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Abstract. In the context of the European Green Deal, achieving a climate-neutral 

building stock by 2050 has become a key objective. The 2024-revision of the 

Energy Performance of Buildings Directive (EPBD) highlights this goal by 

requiring EU Member States to transform their long-term renovation strategies 

into practical National Renovation Plans. The LIFE project GreenRenoV8 supports 

the practical implementation of the EPBD by developing a scalable, cost-effective 

methodology for deep, sustainable building renovation. By combining the 

environmental performance with the economic implications (both investment and 

life cycle cost), the project aims to identify the most cost-effective renovation 

strategies. GreenRenoV8 focuses on five EU Member States: Austria, Belgium 

(Flanders region), Greece, Italy and Slovenia. A stock modelling approach is used, 

starting with the identification of representative building archetypes per country. 

For each archetype, specific renovation strategies are developed and their life 

cycle environmental impact, investment cost and life cycle cost are assessed. The 

results are extrapolated to the national level to determine the most cost-effective 

measures and to prioritiže these. The modelling moreover incorporates seismic 

resilience where required. This paper describes the approach taken within the 

GreenRenoV8 project to support evidence-based renovation planning that 

maximižes environmental impact reduction and cost-effectiveness across the EU. 

Keywords: Sustainable renovation, Carbon-neutral buildings, Building stock 

modelling, Life cycle assessment (LCA), Life cycle costing (LCC) 
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1. Introduction 

The Paris Agreement of 2015 established a global framework to limit global warming to well 

below 2°C and pursue efforts to limit it to 1.5°C, avoiding dangerous climate change [1]. The 

European Union launched, in response to the Paris Agreement, an international commitment in 

2019, the European Green Deal. This deal aims at making Europe carbon-neutral by 2050 and 

integrates climate, energy, building policy and transport in a unified framework for 

decarbonižation. [2] 

One of the key aspects of the European Green Deal, is the decarbonižation of the building 

stock. The construction sector accounts for 37% of global greenhouse gas (GHG) emissions, 37% 

of global energy-related carbon dioxide emissions [3], 30% of global final energy use  and almost 

40% of the total EU’s waste generation [4]. In response, the revised Energy Performance of 

Buildings Directive (EPBD EU/2024/1275) supports the increase in renovation rate and 

mandates that Member States translate their long-term renovation strategies into practical 

National Renovation Plans [5]. The 2024 EPBD revision promotes prioritižing the worst-

performing buildings and supports step-by-step renovation planning. 

The LIFE project, GreenRenoV8, directly supports the revisions made in the EPBD by 

developing cost-effective and scalable approaches to building renovation. GreenRenoV8 targets 

five EU Member States: Austria, Belgium (Flanders region), Greece, Italy and Slovenia to integrate 

energy efficiency, seismic resilience and environmental sustainability into a comprehensive 

framework. It directly supports the goal of the revised EPBD and the EU Renovation Wave 

Strategy, aiming to double the average annual renovation rate by 2030. 

2. Objectives and underlying concept 

The overall objective of GreenRenoV8 is to improve the practical implementation of national 

carbon reduction roadmaps through analysing sustainable renovation strategies that incorporate 

energy efficiency, seismic considerations and whole-life carbon targets. By addressing these 

strategic and technical aspects of renovation, the project ensures alignment with the EPBD goals 

and ensures replication across other EU Member States.  

Energy renovations have long been the main focus of European building policy, particularly 

under the EPBD. However, addressing energy performance alone is not sufficient to ensure a 

future proof building stock. Large parts of EU’s existing building stock are located in regions 

where seismic activity is present. It is estimated that around 50% of EU’s surface area is 

susceptible to earthquakes. Seismic activity has resulted in more than 36000 fatalities and 

displaced 1.4 million individuals in the past 50 years. [6] This dual challenge, energy efficiency 

and seismic resilience, calls for renovation strategies that maximiže both energy upgrades and 

structural safety. GreenRenoV8 addresses this need by developing a methodology for integrated 

planning that combines these priorities. To ensure financial viability and long-term cost-

effectiveness, the project also includes a life cycle costing analysis of renovation strategies. By 

incorporating seismic assessment and life cycle costing into the same framework used for energy 

performance analysis, the project ensures that renovations enhance energy efficiency, seismic 

resilience and economic sustainability across the buildings lifespan.   

