
The Journal of Geometric Analysis          (2026) 36:102 
https://doi.org/10.1007/s12220-026-02342-y

Families of Proper Holomorphic Maps

Barbara Drinovec Drnovšek1,2 · Jure Kališnik1,2

Received: 19 November 2025 / Accepted: 9 January 2026
© The Author(s) 2026

Abstract
Given a smooth, open, oriented surface X endowedwith a family of complex structures
{Jb}b∈B depending continuously on the parameter b in a metrisable space B, we
construct a continuous family of proper holomorphic maps Fb : (X , Jb) → C

2,
b ∈ B.
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1 Introduction

Every smooth, open, oriented surface X endowed with an almost complex structure J
is a Riemann surface. Therefore, by choosing a continuously varying family of almost
complex structures (Jb)b∈B for someparameter space B,wedetermine a family of open
Riemann surfaces (X , Jb)b∈B . In 2025, Forstnerič [7] initiated the study of continuous
maps F from B × X to Euclidean space, or more generally, to an Oka manifold, such
that for each b ∈ B the map F(b, ·) is holomorphic on the Riemann surface (X , Jb).
In this framework, he obtained the Runge and Mergelyan approximation theorems, as
well as the Weierstrass interpolation theorem.

Our main result answers in part the question raised by Forstnerič [7, Problem 8.7
(a)] concerning the existence of proper holomorphic maps in this setting:

Theorem 1.1 Let X be a smooth, connected, open, oriented surface, B a metrisable
space, and {Jb}b∈B a continuous family of complex structures on X of class C (k,α)

Dedicated to Josip Globevnik

B Barbara Drinovec Drnovšek
barbara.drinovec@fmf.uni-lj.si

Jure Kališnik
jure.kalisnik@fmf.uni-lj.si

1 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana,
Slovenia

2 Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-026-02342-y&domain=pdf
http://orcid.org/0000-0001-8193-3360


  102 Page 2 of 18 B. Drinovec Drnovšek, J. Kališnik

with k ∈ Z+, 0 < α < 1. Then there exists a continuous map F : B × X → C
2 such

that for every b ∈ B the map F(b, ·) : (X , Jb) → C
2 is proper holomorphic.

Precise definitions will be given in the next section. It is classical that for every
open Riemann surface there is a proper holomorphic immersion into C2 and a proper
holomorphic embedding into C3, see [6, Theorem 2.4.1] and the references therein.

By increasing the dimension of the target Euclidean space by one, we obtain a
family of proper holomorphic immersions:

Corollary 1.2 Let X be a smooth, connected, open, oriented surface, B a finite CW
complex or a smooth manifold, and {Jb}b∈B a continuous family of complex structures
on X of class C (k,α) with k ≥ 1, 0 < α < 1. Then there exists a continuous map
G : B × X → C

3 such that for every b ∈ B the map G(b, ·) : (X , Jb) → C
3 is a

proper holomorphic immersion.

Proof By [7,Corollary 8.3] there exists a continuous function h : B×X → C such that
h(b, ·) : (X , Jb) → C is a holomorphic immersion for every b ∈ B. Let F : B×X →
C
2 be a continuous map such that for every b ∈ B the map F(b, ·) : (X , Jb) → C

2 is
proper holomorphic, provided by Theorem 1.1. Then the map (F, h) : B × X → C

3

is continuous and for every b ∈ B the map (F, h)(b, ·) : (X , Jb) → C
3 is a proper

holomorphic immersion. ��
We extend to families the result of Forstnerič and Globevnik [8, Theorem 1.4],

Alarcón and López [3, Corollary 1.1], and Andrist and Wold [4, Theorem 5.6] on
proper harmonic maps from open Riemann surfaces to R2:

Theorem 1.3 Let X be a smooth, connected, open, oriented surface, B a metrisable
space, and {Jb}b∈B a continuous family of complex structures on X of class C (k,α)

with k ∈ Z+, 0 < α < 1. There exists a continuous map H : B × X → R
2 such that

for every b ∈ B the map H(b, ·) : (X , Jb) → R
2 is proper harmonic.

The proof relies on the proof of Theorem 1.1 and we postpone it to Section 3.
ByRemmert’s propermapping theorem, the image of an analytic subvariety under a

proper holomorphic map is an analytic subvariety. Therefore, the following corollary
provides, in particular, a path of complex analytic subvarieties in C

2 from the one
parametrised by the complex line to the one parametrised by the unit disc.

Corollary 1.4 Let X be a smooth, connected, open, oriented surface. Let J0, J1 be
complex structures on X of class C (k,α) with k ∈ Z+, 0 < α < 1. There exist
a continuous family {Jb}b∈[0,1] of complex structures on X of class C (k,α) and a
continuous map F : [0, 1] × X → C

2 such that for every b ∈ [0, 1] the map F(b, ·) :
(X , Jb) → C

2 is proper Jb-holomorphic.

Proof Each complex structure determines a compatible Riemannianmetric on X of the
same smoothness class. Convex combinations of these metrics yield a path connecting
the two, which in turn induces a corresponding path of almost complex structures on X
of the same smoothness class; see, for example [2, Lemma 1.9.1]. Then the conclusion
follows from Theorem 1.1. ��
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The main idea in the proof is constructing a convergent sequence of maps on an
exhausting sequence ofRunge compact sets of X in away similar to constructions in [1,
3, 5]. In [3], Alarcón and López constructed a proper conformal minimal immersion
from any open Riemann surface M into R

3 with its image in a wedge, and in [1],
Alarcón and Forstnerič obtained a proper holomorphic immersion from any open
Riemann surfaceM intoC2 directed by anOka cone. Themain tool in our construction
is the Mergelyan approximation theorem for proper families of compact Runge sets
recently proven by Forstnerič [7]. When the parameter space B is not compact, one
has to deal with nonconstant proper families of compact Runge subsets of X , which
are present already in the noncritical case, i.e., when the topology of X is trivial.

2 Preliminaries

We use the notationsN = {1, 2, 3, . . .} and Z+ = {0, 1, 2, 3, . . .} for the set of natural
numbers, respectively the set of nonnegative integers. If K is a compact topological
space and f : K → C is a continuous function, we denote by ‖ f ‖K the supremum
norm of f on K .

Throughout the paper, we denote by X a smooth, connected, open, oriented, Haus-
dorff, second countable surface.We are interested in families of complex structures on
X , parametrised by some topological space B as defined in [7]. A complex structure on
X is given by a section J ∈ �(End(T X)) of the bundle of endomorphismsEnd(T X) of
the tangent bundle T X of X that satisfies the condition J 2 = −Id. We always assume
that J induces on X the given orientation of X . Since the tangent bundle T X is trivial,
the bundle End(T X) is isomorphic to the trivial bundle X × End(R2). If we choose a
trivialisation of End(T X), we can identify sections of End(T X) with functions from
X to End(R2). If we furthermore choose a Riemannian metric on X , we can define
Banach spaces �(k,α)(End(T X)|�) of sections of End(T X) of Hölder classC (k,α)(�)

for any k ∈ Z+, 0 < α < 1 and any relatively compact domain � ⊂ X . A complex
structure J ∈ �(End(T X)) is locally of class C (k,α) if J |� ∈ �(k,α)(End(T X)|�) for
every relatively compact domain � ⊂ X .

