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This survey examines key advancements in designing features to represent optimization problem instances,
algorithm instances, and their interactions within the context of single-objective continuous black-box opti-
mization. These features support machine learning tasks such as algorithm selection, algorithm configuration,
and problem classification, and they are also used to evaluate the complementarity of benchmark problem sets.
We provide a comprehensive overview of problem landscape features, algorithm features, high-level problem-
algorithm interaction features, and trajectory features, including the latest works from the past five years. We
also point out limitations of the current state-of-the-art and suggest directions for future research.

1. Introduction

It is widely acknowledged that different instances of an optimization
problem and different performance criteria require different algorithm
instances for optimal resolution. This is particularly evident in compu-
tationally difficult problems, where the choice of the algorithm used
to solve it has a major impact on the quality of the final solution or
the time needed to find a satisfactory one. Harnessing this performance
complementarity has been the target of several approaches, with one
of the most prominent ones being per-instance algorithm selection [1],
which aims at mapping problem instances to the most suitable among
a portfolio of different algorithm instances.

Per-instance algorithm selection is a challenging problem by itself,
which has attracted significant research interest in recent years [1-3].
Most studies in this area use meta-learning [4] to train a supervised Ma-
chine Learning (ML) model to predict the performance of an algorithm
instance or to directly predict the algorithm which is expected to work
best on the input problem. This process requires input features for the
ML model that are linked to the algorithm instance. The features are
typically related to the problem instance landscape [5].

Other learning tasks that leverage problem landscape features in-
clude problem classification and analyzing the complementarity of
benchmark problem suites. In problem classification, an ML model
learns to identify which problem is represented or its difficulty based

on landscape features [6-8]. A related task is to classify key problem
properties like ruggedness, neutrality, and gradients. For complemen-
tarity analysis [9], unsupervised learning techniques such as clustering
and dimensionality reduction are applied to evaluate the coverage of
benchmark suites, which are then used to select representative learning
data necessary for statistical benchmarking or developing robust ML
models [10-12].

However, recently, features related to the properties/characteristics
of the algorithm instances or features extracted from the interaction
between an algorithm instance and a problem instance (i.e., high-level
interaction features and trajectory-based features) have also been used
and incorporated into various ML applications [13-16].

In this survey, we provide an overview of features used to represent
problem landscapes, algorithm instances, and their interactions in the
field of single-objective continuous optimization in a high-level interac-
tion level and a trajectory-based level. We explore their applications in
tasks such as algorithm selection, problem classification, and evaluating
the complementarity of benchmark problem suites. Additionally, we
identify research gaps and suggest directions for future development.

Throughout this survey, we use the following notation to maintain
consistency across mathematical expressions. Let x = (x,x5,...,%,)
denote a candidate solution vector in a d-dimensional decision space
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X C RY and let f(x) represent the objective function value as-
sociated with x. A set of n candidate solutions sampled from the
search space is denoted by {x(,x®, ... x("}, with corresponding objec-
tive values f(x(V), f(x@), ..., f(x™). The trajectory of an optimization
algorithm executed for a budget of b iterations (or ¢ function evalu-
ations), consists of all the candidate solutions explored by the algo-
rithm {x,x®, ... x®}, with corresponding objective values f(x(),

F&EP), ., fxD).
1.1. Relation to other surveys

While our focus is on single-objective continuous optimization, we
acknowledge that a few studies have begun extending these concepts to
multi-objective optimization [17,18], constrained multi-objective opti-
mization [19,20], and mixed-integer optimization [21,22], as well as
surveys focused on the automated design of algorithms [23]. However,
this survey does not cover those areas, leaving room for specialized
communities to present their own reviews. The methodologies for
calculating and learning meta-features discussed here can also be easily
adapted to inspire research in other optimization fields that currently
lack extensive studies.

We also acknowledge that there are other survey papers addressing
the same topic [24,25] and tutorials [18,26]. However, in this survey,
we chose not to include an extensive list of references from these
works (readers should check these works for a more comprehensive
view). Instead, our search process and inclusion criteria were the
following. We focused on recent papers and trends from the last five
years, sourced from leading optimization conferences and their special
sessions, such as the Genetic and Evolutionary Computation Conference
(GECCO), IEEE Congress on Evolutionary Computation (IEEE CEC), Par-
allel Problem Solving from Nature (PPSN), and EvoStar. Additionally,
we reviewed relevant journal articles from this period and examined
contributions from major ML conferences, including the International
Conference on Learning Representations (ICLR), International Joint
Conferences on Artificial Intelligence (IJCAI), and the Conference on
Neural Information Processing Systems (NeurIPS).

We included works that used optimization meta-features for at least
one of the following: algorithm selection (classification, regression,
or ranking), performance prediction (per-algorithm or per-instance),
problem classification (problem class, difficulty, or high-level land-
scape properties), and complementarity or visualization of benchmark
suites (for example, clustering, dimensionality reduction). We consid-
ered studies reporting results on established suites and modern gener-
ators, where feature learning or evaluation was central. We excluded
works outside the primary scope (purely multi-objective, constrained
multi-objective, or mixed-integer) unless they directly informed single-
objective feature methods, papers without extractable experimental
details (for example, no identifiable benchmarks or metrics), and op-
timization studies which do not include feature representations of
optimization problems, algorithms, or trajectories.

Furthermore, works such as [24,25] provided valuable taxonomies
but offered limited attention to algorithm features and completely
omitted trajectory-based approaches, since these were not developed at
the time. In contrast, our survey introduces a structured taxonomy that
integrates four representation families: problem landscape features,
algorithm features, high-level interaction features, and trajectory-based
features, thereby broadening the scope substantially. On the other
hand, tutorial contributions such as [18,26] played an important ped-
agogical role by explaining the basic concepts of landscape analysis
and providing practical guidance on tools (for example, software for
computing ELA features). However, these tutorials were not intended
to provide a comprehensive synthesis of the state of the art, and they
do not cover the surge of recent methods, particularly those based on
deep learning (for example, CNN-based fitness maps, TransOpt, Deep-
ELA, DoE2Vec) and trajectory-based representations (for example, Dy-
namoRep, Opt2Vec, probing trajectories). Finally, unlike these earlier
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contributions, our survey emphasizes critical evaluation and open chal-
lenges. We analyze methodological issues such as over-reliance on the
BBOB benchmark, lack of variance and effect size reporting, weak cross-
benchmark generalization, and limited interpretability of black-box fea-
tures - points that earlier surveys and tutorials did not address. We also
outline forward-looking directions including invariance-aware feature
design, and cross-benchmark evaluation protocols. In summary, our
survey advances the field by unifying problem, algorithm, interaction,
and trajectory representations, incorporating modern deep learning
approaches, and highlighting methodological rigor and generalization,
offering a comprehensive and up-to-date overview.

2. Machine learning pipeline using optimization features

Fig. 1 illustrates an ML pipeline that includes essential components
for calculating or learning features related to problem landscapes,
algorithm characteristics, and problem-algorithm interactions. It also
highlights several learning tasks - such as algorithm selection, problem
classification, and complementarity analysis of benchmark problem
suites - where these features serve as inputs to the ML model. It is
important to note that the specific features and components involved
may vary depending on the particular ML task being solved.

The main components of such a pipeline are the following:

» Problem Portfolio - A set of optimization problem instances for
which we want to find an optimal algorithm instance, analyze
their coverage, or predict their interoperable properties. In the
single-objective optimization domain, examples of such functions
are the sphere function, ellipsoidal functions, discus, etc. These
problem instances are structured in problem benchmark suites,
the most commonly used ones being the Black Box Optimiza-
tion Benchmarking (BBOB) [27] suite and the IEEE Congress on
Evolutionary Computation (CEC) Special Sessions and Competi-
tions on Real-Parameter Single-Objective Optimization [28-31]
suites. For a sound (academic) evaluation of the ML models,
the problem portfolio should cover problem instances that are
diverse, challenging, and discriminating of algorithms’ perfor-
mances. In recent years, there has been a growing interest in the
optimization field regarding the generation of new optimization
problem instances in an automatic manner [32-37]. Generating
novel problem instances has the potential to introduce previously
unexplored optimization challenges in ongoing research.
Algorithm Portfolio - A set of optimization algorithm instances
that are candidates for solving an optimization problem instance.
Some examples in single-objective black-box optimization are
Differential Evolution [38], Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [39], and Particle Swarm Optimization
(PSO) [40] algorithms. In addition, modular optimization frame-
works are also utilized such as ModCMA [41,42], ModDE [43],
and PSO-X [44].

Algorithm Evaluation - The process of running the optimiza-
tion algorithm instances on the optimization problem instances
and recording their performance in terms of some evaluation/
performance metric. Two standard evaluation scenarios include
the fixed-budget and fixed-target evaluations. In the fixed-budget
scenario, the algorithm instance is allowed to use a predefined
budget and one studies the solution quality or, if the value of the
global optimum is known, the target precision, defined as the dif-
ference between the quality of the solution recommended by the
algorithm (typically, but not necessarily, the best evaluated one)
and that of the global optimum. In the fixed-target scenario, the
algorithm is tasked with finding a solution of a certain quality,
and we study the budget that is needed by the algorithms to find
a solution of at least this quality. We recall that, in black-box
optimization, the budget is often specified in terms of function
evaluations or iterations, not in terms of (CPU or wall-clock) time.
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Fig. 1. A typical machine learning pipeline using optimization meta-features.

A third commonly used set of performance measure considers the
anytime performance of the algorithms, measured through empir-
ical cumulative distribution functions [45] or directly through
empirical attainment functions [46].