The project is carried out by a multidisciplinary consortium of research institutions, 

universities, policy makers and other stakeholder. 
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3. Methodology 

GreenRenoV8 follows a multi-tiered methodological framework that supports the transition 

towards a carbon neutral building stock. The methodology incorporates technical, environmental 

and economic dimensions in four main methodological parts as visualižed in figure 1: 1) business-

as-usual (BAU) modelling and assessment, 2) scenario modelling and evaluation, 3) financing the 

transition and 4) support the transition to a climate-neutral, seismic resilient building stock. 

 

 

Figure 1. Overall methodology applied in the LIFE GreenRenoV8 project, highlighting four main 

methodological parts. 

3.1 Business as usual modelling and assessment 

At the basis of the GreenRenoV8 methodology lies the systematic assessment and classification of 

the existing building stock in the five pilot countries. This foundational step establishes the basis 

for all future modelling, calculations and policy evaluation. The process used to define building 

archetypes is illustrated in Figure 2. Each national building stock is represented by 30 archetypes. 

The archetypes are selected based on a number of criteria, including building type, construction 

period, share of the constructed area in the entire stock and geometry. For each archetype, a 

comprehensive set of parameters is defined which are necessary for conducting life cycle 

assessment of environmental performance indicators, particularly Global Warming Potential 

(GWP). These 30 archetypes are derived departing from the archetypes defined in the study 

‘Analysis of life-cycle greenhouse gas emissions of EU buildings and construction’ for DG GROW, 

further referred to as DG GROW study [7].  

For each of the 30 archetypes, various energy performance levels occur in the stock, 

depending on whether or not the building already underwent an energetic renovation. The 30 
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archetypes are hence further differentiated in various energy performance levels. Different 

structural build-ups are also considered depending on the seismic žone in which the archetype is 

located. To illustrate the outcome of this approach, the results for Slovenia are shown in figure 3 

and 4. 

 

Figure 2. Process to define 30 national archetype.  

 

Figure 3. Definition of seismic and climate žones for the 30 Slovenian archetypes.  
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2 Single family houses 1921-1965 SI-SFH-1921-1965-EXB High Load-bearing masonry Burnt clay brick masonry BM-2 Moderate 100,00%

3 Single family houses 1966-1981 SI-SFH-1966-1981-EXB High Load-bearing masonry Burnt clay brick masonry BM-3 Low 100,00%

4 Single family houses 1982-2008 SI-SFH-1982-2008-EXB High Load-bearing masonry Burnt clay brick masonry BM-4 Very Low 100,00%

5 Single family houses 2009-NOW SI-SFH-2009-NOW-EXB High Load-bearing masonry Burnt clay brick masonry BM-4 Very Low 100,00%

6 Multifamily houses 0-1965 SI-MFH-0-1965-EXB High Load-bearing masonry Burnt clay brick masonry BM-1 High 100,00%
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13 Multifamily houses 1966-2008 SI-HRE-1966-2008-EXB High Load-bearing masonry Burnt clay brick masonry BM-3 Low 100,00%
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16 Public office buildings 1982-2008 SI-OFF-1982-2008-EXB High Reinforced concrete frame RC shear walls SWC-2 Low 100,00%

17 Retails stores 0-1945 SI-SHO-0-1945-EXB High Load-bearing masonry Burnt clay brick masonry BM-1 High 100,00%

18 Retails stores 1946-2008 SI-SHO-1946-2008-EXB High Load-bearing masonry Burnt clay brick masonry BM-3 Low 100,00%

19 Educational buildings 0-1920 SI-EDU-0-1920-EXB High Load-bearing masonry Burnt clay brick masonry BM-1 High 100,00%
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30 Public office buildings 2009-NOW SI-OTC-2009-NOW-EXB High Reinforced concrete frame RC moment-resistant frames MRCF-4 Very Low 100,00%
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Figure 4. Variation in the level of energy performance of each of the 30 Slovenian archetypes.  