Definition 2.1 Let B be a topological space, k ∈ Z+ and 0 < α < 1. A continuous
family of complex structures on X of class C (k,α), parametrised by B, is a family of
complex structures J = {Jb}b∈B on X , which are locally of class C (k,α), such that for
every relatively compact domain � ⊂ X the map b 	→ Jb|� ∈ �(k,α)(End(T X)|�) is
continuous.

A continuous family J = (Jb)b∈B of complex structures on X furnishes us with a
Riemann surface (X , Jb) for every b ∈ B. A function f : X → C is Jb-holomorphic
if it is holomorphic with respect to the complex structure Jb on X and the standard
complex structure on C.

Let B be a topological space and let A be a subset of B × X . For every b ∈ B we
denote

Ab = {x ∈ X : (b, x) ∈ A}.
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If f : A → C is a function and b ∈ B, we denote by fb : Ab → C the function, given
by

fb(x) = f (b, x)

for x ∈ Ab. We are interested in continuous families of holomorphic functions.

Definition 2.2 Let B be a topological space, k ∈ Z+, 0 < α < 1 and let J = (Jb)b∈B
be a continuous family of complex structures on X of class C (k,α), parametrised by B.

(1) Let U ⊂ B × X be an open subset. A continuous function f : U → C is
J -holomorphic, if the function fb : Ub → C is Jb-holomorphic for every b ∈ B. The
vector space of all J -holomorphic functions onU is denoted byOJ (U ). We similarly
define a J -holomorphic map f : U → M , where M is a complex manifold.

(2) Now let Z ⊂ B × X be a closed subset. A continuous function f : Z → C is
J -holomorphic if there exist an open setU ⊂ B × X , containing Z , and f̃ ∈ OJ (U )

such that f̃ |Z = f . The vector space of all J -holomorphic functions on Z is denoted
by OJ (Z). The vector space of all continuous functions f : Z → C, for which the
function fb : Int (Zb) → C is Jb-holomorphic for every b ∈ B, is denoted byAJ (Z).

For our construction, we need to consider continuous functions on proper families
of compact subsets of X , which we recall below.

Definition 2.3 Let B be a topological space and let π : B × X → B be the projection
onto the first factor. A family of compact subsets of X , parametrised by B, is given
by a closed subset K ⊂ B × X , for which Kb is a compact subset of X for every
b ∈ B (note that Kb may be empty). A family of compact subsets K is proper if the
map π |K : K → B is proper, it is wide if Kb is non-empty for every b ∈ B, and it is
called Runge if Kb is Runge for every b ∈ B.

Recall that a continuous map between topological spaces is proper if the preimage
of every compact subset is compact, and that a compact subset K ⊂ X is Runge if
the complement X \ K has no relatively compact connected components. A Runge
compact set K is holomorphically convex in every complex structure on X .

As noted in [7],wehave the following characterizationof proper families of compact
subsets:

Proposition 2.4 Let B be a Hausdorff topological space and let K ⊂ B × X be a
closed subset. Then K is a proper family of compact subsets of X if and only if the
following two conditions hold:

(1) For every b ∈ B the fiber Kb is compact,
(2) For every b0 ∈ B and every open subset U ⊂ X containing Kb0 there is a

neighbourhood B0 of b0 in B such that Kb ⊂ U for every b ∈ B0.

Let us now take a look at some examples.

Example 2.5 (1) For every compact subset K0 ⊂ X we have the constant family
K = B × K0 of compact subsets of X for which Kb = K0 for every b ∈ B. More
generally, let K ⊂ B× X be a closed subset for which π |K : K → B is a fiber bundle
with a compact fiber. Then K is a proper family of compact subsets of X .
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(2) A proper family of compact subsets of X need not have all fibers homeomorphic.
As an example, consider the case when B = R, X = C = R

2 and denote by D ⊂ C

the closed unit disk. The set

K =
(
(−∞, 0] × D

)
∪ ([0,∞) × {0})

is then a proper family of compact subsets of X . On the other hand, let us define the
set

K̃ = ((−∞, 0] × {0}) ∪ {
(x, 1

x ) | x ∈ (0,∞)
}
.

The set K̃ defines a family of compact subsets of X which is not a proper family.

To show that a given set is a proper family of compact subsets of X we easily obtain
the following useful criteria.

Proposition 2.6 Let B be a topological space.

(1) Let K ⊂ B× X be a proper family of compact subsets of X and let K ′ be a closed
subset of K . Then K ′ is a proper family of compact subsets of X as well.

(2) Let K1, K2 ⊂ B × X be proper families of compact subsets of X. Then K1 ∪ K2
is a proper family of compact subsets as well.

Let K ⊂ B × X be a wide, proper family of compact subsets of X and let η : K →
(0,∞) be a positive continuous function. Since Kb is non-empty for every b ∈ B,
there exists the minimum

min(η)(b) = min{η(b, x) : x ∈ Kb} > 0.

We thus obtain a functionmin(η) : B → (0,∞), which is continuous if K is a constant
or a locally trivial family. In general, however, the function min(η) is only lower
semicontinuous, but we can always find a continuous minorant m(η) : B → (0,∞)

of min(η):

Proposition 2.7 Let B be a metrisable space, K ⊂ B × X a wide, proper family of
compact subsets of X and let η : K → (0,∞) be a continuous function.

(1) The function min(η) : B → (0,∞) is lower semicontinuous.
(2) There exists a continuous function m(η) : B → (0,∞), such that m(η)(b) <

min(η)(b) holds for every b ∈ B. If B is a smooth manifold, we can in addition
ensure that the function m is smooth.

