

Soil nitrogen drives inverse acclimation of xylem growth cessation to rising temperature in Northern Hemisphere conifers

Yaling Zhang^a , Jian-Guo Huang^{b,1} , Minhuang Wang^c, Wenjin Wang^b , Feiyu Yang^b , Annie Deslauriers^d, Patrick Fonti^e , Eryuan Liang^f , Harri Mäkinen^g , Walter Oberhuber^h , Cyrille B. K. Rathgeberⁱ , Roberto Tognetti^j , Václav Tremík^k , Bao Yang^l, Lihong Zhai^b, Serena Antonucci^m , Valentina Buttòⁿ, J. Julio Camarero^o , Filipe Campelo^p , Katarina Čufar^q, Martin De Luis^r , Marek Fajstav^s, Alessio Giovannelli^t , Jožica Gričar^u, Andreas Gruber^h , Vladimír Gryc^s, Aylin Güney^v , Tuula Jyske^g, Jakub Kašpar^{k,w}, Gregory King^{e,x} , Cornelia Krause^d, Audrey Lemay^d , Fabio Lombardiⁱ , Edurne Martinez del Castillo^o, Hubert Morin^d, Cristina Nabais^p, Pekka Nöjd^g, Richard L. Peters^s , Peter Prislan^u, Antonio Saracino^{aa} , Vladimir V. Shishov^{bb}, Hanuš Vavrčík^s, Joana Vieira^{cc}, Qiao Zeng^{dd}, and Sergio Rossi^d

Affiliations are included on p. 5.

Edited by Charlotte Grossiord, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; received October 23, 2024; accepted June 25, 2025 by Editorial Board Member Donald R. Ort

Controlled experiments suggest that the seasonal build-up of nitrogen (N) limitation constrains the responses of forest autumn phenology to elevated temperatures. Therefore, rising soil N is expected to increase the delaying effects of elevated temperature on the end of the season, i.e., leaf senescence. However, the interactive effects of temperature, soil N, and aridity on xylem autumn phenology remain unknown. We conducted a wide spatial analysis from 75 conifer sites in the Northern Hemisphere and found that rising soil N increases the delaying effects of elevated temperature on the end of xylem cell wall thickening but reduced the delaying effects on the cessation of cell enlargement, especially in humid regions. The contrasting effects of elevated soil N on cell enlargement versus cell wall thickening could affect xylem cell anatomy, thereby induce changes in wood density, and induce a decoupling of stem size growth from photosynthate production. These analyses extend previous findings on forest autumn phenology by systematically investigating the spatial variation in the interactive effects of temperature and soil N on xylem autumn phenology at the cellular scale.

soil moisture | stem growth | autumn phenology | wood formation | xylogenesis

Forests offset approximately 20% of anthropogenic CO₂ emissions and play a crucial role in the global carbon cycle and the climate system (1). The carbon allocated to woody growth has a long residence time, ranging from several decades to centuries, as woody biomass (2). Elevated temperatures can increase the stem carbon sink by extending the xylem growing season, and it has been reported that a delayed cessation of xylem growth contributes to xylem growth in a manner similar to an advanced onset time (3). Extensive reports exist on the advanced onset of xylem spring phenology in the Northern Hemisphere (4, 5). By contrast, autumn phenology responses to elevated temperatures remain unclear, introducing substantial uncertainty regarding the actual global potential for carbon sequestration in forest ecosystems (3).

One of the largest uncertainties arises from the fact that advanced tree growth in spring requires higher water and nutrient inputs, which can lead to water and nutrient limitations in the autumn (6–8). Therefore, compared to spring phenology, autumn phenology responses to elevated temperature are more likely constrained by water or nutrient limitation (9, 10). Nitrogen (N) is essential for tree growth and photosynthesis (11), and a growing body of evidence shows that N limitation can advance the cessation of primary growth (12–15). To date, despite natural forests typically being considered as sites with moderate to low soil N concentrations, the delayed end of the growing season following elevated soil N has only been reported in controlled experiments, mainly based on leaf phenology (12–15). However, it remains unknown whether rising soil N could lead to delayed xylem autumn phenology in natural forests.

