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ABSTRACT
Plant pests and disease detection using optical sensors

Traditional agricultural plant pest and disease manage-
ment practices are based on visible characteristics and re-
quire that plants are checked individually, making these 
practices time consuming and therefore costly. Plant pests 
and diseases also often exhibit a heterogeneous distribution, 
making detection more difficult. Remote sensing methods 
enable comparatively accurate detection of pests and dis-
eases over larger areas. Furthermore, because remote sens-
ing sensors utilize light outside the human visible spectrum, 
presymptomatic detection becomes possible, thus facilitat-
ing timely, appropriate and spatially accurate management 
practices. Because remote sensing systems generate large 
amount of data, novel data analysis methods, such as ma-
chine learning, were introduced to plant protection. While 
pest and disease detection is possible using individual sen-
sors, best results can be obtained by combining different 
sensors, utilizing different spectral ranges or physiological 
responses to light. A large amount of data and information 
has been generated in the past, but this research has mostly 
been focused on individual pathogens. Future research will 
have to focus on combined infections or infestations, and 
include abiotic stressors as well.  

Key words: Remote sensing, plant protection, hyper-
spectral, multispectral, thermal, f luorescence, precision ag-
riculture

IZVLEČEK
Daljinsko zaznavanje rastlinskih bolezni in škodljivcev

Velikokrat tradicionalni pristopi varstva rastlin pred 
rastlinskimi boleznimi in škodljivci temeljijo na vidnih 
simptomih, ki vključuje redno pregledovanje posameznih 
rastlin. Postopki so zato lahko dolgotrajni in s tem dragi. 
Bolezni in škodljivci imajo v prostoru pogosto heterogeno 
razporeditev, kar otežuje njihovo odkrivanje. Metode daljin-
skega zaznavanja omogočajo razmeroma natančno odkriva-
nje škodljivcev in bolezni na večjih območjih. Ker uporablja-
jo senzorji daljinskega zaznavanja tudi svetlobo izven nam 
vidnega spektra, je možno tudi zgodnje odkrivanje, t.j. od-
krivanje pred razvojem vidnih znakov bolezni. To omogoča 
pravočasno, ustrezno in prostorsko natančno upravljanje z 
boleznimi in škodljivci. Sistemi daljinskega zaznavanja 
ustvarjajo velike količine podatkov, zato so bile v varstvo ra-
stlin uvedene sodobne metode za analizo podatkov, na pri-
mer strojno učenje. Čeprav je možno zaznava bolezni in ško-
dljivcev z uporabo posameznih senzorjev, lahko dosežemo 
najboljše rezultate z združevanjem različnih senzorjev, torej 
z uporabo različnih spektralnih območij ali fizioloških odzi-
vov na svetlobo. Dosedanje raziskave so bile osredotočene na 
posamezne škodljivce in bolezni. Prihodnje raziskave se 
bodo morale osredotočiti na kombinirane okužbe ter vklju-
čevati tudi abiotske stresorje.

Ključne besede: daljinsko zaznavanje, varstvo rastlin, 
hiperspekter, multispekter, toplotno slikanje, f luorescenca, 
precizno kmetijstvo
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Traditional agricultural management practices assume 
a homogenous distribution of plant pests and diseases 
in a field. But plant pests and diseases often exhibit a 
heterogeneous distribution, thus making traditional 
plant health management practices unsuitable to ac-
tual field conditions. Furthermore, traditional plant 
pests and diseases detection is based on visible charac-
teristic symptoms of individual plants, and accuracy is 
further confounded by temporal variability of symp-
toms (Bock et al. 2008). Precision agriculture is a 
management system based on spatial and temporal 
variability in crop and soil factors within a field (Staf-
ford 2000), and it utilizes various sensors and plat-
forms to provide on-time and accurate mapping sys-
tems of crops, which facilitate timely and site-specific 
management decisions.   

Given the heterogeneous distribution of plant 
pests and diseases, optical remote sensing techniques 
can be considered as a best-fit technology, providing 
information on disease foci, and infection and infesta-
tion severity (Gebbers and Adamchuck 2007, Ma-
hlein 2016). Contemporary optical sensors generate 
comparatively large amounts of complex data, making 
remote sensing applications for plant protection an in-
formation and technology based domain. Advanced 
data analysis methods are crucial to effectively utilize 
remote sensing data for plant pest/disease detection. 
Regardless of the sensor and application, remote sens-
ing data has to fulfil several criteria in order to be con-
sidered of adequate quality for plant pests or disease 
detection (Mahlein 2016). It has to enable: (1) early 
(i.e. presymptomatic) detection of pests and diseases, 
(2) differentiation of various pests and diseases, (3) dis-
crimination between abiotic and biotic stress, and (4) 
quantification of disease or infestation severity. These 
criteria have to be assessed at least as accurately as with 
traditional methods, but with shorter computing 
times. Considering these requirements, machine 
learning methods are being increasingly employed for 
data analysis and detection method development 
(Behmann et al. 2014). 