Proof (a) Let ε > 0 and b0 ∈ B. We have to prove that there exists an open neigh-
bourhood Ub0 of b0 in B such that min(η)(b) > min(η)(b0) − ε for every b ∈ Ub0 .
Suppose, on the contrary, that such a neighbourhood does not exist for some b0. Then
there exists a sequence (bn, xn) of points in K such that η(bn, xn) ≤ min(η)(b0) − ε

for every n ∈ N and lim
n→∞ bn = b0. The set L = {bn | n ∈ Z+} is a compact subset of

B, hence (π |K )−1(L) is a compact subset of K . We may therefore assume, that the
sequence (bn, xn) is convergent with limit (b0, x0) ∈ K . But then we have

min(η)(b0) ≤ η(b0, x0) ≤ min(η)(b0) − ε,
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which leads us to a contradiction.
(b) We have shown that for every b0 ∈ B we can find a neighbourhood Ub0 of

b0 in B and a number εb0 > 0 such that εb0 < min(η)(b) for every b ∈ Ub0 .
Since B is paracompact, we can find a subset B ′ ⊂ B and for every b ∈ B ′ an
open subset Vb ⊂ Ub such that {Vb}b∈B′ is a locally finite open cover of B. Choose
a continuous partition of unity {ρb}b∈B′ , subordinated to the cover {Vb}b∈B′ . The
function m(η) : B → (0,∞), defined by

m(η) =
∑
b∈B′

εbρb

is then continuous and satisfies 0 < m(η)(b) < min(η)(b) for every b ∈ B. ��

Classical versions of Runge and Mergelyan approximation theorems show us that
we can approximate a holomorphic function on a Runge compact set K arbitrarily
closely on K with global holomorphic functions on X . In the construction of families
of proper holomorphic maps, we use the following Mergelyan theorem for proper
families of compact Runge sets (see Corollary 5.2 and Remark 5.7 in [7]).

Theorem 2.8 (Mergelyan theorem for proper families of Runge compacts) Let B be
a paracompact Hausdorff space, k ∈ Z+, 0 < α < 1 and let J = {Jb}b∈B be a
continuous family of complex structures on X of class C (k,α), parametrised by B. Let
K ⊂ B × X be a proper family of Runge compacts in X and let ε : B → (0,∞) be a
continuous function. Then for every f ∈ AJ (K ) there exists a function F ∈ OJ (B×X)

such that ‖Fb − fb‖Kb < ε(b) for every b ∈ B.

In our construction, we need the following combination of the Mergelyan theorem
and Proposition 2.7.

Proposition 2.9 Let B be a metrisable space, k ∈ Z+, 0 < α < 1 and let J = {Jb}b∈B
be a continuous family of complex structures on X of class C (k,α), parametrised by
B. Let n ∈ N and let K1, K2, . . . , Kn ⊂ B × X be wide, proper families of compact
subsets of X such that their union is contained in a proper family K of Runge compacts
in X. Suppose f ∈ AJ (K ) is a function that satisfies conditions � f > Ci on Ki

for some positive constants Ci for 1 ≤ i ≤ n. Then for every continuous function
ε : B → (0,∞) there exists a function F ∈ OJ (B × X) such that �F > Ci on Ki

for 1 ≤ i ≤ n and ‖Fb − fb‖Kb < ε(b) for every b ∈ B.

Proof For 1 ≤ i ≤ n the function � f − Ci is continuous and positive on Ki . By
Proposition 2.7, there exist continuous functions δi : B → (0,∞) such that for every
(b, x) ∈ Ki we have � f (b, x) − δi (b) > Ci . Now define a continuous function
δ = min{δ1, δ2, . . . , δn, ε} : B → (0,∞). From Mergelyan’s theorem, it follows that
there exists a function F ∈ OJ (B × X) such that ‖Fb − fb‖Kb < δ(b) for every
b ∈ B. This function F satisfies the conditions. ��
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3 Construction of families of proper holomorphic maps

We first recall how we can reduce the construction of a family of proper holomorphic
maps to the construction of a converging sequence on an exhausting family of compact
sets in X .

Proposition 3.1 Let B be a topological space, k ∈ Z+, 0 < α < 1 and let J = {Jb}b∈B
be a continuous family of complex structures on X of class C (k,α), parametrised by B.
Let ∅ = K0 ⊂ K1 ⊂ K2 ⊂ K3 ⊂ . . . be an exhaustion of X by compact sets such that
Kn ⊂ Int Kn+1 for every n ∈ N. Suppose that for every n ∈ Z+ we have functions
Fn,1, Fn,2 ∈ AJ (B × Kn), such that for every n ∈ N it holds:

(a)n |Fn,i (b, x) − Fn−1,i (b, x)| < 1
2n−1 for every (b, x) ∈ B × Kn−1 and i = 1, 2,

(b)n max{�Fn,1(b, x),�Fn,2(b, x)} > n − 1 for every (b, x) ∈ B × (Kn \ Int Kn−1).

Then there exist functions F1, F2 ∈ OJ (B×X) such that F = (F1, F2) : B×X → C
2

is a continuous J -holomorphic map, for which Fb : X → C
2 is a proper map for

every b ∈ B.

Proof It follows from the condition (a)n that the sequences (Fn,1)n∈N and (Fn,2)n∈N
converge uniformly on the sets of the form B × K , where K ⊂ X is a compact
subset. For the limit functions F1 = lim

n→∞ Fn,1 and F2 = lim
n→∞ Fn,2, we have that

F1, F2 ∈ OJ (B × X).
For n > 1 and i = 1, 2 it then follows from (a)n that

|Fi (b, x) − Fn,i (b, x)| <
1

2n
+ 1

2n+1 + . . . = 1

2n−1 < 1 for (b, x) ∈ B × Kn

and further from (b)n that

max{�F1(b, x),�F2(b, x)} > n − 2 for (b, x) ∈ B × (Kn \ Int Kn−1),

which implies that Fb : X → C
2 is a proper map for every b ∈ B. ��

We now consider the case X = R
2, where the topology is trivial:

Theorem 3.2 Let B be a metrisable topological space, k ∈ Z+, 0 < α < 1 and let
J = {Jb}b∈B be a continuous family of complex structures on R

2 of class C (k,α),
parametrised by B. Then there exists a J -holomorphic map F : B × R

2 → C
2 for

which Fb : R2 → C
2 is a proper map for every b ∈ B.

To prove Theorem 3.2 we first introduce some notations, where we identifyR2 and
C for convenience. We choose the exhaustion of C by closed disks

Kn = nD = {z ∈ C : |z| ≤ n}

for n ∈ N, and denote by
An = Kn \ Int Kn−1

the closed annulus in C between circles of radii n − 1 and n. Also let K0 = ∅.
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Definition 3.3 (1) Let n ∈ N and suppose we have k ∈ N angles 0 ≤ φ1 < . . . <

φk < 2π . We then define the following subsets of C:

γ (n, {φ1, . . . , φk}) = {reiφ : r ∈ [n, n + 1], φ ∈ {φ1, . . . , φk}},
p(n, {φ1, . . . , φk}) = {neiφ : φ ∈ {φ1, . . . , φk}}.

The set γ (n, {φ1, . . . , φk}) is the union of radial line segments at angles in
{φ1, . . . , φk}, while their inner endpoints form the set p(n, {φ1, . . . , φk}).

(2) Let n ∈ N and suppose φ1, φ2 ∈ [0, 2π ] are such that 0 < φ2 − φ1 < 2π . We
then define:

D(n, φ1, φ2) = {reiφ : r ∈ [n, n + 1], φ ∈ [φ1, φ2]},
α(n, φ1, φ2) = {neiφ : φ ∈ [φ1, φ2]}.