Higher soil N could decrease the hydraulic safety margin of trees by causing structural overshoot, which promotes hydraulic failure and increases forest vulnerability to water limitations (16). Unlike controlled experiments conducted in chambers with guaranteed water supply, natural forests are subjected to seasonal water shortages or drought periods, even in humid regions. To examine the interactive effects of temperature, soil N, and the aridity index on the cessation of xylem growth, we conducted a spatial analysis using

Significance

Theory and experiments suggest that rising soil nitrogen (N) could delay the cessation of the growing season based on leaf phenology data, but no intercontinental analyses on xylem phenology have been carried out. Using data on xylem phenology from conifers across the Northern Hemisphere, we found that rising soil N delays the end of xylem cell wall thickening but advances the cessation of cell enlargement. While xylem cell enlargement is responsible for stem size growth, cell wall thickening accounts for 90% of woody biomass production. The contrasting effects of soil N on these two xylem differentiation processes would affect xylem cell anatomy and consequently influence water transport and wood density in conifers.

The authors declare no competing interest.

This article is a PNAS Direct Submission. C.G. is a guest editor invited by the Editorial Board.

Copyright © 2025 the Author(s). Published by PNAS. This open access article is distributed under [Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 \(CC BY-NC-ND\)](https://creativecommons.org/licenses/by-nc-nd/4.0/).

PNAS policy is to publish maps as provided by the authors.

¹To whom correspondence may be addressed. Email: jianguo.huang@zju.edu.cn.

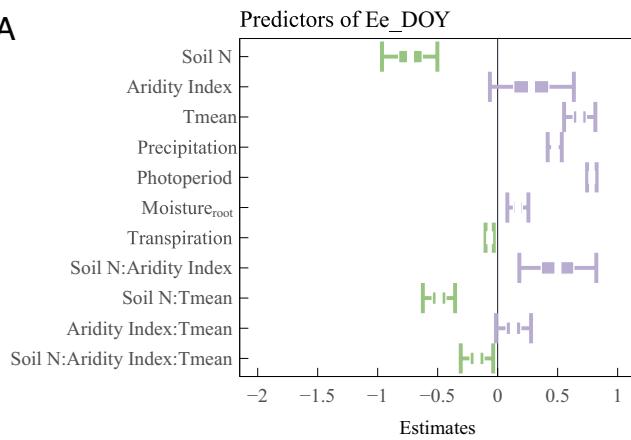
This article contains supporting information online at <https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2421834122/DCSupplemental>.

Published July 24, 2025.

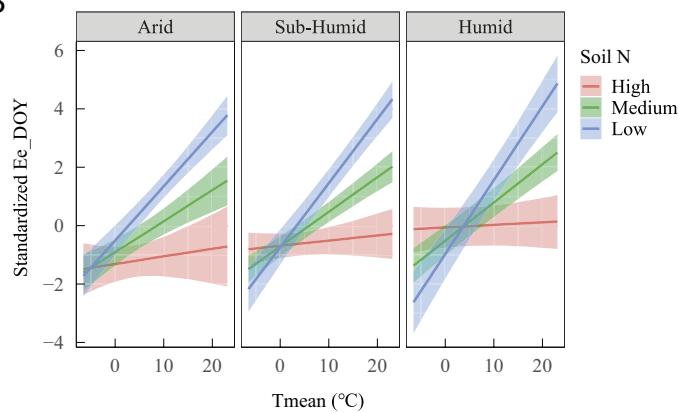
a wide and unique dataset of xylem phenology collected at weekly resolution, including data from 20 conifer species across 75 sites in the Northern Hemisphere (*SI Appendix*, Fig. S1 and *Dataset S1*).

Results

How Soil N Concentrations Regulate the Responses of Xylem Autumn Phenology to Rising Temperature. Temperature, precipitation, soil moisture, and photoperiod during the growing season are important drivers of the cessation of xylem autumn phenology in forest trees (17). By constructing Bayesian mixed-effect models (BMMs), we explored the effects of site aridity index (AI), soil N concentration, mean daily values of temperature (Tmean), photoperiod (photoperiod), soil moisture in the root zone (Moisture_{root}), and total precipitation during the growing season, and the interaction among AI, soil N, and Tmean on the cessation dates of xylem cell enlargement (Ee_DOY) and cell wall thickening (We_DOY) (Fig. 1 A and C and *SI Appendix*, Table S1 and S2). The growing season was defined as period from the onset of xylem cell enlargement (Es_DOY) to the cessation of cell wall thickening (We_DOY). Multiple collinearities among these predictors were also checked, which show no significant collinearity among these predictors (*SI Appendix*, Table S3).