Remote sensing is the science of obtaining infor-
mation about an object or area at a distance, without 
making physical contact with the object under study, 
by measuring the reflected or emitted radiation at a 
distance. Optical sensors utilize the light spectrum 

(Figure 1), both natural and artificial, from ultraviolet 
(wavelengths from 100 to 400 nm), to far infrared 
(15*103 nm to 350*103 nm). Humans can perceive light 
in the so called visible range, from 400 to 700 nm. Near 
infrared (NIR) ranges from 700 to 1000 nm, and short-
wave infrared from 1000 to 2500 nm (SWIR). Sensors 
above SWIR wavelengths are considered as pure infra-
red or thermal sensors, with varying spectral ranges. 
Light interacts with objects in three ways, reflection, 
transmission, and absorption (Lillesand 2004). In 
addition, as light passes through a medium, such as the 
atmosphere, it can hit suspended molecules and be-
come scattered. The type and amount of scattering de-
pends on particle size (e.g. particles smaller than the 
wavelength cause wavelength-dependant Rayleigh 
scattering, which predominantly scatters blue wave-
lengths, making the sky to appear blue), and has to be 
accounted for in remote sensing applications. Optical 
remote sensing sensors measure the combined effect of 
the main three phenomena (called spectral reflectance, 
often also referred to as reflectance), and their ratios at 
different wavelengths are characteristic for objects (e.g. 
plants, soil, and water), and enable their identification. 
This unique and characteristic combined reflectance is 
called spectral signature, i.e. spectral reflectance as a 
function of wavelength. The configuration of spectral 
signatures at various wavelengths depends on canopy 
optical properties, biophysical and biochemical attrib-
utes, illumination, background effects, and viewing 
geometry (Kupiec and Curran 1995). 

Spectral signatures of plants are influenced by sev-
eral factors, linked to specific areas of the light spec-
trum. In the visible part of the spectrum (400 – 700 
nm), pigments are prevalent (e.g., chlorophyll, carote-
noids, anthocyanins). In the near infrared region (NIR, 
700 – 1000 nm), leaf morphology and structure influ-
ence signatures, while short-wave infrared (SWIR, 
1000 – 2500 nm) reflectance is influenced by water and 
metabolites (e.g., cellulose and proteins) (Behman et 
al. 2014, Matese and Gennaro 2015) (Figure 1). Ap-
propriate spectral analyses can detect these changes 
and can be used to characterize the plant’s physiologi-
cal state, and assess genotype-specific responses to bi-
otic and abiotic stresses (Mahlein et al. 2012, Waha-
bzada et al. 2015). 

1 INTRODUCTION
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Humans observe sunlight using two kinds of photore-
ceptors in the retina. Rod cells are sensitive to absolute 
light levels, and cone cells are used for colour vision. 
Cone cells come in three types (S-cones, M-cones, and 
L-cones), each more responsive to certain wavelength 

of visible light. S-cones are responsive to short-wave-
length (blue) light, M-cones to medium-wavelength 
(green), and L-cones to long-wavelength (red) light.  
Humans perceive colour as a combination of these 
three spectral bands. This is also referred to as the 

2 OPTICAL SENSORS FOR PLANT PEST AND DISEASE DETECTION

Figure 1: Spectral signatures of healthy and infested plants captured using a hyperspectral imaging sensor (Žibrat, unpublished 
data). Atmospheric water absorption bands can be observed, due to the high spectral resolution of hyperspectral sensors. 
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RGB colour system, which we use in electronic appli-
ances (e.g. computer screens). 

Optical sensors utilize the same system, by divid-
ing the recorded light into spectral bands of various 
widths. Depending on the wavelength they record and 
the number of spectral bands they divide the light into, 
optical sensors can be classified into five groups: (1) 
RGB, (2) multispectral, (3) hyperspectral, (4) thermal, 
and (5) fluorescence imaging sensors. Regardless of the 
system, a standardized data acquisition step is of ut-
most importance in order to obtain results with high 
accuracy and repeatability. Low detection accuracy is 
often the result of low image quality (e.g. small spatial 
resolution) and heterogenic (e.g. non-uniform light-
ing) conditions.