The set D(n, φ1, φ2) ⊂ C is the part of the annulus An which lies between angles
φ1 and φ2. Its inner boundary arc is denoted by α(n, φ1, φ2).

(3) Let n ∈ N, let φ1, φ2 ∈ [0, 2π ] be such that 0 < φ2 − φ1 < 2π and suppose
that 0 < δ < 1

3 min{1, φ2 − φ1}. We then define:

L(n, δ, φ1, φ2) = {reiφ : r ∈ [n + δ, n + 1], φ ∈ [φ1 + δ, φ2 − δ]},
W (n, δ, φ1, φ2) = D(n, φ1, φ2) \ L(n, δ, φ1, φ2).

The setW (n, δ, φ1, φ2) is the closed δ-neighbourhood of γ (n, {φ1, φ2})∪α(n, φ1, φ2)

in D(n, φ1, φ2).
(4) Let n, k ∈ N and suppose 0 = φ1 < φ2 < . . . < φk < 2π . Furthermore, let

0 < δ < 1
3 min{1, φ2 − φ1, φ3 − φ2, . . . , φk − φk−1, 2π − φk}. We then define:

W (n, δ, {φ1, φ2, . . . , φk}) = W (n, δ, φ1, φ2) ∪ . . . ∪ W (n, δ, φk−1, φk) ∪ W (n, δ, φk , 2π),

L(n, δ, {φ1, φ2, . . . , φk}) = L(n, δ, φ1, φ2) ∪ . . . ∪ L(n, δ, φk−1, φk) ∪ L(n, δ, φk , 2π).

(5) Let n ∈ N and suppose 0 = φ1 < φ2 < . . . < φk < 2π , where k is an even
number. We then define:

Dodd(n, {φ1, φ2, . . . , φk}) = D(n, φ1, φ2) ∪ D(n, φ3, φ4) ∪ . . . ∪ D(n, φk−1, φk),

Deven(n, {φ1, φ2, . . . , φk}) = D(n, φ2, φ3) ∪ D(n, φ4, φ5) ∪ . . . ∪ D(n, φk, 2π).

In a similar fashion we define the sets αodd, αeven, Lodd, Leven, Wodd and Weven.

All of the above sets are compact subsets of C as shown in Figure 1.
Nextwe extend the above definitions to the setting of B×C, where B is a topological

space. Ifφi : B → [0, 2π ] and δ : B → (0, 1
3 ) are continuous functions that satisfy the

conditions (1) − (5) in Definition 3.3 pointwise, we can define families of compact
subsets of C whose fibres are the corresponding sets. We denote such a family by
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Fig. 1 Pictures of sets from Definition 3.3

adding a subscript B. For example, if n ∈ N and φ1, φ2 : B → [0, 2π ] are continuous
functions such that 0 < φ2(b) − φ1(b) < 2π for every b ∈ B, then DB(n, φ1, φ2) is
a subset of B × C, which is implicitly defined by

(DB(n, φ1, φ2))b = D(n, φ1(b), φ2(b)) ⊂ C

for every b ∈ B.

Proposition 3.4 Let B be a topological space. The sets γB, pB, DB, αB, LB and WB

are all proper families of compact subsets of C. The same is true for their odd and
even versions.

Proof All these sets are subsets of the constant family B × Kn+1, so by Proposition
2.6 it suffices to prove they are closed subsets. This follows from the fact that their
complements in B × C are open since the functions φi and δ are continuous. ��

To be able to use the Mergelyan theorem to construct the sequence of functions
from Proposition 3.1, we need the following result.

Proposition 3.5 Let B be a metrisable topological space, n ∈ N and let φ1, φ2 : B →
[0, 2π ] be continuous functions such that 0 < φ2(b) − φ1(b) < 2π for every b ∈ B.
Suppose f : DB(n, φ1, φ2) → C is a continuous function such that:

(1) � f > n on γB(n, {φ1, φ2}) ∪ αB(n, φ1, φ2),
(2) � f > n + 1 on pB(n + 1, {φ1, φ2}).
Then there exists a continuous function δ : B → (0, 1

3 ), satisfying δ < 1
3 min{1, φ2 −

φ1} and such that:

123



  102 Page 10 of 18 B. Drinovec Drnovšek, J. Kališnik

(1) � f > n on WB(n, δ, φ1, φ2),
(2) � f > n + 1 on αB(n + 1, φ1, φ1 + δ) ∪ αB(n + 1, φ2 − δ, φ2).

Proof Let us define

K ′ ={(b, x) ∈ DB(n, φ1, φ2) : � f (b, x) ≤ n} ∪ {(b, x) ∈ αB(n + 1, φ1, φ2)

: � f (b, x) ≤ n + 1)}.

The set K ′ is a closed subset of the proper family of compact subsets DB(n, φ1, φ2),
hence K ′ is a proper family as well. Since K ′ may have empty fibers, we enlarge it to
a proper family of compact subsets

K = K ′ ∪ pB(n + 1, { 12 (φ1 + φ2)}),

for which Kb �= ∅ for every b ∈ B. Then K is a wide, proper family of compact
subsets of C which is disjoint from γB(n, {φ1, φ2}) ∪ αB(n, φ1, φ2).

For any (b, x) ∈ K we can write x in the form x = reiφ for unique r ∈ (n, n + 1]
and φ ∈ (φ1(b), φ2(b)). The functions φ2 − φ, φ − φ1 and r − n are continuous and
positive on K . By Proposition 2.7, we can find a function δ : B → (0,∞) such that
for every (b, reiφ) ∈ K we have:

r ∈ (n + δ(b), n + 1],
φ ∈ (φ1(b) + δ(b), φ2(b) − δ(b)).

If needed, we canmake δ smaller, so that δ < 1
3 min{1, φ2−φ1}.We then have� f > n

onWB(n, δ, φ1, φ2) and� f > n+1 on αB(n+1, φ1, φ1+δ)∪αB(n+1, φ2−δ, φ2).
��

Proof of Theorem 3.2 Let ln = 3n−1 for n ∈ N. According to Proposition 3.1, it suffices
to construct a sequence of functions Fn,1, Fn,2 ∈ AJ (B × Kn) that for every n ∈ N

satisfy the conditions:

(a)n |Fn,i (b, x) − Fn−1,i (b, x)| < 1
2n−1 for every (b, x) ∈ B × Kn−1 and i = 1, 2,

(b)n max{�Fn,1(b, x),�Fn,2(b, x)} > n − 1 for every (b, x) ∈ B × An .

