Let Ko = (. Choose a point by € B, and a strongly Jp,-
subharmonic Morse exhaustion function t : X — (0, o). By a small perturbation,
we may assume that there is exactly one critical point at every critical level set.
Choose an increasing sequence (c,),en of regular values of T converging to oo
such that the interval (cj, c,+1) contains at most one critical value of 7. Then
K, ={x € X : t(x) < ¢} is a smoothly bounded compact Runge set, and we
may assume that ¢ is chosen so large that K| is nonempty and so small that it is
simply connected. Then b K, is a union of finitely many, say k,,, smooth closed Jordan
curves. If t has no critical values in (¢, ¢;+1), then K, 41 \ Int K,, is a union of k&,
annular regions, and we call this the noncritical case. In this case, there is no change
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in the topology, and the construction is similar to the construction in the proof of
Theorem 3.2. We will explain the details below. In the critical case, T has exactly one
critical point in K41 \ Int K, of index O or 1.

If its index is 0, then it is a minimum of T and a new simply connected component
appears. If its index is 1, then there is a compact Jordan arc y, C Int K, 41 \ Int K,
transversally attached with both endpoints to K, and otherwise disjoint from K,
such that K,, U y,, is a Runge set and a strong deformation retract of K, 1. We need
to distinguish two cases: either the endpoints of the arc y;, lie on the same component
of bK,, or the arc connects two different components of bK;,. We choose two distinct
points, denoted by p;; and ¢; on each boundary component of bK, (j = 1, ..., k)
such that the endpoints of the arc y, are p,ﬁ and q,l1 for some j,/ € {1, ..., k,}. The
map F is constructed inductively and at the critical case, we need to continuously
extend the maps Fy, 1, F2 ¢ B x by, — {z € C: Rz > n} to maps F, 1, Fy2 :
B x y, — {z € C: Az > n}. This is possible since the set {z € C : RNz > n} is
contractible. Moreover, we will also obtain a continuously varying family of points
on each boundary component of K, which corresponds to the continuous family of
angles in the proof of Theorem 3.2, and the points p;, and ¢; will correspond to the
constant angles with the different parity: for this reason, we choose for each n and
for each j € {1, ...k,} a continuous map ¢; from [0, 277] to the j-th component of
bK, which induces a homeomorphism from the quotient [0, 27]/(0 ~ 2m) to the j-th
component of bK,, 1nduc1ng the given orientation. Furthermore, we may achieve that
(pn 0) = @i (277) pn and wn () = qn

We inductively construct functions F,, 1, F, 2 € A;(B x K,;),n € NU{0}, positive
integers l,ﬁ, j e {l,...,k;},n € N, continuous functions qb,ﬁ,m : B — [0,27],
me{l,...,2) + 1},j € {1,...,k,},n € N, that satisfy the following conditions
forevery n € N:

@n |Fnib,x) — Fp_1,i(b,x)| < = 1 for (b,x) e Bx K,_jandi =1, 2,
(D) max{“hF,, 1(b, x), RF, 2(D, x)} > n—lforevery (b,x) € Bx(K,\IntK,_1),

©n 0=¢; (b)<¢,12(b)<~~<¢f (b)<2n—¢’211 (b) foreach b € B

and j € {1,...,k,}; foreach j € { , k,} there is mﬁ e {1,. l,{} such
that ¢’

n 2m,,

(d)n RFy1(b,x) > nforx e go,{([q&’ 2m— 1(b), qbn m(®)]) and RF, 2 (b, x) > n for
X € GLP] 2 B). &) 5 (D)D) foreachm € (1, ... 1), and

T,

J € {1’ . kn}
Once we complete the construction, the proof is complete due to Proposition 3.1.
To start the induction take Fo| = Fop = Fi,; = Fip = 2,1{ = 1,m{ = 1 for

je{l,..., ki}, which satisfy (a); — (d)1.

Assume we have already constructed F; 1, F; 2, l] ml »b;, m, mell,..., 2ll.] + 1},
jefl,... . k},i €{l,...n}, thatsatisfy (a); — (d), foralli € {1, ...n}. We construct
the functions Fj, 41,1, Fu+1,2 by dividing each component of the set K, \ Int K, into
two unions of simply connected regions that play the roles of (Dodq) p and (Devyen) B
in the proof of Theorem 3.2.
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qk,. | pk..q 4% 3
n+ n+l ¥
ntl gl

Fig.3 Ciritical case 1

In the noncritical case, the set Ky, 1 \ Int K, is homeomorphic to a disjoint union
of k, = k,41 annular components which we denote by A/ for j = 1,2,...,k,.