2.1 RGB sensors

Standard, off-the-shelf digital cameras use the RGB 
(red-green-blue) system, and can be used for disease 
and pathogen detection. Because they are compara-
tively easy and cheap to produce, they have become 
ubiquitous, as almost everyone carries such a device 
on their mobile phone. RGB sensors can be used on 
various platforms, from hand-held to satellite mount-
ed, providing information over large areas throughout 
the growing season.

RGB sensors have been used extensively for plant 
disease and pathogen detection. Neumann et al. (2014) 
used colour, gray levels, texture, dispersion, connectiv-
ity, and shape as features in pattern recoginition and 
machine learning schemes to detect cercospora leaf 
spot (Cercospora beticola), sugar beet rust (Uromyces 
betae), Ramularia leaf spot (Ramularia beticola), 
Phoma leaf spot (Phoma betae), and bacterial leaf spot 
(Pseudomonas syringae pv. Aptata) in sugar beet plants. 
Similarly, Bock et al.  (2010) enhanced colour informa-
tion with LAB (L – light, AB – colour-component di-
mensions), YCBCR (Y – luma component, CB – blue 
difference, CR – red difference chroma component), 
and HSV (Hue, Saturation, Value) information to de-
tect Citrus canker (Xanthomonas axonopodis) in 
grapefruit. Texture-related features combined with 
support vector machines were used for detection of 
bacterial angular (Xanthomonas campestris) and as-
cochyta blight (Ascochyta gossypii) in cotton (Camar-
go and Smith 2009). Digital image analysis is well-es-
tablished, and is also being applied in remote sensing 
of plant diseases and pathogens. Using the shareware 
software package Scion Image (Scion Corporation), 
Wijekoon et al.  (2008) succesfully determined an-
thracnose (Colletotrichum destrucivum) infection se-

verity (measured as percent diseased leaf area) in in-
fected tobacco plants. 

2.2 Multispectral sensors

Multispectral sensors utilize the RGB bands of visible 
light, and expand them into the NIR and SWIR spec-
tral regions. Band width varies between sensors; gen-
erally shorter wavelengths (RGB) have narrower 
bandwidths than longer wavelengths (NIR and 
SWIR). Spatial resolution follows the same pattern. 
For example, the European Space Agency (ESA) satel-
lite Sentinel-2 has a spatial resolution of 10 m in RGB 
bands, 10 – 20 m in NIR, and 20 – 60 m in SWIR. Off-
the-shelf handheld, UAV-borne (unmanned aerial ve-
hicle) and airborne sensors assess spectral informa-
tion in up to ten bands. In addition to RGB, VNIR 
(visible to NIR), and SWIR regions, sensors aimed at 
agriculture also utilize the red-edge part of the spec-
trum. In this spectral area, between 700 and 750 nm, 
plant reflectance changes rapidly, from approximately 
5 % to 50 %. Green plants absorb solar radiation in the 
photosynthetically active radiation (PAR) spectral re-
gion (400 – 700 nm), and reflect approximately half of 
incoming light in the near-infrared spectral region. 
Chlorophyll is almost transparent at wavelengths 
greater than 700 nm, while each cell acts as an ele-
mentary corner reflector (reflecting light directly 
back to the source). This effect is extensively used in 
vegetation indices.

Vegetation indices are spectral transformations of 
two or more spectral bands. They are designed to en-
hance vegetation properties and allow spatial and 
temporal comparisons of photosynthetic activity and 
canopy structure (Huete et al.  2000) (Table 1). These 
spectral indices can be classified into several groups, 
by various criteria: bandwidth (wide- and narrow-
band indices), by number of bands (2 or more), calcu-
lation method (ratio or orthogonal), by objective (e.g. 
pigment indices), or historical development (first or 
second generation) (Bannari  et al. 1995). One of the 
most well-known vegetation indices is the Normal-
ized difference vegetation index – NDVI (Kriegler et 
al.  1969). NDVI is related to photosynthetic capacity 
and therefore to energy absorption of plant canopies 
(Myneni et al. 1995). In practice, NDVI has been used 
for a variety of purposes, e.g. in satellite imagery 
(Leon et al.  2012, Lanorte et al.  2014, Blaes et al.  
2016). 

