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Additional Materials and Methods 

To retest the phylogenetic placement of Venomius Rossi, Castanheira, Baptista & Framenau, 

2023, we reanalyzed the large araneid Sanger matrix of Scharff et al. (2020), which included 

five genetic markers: cytochrome c oxidase subunit I (COI), 16S rRNA (16S), 28S rRNA (28S), 

18S rRNA (18S), and Histone H3 (H3). We added additional sequences of some terminals not 

used in Scharff et al. (2020), e.g., two Cyphalonotus Simon, 1895 species (Yu et al. 2022), 

Megaraneus gabonensis (Lucas, 1858) (own data), and Venomius tomhardyi Rossi, 

Castanheira, Baptista & Framenau, 2023. The latter was sequenced for COI, 16S, 28S, and 

18S and provided in unpublished form (Pedro de Souza Castanheira, personal comm.). We 

edited the sequences in Geneious Prime v.2019.2.3 and aligned the matrix of each gene 
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with MAFFT v.7 (Katoh et al. 2019, available from 

https://mafft.cbrc.jp/alignment/server/index.html). We then concatenated matrices of all 

genes using Mesquite v.3.81 (Maddison and Maddison 2023). 

 

We first partitioned the matrix into six sections following Scharff et al. (2020), then 

reconstructed phylogenies using maximum likelihood (ML) and Bayesian inference (BI). We 

used IQTREE v.2.3.2 (Minh et al. 2020) to perform ML analysis. We set the substitution 

model as follows, suggested by ModelFinder (Kalyaanamoorthy et al. 2017), COI: 

GTR+F+I+R6; 16S: GTR+F+I; 28Sc: TIM3+F+I+R4; 28Sv: TVM+F+R5; 18S: TNe+FQ+I+R4; H3: 

TPM2+FQ+R4. We obtained node supports from 1,000 replicates of ultrafast bootstrap 

approximation (UFBoot; Hoang et al. 2017, Minh et al. 2013) and SH-like approximate 

likelihood ratio test (SH-aLRT; Guindon et al. 2010). We performed two BI analyses in 

MrBayes (Huelsenbeck and Ronquist 2001) via the CIPRES Science Gateway (Miller et al. 

2010), each with two million generations and a 20% burn-in, one using GTR model and the 

other using simple model. 

  

https://mafft.cbrc.jp/alignment/server/index.html
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Supplementary Table 

Table S1. GenBank accession numbers for the raw reads of the terminals used in 

phylogenomic analyses. 

Taxon Accession 

Anapistula sp. SRR10291857 

Anelosimus analyticus SRR10291873 

Baalzebub sp. SRR10291818 

Cyclosa conica SAMN50253285 

Deinopis sp. SRR10291868 

Euryopis sp. SRR10291866 

Frontinella pyramitela SRR10291865 

Gelanor sp. SRR10291864 

Herennia multipuncta SAMN50253286 

Laminacauda sp. SRR10291858 

Leucauge venusta SRR10291856 

Malkaridae GH09 sp. SRR10291855 

Megadictyna sp. SRR10291852 

Microdipoena guttata SRR10291851 

Nephila pilipes SAMN50253287 

Nephilengys malabarensis SAMN50253288 

Nephilingis cruentata SAMN50253289 

Nesticella sp. SRR10291849 

Patu sp. SRR10291844 

Pimoa breviata SRR10291842 

Rungo cf. flora SRR10291846 

Synotaxus sp. SRR10291835 

Tekelloides sp. SRR10291834 

Theridiosoma sp. SRR10291833 

Trichonephila fenestrata SAMN50253290 

Araneus marmoreus SRR10291862 

Argiope lobata SAMN50253291 

Australomimetus sp. SRR10291839 

Caerostris sexcuspidata SRR10291817 
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Leviellus thorelli SAMN50253292 

Phonognatha graeffei SAMN50253293 

Poltys sp. SAMN50253294 

Trichonephila antipodiana SAMN50253295 

Zygiella sp. SRR10291827 

Crassanapis chilensis SRR10291870 

Arkys sp. SRR10291850 

Paraplectanoides crassipes SRR10291845 

Singafrotypa sp. SAMN50253296 

Singa hamata SAMN50253297 

Anapisona hamigera SRR10291824 

Cyatholipus sp. SRR10291823 

Physoglenidae SRR10291821 

Anapis sp. SRR10291825 

Clitaetra irenae SAMN50253298 

Osmooka aphana SAMN50253299 
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Supplementary Figures 

 

Figure S1. The UCE-based phylogenetic placement of Osmooka aphana gen. nov., sp. nov. is 

recovered with full support as sister to the Australian Paraplectanoides Keyserling, 1886. 