Problem Landscape Features - The description of an optimiza-
tion problem instance in terms of numerical features. Landscape
analysis is a line of research whose aim is to extract meta-features
that describe the properties of the problem instances [47]. We
typically distinguish between two levels of landscape features:
high-level properties of the fitness landscape that are qualita-
tive descriptors of the landscape structure (e.g., multi-modality,
separability, search space homogeneity) [24] and low-level fea-
tures (i.e., exploratory landscape analysis, ELA [48] such as
candidate solution distribution, local search, convexity, meta-
model, smoothness, ruggedness) calculated using different sta-
tistical methods from a sample of candidate solutions sampled
from the decision space for a given problem instance using some
sampling technique. We need to highlight here that those features
are calculated to describe the whole landscape space of a problem
instance, without taking care about the landscape visited/ob-
served when an algorithm instance is run on it. Problem landscape
features therefore describe intrinsic properties of optimization
problems, independently of any algorithmic influence. We pro-
vide an overview of problem landscape feature construction in
Section 3.

+ Algorithm Features - These features characterize the algorithm
instance, independently of the problem it is used to optimize.
They are generated by analyzing the source code [49] or de-
rived from algorithm parameters that remain constant and do
not depend on the problem being solved. It is the low resourced
investigated feature group. An overview of algorithm features is
given in Section 4.

High-level Problem-Algorithm Interaction Features - These
features rely on high-level information about the optimization
problems on which the algorithms are executed, rather than
capturing the trajectory of the optimization runs. In essence,
these features connect high-level information about a set of op-
timization problems with the final performance achieved by an
algorithm. Unlike algorithm features, which describe only the
algorithm, without any influence of the problem on which it is
executed, the high-level problem-algorithm interaction features
capture properties of both the problem and the algorithm.
Different approaches exist focusing on features based on their
performance [50], features based on graph embeddings [51] and
graph neural networks (GNNs) [52], and features based on config-
uration settings for modular algorithm frameworks [53,54]. Sec-
tion 5 provides an overview of the high-level problem-algorithm
features.

Trajectory-based Features for Capturing Problem-Algorithm
Interaction - Problem landscape features characterize problem
instances in terms of numerical features calculated on a sample
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from the entire problem instance. This step is typically done
before the optimization algorithm is run, meaning that additional
function evaluations are required for the feature construction pro-
cess. Additionally, the high-level problem-algorithm interaction
features encode information about the problem landscape and the
algorithm’s final performance. An alternative line of work is the
usage of samples generated by optimization algorithms during
their execution on a problem instance. This type of representa-
tion would capture interactions between the problem instance
and the optimization algorithm. An overview of trajectory-based
feature constructions for capturing problem-algorithm interaction
is given in Section 6. The difference between trajectory-based
features and high-level problem-algorithm interaction features is
in the input data used for their calculation. Both feature types
are dependent on both the problem and the algorithm. However,
the trajectory features are calculated using the entire trajec-
tory of candidate solutions explored during algorithm execution.
They therefore capture the search behavior of the algorithm exe-
cuted on a problem. On the other hand, the high-level problem-
algorithm interaction features do not use the entire trajectory
as input, but instead may rely only on the final performance
of the algorithm. These features therefore do not capture the
search behavior, but the relation between the characteristics of
a problem, and the performance of an algorithm.

Machine Learning - The problem landscape features, algorithm
features, high-level problem-algorithm interaction features, and
trajectory-based features, or a combination of different groups can
be used as input data for an ML model in different learning tasks.
The three most researched tasks are presented below:

— Algorithm Selection — One approach for training an AS
model is to treat it as a multi-class classification problem [9],
with the objective of identifying a single optimal algorithm
for the specific problem instances. Alternatively, it can be
treated as a multi-label classification problem [55], where
multiple algorithms may be selected (e.g., two or three dif-
ferent algorithms with similar performance). Other learning
scenarios include solving a regression problem [56-59], in
which the ML model predicts the performance achieved by
each algorithm, or ranking [60], where the aim is to rank
the algorithms according to a specific evaluation metric. A
comprehensive study comparing approaches for algorithm
selection in single-objective optimization — through differ-
ent learning tasks (multi-class classification, pairwise clas-
sification, regression) and performed with different ML al-
gorithms (i.e., Random Forest [61], XGBoost [62], TabPFN
[63], and FT-Transformer [64]) — is available in [65].

— Problem Classification — In this task, meta-features serve
as input to a model to predict either the problem repre-
sented (for problem landscape features) or the problem be-
ing solved (for problem-algorithm trajectory features) [13,
66]. Identifying this information can assist users and re-
searchers in applying their domain knowledge to enhance
the optimization process.

— Complementarity of benchmark problem suites — In this
task, various sets of problem instances are represented by
problem landscape features, and their diversity is examined
using unsupervised learning techniques like clustering [67],
dimensionality reduction [68], and graph algorithms [10].

It is important to note that in this survey, we will focus on various
methodologies used to calculate or learn problem landscape features,
algorithm features, and problem-algorithm trajectory features, along
with their existing applications. However, other components, such as
the selection of problem and algorithm portfolios, and different ap-
proaches to ML modeling across various learning tasks, are beyond the
scope of this survey.
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3. Problem landscape features

In this section, we describe approaches that calculate problem land-
scape features using a set of candidate solutions, sampled from the
decision space of the problem instance through non-adaptive or deter-
ministic sampling techniques. These features are characterized by their
aim to represent the problem instance, regardless of which algorithm is
executed. Fig. 2 illustrates the general pipeline of calculating problem
landscape features.

Several approaches for capturing characteristics/properties of single-
objective continuous optimization problems have already been pro-
posed. They can be broadly categorized as providing high-level features
that are more interpretable and low-level features such as in the case
of Exploratory Landscape Analysis [48], Topological Landscape Analy-
sis [69], and deep learning-based approaches [70,71]. The latter can be
learned through supervised learning (which includes algorithm perfor-
mance data) or unsupervised learning (which uses only samples of the
problem landscape space obtained through a sampling technique).

3.1. High-level landscape features

High-level fitness landscape analysis captures optimization problem
characteristics such as the degree of global structure (none, low,
medium, high), separability, variable scaling, multimodality, and search
space homogeneity. For example, features related to ruggedness, neu-
trality, gradients, global landscape structure, deception, and search-
ability have been explored together with their correlations with the
diversity rate of change metrics of the behavior of the particle swarm
algorithm [72]. The results have shown links between particular fea-
tures and PSO behavior. In contrast to some of the low-level landscape
features, these features are designed to be highly interpretable.

3.2. Low-level landscape features

3.2.1. Exploratory landscape analysis

Exploratory landscape analysis (ELA) [48] is an approach to charac-
terize black-box optimization problem instances using numerical mea-
sures that each describe a different aspect of the problem instances.
ELA features can be further distinguished into cheap features that are
computed from a fixed set of samples and expensive features that require
additional sampling (e.g., they may require running some local search
variants or other sequential sampling approaches) [73]. A convenient
way to compute ELA features is provided by the flacco R package [74].
This package offers 343 different feature values split into 17 feature
groups, including dispersion, information content, meta-model, nearest
better clustering, and principal component analysis. Recently, a Python
version of the package has been published, offering some additional
set of features from local optima networks [75].

The original ELA features [48] were grouped into six categories:

» The convexity of an optimization problem is captured by ob-
serving the difference in the objective value of a point which is
a linear combination of two randomly sampled points and the
convex combination of the objective values of the two sampled
points.

The distribution of the objective function values is character-
ized by its skewness, kurtosis, and the number of peaks based on
a kernel density estimation of the initial design’s objective values.
Local search features are extracted by running a local search
algorithm and hierarchically clustering the considered solutions
in order to approximate problem properties. For instance, the
number of clusters is an indicator of multi-modality, while the
cluster sizes are related to the basin sizes around the local optima.
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Fig. 2. The general pipeline of calculating problem landscape features.

» The levelset features split samples into two classes based on
whether the value of the objective function falls above or below
a certain threshold. Linear, quadratic, and mixture discriminant
analysis is used to predict whether the objective values fall below
or exceed the calculated threshold. The intuition behind this is
that multi-modal functions should result in several unconnected
sublevel sets for the quantile of lower values, which can only
be modeled by the mixture discriminant analysis method. The
extracted low-level features are based on the distribution of the
resulting misclassification errors of each classifier.

The construction of meta-model features requires the use of lin-
ear and quadratic regression models, with and without interaction
effects, which are fitted to the sampled data. The features are then
calculated by taking the adjusted coefficient of determination
R2 of the models, indicating model accuracy, as well as the
model coefficients. Such features are useful for extracting function
characteristics, since functions with variable scaling will not allow
a good fit of regression models without interaction effects, and
simple unimodal functions could be approximated by a quadratic
model.

Curvature features estimate the gradient and Hessians from sam-
ples of the function and use their magnitudes to quantify the
curvature.

Cell mapping features [76] partition the problem landscape into a
finite number of cells:

» Angle features are based on the location of the worst and best el-
ement within each cell since opposite locations of these elements
indicate a trend within a cell. More precisely, the features observe
the mean and standard deviation of distances from the cell center
to the best/worst element, and of the angle between these three
points.

Convexity features represent each cell by the element closest
to the cell center and compare the objective function values of
neighboring cells to capture convexity/concavity.

Gradient homogeneity features compute the length of the sum
of the gradients between each element and its nearest neighbor
within the cell.