Multispectral imaging has been used extensively 
in plant protection and health assessment research. 
For example, these types of sensors have been suc-
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Table 1: Examples of broad- and narrow-band vegetation indices (adapted after Calderon et al. 2013 and refer-
ences therein). In the “Abbreviation and calculation” column “Rn” refers to the reflectance measured at a wave-
length of n nanometers.

Vegetation indices Abbreviation and calculation

Structural indices

Normalized difference vegetation index

Simple ratio

Modified simple ratio

Modified soil-adjusted vegetation index

Modified triangular vegetation index 2

Modified chlorophyll absorption ratio index 2

Pigment indices

Transformed chlorophyll absorption in reflectance index

Normalized phaeophytinization index

Plant senescing reflectance index

Pigment specific normalized difference

Photochemical reflectance indices

Photochemical reflectance index (570)

Photochemical reflectance index (670 and 570)

Normalized photochemical reflectance index

Table 1: Examples of broad- and narrow-band vegetation indices (adapted after CALDERON et al. 2013 and references therein). In the “Abbreviation 

and calculation” column “Rn” refers to the reflectance measured at a wavelength of n nanometers.  

 

Vegetation indices Abbreviation and calculation 

Structural indices  

Normalized difference vegetation index NDVI = 𝑅𝑅800 − 𝑅𝑅670
𝑅𝑅800 + 𝑅𝑅670

 

Simple ratio SR = 𝑅𝑅800
𝑅𝑅670  

Modified simple ratio 
MSR =

𝑅𝑅800
𝑅𝑅670 − 1

(𝑅𝑅800𝑅𝑅670)0.5 + 1
 

Modified soil-adjusted vegetation index MSAVI = 2 ∗ 𝑅𝑅800 + 1 −√(2 ∗ 𝑅𝑅800 + 1)2 − 8 ∗ (𝑅𝑅800 − 𝑅𝑅670)
2  

Modified triangular vegetation index 2 MTVI2 = 1.5 ∗ (1.2 ∗ (𝑅𝑅800 − 𝑅𝑅550) − 2.5 ∗ (𝑅𝑅670 − 𝑅𝑅550)

√(2 ∗ 𝑅𝑅800 + 1)2 − (6 ∗ 𝑅𝑅800 − 5 ∗ √𝑅𝑅670) − 0.5
 

Modified chlorophyll absorption ratio index 2 MSAVI2 = 1.5 ∗ (2.5 ∗ (𝑅𝑅800 − 𝑅𝑅670)− 1.3 ∗ (𝑅𝑅800 − 𝑅𝑅550)

√(2 ∗ 𝑅𝑅800 + 1)2 − (6 ∗ 𝑅𝑅800 − 5 ∗ √𝑅𝑅670) − 0.5
 

Pigment indices  

Transformed chlorophyll absorption in      

reflectance index 
TCARI = 3 ∗ (𝑅𝑅700 − 𝑅𝑅670) − 2 ∗ (𝑅𝑅700 − 𝑅𝑅550) ∗ 𝑅𝑅700𝑅𝑅670

 

Normalized phaeophytinization index NPQI = 𝑅𝑅415 − 𝑅𝑅735
𝑅𝑅415 + 𝑅𝑅735

 

Plant senescing reflectance index PSRI = 𝑅𝑅680 − 𝑅𝑅500
𝑅𝑅750

 

Pigment specific normalized difference PSND𝑐𝑐 = 𝑅𝑅800 − 𝑅𝑅470
𝑅𝑅800 + 𝑅𝑅470

 

Photochemical reflectance indices  

Photochemical reflectance index (570) PRI570 = 𝑅𝑅570 − 𝑅𝑅531
𝑅𝑅570 + 𝑅𝑅531

 

Photochemical reflectance index (670 and 570) PRI𝑚𝑚4 = 𝑅𝑅570 − 𝑅𝑅531 − 𝑅𝑅670
𝑅𝑅570 + 𝑅𝑅531 + 𝑅𝑅670

 

Normalized photochemical reflectance index PRI𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑃𝑃570
𝑅𝑅800 − 𝑅𝑅670
√𝑅𝑅800 + 𝑅𝑅670

∗ 𝑅𝑅700𝑅𝑅670  
 

Chlorophyll fluorescence indices  

Reflectance curvature index LIC2 = 𝑅𝑅675 ∗ 𝑅𝑅690
𝑅𝑅6832  

Colour indices  

Redness index R = 𝑅𝑅700
𝑅𝑅670  

Red/green index RGI = 𝑅𝑅690
𝑅𝑅550  

Lichtenthaler index LIC2 = 𝑅𝑅440
𝑅𝑅690  

Plant disease indices  

Health index HI = 𝑅𝑅534 − 𝑅𝑅698
𝑅𝑅534 +  𝑅𝑅698

− 𝑅𝑅704
2  
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Chlorophyll fluorescence indices