We found that elevated soil N significantly advanced the cessation of xylem cell enlargement but delayed cell wall thickening. By contrast, AI exerted nonsignificant effects on both the cessation of cell

enlargement and wall thickening. Rising Tmean delayed both processes (Fig. 1 A and C). Significant interactions were observed among AI, soil N, and Tmean, so we focused on the significant three-way interactions between these variables for Ee_DOY and We_DOY (Fig. 1 B and D).


In general, rising Tmean delayed the cessation of xylem cell enlargement, but the delaying effects were reduced with rising soil N, meaning they were weaker in sites with more fertile soils (Fig. 1 B and D and *SI Appendix*, Figs. S2 and S3). Furthermore, these reductions were exacerbated by higher site-mean soil moisture. Similarly, rising Tmean delayed cell wall thickening, but high soil N amplified the delaying effects of rising Tmean on We_DOY (Fig. 1 B and D). At the biome level, elevated soil N significantly reduced the delaying effects of rising Tmean on Ee_DOY in temperate forests but not in boreal forests (*SI Appendix*, Fig. S4 and Table S1). Similarly, elevated soil N significantly increased the delaying effects of rising Tmean on We_DOY in temperate forests but not in boreal forests (*SI Appendix*, Fig. S5 and Table S2).

How Elevated Soil N Advanced Xylem Cell Enlargement. Xylem cell enlargement is a process that requires a continuous supply of water (18, 19), which is absorbed from the soil by the roots and transported via the xylem throughout the tree, driven largely by transpiration (20, 21). An advanced onset of forest growth could deplete soil moisture, leading to water shortages that are carried over into the mid-to-late growing season (6, 22, 23).