General cell mapping features interpret the problem landscape
cells as absorbing Markov chains. Cells that are visited infinitely
often, once they have been visited once, are referred to as periodic
cells, while all other cells are transient cells. Different types of
features are then extracted based on the probability of moving
from one cell to another, the number of cells of different types
that appear, the size of the basins of attraction, etc.

Over time, additional ELA features have also been introduced:

« Basic features include minimum and maximum of the objective
function, number of samples, etc. based on an initial sample of
points.

Dispersion features [77] compare the dispersion among all the
samples and among a subset of these points.

Linear Model features [74] first build several linear models with
the objective variable being the dependent variable and all the
remaining variables being treated as explaining variables. Based
on the obtained model coefficients, statistics are calculated that
are used as features.

Nearest Better Clustering features [78] are computed by com-
paring samples to their closest neighbor and to their better closest
neighbor.

Features based on Principal Component Analysis [74] describe
the relative amount of principal components required to explain
a predetermined amount of variability.

Barrier Tree features [79] describe the landscape of an optimiza-
tion function using trees where saddle points are represented with
regular nodes while minimums are described by leaves. Features
are then generated by computing tree descriptors such as the
number of levels and the distance between the leaves.
Information Content features [80] try to capture information
content of the landscape such as smoothness, and ruggedness.
This is achieved by taking into account the distance between
neighbors and changes in fitness values between them.

The success of ELA can largely be attributed to its accessibility,
particularly through the ready-to-use software packages, flacco and
pflacco. However, it is not a comprehensive implementation of all
existing features. For instance, information epistasis [81] or auto-
correlation [82], initially designed for discrete variables, can be easily
adapted to continuous ones. In addition, the same is true for the use of
entropy [83] as a measure.

ELA features are the most commonly used problem landscape fea-
tures, however they come with a lot of limitations: their poor robustness
to sampling strategy and sample size [7,11,84], and invariance to
transformation in the problem space (i.e., shifting, scaling, or rotation
of a problem instance) [68,85,86]. Recently, a new study highlights
how many of these features are sensitive to absolute objective values
(i.e., lack of shift and scale invariance), causing bias in automated
algorithm selection models and hindering their ability to generalize to
new problem instances [87]. To mitigate this, it has been proposed to
normalize the sampled data before computing ELA features.

A potential avenue to address the sensitivity of ELA features to
sampling strategy and sample size is the exploration of adaptive sam-
pling and aggregation schemes. Instead of fixing the number of samples
in advance, one could investigate starting from a small initial design
(e.g., Latin hypercube or Sobol) and gradually expanding it in re-
gions where feature estimates appear unstable. Similarly, aggregating
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features across multiple resamples, possibly with normalization and
variance-aware weighting, may offer more stable descriptors.

ELA features have also been used to characterize Neural Architec-
ture Search (NAS) [88] landscapes across three typical image classifica-
tion datasets: MNIST, Fashion, and CIFAR-10 [89]. This analysis reveals
distinct characteristics of the NAS landscapes of these three datasets.
ELA features have also been used to perform complementarity analysis
of the hyperparameters optimization landscapes (HPO) and classical
BBOB problems from [27], for black-box optimization [90] and for
XGBoost learner [91]. Additionally, the ELA features have been used to
identify cheap representative functions of 20 automotive crashworthi-
ness problems which are expensive to evaluate [92], where it was also
shown that these problems exhibit landscape features different from the
classical BBOB benchmark suite.

Overall, ELA is one of the most widely used and tested approaches
for characterizing black-box single-objective optimization landscapes,
offering a broad set of numerical descriptors. The features are accessible
in ready-to-use implementations such as flacco and pflacco. At the same
time, ELA has important limitations: many features are sensitive to the
sampling strategy and sample size, and several are not invariant under
common transformations of the search or objective space (e.g., shifting,
scaling, or rotation).

3.2.2. Topological landscape analysis

Topological Landscape Analysis [69] features characterize optimiza-
tion problem instances based on Topological Data Analysis [93], which
is an approach to analyzing and obtaining features from a finite set
of data points, also referred to as a point cloud. Similarly to the ELA
features, the point cloud is constructed based on a set of samples
from the optimization problem. Once the samples of the objective
function are collected, they are sorted by objective value and divided
into multiple layers. The point cloud from each level reveals the
structural characteristics specific to that layer. For each point cloud,
a persistence diagram is generated, capturing the topological features
within the layer. These persistence diagrams are then transformed into
finite-dimensional vector representations known as persistence images.
Persistence images enable each layer’s samples to be represented as a
feature vector, where pixel values from the image provide a meaningful
encapsulation of the underlying structure in vector form.

This approach is especially robust to noise and supports different
metrics for describing the similarity between data points. The goal of
Topological Data Analysis is to discover topological structures such
as spheres, torus, connected components, or even more complicated
surfaces and manifolds, which persist across scales, independently of
certain transformations (e.g. rotations, scaling). Discovering such struc-
tures can help characterize the point cloud using features that capture
the existence of different structures across different scales.

Apart from their original version [69], an improved version called
TinyTLA requiring smaller sample sizes for feature calculation has also
been proposed in [94]. Here, instead of splitting the problem samples
into layers, the information from the entire set of problem samples is
captured using a matrix of distances between the candidate solutions
(x values) and objective function (f(x)) values of each pair of samples.
The thereby obtained distance matrix is used to further compute the
persistence diagrams, persistence images, and feature representations
as in the original TLA. The TinyTLA features have also been tested
on the BBOB problem classification task with an extensive analysis
of parameter influence and an initial evaluation for the algorithm
selection task on the BBOB benchmark.

3.2.3. Deep learning-based approaches
Here, more details about low-level features learned by different
types of deep neural networks (DNNs) will be provided.
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Features learned by using convolutional neural networks. A set of low-
level features learned by convolutional neural networks (CNNs) [95]
are presented in [70,96]. To calculate them, first, for each problem
instance involved in the training data (i.e., BBOB problem instances),
a set of candidate solutions is generated using a Latin Hypercube
sampling (other sampling techniques can also be used). The set of
candidate solutions is further used to calculate a fitness map, which
is a two dimensional image with a single channel in a [0,1] range.
To generate the image, the objective solution values are normalized
in the range of [0,1], and each candidate solution is mapped into a
Cartesian plane at the location defined by the decision variables and
the objective solution value defines the color range (gray-scaled) of
each pixel. One weakness of this transformation is the information loss
since two different candidate solutions that are close will be mapped
to the same pixel. Transforming the set of candidate solutions into a
two-dimensional image allows utilizing a CNN to compute low-level
features for the problem instances. In [96], the CNN that has been
utilized is the ShuffleNet v2 [97] due to the competitive performance
achieved in object classification in computer vision. In [70], the work of
using the fitness map and CNN has been extended for high-dimensional
data rather than two or three dimensions. For this purpose, four di-
mensionality reduction techniques have been investigated to reduce the
fitness map dimensionality into two dimensions that are further utilized
by the CNN to learn the low-level features. Here, 24 BBOB problem
classes are used with 150 problem instances per class. The training has
been performed in a supervised manner in a problem classification task
where the problem instances are classified into one of the three classes
based on the high-level properties i.e., multimodality, global structure,
and funnel structure.

Features learned using a point cloud transformer. When calculating the
fitness map for high-dimensional problem instances (d > 2) there is a
loss of information from high-dimensional to low-dimensional space.
To mitigate this, point cloud transformers have also been utilized to
calculate low-level features. In [70], the authors modified the original
work on point cloud transformers that use the idea of convolutions
that operate on the edges within a kN N-graph [98]. Here, instead
of convolutions on the edges, the embedding operates on the node of
the kN N-graph. This means that every candidate solution is embedded
into its local neighborhood (similar candidate solutions). This has been
performed since these features have been learned in a supervised
manner in a problem classification task where the problem instances
are classified into one of the three classes based on the high-level
properties i.e., multimodality, global structure, and funnel structure.

DoE2Vec features learned using a variational autoencoder. DoE2Vec fea-
tures [99] are low-level features learned in an unsupervised manner
with a variational autoencoder (VAE) [100]. To learn them, first, a
dataset of candidate solutions, initially within the domain of [0,1]¢ (d is
the problem dimension) is generated using a sampling technique. Next,
the candidate solutions are evaluated using a set of problem instances
that are randomly generated using the random function generator
from [101], which is a modification of the generator proposed in [33].
This evaluation allows the collection of training data with different
complexity that covers a wide range of problem instances. Further, all
objective solution values are first re-scaled within the range of [0,1]
and are then used as input features to train the VAE. These features
not only demonstrate promise in identifying similar surrogate problem
instances that are inexpensive to evaluate but also have the potential
to significantly enhance performance when used alongside traditional
ELA features in problem instance classification tasks.

TransOpt features learned using a transformer. TransOpt features [102]
are low-level features learned in a supervised manner by using a
transformer architecture [103]. The original transformer architecture’s
core lies in its encoder-decoder structure, comprising multiple identical
blocks for both the encoder and decoder. In the case of TransOpt
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features, only the encoder has been utilized, consisting of a multi-head
self-attention module and a position-wise feed-forward network. The in-
put data for training the transformer are generated candidate solutions
for each problem instance, obtained using Latin Hypercube sampling.
These samples are provided to the transformer encoder, which produces
a representation for each sample. A representation of the problem is
then obtained by aggregating the sample representations.