Reflectance curvature index

Colour indices

Redness index

Red/green index

Lichtenthaler index

Plant disease indices

Health index

Table 1: Examples of broad- and narrow-band vegetation indices (adapted after CALDERON et al. 2013 and references therein). In the “Abbreviation 

and calculation” column “Rn” refers to the reflectance measured at a wavelength of n nanometers.  
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𝑅𝑅800 + 𝑅𝑅670

 

Simple ratio SR = 𝑅𝑅800
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Modified simple ratio 
MSR =

𝑅𝑅800
𝑅𝑅670 − 1

(𝑅𝑅800𝑅𝑅670)0.5 + 1
 

Modified soil-adjusted vegetation index MSAVI = 2 ∗ 𝑅𝑅800 + 1 −√(2 ∗ 𝑅𝑅800 + 1)2 − 8 ∗ (𝑅𝑅800 − 𝑅𝑅670)
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√(2 ∗ 𝑅𝑅800 + 1)2 − (6 ∗ 𝑅𝑅800 − 5 ∗ √𝑅𝑅670) − 0.5
 

Modified chlorophyll absorption ratio index 2 MSAVI2 = 1.5 ∗ (2.5 ∗ (𝑅𝑅800 − 𝑅𝑅670)− 1.3 ∗ (𝑅𝑅800 − 𝑅𝑅550)

√(2 ∗ 𝑅𝑅800 + 1)2 − (6 ∗ 𝑅𝑅800 − 5 ∗ √𝑅𝑅670) − 0.5
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Photochemical reflectance index (570) PRI570 = 𝑅𝑅570 − 𝑅𝑅531
𝑅𝑅570 + 𝑅𝑅531

 

Photochemical reflectance index (670 and 570) PRI𝑚𝑚4 = 𝑅𝑅570 − 𝑅𝑅531 − 𝑅𝑅670
𝑅𝑅570 + 𝑅𝑅531 + 𝑅𝑅670

 

Normalized photochemical reflectance index PRI𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑃𝑃570
𝑅𝑅800 − 𝑅𝑅670
√𝑅𝑅800 + 𝑅𝑅670

∗ 𝑅𝑅700𝑅𝑅670  
 

Chlorophyll fluorescence indices  

Reflectance curvature index LIC2 = 𝑅𝑅675 ∗ 𝑅𝑅690
𝑅𝑅6832  

Colour indices  

Redness index R = 𝑅𝑅700
𝑅𝑅670  

Red/green index RGI = 𝑅𝑅690
𝑅𝑅550  

Lichtenthaler index LIC2 = 𝑅𝑅440
𝑅𝑅690  

Plant disease indices  

Health index HI = 𝑅𝑅534 − 𝑅𝑅698
𝑅𝑅534 +  𝑅𝑅698

− 𝑅𝑅704
2  

 

 
cessfully used to detect panicle blast (Magnaporthe 
grisea) in rice (Kobayashi et al.  2001), greenbug 
(Schizapis graminum)  infestations in wheat (Yang et 
al.  2005, 2009), citrus greasy spot disease in citrus 
(Du et al. 2008), late blight in tomato (Zhang et al. 
2005), aphid (Diuraphis noxia) infestations in wheat 
fields (Backoulou et al. 2010), soybean cyst nema-
tode (Heterodera glycines) (Nutter et al.  2002), 
streak mosaic virus in wheat fields (Mirik et al.  2011), 
head blight in winter wheat (Dammer et al.  2011), 
grapevine yellows (Flavescence dorée) in vineyards 
(Žibrat and Knapič 2015), and light leaf spot (Pyre-
nopeziza brassicae) in winter oilseed rape (Brassica 
napus) (Veys et al.  2018). 