A

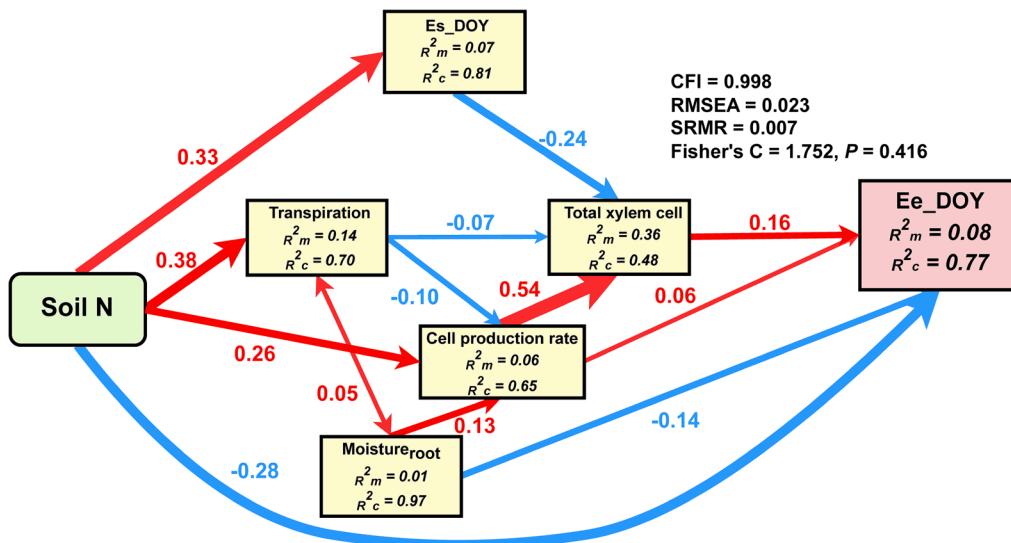
B

C

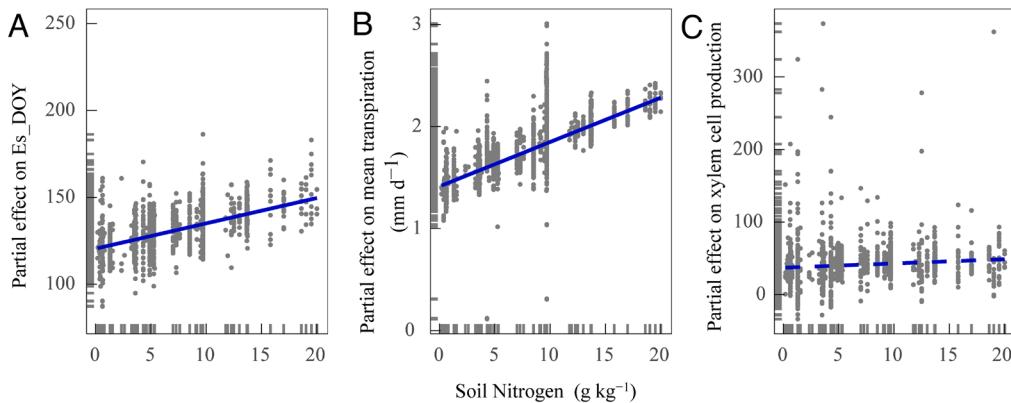
D

Fig. 1. Summary of the direction and strength of the effects of all predictors using Bayesian linear mixed-effect models on Ee_DOY (A) and the three-way interaction effects of Tmean, soil nitrogen (N), and aridity index (AI) (B) on Ee_DOY; Summary of the direction and strength of the effects on We_DOY (C) and the three-way interaction effects (D) on We_DOY. Significant effects are indicated when there is no overlap between the 95% error bars and zero. The purple and green colors denote positive and negative effects, respectively. Lines and ribbons represent the posterior mean and the 95% CI. Ee_DOY: cessation dates of cell radial enlargement; We DOY: cessation dates of cell wall thickening; Tmean: mean daily temperature during the growing season; Precipitation: total precipitation during the growing season; Photoperiod: mean daily photoperiod during the growing season; Moisture_{root}: mean daily soil moisture in the root zone during the growing season. The growing season is defined as the period from the onset dates of radial cell enlargement to the cessation dates of cell wall thickening. The soil N data used here are obtained from field-measured sources.

We therefore constructed SEM to reveal whether elevated soil N advanced the cessation of xylem cell enlargement through modulating the onset dates of xylem cell enlargement (Es_DOY), transpiration, $\text{Moisture}_{\text{root}}$, and total xylem cells (Fig. 2 and *SI Appendix*, Table S4). We observed total xylem cells were positively related with the cessation dates of xylem cell enlargement (Ee_DOY). Elevated soil N could decrease total xylem cells via delaying the Es_DOY and increasing transpiration rate, or increase total xylem cells via increased cell production rate, but the total effect on xylem cells is nonsignificant (Figs. 2 and 3C and *SI Appendix*, Tables S4 and S5). We also found that elevated soil N accelerated transpiration rate, which had a two-way relationship with $\text{Moisture}_{\text{root}}$, and this covariation between transpiration rate and $\text{Moisture}_{\text{root}}$ could also advance the Ee_DOY. However, elevated soil N primarily advanced Ee_DOY directly, suggesting the involvement of other mechanisms (Fig. 2 and *SI Appendix*, Tables S4 and S5).


Effects of Soil N on Es_DOY, $\text{Moisture}_{\text{root}}$, and Xylem Cells. To better visualize the partial effects of soil N on Es_DOY, $\text{Moisture}_{\text{root}}$, and xylem cells within the final SEM, we present partial residual plots. Rising soil N significantly delayed the onset dates of xylem cell enlargement (Es_DOY) (Fig. 3A) and increased mean daily transpiration rate during the growing season (Fig. 3B), but had no significant effect on the total number of xylem cells produced (Fig. 3C).

Discussion


Here, based on a spatial analysis from 75 conifer sites across the Northern Hemisphere, we examined the interactive effects of temperature, soil N, and site aridity (AI) on the cessation of xylem growth at the cellular scale. We found significant but contrasting interactive effects on xylem cell enlargement and cell wall thickening, particularly in humid regions. These contrasting effects support and extend previous findings that stem size growth is decoupled from photosynthate production at xylem cell scale (24, 25). This

decoupling could also influence xylem cell anatomy, i.e., inducing smaller xylem cell size but thicker cell walls, consequently affecting water transport and tree ring density differently across sites.