Jouler

n+1

We may choose a diffeomorphism Wn :{z €C :1<|z] <2} - A} such that
‘/f;{ (e’ = ‘““er (t) and W, (2e” ) = goﬂ‘f‘(t) for t € [0, 27). Denote by y,:j the arc
1//”( [1,2] )and by y,, / the arc 1//n( —2, —1]). By the property (d),, we can continuously
extend the maps F,, 1, n.2 from B x K, to maps from B x (K, U y U Vn ]) SO that

Jinner

Suppose that the boundary components of A/ are parametrised by ;"™ and ¢

the image of B x (yn U ynj) lies in {z € C : 9z > n} and the image of B x {p +1}
and of B x {an} lies in {z € C : Mz > n + 1}. Then we proceed as in the proof

of Theorem 3.2 to obtain functions Fy,+1 1, F41.2 € Aj(B x Kp41), integers ln+1’

mnH, and functions ¢n+1 e fl, ... 211le + 1}, j € {1,..., ky41}) satisfying
properties (@)1 — (d)nt1-

In the critical case, we only need to consider critical points with the index 1, since
we can treat the new appearing component in the case of critical points with index 0
in the same way as at the start of the inductive construction. Thus, we first consider
the situation in which the arc y, connects two different components of bK,. Then
the number of components of hK,, 1 is one less than the number of components of
bK,. By rearranging the notation, we may assume that y,, connects pﬁ"fl and ¢g,".
The set K11 \ Int K, is a union of a two-connected domain D, in X, and perhaps
a finite number of annuli, where the arc y,, C D, connects two components of the
complement of D, in X. In the annular regions of K11 \ Int K,, we proceed as in the
noncritical case, thus we provide the details only for the construction corresponding
the domain D,,. Since the domain D,, is two-connected, we first explain how we choose
continuous family of arcs connecting the boundary of bK,, and bK, 1, corresponding
to the arcs y (n, {¢1, ..., ¢r}) in the proof of Theorem 3.2. We can choose pairwise

disjoint smooth arcs y,” and y, in K,, 11 \ (Int K, Uy,,) which intersect 5K, and hK,, ;|

kn n+1

+l,and

transversally at their endpomts such that the endpoints of y,/ are p," and pll;

knt1

"1 » see the left part of Figure 3.

the endpoints of y,/ are q,, ~!and q,
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Then the domain Dy, is the union of two closed simply connected domains D, and
D, with the arcs y,,, .Y and y,! as their common boundary. There is a diffeomorphism
\IJ+ from D+ to the convex hull C of points (2, 0), (2, 1), (1,2), (—1,2), (=2, 1),

(—=2,0) in B2 that maps ¢} to (=2, 0), gx" " to (=2, 1), pi* " 1o (=1,2), ¢4 1o

(1,2), pn” to (2, 1), and pﬁ'_': 11 to (2, 0) (and similarly for D,"). The vertical segments

in C provide arcs in Djl‘ . More precisely, for any ¢ € (0, 7) the points gp,]f"’l (@),
(pi,‘” (¢) from bK, are mapped to points (x’, y), (x”, y”) for some x" € (=2, —1),

"€ (1,2) and y', y” > 0 on the beveled edges of C. Then segments from (x’, y’)
to (x/,0) and (x”, y") to (x”, 0) mapped back to D; by (¥1)~! give the required
arcs. This construction gives a Runge family, and the proof is reduced to the proof
in the noncritical case: First we extend the maps Fy 1, Fy,2 continuously to maps
from B x (K, Uy, U )/n U )/n) such that the image of B x (y, U yn U ynq) lies
in {z € C : Nz > n}, and that the image of B x {pn”“} and B x {qn”“} lies in
{z € C: Nz > n + 1}. The continuous extension to B x (y, U yn U y,,) with the
image in {z € C : Nz > n} is possible by the property (d), and since the former
set is contractible. Now the construction can proceed similarly to the construction in
the regular case, and here we explain the main differences: In the noncritical case, the
functions ¢, ; determined boundary arcs (ctodda) 8 and (@even) g such that RF, 1 > n

on (codd) B, and NF, » > n on (deven) B- In the critical case, we start at the point p],i”

on b K, and move in the positive direction along k,,-th component of bK,,; we first get

some arcs with alternating parity until we reach the point ¢," (¢k" tn 1(b)). These
omkn _

arcs determine the domains in D,‘f that belong to Dodd, Deven a8 before Observe that
forallb € Bandx € ¢ (14", (), 7)) Uyu Ugy"™ (10,85 ()] = IT(B)
n,2m," —

we have R Fy, 1(b, x) > n. Therefore, the set / * can be seen as a part of («odd) B, and
the corresponding domain as a part of Dygq. As we move further along the boundary of

the (k, — 1)-th component of »K,, in the positive direction, from golnc”_l (qblrf > ! (b)) to

k" - (¢k" =1 (b)) we obtain alternating arcs and domains as before, first we get some

from D+ and then some in D, Similarly to the above, we have forall b € B and x €

A 19" 1 (0. 2T Uy U (. @1, (B)]) = 1 (b) that %y 2 (b, x) >

n, and the set /™~ can be viewed as a part of (aeven) B, and the corresponding domain
as a part of Deyen. As we move further along the boundary of the k,-th component of
bK,, we get some arcs with alternating parity until we reach the starting point pﬁ".
Then we proceed with the proof as in the noncritical case. On the right part of Figure
3, we denoted the arcs in («oqq) g darker than the arcs in (teyen) B-