2.3 Hyperspectral sensors

Similarly to multispectral sensors, hyperspectral sys-
tems divide the spectrum in bands with a constant 
width of up to 10 nm, providing a much better spectral 
resolution. While multispectral vegetation indices can 
be used with hyperspectral data, and narrow-band in-
dices have been developed (Marshall et al.  2016), the 
large amount of spectral data warrants the use of ma-
chine learning and neural networks for data analysis. 
Principal component analysis is often used as data ex-
ploration methods, and has been successfully used to 
monitor pathogenesis of Fusarium graminearum in 
wheat (Bauriegel et al.  2011). Supervised and non-

supervised classification, clustering, self-organizing 
maps, and support vector machines have all been used 
for effective plant disease detection (Camargo and 
Smith 2009, Moshou et al.  2004, Rumpf et al.  2010). 
Even though a wide variety of methods have been test-
ed, up to date none of them proved to be superior for 
all plant health assessment methods (Behmann et al.  
2014). 

In recent years, hyperspectral remote sensing has 
seen widespread use in plant protection. High spec-
tral resolutions enable not only detection of abiotic 
and biotic stress, but also chemometric analyses, and 
identification of wavelengths related to infections 
and infestations, as well as early (i.e. presymptomatic) 
detection of infections or infestations (Susič et al. 
2018, Zovko et al. 2019). Hyperspectral remote sens-
ing has been used to quantify Rhizoctonia crown and 
root rot in sugar beet (Reynolds et al.  2012), Ventu-
ria inaequalis infections in apple (Delialieux et al.  
2007), Phytophthora infestans in tomato (Wang et al. 
2008), combined infections of Rhizoctonia and cyst 
nematodes (H. schachtii) in sugar beet (Hillnhüt-
ter et al. 2011), Fusarium head blight in wheat (Bau-
riegel et al. 2011), and differentiation between 
drought and biotic stress combined with presympto-
matic detection of root-knot nematode (Meloidogyne 
incognita) infestations in tomato plants (Susič et al. 
2018). The latter study led to development of hyper-
spectral remote sensing pre-processing and analysis 
guidelines (Žibrat et al. 2019). Furthermore, hyper-
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spectral remote sensing is also used for screening 
fruits and crops to avoid storage disease. For exam-
ple, Mehl et al. (2004) detected surface defects on ap-
ples, ElMasry et al. (2007) used hyperspectral imag-
ing for detection of strawberry rot, and Qin et al. 
(2009) developed methods for detection of canker le-
sions of citrus fruits. 

2.4 Thermal sensors

Infrared thermography assesses plant canopy temper-
ature, which is correlated with plant stress and the mi-
croclimate in crop stands (Jones et al. 2002, Lenthe et 
al. 2007). But canopy temperature is also influenced by 
environmental factors, such as ambient temperature, 
sunlight, rainfall, and wind. Thermal detection meth-
ods therefore need to account for these confounding 
effects. Effective analyses consider the heterogeneity 
between and within leaves, i.e. the mean temperature 
difference within single leaves, plants, and crop stands 
has to be included. Systemic infections (e.g. Fusarium 
spp.) and root pathogens (e.g. Rhizoctonia solani) in-
fluence the transpiration rate and water flow of the 
entire plant or plant organs, leading to higher canopy 
temperatures. For example, Pinter et al. (1979) were 
among the first to find 3 – 4 °C higher canopy tem-
peratures in diseased sugar beet and cotton plants. 
Similarly, Nilsson (1995) found that Verticillium da-
hliae infections caused a canopy temperature increase 
of 5 -8 °C in oilseed rape. Temperature changes were 
also observed for Cercospora beticola infections in 
sugar beet, and downy mildew (Pseudoperonospora cu-
bensis) in cucumbers (Oerke et al. 2006). Oerke et al. 
(2011) managed to visualize the spatial spread of scab 
disease (Venturia inaequalis) on apples, and Gomez 
(2014) monitored Peronospora sparsa infections in Rosa 
varieties.   

2.5 Fluorescence imaging

Fluorescence imaging (FI) commonly utilizes a LED or 
laser light source to assess photosynthetic electron 
transfer (Bauriegel et al. 2014), and photosynthetic ac-
tivity can be measured by a variety of chlorophyll fluo-
rescence parameters. For disease detection, the empiri-
cal fluorescence parameter Fv/F0 has been proposed for 
use on dark adapted plants (Kuckenberg et al. 2007). 
Fv/F0 is considered to be a representation of the maxi-
mum quantum yield of fluorescence (Buschmann et 
al. 1999), and has been used as an indicator of photosys-
tem II (PSII) status and may estimate rates of energy 
transport from PSII to PSI in low-temperature fluores-
cence (−196 °C; Kitajima et al. 1975). Flourescence im-
aging requires plants to be prepared according to strict 
guidelines, and can therefore be challenging to imple-
ment in agricultural greenhouses or fields. 