Elevated Soil N Constrains the Effects of Rising Temperature on the Cessation of Xylem Cell Enlargement. Warmer temperatures can promote the conversion of starch to sugar, thereby inducing cell division in the vascular cambium zone (26), which is expected to delay the cessation of wood formation (27). In general, we observed a trend toward delayed cessation of xylem autumn phenology with elevated temperatures (Fig. 1 A–D and *SI Appendix*, Figs. S2 and S3). Existing evidence suggests that the responses of autumn xylem phenology to rising temperature are more likely constrained by soil water and/or nutrient limitations, which are necessary to maintain photosynthesis rates during the growing season, compared with spring xylem phenology (9, 10). Consequently, increased availability of water and/or nutrients has been shown to delay the end of the growing season in forest trees (13). Therefore, we expected that rising soil N could increase the delaying effects of rising temperature on xylem growth cessation. Our results supported this for the cessation of xylem cell wall thickening (Fig. 1 A and B) but not for xylem cell enlargement (Fig. 1 C and D). Intriguingly, we observed that rising soil N reduced the delaying effects of rising temperature on the cessation of xylem cell enlargement, and this reduction was amplified by increased water availability; that is, the strongest reduction occurred in more humid sites, where the delaying effects even reversed (Fig. 1D). Xylem cell enlargement is responsible for stem size growth, while cell wall thickening contributes to 90% of woody biomass production (28), which mainly depends on the supply of recently fixed carbohydrates (29, 30). Our results indicate that elevated soil N may induce a decoupling of stem size growth from photosynthate production, as has been reported in other studies (24, 25). Furthermore, the contrasting effects of elevated soil N on xylem cell enlargement versus cell wall thickening could affect xylem cell anatomy by inducing changes

Fig. 2. Direct and indirect effects of soil nitrogen (N) on the cessation dates of xylem cell enlargement (Ee_DOY) through its influence on Es_DOY, transpiration, $\text{Moisture}_{\text{root}}$, and total xylem cells. The arrows indicate the direction and strength of the effects; solid red and blue arrows represent significant positive and negative standardized path coefficients ($P < 0.05$), respectively. Es_DOY: onset dates of xylem cell enlargement; Transpiration: mean daily transpiration during the growing season; $\text{Moisture}_{\text{root}}$: mean daily soil moisture in the root zone during the growing season. The growing season is defined as the period from the onset of radial cell enlargement to the cessation of cell wall thickening. The soil N concentrations data used here are obtained from field-measured sources. We computed the conditional R^2 (R^2_c) and the marginal R^2 (R^2_m) for every dependent variable: the former indicates the total variance explained by both the fixed and random effects, whereas the latter reflects only the variance explained by the fixed effects. The reported values for R^2_m and R^2_c are provided alongside each response variable. Notes: red and blue single-headed arrows indicate tested positive and negative causal relationships, respectively; two-way headed arrows indicate bidirectional covariances. Global goodness-of-fit: measures of overall model fit including Fisher's C, statistics, comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR) are shown in the *Upper Right*.

Fig. 3. The effect of field-measured soil nitrogen concentration on (A) the onset dates of cell enlargement (Es DOY), (B) mean daily transpiration during the growing season, and (C) the xylem cell production.

in cell size and cell wall thickness, ultimately affecting the carbon uptake and storage as woody tissues by conifer forests (31). When considered at the biome level, such changes in xylem cell anatomy were observed only in temperate forests but not in boreal forests (SI Appendix, Figs. S4 and S5).

How Elevated Soil N Reduces the Delaying Effects of Rising Temperature on Xylem Cell Enlargement. We examined two existing mechanisms in the literature that could constrain the delaying effects of elevated temperature on xylem cell enlargement. The first is amplified water stress induced by the advanced onset of the growing season (6–8). An advanced spring onset could accelerate water limitation later in the season through the seasonal build-up of water stress (6, 32, 33), leading to an advanced cessation of tree growth. A growing body of evidence on xylem growth indicates that an advanced onset could also lead to an advanced cessation (17, 34). For example, previous studies conducted in semiarid forests revealed that the advanced onset of xylem cell enlargement was accompanied by its earlier cessation (34). However, we rule out this possibility, as rising soil N led to a delayed onset of wood formation (Figs. 2 and 3A). The second mechanism is the saturation of a tree's annual carbon sink. The underlying hypothesis here is that the strength of the carbon sink governs the timing of autumn phenology (35–39). We observed that xylem cell wall thickening was delayed under rising soil N concentrations. This suggests that the hypothesis of saturation of a tree's annual carbon sink does not apply in our study (37, 38).