This architecture has been trained in a supervised manner on two
different tasks. In [102], the model is trained on the BBOB benchmark,
where the task is to identify to which of the 24 BBOB problem classes
an instance belongs. In this case, 24 problem classes with 999 instances
(i.e., shifted, scaled) per each problem class and per dimension d €
{3,5,10,20} are used. The tested sample sizes are 504 and 100d. The
model consists of the previously mentioned encoder and a classification
head trained to predict the 24 problem classes. It has been shown
that TransOpt features can achieve accuracy rates ranging from 70%
to 80% when tasked with identifying problem classes across various
problem dimensions. It is important to note that even though the
model is trained on the problem classification task, it can produce
feature representations for unseen problem instances which can be
used in different downstream tasks. A demonstrative example of this is
shown in [104], where the TransOpt model is used to generate problem
representations on top of which a random forest model [61] is trained
for the algorithm selection task.

Deep-ELA features learned using a transformer. Deep-ELA [105] is a
methodology involving the unsupervised training of transformer mod-
els to produce representations of optimization problems which are
invariant to problem transformations. This is accomplished by train-
ing the model to produce the same representation for a problem in-
stance and its augmented variant. The augmentation is accomplished
through transformations that do not alter the underlying optimization
problem, such as rotations and inversions of decision variables and
randomization of the sequence of decision and objective variables.

Four transformers have been pre-trained on large sets of randomly
generated optimization problems to grasp intricate representations of
continuous single- and multi-objective landscapes. The Deep-ELA fea-
tures have been evaluated in the problem classification task classifying
the BBOB single-objective problem based on their high-level charac-
teristics defined in the benchmark suite. In addition, they have been
evaluated in automated algorithm selection tasks on the BBOB bench-
mark suite and four different multi-objective benchmark suites. A study
evaluating the complementarity of Deep-ELA and classical ELA features
was recently presented in [106], with a following study involving
TransOpt features [107].

Random filter mappings. As opposed to using trained deep learning
models to extract problem landscape features, [108] proposes the
extraction of features using randomly initialized filters. The procedure
starts with the initialization of a set of filters with random sizes, weights
and radii. Each individual filter is then applied at randomly selected
anchor points (samples of the objective function). In particular, the
filter application involves the multiplication of the filter weights with
the pairwise distances of a subset of the problem samples which are
in the vicinity of the anchor point (have a distance which is less than
the dimension-adjusted radius of the filter). The thereby obtained filter
responses are aggregated to obtain the problem landscape features.
These features have been evaluated for the algorithm selection task, as
well as the task of problem classification of the BBOB problem instances
into the 24 problem classes, and recognizing their high-level properties.

3.3. Advantages vs. Disadvantages of problem landscape features

After summarizing the latest trends in problem landscape features,
Table 1 presents their advantages and disadvantages.
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3.4. Summary of problem landscape features

Table 2 demonstrates a summary of the type of training tasks and
inputs required for each problem landscape feature group. Additionally,
the last column contains information about how the features are calcu-
lated in different studies. In particular, we report the size of the sample
used for feature calculation, the number of repetitions performed when
calculating the features (since some of them are stochastic and some
studies perform multiple runs and aggregate the feature values), and
the dimension of the problems on which the features are tested. Please
note that if the study did not explicitly report that multiple repetitions
were performed, we assume that the features were calculated once.
Furthermore, please note that for the ELA features, we do not include
an exhaustive list of studies where the features were used, due to an
overwhelmingly high number of such studies. Instead, we chose 10
studies from different authors as examples. From the table, we can see
that there is a lack of consistency in feature calculation. First, there
is substantial variation in sample sizes between studies. Similarly, the
number of repetitions varies widely: some studies rely on a single run,
while others average results across 10, 15, or even 100 repetitions
to mitigate stochastic variability. Another clear observation is that
most empirical work has been conducted on low-dimensional problems,
typically up to d = 10 or d = 20, with a few exceptions explor-
ing higher dimensions. This suggests that while problem landscape
features have been extensively explored in principle, their evaluation
has been constrained to relatively small search spaces. This highlights
the need for systematic evaluations of feature robustness in higher-
dimensional settings, where sampling becomes more expensive but also
more informative.

Future work should test how features scale across different di-
mensionalities, analyze their stability across varying sample sizes, and
assess sensitivity to function transformations, stochasticity and repe-
tition strategies. Moreover, standardized protocols are needed on (i)
how many samples to draw per dimension, (ii) how many repetitions
are required for statistically reliable estimates, and (iii) which dimen-
sions should be included in benchmarking studies. While some studies
have already addressed the sensitivity of ELA features to function
transformations [85], sampling strategies and sample sizes [11,86],
these questions remain relatively underexplored for more recent feature
groups.

4. Algorithm features

Algorithm representations are focused on calculating features that
characterize the algorithm instance. While the development of algo-
rithm features has garnered somewhat lower research interest com-
pared to the development of problem landscape features, in this section
we present the features derived directly from the source code.

Algorithm features based on source code. The extraction of features from
the algorithm source code and from the abstract syntax tree has been
proposed in [49]. The features extracted from the source code capture
the cyclomatic complexity, maximum indent complexity, number of
lines of code, and size in bytes for the entire source code as well as
aggregations of these properties across different regions of the code.
On the other hand, the features extracted from the abstract syntax
tree involve the conversion of the abstract syntax tree obtained during
the compilation of a given algorithm into a graph representation and
extracting various graph properties such as node count, edge count,
transitivity, node degree, clustering coefficient, depth, etc.

In addition to source code-derived metrics, potential algorithm
representations could also capture functional and structural charac-
teristics that directly reflect the design choices of metaheuristics. For
example, they could include the types of variation operators employed
(e.g., mutation, crossover, or recombination), the selection and re-
placement mechanisms (e.g., tournament, rank-based, elitist strategies),



G. Cenikj et al.

Table 1
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Advantages vs. disadvantages of the different problem landscape feature sets.

Problem landscape features Advantages

Disadvantages

- Easy use through R, Python, and

- Sensitive to sampling strategy and

GUIL sample size
ELA . . .
- Most commonly-used problem - Noninvariant to problem shifting,
landscape features scaling, and rotation
- Explainable to some degree - Poor generalization on new unseen
instances when plugged into an ML
model
- Computationally costly
TLA Invariant to shifting, scaling, and - Black-box features

rotation

- Can produce a very high-dimensional
feature vector, may require
dimensionality reduction before usage

Learned by CNNs dimensional problems

- Does not require any feature

engineering

- More applicable for two and three

- Black-box features

- Loss of high-dimensional information
by representing the data as a two
dimensional fitness map

- Depends on the problem portfolio used
for learning

Learned by point
cloud transformer

dimensions

- Applicable to all problem
dimensions, though may require
model retraining for higher

- Black-box features

- Depends on the problem portfolios
used for learning

Doe2Vec - Does not require any feature - Black-box features
engineering

TransOpt Does not require any feature - Black-box features
engineering

Deep-ELA - Does not require any feature - Black-box features

engineering

Random filter mappings
engineering

- Does not require any feature

- Black-box features

- May produce irrelevant features

and the presence of restart or perturbation policies. Another impor-
tant dimension is parameter adaptivity. Algorithms may embed self-
adaptive mechanisms (e.g., step-size control in evolution strategies,
cooling schedules in simulated annealing) or hyper-heuristic controllers
that dynamically adjust parameters during the search. Representing
whether and how such adaptivity is employed could offer valuable
insights into algorithm behavior. Please note that these are potential
research directions and not existing works.

4.1. Advantages vs. Disadvantages of algorithm features

Table 3 presents their advantages (pros) and disadvantages (cons)
of the algorithm features based on the source code.

5. High-level problem-algorithm interaction features

These features are based on general characteristics of the optimiza-
tion problems where the algorithms are applied, instead of describing
how the algorithm’s search process unfolds over time. Essentially, they
establish a link between the problem’s high-level properties and the
algorithm’s final performance, but they do not capture details of the
algorithm’s behavior during its run. Fig. 3 presents the general pipeline
of calculating high-level problem-algorithm landscape features.

Features learned by using convolutional neural networks. CNN-based fea-
tures were investigated in [70,96], and their details were previously
discussed in Section 3. The key difference here lies in the supervised
learning task. For problem landscape features, the supervised task
involved classifying problem instances based on high-level properties
without considering any algorithm interaction. In contrast, in this case,
the model was trained for algorithm selection, aiming to choose the

most suitable modular CMA-ES [39] configuration from a portfolio of
32 for each problem instance. The latent representations obtained from
the CNN are subsequently used as low-level features.

TransOptAS features learned using a transformer. Similar to TransOpt
features presented in Section [102], where the transformer has been
trained in a problem classification task, in [71], the transformer archi-
tecture is directly trained on the algorithm selection task. In this case,
the model consists of an encoder and a regression head that predicts
a numerical performance indicator for 12 configurations of the PSO
algorithm.

Features based on performance. Performance2Vec [50] is a methodology
for constructing features that describe problem-algorithm interaction
based on the performance achieved on a set of benchmark problems.
Here, the vector representation consists of the algorithm instance per-
formance obtained on each benchmark problem separately, so they
can be assumed to be different features. Algorithms’ performance can
be defined in terms of different metrics, using simple statistics like
mean or median, or more complex ranking schemes like Deep Statistical
Comparison [115].