Nevertheless, FI is considered to be an effective 
tool for examining the development and effects of bac-
terial, fungal, and viral infections on leaves of culti-
vated plants (Daley 1995). Bürling et al. (2011) used 
FI to differentiate between nitrogen deficiency and 
powdery mildew in wheat. By combining FI and image 
analysis, Konanz et al. (2014) achieved successful dis-
crimination and quantification of fungal infections 
and nitrogen deficiency in sugar beet, grapes, and bar-
ley. FI was also used to assess heat stress (Wang et al. 
2011), nutrient deficiencies (Tartachnyk et al. 2006), 
leaf rust (Bürling et al. 2010), and leaf blotch (Robert 
et al. 2006). Early detection is also possible, for exam-
ple leaf rust and powdery mildew infections on wheat 
leaves (Kuckenberg et al. 2007). Infections by Pseudo-
monas syringae in Arabidopsis thaliana can be detected 
a few hours after inoculation (Matous et al. 2006), 
while leaf rust and mildew on winter wheat could be 
detected merely a few days prior to development of vis-
ible symptoms (Kuckenberg et al. 2009). 

3 FUTURE PERSPECTIVES

This review demonstrates the applicability of different 
optical remote sensing methods for detecting and dif-
ferentiating abiotic and biotic stress in plants. Fluores-
cence imaging and thermography are sensitive to early 
stress responses in plants, but cannot identify specific 
diseases. The latter is possible using RGB, multi-, and 
hyperspectral sensors. A comparatively large amount 
of information regarding remote sensing of plant dis-
eases and pathogens has been generated.  The accumu-
lation of large amounts of data has led to the introduc-

tion and development of novel analysis methods, such 
as machine learning and neural networks. 

In order to become truly useable in field and 
greenhouse conditions, any novel remote sensing re-
search should also focus on combined abiotic and bi-
otic stress. Visible symptoms in the canopy are often 
similar, or possibly identical, and visual identification 
of individual plants doesn’t yield satisfactory results. 
Remote sensing methods provide a good alternative, 
and can be adapted to different platforms. Further-
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more, presymptomatic detection would facilitate pre-
cision agriculture and integrated pest management ap-
proaches at field and greenhouse levels, by enabling 
timely and accurate management practices. Further-

more, best results can be obtained by combining dif-
ferent sensors and advanced analysis methods, even 
though individual sensors can achieve comparatively 
good results.  
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POVZETEK

Tradicionalne prakse zatiranja rastlinskih bolezni in 
škodljivcev predpostavljajo njihovo homogeno pro-
storsko razporeditev na poljih, vendar so bolezni in 
škodljivci v prostoru pogosto razporejeni heterogeno, 
Tradicionalni pristopi varstva rastlin velikokrat teme-
ljijo na vidnih simptomih, za kar je potrebno redno 
pregledovanje posameznih rastlin. Postopki so zato 
lahko dolgotrajni in dragi. Natančno kmetijstvo je sis-
tem upravljanja, ki temelji na zagotavljanju natančnih 
prostorskih in časovnih podatkov različnih rastnih 
dejavnikov ter razvoja in stanja rastlin. Pri tem upora-
blja različne senzorje z različnih platform, ki omogo-
čajo pravočasno in prostorsko natančno ukrepanje.

Glede na heterogeno prostorsko porazdelitev ra-
stlinskih škodljivcev in bolezni je daljinsko zaznavanje 
z optičnimi senzorji najprimernejša tehnologija, ki za-
gotavlja informacije o žariščih ter jakosti okužb. Na-
predne metode za analizo podatkov so ključne za učin-
kovito uporabo podatkov daljinskega zaznavanja za 
odkrivanje rastlinskih škodljivcev in bolezni. Ne glede 
na senzor in aplikacijo morajo podatki pridobljeni z 
daljinskim zaznavanjem izpolnjevati več meril, da jih 
lahko uporabljamo za določanje rastlinskih bolezni in 
škodljivcev. Omogočiti morajo: (1) zgodnje odkrivanje 
škodljivih organizmov in bolezni, (2) ločevanje različ-
nih škodljivcev in bolezni, (3) ločiti morajo med abiot-
skim in biotičnim stresom in (4) kvantifikacijo bolezni 
ali jakosti okužbe. Ta merila morajo oceniti najmanj 
tako natančno kot s tradicionalnimi metodami, vendar 
s krajšimi časi obdelave podatkov. Glede na te zahteve 
vse pogosteje uporabljajmo metode strojnega učenja za 
analizo podatkov in razvoj metod za določevanje bole-
zni.