We construct such a sequence inductively, together with the sequence of continuous
families of angles: These angles are defined by continuous functions φn, j : B →
[0, 2π ] for j ∈ {1, . . . , 2ln + 1}, which satisfy for every n ∈ N the following condi-
tions:

(c)n 0 = φn,1(b) < φn,2(b) < · · · < φn,2ln (b) < 2π = φn,2ln+1(b) for every b ∈ B,
(d)n �Fn,1 > n on (αodd)B(n, {φn,1, φn,2, . . . , φn,2ln }),

�Fn,2 > n on (αeven)B(n, {φn,1, φn,2, . . . , φn,2ln }).
To start with the induction, we define constant functions φ1,1, φ1,2, φ1,3 : B →

[0, 2π ] by
φ1,1 = 0, φ1,2 = π, φ1,3 = 2π
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and choose any functions F0,1, F0,2 ∈ AJ (B × K0) and F1,1, F1,2 ∈ AJ (B × K1)

that satisfy the conditions (a)1, (b)1 and (d)1. (For example, we could just choose
appropriate constant functions F0,1, F0,2, F1,1 and F1,2.)

Suppose that for some n ∈ N we have functions Fm,1, Fm,2 ∈ AJ (B × Km) and
φm, j : B → [0, 2π ] for j ∈ {1, 2, . . . , 2lm + 1} which satisfy conditions (a)m , (b)m ,
(c)m and (d)m for m ∈ {1, 2, . . . , n}. In the induction step, we construct continuous
functions

φn+1,1, φn+1,2, . . . , φn+1,2ln+1+1 : B → [0, 2π ],
that satisfy

0 = φn+1,1 < φn+1,2 < . . . < φn+1,2ln+1 < 2π = φn+1,2ln+1+1

and functions Fn+1,1, Fn+1,2 ∈ AJ (B×Kn+1) that satisfy (a)n+1, (b)n+1 and (d)n+1.
Before we turn to details let us quickly describe the main idea of the induction
step. We need to construct functions Fn+1,1, Fn+1,2 ∈ AJ (B × Kn+1) for which
max{�Fn+1,1,�Fn+1,2} > n on B × An+1. To do that, we split the inductive step
into three parts. In the first part, we use Mergelyan’s theorem to construct func-
tions F̃n,1, F̃n,2 ∈ OJ (B × R

2) which satisfy max{�F̃n,1,�F̃n,2} > n on the subset
γB(n, {φn,1, φn,2, . . . , φn,2ln }) of B× An+1. Next we use Proposition 3.5 to show that
there exists a continuous function δ : B → (0, 1

3 ) such that max{�F̃n,1,�F̃n,2} > n
on the subset WB(n, {φn,1, φn,2, . . . , φn,2ln }) of B × An+1. In the third part, we use
the idea from the proofs in [1, 3] to obtain functions Fn+1,1, Fn+1,2 ∈ AJ (B× Kn+1)

for which max{�Fn+1,1,�Fn+1,2} > n on B × An+1.
Let us now describe the details. First we construct functions F̃n,1, F̃n,2 ∈ OJ (B ×

R
2) that satisfy:

(a1)n+1 |F̃n,i (b, x) − Fn,i (b, x)| < 1
2n+1 for (b, x) ∈ B × Kn and i = 1, 2,

(b1)n+1 �F̃n,1 > n on γB(n, {φn,1, . . . , φn,2ln }) ∪ (αodd)B(n, {φn,1, . . . , φn,2ln }),
�F̃n,2 > n on γB(n, {φn,1, . . . , φn,2ln }) ∪ (αeven)B(n, {φn,1, . . . , φn,2ln }),

(d1)n+1 �F̃n,i > n + 1 on pB(n + 1, {φn,1, . . . , φn,2ln }) for i = 1, 2.

To do that we first continuously extend the functions Fn,1, Fn,2 from the set
B × Kn to the set (B × Kn) ∪ γB(n, {φn,1, . . . , φn,2ln }) so that �Fn,i > n on
γB(n, {φn,1, . . . , φn,2ln }) and �Fn,i > n + 1 on pB(n + 1, {φn,1, . . . , φn,2ln }) for
i = 1, 2. Now note that �Fn,1 > n on the proper family γB(n, {φn,1, . . . , φn,2ln }) ∪
(αodd)B(n, {φn,1, . . . , φn,2ln }) and that �Fn,1 > n + 1 on the proper family pB(n +
1, {φn,1, . . . , φn,2ln }) of compact subsets of R2. The union of these two proper fami-
lies is contained in the proper family (B × Kn) ∪ γB(n, {φn,1, . . . , φn,2ln }) of Runge
compacts inR2, so by Proposition 2.9 we can find a function F̃n,1 ∈ OJ (B ×R

2) that
satisfies (a1)n+1, (b1)n+1 and (d1)n+1. In a similar fashion we also obtain a function
F̃n,2 ∈ OJ (B × R

2) which approximates the function Fn,2.
We now proceed to the second part of the induction step. Consider the function F̃n,1

on the proper family (Dodd)B(n, {φn,1, . . . , φn,2ln }) of compact subsets of R2. From
Proposition 3.5 it follows that there exists a continuous function δ1 : B → (0, 1

3 ) such
that:

· �F̃n,1 > n on (Wodd)B(n, δ1, {φn,1, . . . , φn,2ln }),
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· �F̃n,1 > n + 1 on
ln⋃
k=1

(
αB(n + 1, φn,2k−1, φn,2k−1 + δ1)∪

αB(n + 1, φn,2k − δ1, φn,2k)
)
.

In the sequel,we repeat this argument for the function F̃n,2 on the (Deven)B(n, {φn,1, . . . ,

φn,2ln }) to obtain a function δ2 : B → (0, 1
3 ) such that F̃n,2 satisfies conditions:

· �F̃n,2 > n on (Weven)B(n, δ2, {φn,1, . . . , φn,2ln }),
· �F̃n,2 > n + 1 on

ln⋃
k=1

(
αB(n + 1, φn,2k, φn,2k + δ2)∪

αB(n + 1, φn,2k+1 − δ2, φn,2k+1)
)
.

Let δ = min{δ1, δ2} and define functions φn+1,1, φn+1,2, . . . , φn+1,2ln+1+1 : B →
[0, 2π ] by:

φn+1,3k+1 = φn,k+1,

φn+1,3k+2 = φn,k+1 + δ,

φn+1,3k+3 = φn,k+2 − δ

for k ∈ {0, 1, . . . , 2ln−1} andφn+1,2ln+1+1 = 2π . Observe that these functions satisfy
the condition (c)n+1 while functions F̃n,1, F̃n,2 satisfy the conditions:

(a2)n+1 |F̃n,i (b, x) − Fn,i (b, x)| < 1
2n+1 for all (b, x) ∈ B × Kn and i = 1, 2,

(b2)n+1 max{�F̃n,1(b, x),�F̃n,2(b, x)} > n for all (b, x) ∈ WB(n, δ, {φn,1, φn,2, . . . ,

φn,2ln }),
(d2)n+1 �F̃n,1 > n + 1 on

ln⋃
k=1

(
αB(n + 1, φn,2k−1, φn,2k−1 + δ)∪

αB(n + 1, φn,2k − δ, φn,2k)
)
,

�F̃n,2 > n + 1 on
ln⋃
k=1

(
αB(n + 1, φn,2k, φn,2k + δ)∪

αB(n + 1, φn,2k+1 − δ, φn,2k+1)
)
.