Features based on problem landscape features used by performance predic-
tion models. This type of representation is generated by observing the
importance assigned to ELA features by explainability methods applied
to ML models trained for performance prediction. It involves the use
of the SHAP [116] method, which can assign feature importance on
a global level (i.e., on a set of problem instances) and on a local level
(i.e., on a particular problem instance). A single-target regression (STR)
model is trained to predict the performance of the algorithm instance
using the training problem instances described by their ELA features.
The model is then used for making predictions on the problem instances
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Table 2
Summary of inputs, training task types and sample sizes used in the literature for problem landscape features.
Feature name Training task type Inputs Sample
ELA manually designed Samples of optimization - 250d samples; 100 repetitions; d € {5} [109]

problems - 5004 samples; 10 repetitions; d € {2} [76]
- 250d samples; 10 repetitions; d € {10} [9]
- 6d, 60d, 6254 samples; d € {5} [84]

- 1000d samples; 15 repetitions;

d €{2,3,5,10,20} [110]

- 1000d samples; 1 repetition; d € {2,5} [37]
- 50d, 100d samples; 1 repetition; d € {3,10}
[104]

- 250d samples; 1 repetition; d € {5} [111]

- 50d, 1004 samples; 10 repetitions;

d € {2,3,5,10} [112]

- 250d samples; 1 repetition; d € {5,10} [113]
- 10, 40, 100, 200, 400, 600 samples; 1
repetition; d € {2,3,5,10} [94]

- 50d samples, 1 repetition, d € {10} [114]

TLA manually designed Samples of optimization

problems

Fitness Map + CNNs supervised Samples of optimization - 100, 500 samples; 10 repetitions;
problems, High-level d €{2,3,5,10} [70]
problem properties

Point Cloud Transformer supervised Samples of optimization - 100, 500 samples; 10 repetitions;

problems, High-level
problem properties

d €{2,3,5,10} [70]

DoE2Vec self-supervised Samples of optimization - 256 samples; 1 repetition; d € {5} [99]
problems - 50d samples; 1 repetition; d € {10}problems
[114]
TransOpt supervised Samples of optimization - 50d, 100d samples; 1 repetition; d € {3,20}
problems, Problem class [102]
- 50d, 100d samples; 1 repetition; d € {3,10}
[104]
Deep-ELA self-supervised Samples of optimization - 25d, 50d samples; 1 repetition;

problems d €{2,3,5,10} [105]

- 50d samples; 1 repetition; d € {10} [114]

- 25d, 50d samples; 1 repetition;

d €{2,3,5,10} [106]

- 50d samples; 1 repetition; d € {3,10} [107]

Random Filter Mappings manually designed Samples of optimization - 200d samples; 1 repetition; d € {2,3,5,10}

problems [108]
Table 3
Advantages vs. disadvantages of algorithm features.
Algorithms features Advantages Disadvantages

- These features are ineffective for automated
algorithm configuration or parameter tuning, as
parameter differences are typically evident only
during execution, not in the code.

- Features extracted from the source code depend
highly on the programming language and the
specific implementation, leading to potential
discrepancies even for the same algorithm.

- May be used to compare different programming
implementations of the algorithms and further
investigate which one has better performance

Based on source code

from the test dataset. Next, using the SHAP method, the Shapley values
that are the contributions of each landscape feature to the performance
prediction are calculated. If the input to the model are p landscape
features, averaging the Shapley values across all problems for each
landscape feature separately gives a p-dimensional meta-representation
of the algorithm behavior. This type of representation encodes the
interactions between the landscape features and the algorithm per-
formance. Such representations have been previously used to find
algorithm instances with similar behavior on a set of benchmark prob-
lem instances [59] and to understand which module from a modular
CMA-ES [39] is active based on the performance data [57].

Features using graph embeddings. Features can also be constructed by
leveraging their interactions with different entities from the optimiza-
tion domain. In [51], the performance prediction task was addressed
as a link prediction task, which aims to identify if an algorithm can
solve a given problem instance with some specified error. In this case,
the methodology involved the construction of a knowledge graph (KG),

where some of the nodes describe aspects of the problem instances
(their corresponding problem class, high-level features, and ELA fea-
tures), while other nodes are related to algorithm descriptions (their
parameters). The algorithm and problem instance nodes are linked
if the algorithm can solve the problem instance with some specified
error threshold. Such a representation of the algorithm and problem
instance properties allows the application of standard knowledge graph
embeddings for deriving representations of the problem instances and
algorithm instances, which can then be used for performance predic-
tion. We need to highlight here that this approach of learning features
can produce either algorithm features if the node is representing an
algorithm instance or problem instance features if the node is represent-
ing a problem instance. In the case of problem instance features, they
differ from the low-level landscape features described in Section 3 since
they fuse information not only for the landscape but also consider the
interaction of an algorithm instance on each problem instance through
its end performance.
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Fig. 3. The general pipeline for calculating high-level problem-algorithm interaction features.

Features using graph neural network. Parameters describing algorithm
configurations, which significantly influence performance, were often
overlooked by the techniques of learning algorithm features. To ad-
dress this, the complex structure formed by the relationships between
algorithm operators/modules, parameters, problem characteristics, and
performance outcomes was represented as a graph [52]. Heterogeneous
graph data structures and graph neural networks were explored to en-
able the prediction of optimization algorithm performance by capturing
the complex dependencies between problems, algorithm configura-
tions, and performance outcomes. Two modular frameworks, modCMA-
ES and modDE, were considered. Improvements of up to 36.6% in
mean square error in algorithm performance prediction over traditional
tabular-based methods were achieved, and the potential of geometric
learning in black-box optimization was demonstrated. This approach
generates an algorithm and problem landscape features depending on
the node of interest.

Features based on configuration settings for modular algorithm frameworks.
Another approach for extracting features from algorithm configurations
involves using the importance or contribution of operators and modules
to the performance of the algorithm configuration. Two approaches are
presented here:

» Features based on functional ANOVA (fANOVA) - Problem class-
specific datasets are initially generated, in which modules are
used as features of the modular algorithm variants, with nu-
merous variants incorporating different module values being ex-
ecuted [53]. The corresponding performance on the problem
class is treated as the target within each dataset, thereby cap-
turing the relationship between the algorithmic modules and
performance in that specific problem class. These datasets are
then provided as input to f~ANOVA [117], through which the
variance in performance is decomposed and systematically at-
tributed to individual modules and their combinations. When
variants are defined by m modules, the analysis quantifies the
effect (i.e., importance) on performance for m individual mod-
ules, (';) pairwise module interactions, and ('3") triple module
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interactions. Estimation of higher-order interactions is considered
computationally expensive. The complete set of effects (singles,
pairs, and triplets) is subsequently used as a feature vector, and
by comparing these vectors across different problems, problems
can be identified in which the modular frameworks exhibit similar
module interactions that describe their performance.

Features based on Shapley analysis - Similar to features generated
by fANOVA, Shapley analysis can also be used to estimate the
contribution of each module to performance [118]. However,
a limitation of this approach is that only the contributions of
individual modules are calculated, as estimating higher-order
contributions is computationally expensive.

5.1. Advantages vs. Disadvantages of high-level problem-algorithm interac-
tion features

After summarizing the latest trends in high-level problem-algorithm
interaction features, Table 4 presents their advantages (pros) and dis-
advantages (cons).

5.2. Summary of high-level problem algorithm interaction features

Table 5 provides a structured overview of the high-level problem-
algorithm interaction features studied in the literature, focusing on
their training task type, the inputs required, and the sample sizes
reported. Unlike problem landscape features, which primarily rely on
sampled candidate solutions evaluated on the objective function, these
interaction features explicitly incorporate information about algorithm
behavior and performance.

The table illustrates that a variety of training paradigms are used.
With respect to inputs, these features require richer information than
problem landscape features. For example, Performance2Vec uses only
algorithm performance vectors, whereas KG and GNN embeddings
combine algorithm performance, ELA features, and configuration pa-
rameters. This integration makes them more expressive but also more
expensive to compute, as they often depend on preliminary feature
calculations or repeated algorithm runs.
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Table 4

Advantages vs. disadvantages of high-level problem-algorithm interaction features.
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High-Level p-a features

Advantages

Disadvantages

Learned by CNNs

- More applicable for two-dimensional
and three-dimensional problems

- Does not require any feature
engineering

- Black-box features

- Loss of high-dimensional information
by representing the data as a
two-dimensional fitness map

- Depends on the algorithm portfolio
used for learning

TransOptAs

- Does not require any feature
engineering

- Black-box features

- Depends on the algorithm portfolio
used for learning

- Requires algorithm execution for
obtaining algorithm performance labels
used for supervised training

Based on performance

- Facilitates algorithm comparison
through performance vectors

- Biased to the selected portfolio of
benchmark problems

Based on Shapley values

- Encodes interactions between problem
landscape features and algorithm
performance

- Used to find similar algorithm
behaviors with the assumption that the
predictive models behave similarly

- Depends on the selected problem
landscape features portfolio

- Depends on the selected benchmark
problem instances

- The dependencies on the surrogate
(STR) model

via Knowledge Graph

- Encodes interactions between problem
landscape features and algorithm
performance by also involving the graph
neighborhood

- Depends on the data stored in the KG
and the KG embedding method used for
learning

via GNNs

- Encodes interactions between problem
landscape features, algorithm
configuration, and algorithm
performance by involving the graph
neighborhood

- Depends on the data stored in the
graph and the GNN method used for
learning

Based on fANOVA

- For each problem, they encode the
contributions of modules and their
interactions to the final performance of
an algorithm.

- Depends on the available data from
the pool of different configurations.

Based on SHAP

- For each problem, they encode the
contributions of each separate module to
the final performance of an algorithm.

- Depends on the available data from
the pool of different configurations.

Table 5

Summary of inputs, training task type and sample sizes used in the literature for high-level problem-algorithm interaction features.