The archetypes are evaluated by modelling the environmental impact, associated with the 

archetypes, across multiple life cycle stages, providing insights into the distribution of embodied 

and operational impacts. Based on the archetypes and collected data on the existing building 

stock, a business-as-usual (BAU) baseline is established. The aim is to understand the current 

national GHG emissions and removals associated with buildings. This baseline assumes a 

continuation of current renovation rates, construction practices and demolition patterns in each 

pilot country till 2050. These results are then scaled up to model the entire building stock in each 

of the five Member States. This is performed by multiplying each archetype by the total floor area 

of the building stock, based on current and projected rates of construction, renovation and 

demolition. These projections are calibrated to each country’s National Energy and Climate Plan 

(NECP), ensuring accurate assessment of scenarios developed in the next tasks.   

Combining the results from the BAU assessment with the scaling model, provides a 

quantitative reference of the baseline GHG emissions for the whole building stock. This reference 

defines the starting point for the scenario analysis. 

3.2 Scenario modelling and evaluation 
The second part of the GreenRenoV8 methodology focuses on scenario modelling and evaluation, 

to identify renovation strategies that are technically, environmentally, socially and economically 

viable. Before these renovation scenarios can be defined, benchmarks for Minimum Energy 

Performance Standards (MEPS) and Zero Emission Buildings (ZEB) are developed in line with the 

2024 EPBD revision. These benchmarks help guide phased reduction of the worst-performing 

buildings, focussing on maximižing decarbonižation potential, minimižing energy poverty and 

improving broader social benefits. Following the definition of these benchmarks, renovation 