We observed higher amounts of xylem cells could significantly delay the cessation dates of xylem cell enlargement (Fig. 2 and SI Appendix, Tables S4 and S5), since more xylem cells require more time to complete the enlargement process (40). However, elevated soil N exerted nonsignificant effect on the total xylem cells (Fig. 3C). This is because rising soil N, on one hand, decreased total xylem cells via delaying the onset dates of cell enlargement and increasing transpiration rate. On the other hand, rising soil N increased total xylem cells via increased cell production rate (Fig. 2 and SI Appendix, Tables S4 and S5). Hence, elevated soil N could not affect the cessation dates of cell enlargement via regulating total xylem cells.

Then, what are the possible mechanisms driving the earlier termination of xylem cell enlargement under elevated soil N? High soil N could enhance stomatal conductance, thereby increasing the leaf photosynthetic and transpiration rates of forest trees, particularly in forests from wet regions (41). We indeed observed accelerated transpiration rates in the canopy (Fig. 2), indicating that trees require more water for photosynthesis and other physiological functions. Yet, we observed a significant but weak

relationship between transpiration rate and soil moisture in the root zone ($\text{Moisture}_{\text{root}}$). This probably reflects a dynamic covariation between aboveground transpiration and belowground moisture (42), as indicated by the two-way relationship in the SEM. Specifically, higher soil moisture could support higher transpiration. However, the relationship between transpiration and soil moisture may be nonlinear, with transpiration rate decreasing above a certain threshold of soil moisture due to the saturated air or soil. Xylem cell enlargement requires sufficient water to maintain turgor pressure (18, 19). Therefore, this weak but significant effect may indicate confounding and site-specific effects of water supply in determining the cessation dates of xylem cell enlargement, which remains an open question and warrants further investigation. We also observed other important mechanisms driving the earlier termination of xylem cell enlargement under elevated soil N, which might involve shifts in C allocation between photosynthetic (leaves) and nonphotosynthetic (roots and stems) organs (39). Therefore, we stress the importance of incorporating C allocation among the different tree organs when predicting forest growth responses to climate change. This approach would provide a strong basis for predicting future leaf and wood phenological shifts, along with their impacts on global C and N cycles. This is particularly important given that most studies on tree phenology focus on leaves.

Uncertainties, Caveats, and Limitations. The microsampling technique used in our study provides high time-resolution (weekly) data of xylogenesis, offering a detailed, firsthand assessment of changes in xylem cell diameter and cell wall thickness, both of which are strongly correlated with tree-ring microdensity (31, 43). However, the process of collecting xylem phenology data is time-consuming and labor-intensive (44, 45), and we generally conducted anatomical analyses over a very short time span. As a result, we are unable to address changes in xylem autumn phenology over extended periods. One of the main limitations of using spatial analysis is that it does not account for potential time lags or carry-over effects of environmental changes on the cessation dates of xylem growth. Therefore, long-term, in situ monitoring networks of wood formation and soil N uptake are needed to strengthen the confidence in assessing the interactive effects of climate (e.g., temperature) and local factors (e.g., soil nutrients) across large scales.

The largest xylem autumn phenology dataset used in our study is still confined to temperate and boreal forests, although anatomical methods have increasingly been applied in other parts of the world, such as subtropical forests. Furthermore, research on the kinetics of xylem cell differentiation in broadleaved tree species is

still limited due to the complex wood structure that is incompatible with the available modeling approaches (40). Consequently, caution is needed when extrapolating our findings to underrepresented biomes or tree species, such as conifers or angiosperms from subtropical and tropical forests.

Materials and Methods

This study used data collected from 814 trees located in 75 sites covering boreal, temperate, Mediterranean, and subtropical biomes in North America, Europe, and Asia, distributed across latitudes 23°11' to 66°12' N and at elevations ranging from 23 to 3,850 m a.s.l. (Dataset S1). Although the monitoring years span from 1998 to 2016, depending on the sampling sites, the cessation dates of xylem growth on the individual sites were generally collected over a very short time span (Dataset S1). This dataset is an aggregation of spatial comparisons of the cessation dates of xylem growth.

At each site, 1 to 55 adult dominant trees with upright, healthy stems were selected for extracting wood microcores (2.5 mm in diameter \times 25 mm in length) at breast height (1.3 \pm 0.3 m) using a Trehor borer (45). The samplings were conducted each week or, occasionally, biweekly throughout the growing season from January–April to October–December, according to the local climate conditions of the study sites. The microcores were placed in Eppendorf tubes that contained 50% ethanol and then stored at 5 °C. Microcores were then treated (sectioned, stained, observed) according to Rossi et al. (44). Further description of measurement and climate and soil data sources, and analytical procedures are described in *SI Appendix*.