Feature name

Training task type

Inputs

Sample

Fitness Map supervised Samples of optimization - 50d samples; 1 repetition;

+ CNNs problems, algorithm d € {2} [96]
performance

TransOptAS supervised Samples of optimization - 50d samples; 1 repetition ;
problems, algorithm d € {3,10} [71] - 50d samples;
performance 1 repetition ; d € {10} [114]

Perfor- manually designed Algorithm performance - No samples used; d € {10}

mance2Vec [50]

Explainable supervised Algorithm performance, - 8004 samples; 30

Prediction calculated ELA features repetitions; d € 10 [59]

Models

Internal unsupervised Time series of algorithm - No samples used; d € {5}

Algorithm parameters during runs [15]

Parameters

KG self-supervised Algorithm performance, - 100d samples; 100

embeddings calculated ELA features, repetitions; d € {5,30} (for
algorithm linked with ELA feature calculation) [51]
configuration parameters

GNN supervised Algorithm performance, - 100d samples; 100

embeddings calculated ELA features, repetitions; d € {5,30} (for
algorithm linked with ELA feature calculation) [52]
configuration parameters

fANOVA manually designed Algorithm performance - No samples used; d € {5,30}

[53]
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Fig. 4. The general pipeline of calculating problem-algorithm trajectory features.

6. Trajectory-based features that capture problem-algorithm in-
teraction

The previously mentioned approaches for problem landscape fea-
tures compute low-level features by generating an artificial set of can-
didate solutions using a sampling strategy that spread well across the
whole decision space. They are hence not connected to the actual set of
candidate solutions explored by an optimization algorithm instance dur-
ing its optimization process. To address this limitation, several studies
have undertaken automated algorithm selection on a per-instance and
per-run basis by calculating trajectory-based features that represent the
algorithm behavior during its run. Below, we are going to provide more
details about different trajectory-based approaches for learning features
that capture problem-algorithm interaction. Fig. 4 presents the general
pipeline of calculating problem-algorithm trajectory features.

Trajectory-based features based on internal algorithm parameters. Some
optimization algorithms contain internal parameters that are adapted
throughout the optimization process, such as the step size, the evolution
path, the conjugate evolution path, and the square root of the diagonal
matrix holding the eigenvalues of the covariance matrix. Building on
features suggested in [119], the work [15] studied the use of time-series
features (using the tsfresh [120] library) on top of these algorithm-
internal parameters. These time series features were used to identify
the configuration of modular CMA-ES variants.

Trajectory-based ELA features. Trajectory-based ELA features are com-
puted from a set of candidate solutions that are derived from the entire
algorithm trajectory, rather than from a standard sampling technique
(such as Latin Hypercube Sampling [121], random sampling, etc.) that
is applied to the objective function. This means that the samples are
extracted from the populations (i.e., sets of candidate solutions and
their corresponding function values) that are generated/observed by
the optimization algorithm during its execution. The trajectory-based
ELA features have been first proposed in [122], under the name of
Adaptive Landscape Analysis. In that study, the ELA features are com-
puted using samples from the distribution that the algorithm CMA-ES
uses to sample its solution candidates. The approach has been evaluated
for fixed-budget performance prediction [123] of the CMA-ES [39], as

12

well as per-run algorithm selection with warm-starting [124], where the
features extracted from the trajectory of an initial optimization algo-
rithm instance are used to determine whether to switch to a different
algorithm instance. We need to highlight here that the trajectory-based
ELA features use a subset of all candidate solutions explored by the
algorithm instance during its run, without considering the iteration in
which these solutions were generated. These features do therefore not
capture the longitudinality of the solutions that are observed within
the iterations of the algorithm execution. Another study that uses the
trajectory-based ELA has been conducted to analyze the benefits of
predicting the switching between different algorithm instances during
the optimization trajectory run [125]. It has been also shown that
they can be used for dynamic selection of the acquisition function of
Bayesian Optimization [126] algorithms, improving over default static
choices [127].

DynamoRep features. DynamoRep features [13,128] are capturing the
problem-algorithm interaction using simple descriptive statistics ex-
tracted from the populations explored by the algorithm in each iteration
of its execution on a problem instance. In particular, the minimum,
maximum, mean, and standard deviation of each of the candidate
solutions and the objective function values of each population are
extracted. A representation of the entire trajectory is then generated by
concatenating the values of these statistics extracted for each popula-
tion. If the algorithm instance is run for b iterations until the stopping
criteria are met on a problem instance of dimension d (i.e., number
of decision variables), the entire algorithm trajectory representation
would then have a size of 4b(d+1). The +1 is coming from the objective
function value. DynamoRep features have been used for algorithm
selection, problem classification and algorithm classification [128].

Opt2Vec features. The trajectory-based ELA and DynamoRep features
are designed to analyze and represent the entire trajectory of an opti-
mization run. However, an important aspect is the information con-
tained within a small, specific segment of the optimization trajec-
tory, such as a particular timestamp, iteration, or population. This is
especially crucial when it comes to optimizing dynamic algorithms
efficiently. For this purpose, Opt2Vec [66] features propose the usage
of autoencoders to encode the information found in the interaction
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between an optimization algorithm and optimization problem into
an embedded subspace. These representations take the populations
considered by an optimization algorithm instance in each iteration
of its execution, scale the candidate solutions and objective function
values, and identify a subset of informative populations. The subset of
informative populations is obtained by calculating the Frobenius norm
on the differences of the matrices representing consecutive populations
of the algorithm’s execution, and discarding one of the populations
if the Forbenius norm is smaller than a predefined threshold. The
proposed approach is designed to capture features for parts of the
optimization problem’s search space that the algorithm explores at a
specific timestamp or iteration during the optimization process. The
Opt2Vec features are evaluated for the task of classifying problems
from the CEC benchmark suite. In particular, 30 CEC problems in three
different dimensions (10,30,50) are used. Different dimensionalities of
the same problem are treated as different problems, resulting in 90
problem classes used in the classification task. The Opt2Vec features
achieve classification accuracies over 80% for the recognition of the
problem being solved and its dimension.

Iterative-based ELA features. An indirect outcome of the Opt2vec and
DynamoRep studies are the iterative-based ELA features, which in-
volve calculating the ELA features on each population separately, and
concatenating the population representations to generate a represen-
tation for the entire trajectory. In this way, the representations would
capture the dynamics and behavior of the algorithm on the problem
landscape, however, the dimension of the generated representation
(i.e., number of features) grows linearly with the number of iterations
for which the algorithm is run. The iterative ELA features have been
evaluated for algorithm selection, problem classification and algorithm
classification [14,128].

Local optima networks. Local Optima Networks (LONs) [16] serve as
a simplified model for representing discrete (combinatorial) fitness
landscapes, where local optima are nodes and search transitions are
edges defined by an exploration search operator. They represent the
number of local optima in the landscape, as well as their distribution
and connectivity patterns. Monotonic LONs (MLONS) are a variant of
LONs where transitions between local optima are considered only if
fitness is non-deteriorating. To account for neutrality in the level of
local optima transitions, i.e., connected components in the MLONs
that have the same fitness value, compressed MLONs (CMLONSs) have
been proposed [129]. A compressed local optimum can be described
as a grouping of interconnected nodes within the MLONS, all sharing
the same fitness value. While originally proposed for combinatorial
problems, LONs have been adapted for the continuous domain in [129].
In this case, a Basin-Hoping algorithm [130] is used to identify the local
optima, and the MLONs and CMLONSs are adapted for the continuous
problems.

CMLONs have been utilized to visualize the 24 BBOB problem
classes across different problem dimensions [131]. Network metrics
are also calculated for each CMLON, and dimensionality reduction
techniques are employed to classify and compare these problems. The
findings reveal that CMLONs exhibit varied representations that are
linked to the inherent properties of the problem instances and their
dimensionality. Network metrics prove particularly crucial for mul-
timodal problems in higher dimensions, where CMLONs become too
intricate for meaningful visual interpretation.

Similar to LONs are the Search Trajectory Networks (STNs) [132],
which are novel tools to study and visualize how population-based
algorithm instances behave in continuous spaces. Inspired by LONSs,
which map the nodes to local optima, in STNs the nodes focus on
different states from the optimization trajectory not limited to local
optima. The edges signify the progression between these states. This
expansion enhances network-based models’ utility for understanding
heuristic search algorithms. However, they have not yet been evaluated
as possible sources for learning trajectory-based features.
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Probing trajectories. In a recent study, researchers introduced an algo-
rithm selector method that utilizes short probing trajectories generated
by running an initial algorithm on a problem instance for a brief
period [133]. These trajectories are then used to determine either
the current fitness or the best-so-far fitness, which are tracked across
predefined sequential iterations of the initial algorithm. Following this,
time-series features are extracted using the tsfresh library. These time-
series features are then used as input for a Random Forest classifier [61]
to train the algorithm selector. Additionally, the raw probing trajec-
tories are fed into a Rotation Forest classifier for the same purpose.
This approach shows promising results comparable to those achieved
using trajectory-based ELA features extracted from observed candidate
solutions and a Random Forest model.

ClustOpt. A representation learning and visualization methodology is
proposed [134], in which solution candidates explored by the algo-
rithm are clustered, and the evolution of cluster memberships across
iterations is tracked. In this way, a dynamic and interpretable view of
the search process is provided. Additionally, two metrics — algorithm
stability and algorithm similarity — are introduced to quantify the
consistency of search trajectories across runs of an individual algo-
rithm and the similarity between different algorithms, respectively.
This methodology is applied to a set of ten numerical metaheuristic
algorithms, through which insights into their stability and comparative
behaviors are revealed, thereby enabling a deeper understanding of
their search dynamics.