Number Archetype ID  A1  A2  B1  B2  C  D  E  F  G

[number] Share % Share % Share % Share % Share % Share % Share % Share % Share %

1 SI-SFH-0-1920-EXB 0% 0% 0% 3% 4% 11% 12% 16% 54%

2 SI-SFH-1921-1965-EXB 0% 0% 0% 1% 5% 13% 18% 21% 42%

3 SI-SFH-1966-1981-EXB 0% 0% 0% 1% 7% 24% 23% 22% 23%

4 SI-SFH-1982-2008-EXB 0% 1% 1% 4% 9% 35% 24% 16% 10%

5 SI-SFH-2009-NOW-EXB 2% 3% 7% 7% 42% 24% 9% 4% 2%

6 SI-MFH-0-1965-EXB 0% 0% 4% 6% 17% 28% 20% 17% 8%

7 SI-MFH-1966-1981-EXB 0% 1% 2% 6% 19% 38% 19% 9% 6%

8 SI-MFH-1966-1981-EXB 0% 1% 2% 6% 19% 38% 19% 9% 6%

9 SI-MFH-1982-2008-EXB 0% 1% 4% 8% 33% 39% 9% 4% 2%

10 SI-MFH-1982-2008-EXB 0% 1% 4% 8% 33% 39% 9% 4% 2%

11 SI-MFH-2009-NOW-EXB 1% 4% 11% 18% 46% 18% 2% 0% 0%

12 SI-HRE-0-1965-EXB 0% 0% 0% 1% 7% 12% 19% 26% 35%

13 SI-HRE-1966-2008-EXB 0% 0% 1% 6% 22% 39% 19% 6% 7%

14 SI-OFF-0-1965-EXB 0% 0% 0% 0% 4% 14% 25% 26% 31%

15 SI-OFF-1966-1981-EXB 0% 0% 0% 1% 12% 26% 28% 18% 15%

16 SI-OFF-1982-2008-EXB 0% 0% 3% 6% 20% 29% 22% 13% 7%

17 SI-SHO-0-1945-EXB 0% 0% 0% 0% 12% 16% 25% 28% 19%

18 SI-SHO-1946-2008-EXB 0% 0% 0% 3% 13% 32% 21% 18% 13%

19 SI-EDU-0-1920-EXB 0% 0% 0% 0% 0% 12% 27% 38% 23%

20 SI-EDU-1921-1965-EXB 0% 0% 0% 2% 6% 19% 31% 24% 18%

21 SI-EDU-1966-1981-EXB 0% 0% 0% 4% 16% 21% 26% 21% 12%

22 SI-EDU-1982-2008-EXB 0% 5% 10% 17% 29% 28% 6% 3% 2%

23 SI-CUS-0-1965-EXB 0% 0% 0% 0% 1% 20% 22% 26% 31%

24 SI-CUS-1966-1981-EXB 0% 0% 0% 1% 6% 25% 34% 20% 14%

25 SI-CUS-1982-2008-EXB 0% 0% 0% 12% 19% 26% 25% 8% 10%

26 SI-HEA-0-1965-EXB 0% 0% 0% 0% 4% 16% 23% 32% 25%

27 SI-HEA-1966-1981-EXB 0% 0% 0% 2% 9% 17% 26% 25% 21%

28 SI-HEA-1982-2008-EXB 0% 0% 0% 19% 14% 31% 18% 4% 14%

29 SI-OTB-2009-NOW-EXB 2% 8% 22% 23% 45% 0% 0% 0% 0%

30 SI-OTC-2009-NOW-EXB 5% 12% 19% 19% 45% 0% 0% 0% 0%

Archetypes Energy performance classes
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measures are defined that meet the MEPS. These measures are defined at archetype level. For 

each building archetype, three levels of energy renovation are defined: light-medium-deep. 

Similarly each archetypes is divided across defined seismic and climatic regions. This allows for 

region-specific analysis of renovation strategies. Seismic strengthening measures are only 

considered in the case of deep renovation, where structural interventions are both technically 

feasible and economically justified. For each of these renovation measure, the embodied impact 

and reduced operational impact are assessed. Life cycle costing methods are furthermore used to 

calculate the investment cost, reduction in operational energy cost, other operational costs and 

end-of-life costs of these renovation measures. The various life cycle costs are discounted to 

present values to calculate the sum of the present values of costs at different moments in time. 

This life cycle cost enables the comparison of different measures. Building cost data are gathered 

from existing cost databases, such as ASPEN for Belgium and energy cost data are gathered from 

national statistics. To estimate the cost-effectiveness of the renovation measure, the difference in 

life cycle cost before and after renovation is calculated and compared to the investment cost.  

Through scenario modelling, the impact of various renovation rates are investigated. 

Regional renovation scenarios are then formulated and evaluated in the five Member States. The 

scenarios differ in terms of renovation depth, timing, seismic upgrades and other considerations. 

To evaluate these national and regional renovation measures, a holistic analytical framework is 

established. A set of key metrics, including potential loss of life, economic implications linked to 

seismic repair, energy consumption related to heating and socio-economic indicators are used to 
assess the effectiveness of various renovation options. The overarching aim of this framework is 

to provide quantitative insights on the effects of specific renovation strategies, all within the 

overarching goal of achieving climate neutrality and enhancing resilience by the year 2050. To 

select the most suitable renovation strategy for a given building archetype, a Multi-Criteria 

Decision-Making (MCDM) methodology is developed. The MCDM takes into account social, 

environmental and economic indicators from the EU Level(s) framework. The methodology helps 

to achieve an optimal balance between reducing seismic vulnerability, enhancing energy 

efficiency and the need for replacement construction.  

In order to support strategic planning, priority regions need to be identified. A scenario-

based analysis identifies these regions based on seismic risk, energy saving potential and socio-

economic factors.  

3.3 Financing the transition 

Financing the transition towards a decarbonižed building stock requires each Member State to 

estimate the scale of necessary investments, identify existing funding sources and assess the 

remaining financial gap. The budget needed to meet the renovation targets is estimated based on 

the renovation scenarios developed. Once the financial needs are known, the availability of 

current national funding is evaluated and a market analysis of financial instruments is conducted. 