In the third part of the induction step, we correct the functions F̃n,1, F̃n,2 so that we
obtain the condition (b)n+1 on the set LB(n, δ, {φn,1, . . . , φn,2ln }) as well as the con-
dition (d)n+1 on the remaining arcs. Let us define a proper family of Runge compacts
by

(Aodd)n=(B×Kn)∪(Dodd)B(n, {φn,1, . . . , φn,2ln })∪(Leven)B(n, δ, {φn,1, . . . , φn,2ln }),

see the left part of Figure 2, and define the function Fn,1 ∈ AJ ((Aodd)n) by

Fn,1(b, x) =
{
F̃n,1 ; (b, x) ∈ (B × Kn) ∪ (Dodd)B(n, {φn,1, . . . , φn,2ln }),
n + 2 ; (b, x) ∈ (Leven)B(n, δ, {φn,1, . . . , φn,2ln }).

Function Fn,1 satisfies conditions:

· |Fn,1(b, x) − Fn,1(b, x)| < 1
2n+1 for (b, x) ∈ B × Kn ,
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Fig. 2 Regions in the inductive step in the case n = 2

· �Fn,1 > n on (Wodd)B(n, δ, {φn,1, . . . , φn,2ln })∪(Leven)B(n, δ, {φn,1, . . . , φn,2ln }),
· �Fn,1 > n + 1 on (αodd)B(n + 1, {φn+1,1, . . . , φn+1,2ln+1}).

By applying Proposition 2.9 to the function Fn,1 with precision at least 1
2n+1 we obtain

a function Fn+1,1 ∈ OJ (B × R
2) that satisfies:

(a3,1)n+1 |Fn+1,1(b, x) − Fn,1(b, x)| < 1
2n for (b, x) ∈ B × Kn ,

(b3,1)n+1 �Fn+1,1 > n on (Wodd)B(n, δ, {φn,1, . . . , φn,2ln })∪
(Leven)B(n, δ, {φn,1, . . . , φn,2ln }),

(d3,1)n+1 �Fn+1,1 > n + 1 on (αodd)B(n + 1, {φn+1,1, . . . , φn+1,2ln+1}).
Similarly we obtain a function Fn+1,2 ∈ OJ (B × R

2) which satisfies conditions:

(a3,2)n+1 |Fn+1,2(b, x) − Fn,2(b, x)| < 1
2n for (b, x) ∈ B × Kn ,

(b3,2)n+1 �Fn+1,2 > n on (Weven)B(n, δ, {φn,1, . . . , φn,2ln })∪
(Lodd)B(n, δ, {φn,1, . . . , φn,2ln }),

(d3,2)n+1 �Fn+1,2 > n + 1 on (αeven)B(n + 1, {φn+1,1, . . . , φn+1,2ln+1}).
The areas in B × An+1 where �Fn+1,1 > n respectively �Fn+1,2 > n are shown

in the right part of Figure 2. Condition (a)n+1 now follows from conditions (a3,1)n+1
and (a3,2)n+1, condition (b)n+1 follows from conditions (b3,1)n+1 and (b3,2)n+1 while
condition (d)n+1 follows from conditions (d3,1)n+1 and (d3,2)n+1. The proof is con-
cluded by applying Proposition 3.1. ��
Proof of Theorem 1.1 Let K0 = ∅. Choose a point b0 ∈ B, and a strongly Jb0 -
subharmonic Morse exhaustion function τ : X → (0,∞). By a small perturbation,
we may assume that there is exactly one critical point at every critical level set.
Choose an increasing sequence (cn)n∈N of regular values of τ converging to ∞
such that the interval (cn, cn+1) contains at most one critical value of τ . Then
Kn = {x ∈ X : τ(x) ≤ cn} is a smoothly bounded compact Runge set, and we
may assume that c1 is chosen so large that K1 is nonempty and so small that it is
simply connected. Then bKn is a union of finitely many, say kn , smooth closed Jordan
curves. If τ has no critical values in (cn, cn+1), then Kn+1 \ Int Kn is a union of kn
annular regions, and we call this the noncritical case. In this case, there is no change
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in the topology, and the construction is similar to the construction in the proof of
Theorem 3.2. We will explain the details below. In the critical case, τ has exactly one
critical point in Kn+1 \ Int Kn of index 0 or 1.

If its index is 0, then it is a minimum of τ and a new simply connected component
appears. If its index is 1, then there is a compact Jordan arc γn ⊂ Int Kn+1 \ Int Kn

transversally attached with both endpoints to Kn , and otherwise disjoint from Kn ,
such that Kn ∪ γn is a Runge set and a strong deformation retract of Kn+1. We need
to distinguish two cases: either the endpoints of the arc γn lie on the same component
of bKn or the arc connects two different components of bKn . We choose two distinct
points, denoted by p j

n and q j
n on each boundary component of bKn ( j = 1, . . . , kn)

such that the endpoints of the arc γn are p j
n and qln for some j, l ∈ {1, . . . , kn}. The

map F is constructed inductively and at the critical case, we need to continuously
extend the maps Fn,1, Fn,2 : B × bγn → {z ∈ C : �z > n} to maps Fn,1, Fn,2 :
B × γn → {z ∈ C : �z > n}. This is possible since the set {z ∈ C : �z > n} is
contractible. Moreover, we will also obtain a continuously varying family of points
on each boundary component of Kn , which corresponds to the continuous family of
angles in the proof of Theorem 3.2, and the points p j

n and q j
n will correspond to the

constant angles with the different parity: for this reason, we choose for each n and
for each j ∈ {1, . . . kn} a continuous map ϕ

j
n from [0, 2π ] to the j-th component of

bKn which induces a homeomorphism from the quotient [0, 2π ]/(0 ∼ 2π) to the j-th
component of bKn , inducing the given orientation. Furthermore, we may achieve that
ϕ
j
n (0) = ϕ

j
n (2π) = p j

n and ϕ
j
n (π) = q j

n .
We inductively construct functions Fn,1, Fn,2 ∈ AJ (B×Kn), n ∈ N∪{0}, positive

integers l jn , j ∈ {1, . . . , kn}, n ∈ N, continuous functions φ
j
n,m : B → [0, 2π ],

m ∈ {1, . . . , 2l jn + 1}, j ∈ {1, . . . , kn}, n ∈ N, that satisfy the following conditions
for every n ∈ N:

(a)n |Fn,i (b, x) − Fn−1,i (b, x)| < 1
2n−1 for (b, x) ∈ B × Kn−1 and i = 1, 2,

(b)n max{�Fn,1(b, x),�Fn,2(b, x)} > n−1 for every (b, x) ∈ B×(Kn \Int Kn−1),
(c)n 0 = φ

j
n,1(b) < φ

j
n,2(b) < · · · < φ

j

n,2l jn
(b) < 2π = φ

j

n,2l jn+1
(b) for each b ∈ B

and j ∈ {1, . . . , kn}; for each j ∈ {1, . . . , kn} there is m j
n ∈ {1, . . . , l jn } such

that φ j

n,2m j
n

≡ π ,

(d)n �Fn,1(b, x) > n for x ∈ ϕ
j
n ([φ j

n,2m−1(b), φ
j
n,2m(b)]) and �Fn,2(b, x) > n for

x ∈ ϕ
j
n ([φ j

n,2m(b), φ j
n,2m+1(b)]) for each m ∈ {1, . . . , l jn }, and

j ∈ {1, . . . , kn}.
Once we complete the construction, the proof is complete due to Proposition 3.1.
To start the induction take F0,1 = F0,2 = F1,1 = F1,2 = 2, l j1 = 1, m j

1 = 1 for
j ∈ {1, . . . , k1}, which satisfy (a)1 − (d)1.
Assume we have already constructed Fi,1, Fi,2, l

j
i ,m

j
i , φ

j
i,m ,m ∈ {1, . . . , 2l ji +1},

j ∈ {1, . . . , ki }, i ∈ {1, . . . n}, that satisfy (a)i−(d)i for all i ∈ {1, . . . n}.We construct
the functions Fn+1,1, Fn+1,2 by dividing each component of the set Kn+1 \ Int Kn into
two unions of simply connected regions that play the roles of (Dodd)B and (Deven)B
in the proof of Theorem 3.2.
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Fig. 3 Critical case 1

In the noncritical case, the set Kn+1 \ Int Kn is homeomorphic to a disjoint union
of kn = kn+1 annular components which we denote by A j

n for j = 1, 2, . . . , kn .
Suppose that the boundary components of A j

n are parametrised by ϕ
jinner
n and ϕ

jouter
n+1 .

We may choose a diffeomorphism ψ
j
n : {z ∈ C : 1 ≤ |z| ≤ 2} → A j

n such that
ψ

j
n (ei t ) = ϕ

jinner
n (t) and ψ

j
n (2ei t ) = ϕ

jouter
n+1 (t) for t ∈ [0, 2π). Denote by γ

′ j
n the arc

ψ
j
n ([1, 2]) and by γ

′′ j
n the arcψ

j
n ([−2,−1]). By the property (d)n wecan continuously

extend the maps Fn,1, Fn,2 from B × Kn to maps from B × (Kn ∪ γ
′ j
n ∪ γ

′′ j
n ) so that

the image of B × (γ
′ j
n ∪ γ

′′ j
n ) lies in {z ∈ C : �z > n} and the image of B × {p j

n+1}
and of B × {q j

n+1} lies in {z ∈ C : �z > n + 1}. Then we proceed as in the proof

of Theorem 3.2 to obtain functions Fn+1,1, Fn+1,2 ∈ AJ (B × Kn+1), integers l
j
n+1,

m j
n+1, and functions φ

j
n+1,i (i ∈ {1, . . . , 2l jn+1 + 1}, j ∈ {1, . . . , kn+1}) satisfying

properties (a)n+1 − (d)n+1.
In the critical case, we only need to consider critical points with the index 1, since

we can treat the new appearing component in the case of critical points with index 0
in the same way as at the start of the inductive construction. Thus, we first consider
the situation in which the arc γn connects two different components of bKn . Then
the number of components of bKn+1 is one less than the number of components of
bKn . By rearranging the notation, we may assume that γn connects pkn−1

n and qknn .
The set Kn+1 \ Int Kn is a union of a two-connected domain Dn in X , and perhaps
a finite number of annuli, where the arc γn ⊂ Dn connects two components of the
complement of Dn in X . In the annular regions of Kn+1 \ Int Kn we proceed as in the
noncritical case, thus we provide the details only for the construction corresponding
the domain Dn . Since the domain Dn is two-connected, we first explain howwe choose
continuous family of arcs connecting the boundary of bKn and bKn+1, corresponding
to the arcs γ (n, {φ1, . . . , φk}) in the proof of Theorem 3.2. We can choose pairwise
disjoint smooth arcs γ

p
n and γ

q
n in Kn+1\(Int Kn∪γn)which intersect bKn and bKn+1

transversally at their endpoints such that the endpoints of γ
p
n are pknn and pkn+1

n+1 , and

the endpoints of γ
q
n are qkn−1

n and qkn+1
n+1 , see the left part of Figure 3.
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Then the domain Dn is the union of two closed simply connected domains D+
n and

D−
n with the arcs γn , γ

p
n and γ

q
n as their common boundary. There is a diffeomorphism

�+
n from D+

n to the convex hull C of points (2, 0), (2, 1), (1, 2), (−1, 2), (−2, 1),

(−2, 0) in R
2 that maps qkn+1

n+1 to (−2, 0), qkn−1
n to (−2, 1), pkn−1

n to (−1, 2), qknn to

(1, 2), pknn to (2, 1), and pkn+1
n+1 to (2, 0) (and similarly for D−

n ). The vertical segments

in C provide arcs in D+
n . More precisely, for any φ ∈ (0, π) the points ϕ

kn−1
n (φ),

ϕ
kn
n (φ) from bKn are mapped to points (x ′, y′), (x ′′, y′′) for some x ′ ∈ (−2,−1),

x ′′ ∈ (1, 2) and y′, y′′ > 0 on the beveled edges of C . Then segments from (x ′, y′)
to (x ′, 0) and (x ′′, y′′) to (x ′′, 0) mapped back to D+

n by (�+
n )−1 give the required

arcs. This construction gives a Runge family, and the proof is reduced to the proof
in the noncritical case: First we extend the maps Fn,1, Fn,2 continuously to maps
from B × (Kn ∪ γn ∪ γ

p
n ∪ γ

q
n ) such that the image of B × (γn ∪ γ

p
n ∪ γ

q
n ) lies

in {z ∈ C : �z > n}, and that the image of B × {pkn+1
n+1 } and B × {qkn+1

n+1 } lies in
{z ∈ C : �z > n + 1}. The continuous extension to B × (γn ∪ γ

p
n ∪ γ

q
n ) with the

image in {z ∈ C : �z > n} is possible by the property (d)n and since the former
set is contractible. Now the construction can proceed similarly to the construction in
the regular case, and here we explain the main differences: In the noncritical case, the
functions φn, j determined boundary arcs (αodd)B and (αeven)B such that �Fn,1 > n

on (αodd)B , and �Fn,2 > n on (αeven)B . In the critical case, we start at the point pknn
on bKn and move in the positive direction along kn-th component of bKn ; we first get
some arcs with alternating parity until we reach the point ϕ

kn
n (φ

kn
n,2mkn

n −1
(b)). These

arcs determine the domains in D+
n that belong to Dodd, Deven as before. Observe that