6.1. Advantages vs. Disadvantages of trajectory features

After summarizing the latest trends in problem-algorithm trajectory
features, Table 6 presents their advantages and disadvantages.

6.2. Summary of trajectory features

Table 7 summarizes the trajectory-based feature families explored in
the literature, highlighting their training task type, the inputs required,
and the problem dimensions on which they have been tested. Un-
like problem landscape and high-level interaction features, trajectory
features explicitly exploit the sequence of solutions evaluated by an
algorithm during its search process, making them especially suitable
for dynamic, run-dependent characterizations of algorithm behavior.
Please note that since trajectory features are based on the solutions
sampled by the algorithm, we do not include the sampling information
as we did for the problem landscape features.

The table shows that most trajectory-based approaches are manually
designed, such as Trajectory-ELA, Iterative-ELA, LON, and Probing
trajectories, where handcrafted descriptors are extracted from algo-
rithm runs. More recent approaches, such as Opt2Vec, leverage self-
supervised learning by embedding trajectories into vector spaces, while
methods like ClustOpt apply unsupervised learning to cluster trajecto-
ries. This diversity reflects a growing trend to move beyond static prob-
lem landscape features toward representations that capture algorithm
dynamics.

In terms of inputs, most methods require potential solutions evalu-
ated by an algorithm during its search process, often using population-
based algorithms to generate diverse trajectories. An exception is LONs,
which are built from multiple runs of a local search algorithm and rely
on detecting local optima and their connectivity.

The problem dimensions tested in the literature remain relatively
limited. Many studies focus on low to moderate dimensions (e.g., d <
20), with some extending to d = 30 or d = 50 in the case of Opt2Vec
and Iterative-ELA. This indicates that trajectory features are still pre-
dominantly explored in small-scale benchmarks, and their scalability
to higher-dimensional optimization problems remains largely untested.
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Table 6

Advantages vs. disadvantages of trajectory features.
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Trajectory features

Advantages

Disadvantages

Based on internal parameters

- Capture the behavior of the algorithm

- Lack of comprehensive comparison of
different time series features

- Do not enable a comparison of
different algorithms (with different
configurations), limited to comparing
configurations of the same algorithm

Trajectory-based ELA

- Info about the interaction across
problem and algorithms (personalization)

- Does not capture the longitudinal
aspect of solutions within algorithm
iterations

Iterative-based ELA

- Info about a single timestamp of the
optimization process, can easily be
combined with ML models that will
capture the longitudinality of the search
process

- ELA features are sensitive on small
sample sizes

- cheap to compute

- Limited expressiveness

DynamoRep - Despite lower computational cost, - Representation size grows with number
DynamoRep features yield similar of iterations and problem dimension,
performance as ELA features that are may require dimensionality reduction as
calculated at each iteration of the preprocessing step
algorithm’s execution

Opt2vec - Capture features specific to parts of - Depends on the data used to train the

the search space explored at a particular
iteration

- Takes into consideration the
optimization problem dimension since
one model is used for all problem
dimensions.

autoencoder

- Black-box features

LON and variants

- Useful for visualization purposes

- Very costly to compute

Probing trajectories

- Potential to be utilized for per-run
algorithm selection

- Requires suitably chosen probing
algorithms

- Difficult to transfer results from one
probing algorithm to another

ClustOpt

- Useful for algorithm behavioral
analysis

- Depends on the clustering algorithm
and its parameters

Table 7

Summary of inputs, training task types and problem dimensions on which the trajectory features have been tested.

Feature name Training task type Inputs Problem dimensions
tested

Trajectory-ELA manually designed Potential solutions evaluated by -d e {5} [122,123]
an algorithm during its search - d € (5,10} [124]
process -d e {10} [125]

DynamoRep manually designed Potential solutions evaluated by a -de {3} [13]
population-based algorithm -d € {3,5,10,20}
during its search process [128]

Opt2Vec unsupervised Potential solutions evaluated by a - d € {10,30,50}
population-based algorithm during [14]

its search process, Problem class

Iterative-ELA

manually designed

Potential solutions evaluated by a
population-based algorithm
during its search process

- d € {10,30,50}
[14]
-de ({5} [128]

LON

manually designed

Multiple runs of a local search
algorithm

-de (3,5} [129]
-de({3,58,12,20}
[131]

Probing trajectories

manually designed

Potential solutions evaluated by a
population-based algorithm
during its search process

-d e {10} [133]

ClustOpt

unsupervised

Potential solutions evaluated by a
population-based algorithm
during its search process

-d e {2,510} [134]
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7. Machine learning studies that utilized meta-features

Table 8 provides an overview of the research focused on prob-
lem, algorithm, and trajectory-based features and their applications
in problem classification, algorithm selection, performance prediction,
and complementarity of benchmark suites. The table is structured into
three horizontal parts, one for each of these categories. Each row
represents a specific class of features. The columns are divided into
three primary aspects. The first aspect identifies the learning tasks
in which the features are evaluated, including problem classification,
algorithm selection, performance prediction, and visualization/comple-
mentarity analysis. The second and third aspects concern the collection
of problem instances used in the research, which may originate from
established benchmark suites such as BBOB, CEC, or Nevergrad, or be
generated by problem instance generators.

We omit a detailed description of each study presented in the table,
as most have been previously discussed, and instead provide a single
example to illustrate how the table can be interpreted. For instance,
the study [124] explores per-run algorithm selection using trajectory-
ELA features and algorithm features derived from internal algorithm
parameters. Accordingly, in the first part of the table, this study is
listed in the cells (Trajectory-ELA, Algorithm Selection) and (Internal
Algorithm Parameters, Algorithm Selection). For additional context, the
same Ref. [124] appears in the second part of the table, corresponding
to the BBOB and Nevergrad benchmark suites. These are the benchmark
suites where the learning tasks from the first part of the table are tested.

The table results indicate that the majority of studies have utilized
ELA problem landscape features with BBOB benchmark problem in-
stances. This prevalence is expected, as developing an ML model for
problem classification, algorithm performance prediction, or algorithm
selection benefits from having multiple problem instances per problem
class that vary by shifting or scaling. This variation allows for training
the ML model on one set of problem instances and testing it on another
set that differs only in shift or scale. However, using other benchmark
suites, such as the CEC benchmark suites, remains challenging. These
suites require the development of zero-shot ML models [135] because
each problem class is represented by only a single instance.

Recent trends indicate the emergence of novel problem landscape
features, such as TLA, DoE2Vec, and TransOpt, which have demon-
strated predictive accuracy comparable to ELA features in problem clas-
sification tasks. Additionally, there is a growing interest in trajectory-
based features, which capture information about the interaction be-
tween an algorithm instance and a problem instance.

A common limitation across all studies is the restricted generaliza-
tion of the developed ML models to other benchmark suites such as CEC
and Nevergrad [136], or to instances generated by problem generators.
This is evident from the predominant use of the BBOB benchmark suite
for learning and evaluation. To address this limitation in the future, it
is essential to incorporate problem instances from diverse benchmark
suites and various problem generators (which remain underexplored)
into a representative learning set to enhance generalization. Addition-
ally, as the landscape of possible problem instances continually evolves
with new problem generators, future work should focus on developing
ML models within continual learning frameworks [137-139].

8. Discussion and open challenges

In this section, we provide a more detailed discussion of chal-
lenges in representation learning of problem, algorithm, and trajectory
features for single-objective black-box optimization.
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8.1. Problem landscape features

The calculation of ELA features involves the application of a set of
statistical functions to candidate solutions that are artificially sampled
from the decision space of the optimization problem instance. Despite
their prevalence, the calculation of ELA features can be computation-
ally demanding for high-dimensional problems, and they have been
shown to be sensitive to variations in the sample size and sampling
method [84,86], as well as not being invariant to transformations such
as scaling and shifting of the optimization problem [85,86]. The TLA
and TinyTLA features have the desired property of being invariant
to these transformations and have been demonstrated to have good
predictive performance for the classification of optimization problems.
While an initial study of the predictive performance of the TinyTLA
features for the algorithm selection task has been conducted on the
BBOB benchmark, a more comprehensive evaluation can be done,
involving different algorithm portfolios and benchmark sets.

With the rapidly increasing number of studies that propose low-
level landscape features based on deep learning, they come with the
limitation of not allowing interpretation of why a decision is made.
There is also no clear evidence of which features are the best for
different learning tasks or if they are in favor of some algorithm
classes. With the rapidly growing body of deep learning-based low-level
landscape features, a persistent limitation is their limited interpretabil-
ity: they rarely explain why a particular decision is made. Moreover,
there is still no clear evidence identifying which feature sets are best
for specific learning tasks, or whether certain features systematically
favor particular algorithm classes. Several works have directly com-
pared problem landscape features. A comparison between TransOpt
(trained for problem classification) and classical ELA features is re-
ported in [104]. In this work, the generalization of algorithm selection
models across four benchmark suites is being evaluated with different
feature groups. The results produce mixed outcomes of the superiority
of one feature group over another, showing that the quality of predic-
tions depends heavily on the benchmarks used for training and testing,
and the distribution of algorithm performance. Another comparison of
the DeepELA and ELA features appears in [106], where the features
are evaluated for the algorithm selection task in a fixed-target setting
on the BBOB benchmark. In this case, a benefit of the joint use of ELA
and DeepELA features is observed. However, when the DeepELA, ELA
and TransOptAS features are evaluated in a fixed-budget setting on
the affine combinations of the BBOB problems [37], the ELA features
are shown to be superior over the transformer-based ones [107]. The
most comprehensive comparative study including the ELA, TransOp-
tAS, DeepELA, Doe2Vec and TinyTLA features is provided in [114].
In this study, features are compared for the algorithm selection task
on four different algorithm portfolios using the affine combinations
of the BBOB benchmark problems [37]. The algorithm selection mod-
els are evaluated in a fixed-budget setting, on evaluation settings of
increasing difficulty. The general outcome is that the ELA features
remain superior to newer problem landscape features in easy evaluation
settings, however, none of the features outperform a baseline model in
the difficult evaluation settings. This indicates a need to rethink the
standard algorithm selection setup using problem landscape features, as
well as a need for improved benchmarks suites for evaluation. Overall,
we can observe that various aspects of the experimental setup (problem
benchmarks, method for splitting data into training and test sets,
algorithms included in algorithm portfolio, sample size used for feature
calculation, metrics used for capturing algorithm performance) used for
comparing problem landscape features for the algorithm selection task
can substantially influence on the results of the comparison. Therefore,
standardization of the experimental setup is needed to ensure that
comparisons of problem landscape features for the algorithm selection
task are consistent, reliable, and reproducible.