In addition, case studies of existing funding models are examined to inform the development of a 

financing decision-making framework. This framework considers various types of financial 

instruments, risk and return considerations and implementation settings. 

To align renovation financing with the EU Taxonomy, a Sustainable Renovation Taxonomy 

Protocol (SRTP) is introduced. The protocol establishes a standardižed set of evaluation criteria 

for measuring renovation sustainability, based on operational energy demand and both 

operational and embodied GHG emissions. This SRTP provides a consistent methodology for 

assessing renovation projects over their entire life cycle and facilitates alignment with EU-level 

sustainability classification systems.  
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3.4 Support the transition to a seismic resilient, climate-neutral building stock 

Finally, the outcomes of the previous steps are translated into practical implementation tools, 

namely National Renovation Plans (NRP) and enhanced Building Renovation Passports (BRP). 

Stakeholders in each pilot country are consulted through workshops and meetings with public 

authorities and agencies involved in long-term renovation strategy development. The objective is 

to discuss country specific implementation measures to enhance seismic safety and energy 

performance at the national level. The National Renovation Plans are based on minimum energy 

and seismic performance standards, aligned with the 2024 EPBD recast and national carbon 

targets. These set minimum performance thresholds and define renovation targets based on 

energy use, GWP and seismic safety. Additionally, guidelines are defined that include trajectory 

based planning, supporting phased transition towards carbon-neutral buildings by 2050.  

The outcomes and lessons learned are moreover used to improve current BRPs by integrating 

energy efficiency, seismic safety and long-term renovation planning. A key component is the 

development of a transnational seismic classification scheme. This scheme allows the 

implementation of basic seismic information into the BPR without requiring detailed analysis. 

This ensures consistency and allows applicability across all Member States. Based on this 

transnational BRP, national versions of the GreenRenoV8 BRP can be developed in the future. A 

strategy for structured data collection is established to allow the implementation and monitoring 

of these passports. The strategy suggests the minimal amount of data required for the 

development of BRP and realistically attainable data. The result is a systematic monitoring 
framework for sustainable renovation. After establishing the methodology, each pilot country 

develops three pilot cases of the proposed GreenRenoV8 BRP. The pilot cases include multi-family 

buildings, public buildings and social housing. The results of these cases help in identifying 

potential gaps that need to be addressed before practical implementation. 

4. Policy implication 

GreenRenoV8 delivers practical, scalable tools to support the implementation of the 2024 EPBD 

recast, impacting national and EU policies. It promotes a holistic renovation approach by 

integrating energy efficiency, seismic resilience and life cycle  assessment. Outputs such as NRP, 

BRP upgrades and performance benchmarks support policy makers in designing and evaluating 

renovation strategies. The SRTP further aligns policy and finance, enabling consistent investment 

evaluation across the EU. Together, these efforts strengthen Member States’ capacity to plan, 

monitor and adapt renovation policies toward the EU’s 2050 climate targets. 

5. Conclusions and next steps 

In summary, by combining archetype development, stock-level modelling, energy benchmarking, 

economic and seismic assessment, the GreenRenov8 project aims at identifying renovation 

strategies at building and national level that are sustainable, economically viable and align with 

national and European policy goals. GreenRenoV8 hence contributes in supporting Member 

States’ transition to a carbon-neutral building stock, combining technical, financial and 

environmental tools, with policy measures. The project illustrates how deep renovation can 

address both energy use, seismic risk, and life cycle GHG emissions and searches for the most cost-

effective approach. This offers a replicable model for integrated renovation planning. Through its 

methodology, stakeholder participation and tools, GreenRenoV8 aligns with the core objectives of 

the updated EPBD and broader EU policies.  
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As of June 2025, the project focuses on the completion of the national building archetypes 

and finaližing benchmarks for the Minimum Energy Performance Standards (MEPS). This 

provides the foundation for the BAU assessment, upscaling and defining the national renovation 

strategies in the next step of the research project. 
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