Data, Materials, and Software Availability. All study data are included in *SI Appendix*, Dataset S1.

ACKNOWLEDGMENTS. This work was funded by the National Natural Science Foundation of China (Grant Nos. 32271653, 42471052, and 32401377), the Key R&D Program of Zhejiang (2024C03243), GDAS' Project of Science and Technology Development (2024GDASZH-2024010101), the Xinjiang Regional Collaborative Innovation Project (2022E01045), and Zhejiang University (108000*1942222R1). Additional funding came from the Austrian Science Fund (FWF P22280-B16 and P25643-B16), Consortium de Recherche sur la Forêt Boréale Commerciale, Fonds de Recherche sur la Nature et les Technologies du Québec, Forêt d'enseignement et de recherche Simoncouche, Observatoire régional de recherche en forêt boréale, The Ministry of Science and Higher Education of the Russian Federation (project #FSRZ-2023-0007), Natural Sciences and Engineering Research Council of Canada, Slovenian Research and Innovation Agency ARIS (Research Core Funding Nos. P4-0430 and P4-0015, Projects J4-2541, J4-4541, and Z4-7318), and the European Union's Horizon 2020 research and innovation program under the ASFORCLIC grant agreement (No. 952314). Further support was provided by MIUR-PRIN 2002 (2002075152) and 2005 (2005072877), the Swiss NSF (Projects INTEGRAL-121859 and LOTFOR-150205 and CALEIDOSCOPE-212902), the French National Research Agency (ANR) as part of the "Investissements d'Avenir" program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE), Academy of Finland (Nos. 250299, 257641, and 265504),

1. N. L. Harris et al., Global maps of twenty-first century forest carbon fluxes. *Nat. Clim. Chang.* **11**, 234–240 (2021).
2. B.-L. Xue et al., Global patterns of woody residence time and its influence on model simulation of aboveground biomass. *Glob. Biogeochem. Cycles* **31**, 821–835 (2017).
3. W. Wang et al., Response of xylem formation of *Larix sibirica* to climate change along the southern Altai Mountains, Central Asia. *Dendrochronologia* **77**, 126049 (2023).
4. V. Buttò et al., Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov–Shashkin model. *Front. Plant Sci.* **11**, 1268 (2020).
5. J.-G. Huang et al., A critical thermal transition driving spring phenology of Northern Hemisphere conifers. *Glob. Change Biol.* **29**, 1606–1617 (2023).
6. W. Buermann et al., Widespread seasonal compensation effects of spring warming on northern plant productivity. *Nature* **562**, 110–114 (2018).
7. J. Peng, C. Wu, X. Wang, L. Lu, Spring phenology outweighed climate change in determining autumn phenology on the Tibetan Plateau. *Int. J. Climatol.* **41**, 3725–3742 (2021).
8. T. F. Keenan, A. D. Richardson, The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. *Glob. Change Biol.* **21**, 2634–2641 (2015).
9. A. J. Elmore, D. M. Nelson, J. M. Craine, Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests. *Nat. Plants* **2**, 16133 (2016).

Grant Agency of Czech Republic (P504/11/P557), and Provincia Autonoma di Trento (Project "SOFIE 2"-3012/2007). CBKR would like to thank the SILVATECH platform (Silvatech, INRAE, 2018. Structural and functional analysis of tree and wood Facility, doi: [10.15454/1.5572400113627854E12](https://doi.org/10.15454/1.5572400113627854E12)) for its contribution to the acquisition of wood formation monitoring data. Cooperation among the authors was supported by the EU COST Action FP1106 STReESS. The views and conclusions expressed in this document are those of the authors and do not necessarily reflect the opinions or policies of the funding agencies or supporting institutions. We would like to acknowledge the FAIRWood project funded by the CESAB of the French Foundation for Research on Biodiversity (FRB), and specially its GitHub repository for providing the R script and some functions that were helpful in processing the data (<https://github.com/FAIRWood-dashshare/DataProcessingFunctions>).