In the second case, the endpoints of the arc y,, lie on the same component of bK,.
In this case, the number of components of bK,, 1 is one greater than the number of
components of bK,. By rearranging the notation, we may assume that the endpoints
of y, are p,];" and q,]f”. The set K41 \ Int K}, is a union of a two connected domain D,
in X, and perhaps a finite number of annuli, where the set v, U (bK,, N D,,) separates
the other boundary components of D,. We can choose smooth arcs .., yul, yn’,

y,:/q in K41 \ Int K;, which intersect bK,, and bK n+1 transversally and only at their

n+] 1

endpoints, such that the endpoints of vl are p "and p,""| , the endpoints of vl
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ENCRO)

Fig.4 Critical case 2

, the endpoints of y,” are py* and p];’f: !, the endpoints of y, 7 are

k Kng1—1
are g," and g,,"\"}
kll

qn" and g,y "“ . Furthermore, we can achieve that arcs y,,, y,;p , y,/,q, y,;/p s y,;/q intersect
pairwise at most at their endpoints. We denote by D, the simply connected component

of the set D, \ (y,;p U y,;q). Assume that D,J[ contains <p,l§" ((0, )), the other case is
symmetrical. Let D, be the simply connected component of the set D, \ (y,;/p U y,i/q)
which contains (pif” ((r, 2m)). See the left part of Figure 4.

There is a diffeomorphism ¥, from DJr (and ¥, from D;) to the unit square
[0, 1] x [0, 1] in R? that maps the arcs )/n , yn (7/”” y,ilq) to the vertical edges, and
the arc (p,li"((O, T)), (go,li ((, 2m))) to the upper edge of the square. By the prop-
erties (¢), — (d), there are continuous functlons (/),, ¢n B — (O 2m) such
that for each b € B we have ¢/ (b) € (0,¢ L (b)), ¢,’Z (b) € (¢ "ZI,W ), 27),

It (b e (¢"” 0,161 () € (. ¢>"" ,, (b)) and such that the restrictions of

themaPS Fu 1, Fn 2t0the arcs ¢," ([0, ¢} ()] ) <Pn"( [¢n (b). 27]). " (g7 (). 1)
and go,, "([r, ¢~ (b)]) map into {z € C : Rz > n}. Note that in this step we added 4
functions to the family ¢k For every b e Band every t € [0, 1] we get a segment

from (¢, 0) to ((1 — t)wJ“((p,, @FT (b)) + ll//+((pn (@2F (b)), 1) in the unit square,
and by pushing back with (")~ ! we obtain a family of arcs in D+ that correspond

to the union of radlal line segments (and similarly for Dn ).In partlcular fort =0 we

1

get arc from ¢,," (oF (b)) to pn"+1 , and for t = 1 we get the arc from ¢," () +(b))

to q::’rll . Next, we explain how we divide the domain D,, into domains Dyqq and

Deven Which reduces the proof to the proof in the noncritical case (see the right part
of Figure 4).

We start with the point (p,’i” (¢F + (b)) and move in the positive direction along k-
th component of bK,. We get arcs with alternating parity until we reach the point
(p,]ﬁ” () Jr(b)) determining the domains which alternately belong to Dogd, Deven. For
b e Bandx € gf (¢ (b), 7]) U v U @i (10, 21 (b)) =: IT(b) it holds that
NF,2(b, x) > n,thus, I * can be taken as a part of Qeven and the corresponding domain
as a part of Deyen. Forb € B and x € ¢," ([7r, ¢, (b)]) Uy, U@, ([9f~ (b), 27]) =:
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I~ (b) we have that RF), 1 (b, x) > n, thus, I~ can be taken as a part of ooqq and
the corresponding domain as a part of Dygq. From the point (p,li" (¢Z ~ (b)) we move in
the positive direction along b K,, until we reach the point (pﬁ" (¢F (b)) and again the
points gp,’i” (¢>ﬁ"’i (b)) determine the arcs with alternating parity. Again, this reduces the
construction to the noncritical case, which completes the proof. O

Proof of Theorem 1.3 In the proof of Theorem 1.1, we constructed a continuous map
F : B x X — CZ such that for every b € Bthe map F(b,-) : (X, Jp) — C? is
proper holomorphic, and, furthermore, for every b € B, max{NF| (b, ), RF»(b, )}
goes to infinity as we leave any compact set of X, which implies that the map
NRF,NF) (b, ) (X, Jp) — R2 s proper harmonic. O
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