for all b ∈ B and x ∈ ϕ
kn
n ([φkn

n,2mkn
n −1

(b), π ]) ∪ γn ∪ ϕ
kn−1
n ([0, φkn−1

n,2 (b)]) =: I+(b)

we have �Fn,1(b, x) > n. Therefore, the set I+ can be seen as a part of (αodd)B , and
the corresponding domain as a part of Dodd. As wemove further along the boundary of
the (kn − 1)-th component of bKn in the positive direction, from ϕ

kn−1
n (φ

kn−1
n,2 (b)) to

ϕ
kn−1
n (φ

kn−1

n,2lkn−1
n

(b))we obtain alternating arcs and domains as before, first we get some

from D+
n and then some in D−

n . Similarly to the above, we have for all b ∈ B and x ∈
ϕ
kn−1
n ([φkn−1

n,2lkn−1
n

(b), 2π ])∪γn ∪ϕ
kn
n ([π, φ

kn
n,2mkn

n +1
(b)]) =: I−(b) that�Fn,2(b, x) >

n, and the set I− can be viewed as a part of (αeven)B , and the corresponding domain
as a part of Deven. As we move further along the boundary of the kn-th component of
bKn , we get some arcs with alternating parity until we reach the starting point pknn .
Then we proceed with the proof as in the noncritical case. On the right part of Figure
3, we denoted the arcs in (αodd)B darker than the arcs in (αeven)B .

In the second case, the endpoints of the arc γn lie on the same component of bKn .
In this case, the number of components of bKn+1 is one greater than the number of
components of bKn . By rearranging the notation, we may assume that the endpoints
of γn are pknn and qknn . The set Kn+1 \ Int Kn is a union of a two connected domain Dn

in X , and perhaps a finite number of annuli, where the set γn ∪ (bKn ∩ Dn) separates
the other boundary components of Dn . We can choose smooth arcs γ

′p
n , γ

′q
n , γ

′′p
n ,

γ
′′q
n in Kn+1 \ Int Kn which intersect bKn and bKn+1 transversally and only at their

endpoints, such that the endpoints of γ
′p
n are pknn and pkn+1−1

n+1 , the endpoints of γ
′q
n
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Fig. 4 Critical case 2

are qknn and qkn+1−1
n+1 , the endpoints of γ

′′p
n are pknn and pkn+1

n+1 , the endpoints of γ
′′q
n are

qknn and qkn+1
n+1 . Furthermore, we can achieve that arcs γn , γ

′p
n , γ ′q

n , γ ′′p
n , γ ′′q

n intersect
pairwise at most at their endpoints.We denote by D+

n the simply connected component
of the set Dn \ (γ

′p
n ∪ γ

′q
n ). Assume that D+

n contains ϕ
kn
n ((0, π)), the other case is

symmetrical. Let D−
n be the simply connected component of the set Dn \ (γ

′′p
n ∪γ

′′q
n )

which contains ϕ
kn
n ((π, 2π)). See the left part of Figure 4.

There is a diffeomorphism ψ+
n from D̄+

n (and ψ−
n from D̄−

n ) to the unit square
[0, 1] × [0, 1] in R

2 that maps the arcs γ
′p
n , γ ′q

n (γ ′′p
n ,γ ′′q

n ) to the vertical edges, and
the arc ϕ

kn
n ((0, π)), (ϕkn

n ((π, 2π))) to the upper edge of the square. By the prop-
erties (c)n − (d)n there are continuous functions φ

p±
n , φ

q±
n : B → (0, 2π) such

that for each b ∈ B we have φ
p+
n (b) ∈ (0, φkn

n,2(b)), φ
p−
n (b) ∈ (φ

kn
n,2lknn

(b), 2π),

φ
q+
n (b) ∈ (φ

kn
2mkn

n −1
(b), π),φq−

n (b) ∈ (π, φ
kn
2mkn

n +1
(b)) and such that the restrictions of

themaps Fn,1, Fn,2 to the arcsϕ
kn
n ([0, φ p+

n (b)]),ϕkn
n ([φ p−

n (b), 2π ]),ϕkn
n ([φq+

n (b), π ])
and ϕ

kn
n ([π, φ

q−
n (b)]) map into {z ∈ C : �z > n}. Note that in this step we added 4

functions to the family φ
kn
n,i . For every b ∈ B and every t ∈ [0, 1] we get a segment

from (t, 0) to ((1 − t)ψ+
n (ϕ

kn
n (φ

p+
n (b))) + tψ+

n (ϕ
kn
n (φ

q+
n (b))), 1) in the unit square,

and by pushing back with (ψ+
n )−1 we obtain a family of arcs in D̄+

n that correspond
to the union of radial line segments (and similarly for D̄−

n ). In particular, for t = 0 we

get arc from ϕ
kn
n (φ

p+
n (b)) to pkn+1−1

n+1 , and for t = 1 we get the arc from ϕ
kn
n (φ

q+
n (b))

to qkn+1−1
n+1 . Next, we explain how we divide the domain Dn into domains Dodd and

Deven which reduces the proof to the proof in the noncritical case (see the right part
of Figure 4).

We start with the point ϕ
kn
n (φ

p+
n (b)) and move in the positive direction along kn-

th component of bKn . We get arcs with alternating parity until we reach the point
ϕ
kn
n (φ

q+
n (b)) determining the domains which alternately belong to Dodd, Deven. For

b ∈ B and x ∈ ϕ
kn
n ([φq+

n (b), π ]) ∪ γn ∪ ϕ
kn
n ([0, φ p+

n (b)]) =: I+(b) it holds that
�Fn,2(b, x) > n, thus, I+ can be taken as a part ofαeven and the corresponding domain
as a part of Deven. For b ∈ B and x ∈ ϕ

kn
n ([π, φ

q−
n (b)]) ∪ γn ∪ ϕ

kn
n ([φ p−

n (b), 2π ]) =:
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I−(b) we have that �Fn,1(b, x) > n, thus, I− can be taken as a part of αodd and
the corresponding domain as a part of Dodd. From the point ϕkn

n (φ
q−
n (b)) we move in

the positive direction along bKn until we reach the point ϕ
kn
n (φ

p−
n (b)) and again the

points ϕ
kn
n (φ

kn
n,i (b)) determine the arcs with alternating parity. Again, this reduces the

construction to the noncritical case, which completes the proof. ��
Proof of Theorem 1.3 In the proof of Theorem 1.1, we constructed a continuous map
F : B × X → C

2 such that for every b ∈ B the map F(b, ·) : (X , Jb) → C
2 is

proper holomorphic, and, furthermore, for every b ∈ B, max{�F1(b, ·),�F2(b, ·)}
goes to infinity as we leave any compact set of X , which implies that the map
(�F1,�F2)(b, ·) : (X , Jb) → R

2 is proper harmonic. ��
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