The tree was inferred in IQTREE model finder with partition merge along with UF bootstrap 

and SH-aLRT (both values on nodes). Relevant family level clades are color coded as 

Paraplectanoididae Kuntner, Coddington, Agnarsson & Bond, 2023; Nephilidae Simon, 1894; 

Araneidae Clerck, 1757; Phonognathidae Simon, 1894. See Taxonomy and Fig. 3 for details. 
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Figure S2. Palp of Araneus diadematus (Clerck, 1757) (Araneidae). A-C, intact left palp in 

mesal (A), apical (B) and ectal (C) views; D-E, treated and expanded right palp in mesal (D) 

and ectal (E) views; F, dissected, expanded right palp after removing the embolic division, 

showing a part of the median apophysis still connected to the tegulum; G, dissected, 

unexpanded left palp after removing the embolic division, showing the entire median 

apophysis connected to the tegulum. Scale bars: 0.5 mm. 
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Figure S3. Palpal features that can be present in Orbipurae. The schematic drawing is of a 

hypothetical taxon/palp. See Results for details of the homology analysis. 
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Figure S4. Re-analyses of the araneid five gene Sanger matrix from Scharff et al. (2020) with 

additional sequences. Analyses used maximum likelihood (tree above), as well as Bayesian 

inference using GTR model (tree in center) and simple model (tree below). These trees show 

discordance in the hypothetical placement of Venomius Rossi, Castanheira, Baptista & 

Framenau, 2023 and inadequate node supports (red fonts). Clade color codes match those 

in Fig. 3. 
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Figure S5. Palp of Trichonephila antipodiana (Walckenaer, 1841) (MK_116446441, NIB) 

(Nephilidae). A-B, unexpanded left palp in mesal (A) and ectal (B) views; C-F, treated and 

expanded palp in complementary views to reveal the relationships among sclerites and 

membranes. Scale bars: 0.2 mm. 
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Figure S6. Palp of Caerostris darwini Kuntner & Agnarsson, 2010 (ARA_8093, NIB) 

(Araneidae). A-C, unexpanded left palp in mesal (A), ventral (B), and ectal (C) views; D-G, 

treated and expanded palp in complementary views to reveal the relationships among 

sclerites and membranes. Scale bars: 0.2 mm. 
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Figure S7. Palp of Venomius tomhardyi Rossi, Castanheira, Baptista & Framenau, 2023 

(HB_N32479_4, NIB) (cf. Araneidae). A-C, unexpanded left palp in mesal (A), ventral (B), and 

ectal (C) views; D-H, treated and expanded palp in complementary views to reveal the 

relationships among sclerites and membranes. Scale bars: 0.2 mm. 
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Figure S8. Palp of Artiphex melanopyga (L. Koch, 1871) (QM_S86546, QM) 

(Phonognathidae). A-C, unexpanded left palp in mesal (A), ventral (B), and ectal (C) views; D-

F, treated and expanded palp in complementary views to reveal the relationships among 

sclerites and membranes.  Scale bars: 0.2 mm. 
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Figure S9. Palp of Deliochus humilis (L. Koch, 1867) (QM_S56345, QM) (Phonognathidae). A-

C, unexpanded right palp (mirrored) in mesal (A), ventral (B), and ectal (C) views; D-G, 

treated and expanded palp in complementary views to reveal the relationships among 

sclerites and membranes.  Scale bars: 0.2 mm. 
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Figure S10. Palp of Zygiella x-notata (Clerck, 1757) (ARA_8061, NIB) (Phonognathidae). A-C, 

unexpanded left palp in mesal (A), ventral (B), and ectal (C) views; D-G, treated and 

expanded palp in complementary views to reveal the relationships among sclerites and 

membranes.  Scale bars: 0.2 mm. 
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Figure S11. Palp of Leviellus thorelli (Ausserer, 1871) (MK_LC_collection, NIB) 

(Phonognathidae). A-C, unexpanded left palp in mesal (A), ventral (B), and ectal (C) views; D-

F, treated and expanded palp in complementary views to reveal the relationships among 

sclerites and membranes.  Scale bars: 0.2 mm. 
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Figure S12. Palp of Leviellus stroemi (Thorell, 1870) (ARA_8382, NIB) (Phonognathidae). A-C, 

unexpanded left palp in mesal (A), ventral (B), and ectal (C) views; D-G, treated and 

expanded palp in complementary views to reveal the relationships among sclerites and 

membranes.  Scale bars: 0.2 mm. 
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Figure S13. General female anatomy of Osmooka aphana. A, striated cheliceral boss of 

MAD-24-023 (white arrow indicates frontal direction); B-C, left fourth tarsus of the paratype 

(red arrow points to sustentaculum); D-F, left fourth tarsus of MAD-24-023 (red arrow 

points to sustentaculum); G, spinnerets of MAD-24-023; H, detail of the posterior lateral 

spinneret (red arrow points to flagelliform spigot). Scale bars: A-C = 0.1 mm; B-E, G = 0.05 

mm; F = 0.2 mm.  
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