Table 8

Summary of works using problem, algorithm, or trajectory-based features and their applications in the domain of algorithm selection for continuous single-objective optimization. The rows are grouped into
problem landscape features, algorithm features, and trajectory-based features. The columns are split into three parts; the first part indicates the learning scenario where some specific features are evaluated (problem
classification, algorithm selection, performance prediction, or visualization/complementarity analysis), the second and third parts correspond to the set of problem instances used in the study, with the first group
comprising established benchmark suites (BBOB, CEC, Nevergrad) and the other problem collections obtained from instance generators.
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8.2. Algorithm features

Algorithm features are relatively underexplored and low-resourced
compared to other feature types. A promising direction is to represent
algorithms as modular frameworks, similar to modCMA and modDE, by
structuring them into components that reflect their operators. Such in-
sights could then be utilized as meta-features, complementing problem-
, high-level problem-algorithm interaction, or trajectory-based features,
and applied to various machine learning tasks. Proper algorithm fea-
tures would also allow us to go beyond the classical taxonomy-style
representation of algorithms [150] to more complex descriptions that
allow to cluster algorithms according to different criteria.

8.3. High-level problem-algorithm interaction features

For offline automated algorithm selection and configuration meth-
ods, these features are crucial. However, most of these features require
the prior computation of ELA features and/or algorithm performance,
which is itself computationally demanding. This is the case for the
GNN and KG embeddings as well as the Explainable Prediction Mod-
els, requiring both ELA features and algorithm performance. On the
other hand, the TransOptAS and Fitness Map + CNNs features require
algorithm performance for a sufficiently large set of functions to train
a neural network, while the fANOVA features require algorithm perfor-
mance for a sufficiently large coverage of the parameter space of the
analyzed algorithm.

Future directions should focus on model-agnostic approaches to
characterize the interactions between problems and algorithms. Fur-
thermore, since supervised machine learning is typically applied in such
learning processes, the quality of the data used for training is of great
importance.

8.4. Trajectory-based features

The process of automated algorithm selection and configuration
could potentially benefit from features that take into account the
interactions between the problem and the algorithm. Moreover, uti-
lizing samples from the optimization algorithm’s trajectory incurs no
additional computational expenses, since there is no need to evaluate
the objective function of the optimization problem prior to running the
algorithm. A potential direction for future research would involve the
generation of new features tailored specifically for online use, which
would be computationally inexpensive enough to be calculated during
algorithm execution. Despite the DynamoRep (statistical) and Opt2Vec
(based on autoencoder) features, features from the trajectory of an opti-
mization algorithm instance could be extracted using expert knowledge
or deep learning methods such as Long Short-Term Memory Networks
(LSTM), Convolutional Neural Networks (CNN), or Transformers.

While trajectory-based features provide rich information about
problem-algorithm interactions, their computational costs can vary,
which is crucial for assessing online feasibility and the type of tasks
they are suited for. Features derived from internal algorithm pa-
rameters, probing trajectories or simple population statistics as in
DynamoRep incur negligible per-iteration overhead and are well suited
for online use. Iterative-based ELA are more demanding since they
perform the calculation of the ELA features on every iteration of the
algorithm, and Local Optima Networks or Search Trajectory Networks
are even heavier, relying on repeated local search or basin-hopping
steps, which limits them to offline analysis. ClustOpt features perform
clustering only once across all iterations, resulting in a moderate
one-time cost, making it practical for online monitoring of algorithm
execution or post-hoc analysis of multiple algorithm runs. To enable
early-run selection or warm-start switching, lightweight proxies such
as probing trajectories features, DynamoRep or trajectory ELA features
can be explored, although their predictive power is yet to be evaluated
for this task.
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Trajectory features also rely on the quality and diversity of samples
generated by the underlying population-based algorithm. Because the
statistical reliability of the learned features depends strongly on this
data, the lack of standardized benchmarking introduces ambiguity in
the reported results.

It is important to note that trajectory-based features are recently
developed and comprehensive comparative analyses are yet to be per-
formed. With this in mind, it is difficult to provide a definite recom-
mendation of the use of one feature group over another.

8.5. Challenges for using the meta-features for machine learning

It seems widely accepted in the evolutionary computation com-
munity that random forest models [151] in combination with ELA
problem landscape features provide acceptable results. However, we
also observe a trend that recent advances in ML modeling are taken
up by the community only with some delay or are neglected after
some nonsatisfactory results on the BBOB benchmark suite. We are
concerned that the good results achieved on this comparatively small
problem collection may paint a too optimistic picture of the capabil-
ity of ELA and simple random forest models. This concern seems to
be confirmed by recent works pointing out the rather dissatisfying
generalization ability of current algorithm selection models based on
ELA features [9,60,104,114,142]. This has been demonstrated in a sce-
nario where the algorithm selection model trained on one benchmark
and evaluated on another one does not outperform a simple baseline
model [9,104]. Additionally, it has been shown that algorithm selection
models perform well when similar problem instances are present in the
training and testing set, but fail when presented with unseen problem
instances [60]. Finally, the leave-one-instance-out evaluation strategy,
which is the most commonly used to evaluate algorithm selection mod-
els on the BBOB benchmark suite, has been criticized as it can produce
misleading results, where meta-models achieve high performance due
to spurious correlations between features and the target, rather than
having genuine predictive capability [111]. The use of scale-sensitive
metrics to capture algorithm performance has also raised concerns for
causing a false indication of improvements over baseline models used
in algorithm selection [111].

To improve the generalizability of algorithm selection models, sev-
eral avenues can be explored: including newly developed features,
including larger, more diverse training data, and considering contem-
porary ML training strategies.

To get a fair comparison of feature performance, comprehensive
studies are required which evaluate different feature sets under a fixed
experimental setup, using consistent datasets, splits, and evaluation
protocols to enable meaningful statistical testing and reliable conclu-
sions. Such studies should further include diverse problem benchmarks
beyond BBOB, report variability and deviations in performance, es-
tablish proper baselines for comparison, and analyze the influence of
sample sizes and sampling techniques. Current research relies dispro-
portionately on a narrow set of benchmark datasets (primarily BBOB),
and comparisons conducted within the same benchmark often produce
dependent performance values, making many of the reported findings
unsuitable for rigorous statistical testing. The need to rethink existing
benchmark suites has been raised across the broader field [152].

Finally, we believe it is important to critically observe advances in
ML utilizing other models based on deep learning architectures that
can be evaluated in transfer learning and continual learning scenarios.
Continual learning [137-139] is a ML paradigm that allows models to
develop themselves adaptively by learning incrementally from dynamic
data distributions and selectively adapting representations to obtain
good generalizability within and between tasks. This adaptation can
lead to a range of benefits such as improved robustness by handling
both simple and complex data instances, reducing overfitting to specific
data instances, resulting in better generalization to unseen data. By
using continual learning approaches, one hopes to identify problem
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instances that challenge the performance predictor assumptions and
explore the uncharted regions of the problem space, ultimately leading
to algorithm selection models that not only perform well on the training
problem instances, but also generalize effectively to unseen problem
instances.

8.6. Practical recommendations

For practitioners, the choice of feature family should primarily de-
pend on what needs to be modeled (the problem, the algorithm, or their
interaction), what data is available, the evaluation budget, the need
for invariance/robustness, and whether the goal is offline modeling or
online decision-making. If a well-tested and broadly applicable baseline
for offline tasks (e.g., instance classification or algorithm selection)
is needed and an initial sampling phase is affordable, ELA remains a
sensible first choice. Deep learned landscape features can also be used
when interpretability is not a primary requirement. When applying
problem landscape features to the algorithm selection task, one should
not expect a good generalization to unseen problems, i.e., the model
will only perform well if training and testing problems are nearly iden-
tical, and the model may need to be retrained on the particular types of
problems it will be applied on. When aspects of algorithm performance
(rather than only landscape structure) need to be incorporated into
the feature representation, high-level problem-algorithm interaction
features can be effective; however, some of these are computationally
expensive to compute, as detailed in previous sections. Finally, when
extra pre-evaluations should be avoided and/or information computed
during the run is required (e.g., early-run selection, monitoring, or
switching), trajectory-based features are a natural option: DynamoRep
and probing-trajectory features can be computed online with minimal
overhead, whereas heavier iterative-ELA or Local Optima Network
variants are better reserved for offline analysis when computational
cost is less constrained. In this context, approaches such as ClustOpt and
Local Optima Networks are particularly useful for visualizing algorithm
behavior and relating search dynamics to structural properties of the
problem.
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