Daljinsko zaznavanje je znanost o pridobivanju in-
formacij o predmetih ali območju na daljavo, brez fi-

zičnega stika med senzorjem in predmetom, ki ga pro-
učujemo. Optični senzorji izkoriščajo svetlobni spek-
ter, tako naravnega kot umetnega, od ultravijoličnega 
(valovne dolžine od 100 do 400 nm) do dolgovalovne 
infrardeče svetlobe (15 * 103 nm do 350 * 103 nm). Lju-
dje zaznavamo svetlobo v tako imenovanem vidnem 
razponu, od 400 do 700 nm. Bližnje-infrardeča svetlo-
ba (NIR) sega od 700 do 1000 nm in kratkovalovna 
infrardeča svetloba od 1000 do 2500 nm (SWIR). Čisti 
infrardeči oziroma toplotni senzorji zajemajo elektro-
magnetno sevanje pri večjih valovnih dolžinah kot so  
valovne dolžine v območju SWIR-a. Med predmeti in 
svetlobo so možne tri interkacije, odboj, presevanje in 
absorpcija. Ob prehodu skozi medije, kot je atmosfera, 
se svetloba sipa zaradi interakcij z molekulami. Vrsta 
in jakost sipanja sta odvisni od velikosti delcev (npr. 
delci manjši od valovne dolžine povzročajo Rayleigho-
vo sipanje, ki je odvisno od valovne dolžine), kar mo-
ramo upoštevati pri metodah daljinskega zaznavanja. 
Optični senzorji merijo skupni učinek glavnih treh in-
terakcij (t.i. spektralni odboj, ki se pogosto imenuje 
tudi odbojnost), njihova razmerja na različnih valov-
nih dolžinah pa so značilna za objekte (npr. rastline, 
tla in vodo) in omogočajo njihovo identifikacijo. Tej 
edinstveni in značilni odbojnosti pravimo spektralni 
podpis, t.j. spektralna odbojnost kot funkcija valovne 
dolžine. Spektralni podpisi so odvisni od optičnih la-
stnosti nadzemnih delov rastlin, biofizikalnih in bio-
kemičnih lastnosti, osvetlitve, ozadja in geometrije 
med senzorjem in objektom.

Optične senzorje delimo na pet skupin: RGB, mul-
tispektralni, hiperspektralni, termalni in fluorescenčni 
senzorji. Čeprav je zaznavanje bolezni in škodljivcev 
možno s senzorji vseh petih skupin, je izbira senzorja 
odvisna od platforme (npr. v rastlinjaku, brezpilotni le-
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talnik, letalo, satelit) in željene natančnosti. Na primer, 
RGB senzorji omogočajo določanje prisotnosti bolezni, 
ki povzročajo spremembe na listih, njihova uporabnost 
za določanje okužb pred razvojem vidnih simptomov 
pa je omejena. Slednje omogočajo multi- in hiperspek-
tralni ter toplotni senzorji. Te štiri skupine senzorjev 
lahko tudi uporabljamo na večjih razdaljah (na primer 
na letalu), z naravno osvetlitvijo. Senzorji fluorescence 
omogočajo natančno določanje bolezni, vendar zahte-
vajo natančno pripravo vzorcev in ustrezno umetno 
osvetlitev. Zato so primerni za uporabo na omejenih 
površinah, na primer v rastlinjakih in laboratorijih.  

Dosedanje raziskave daljinskega zaznavanja za do-
ločanje rastlinskih bolezni in škodljivcev so se osredo-

točale na posamezne bolezni. Bodoče raziskave daljin-
skega zaznavanja se bodo morale osredotočiti na meša-
ne okužbe in kombinirane biotske in abiotske strese. 
Vidni znaki biotskih in abiotskih stresov so pogosto 
podobni, če ne celo povsem enaki, vizualna identifika-
cija posameznih rastlin pa pogosto ne daje zadovolji-
vih rezultatov. Metode daljinskega zaznavanja so dobra 
alternativa in jih je mogoče prilagoditi različnim plat-
formam. Poleg tega omogočajo določanje stresorjev 
pred razvojem vidnih znakov, kar olajša natančno 
kmetovanje in integrirane varstvo rastlin. Čeprav 
lahko posamezni senzorji dosežejo zadovoljive rezulta-
te, lahko z združevanjem različnih senzorjev in napre-
dnih analiznih metod rezultate izboljšamo. 
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