Author affiliations: ^aGuangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; ^bState Key Laboratory for Vegetation Structure, Function and Construction, Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; ^cNational–Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; ^dLaboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; ^eSwiss Federal Research Institute for Forest, Snow and Landscape Research, Birmensdorf CH-8903, Switzerland; ^fState Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; ^gNatural Resources Institute Finland, Helsinki 00790, Finland; ^hDepartment of Botany, Leopold-Franzens-University of Innsbruck, Innsbruck A-6020, Austria; ⁱUniversité de Lorraine, AgroParisTech, Nancy F-54000, France; ^jFaculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano I-39100, Italy; ^kDepartment of Physical Geography and Geoecology, Charles University, Prague CZ-12843, Czech Republic; ^lSchool of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China; ^mDipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso 86100, Italy; ⁿForest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X5E4, Canada; ^oInstituto Pirenaico de Ecología, Zaragoza 50192, Spain; ^pCentre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal; ^qBiotechnical Faculty, Department of Wood Science and Technology, University of Ljubljana, Ljubljana 1000, Slovenia; ^rDepartment of Geography, Johannes Gutenberg University, Mainz 55099, Germany; ^sDepartment of Wood Science and Wood Technology, Mendel University in Brno, Brno 61300, Czech Republic; ^tIstituto di Ricerca sugli Ecosistemi Terrestri, Sesto Fiorentino I50019, Italy; ^uSlovenian Forest Institute, Ljubljana 1000, Slovenia; ^vIzmir Katip Çelebi University, Faculty of Forestry, Izmir 35620, Turkey; ^wDepartment of Forest Ecology, Landscape Research Institute, Brno 602 00, Czechia; ^xDepartment of Sciences, University of Alberta–Augustana Campus, Camrose, AB T4V 2R3, Canada; ^yAGRARIA Department, Mediterranean University of Reggio Calabria, Calabria 89124, Italy; ^zSchool of Life Sciences Technische Universität München, Freising 85354, Germany; ^{aa}Department of Agricultural Sciences University of Naples Federico II, Portici-Napoli I-80055, Italy; ^{bb}Institute of Economics and Trade, Siberian Federal University, Krasnoyarsk 660075, Russia; ^{cc}Collaborative Laboratory for Integrated Forest and Fire Management, Vila Real 5001-801, Portugal; and ^{dd}Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China

Author contributions: Y.Z., J.-G.H., M.W., and R.T. designed research; Y.Z., J.-G.H., W.W., F.Y., A.D., P.F., E.L., H. Mäkinen, W.O., C.B.K.R., V.T., B.Y., L.Z., S.A., V.B., J.J.C., F.C., K.C., M.D.L., M.F., A. Giovannelli, J.G., A. Gruber, V.G., A. Güney, T.J., J.K., G.K., C.K., A.L., F.L., E.M.D.C., H. Morin, C.N., P.N., R.L.P., P.P., A.S., V.V.S., H.V., J.V., Q.Z., and S.R. performed research; Y.Z. and M.W. analyzed data; P.F., E.L., H. Mäkinen, W.O., C.B.K.R., V.T., B.Y., L.Z., S.A., V.B., J.J.C., F.C., K.C., M.D.L., M.F., J.G., A.G., V.G., A. Güney, T.J., J.K., G.K., C.K., A.L., F.L., E.M.D.C., H. Morin, C.N., P.N., R.L.P., P.P., A.S., V.V.S., H.V., J.V., Q.Z., and S.R. conducted experiment in one of the sites; and Y.Z. wrote the paper.

10. J. Zhang et al., Cambial phenology in *Juniperus przewalskii* along different altitudinal gradients in a cold and arid region. *Tree Physiol.* **38**, 840–852 (2018).
11. J. R. Evans, V. C. Clarke, The nitrogen cost of photosynthesis. *J. Exp. Bot.* **70**, 7–15 (2018).
12. B. D. Sigurdsson, Elevated [CO₂] and nutrient status modified leaf phenology and growth rhythm of young *Populus trichocarpa* trees in a 3-year field study. *Trees* **15**, 403–413 (2001).
13. Y. H. Fu et al., Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. *Tree Physiol.* **39**, 1277–1284 (2019).
14. P. Wang, C. Fu, L. Wang, T. Yan, Delayed autumnal leaf senescence following nutrient fertilization results in altered nitrogen resorption. *Tree Physiol.* **42**, 1549–1559 (2022).
15. C. Wang, Y. Tang, Responses of plant phenology to nitrogen addition: A meta-analysis. *Oikos* **128**, 1243–1253 (2019).
16. A. Gessler, M. Schaub, N. G. McDowell, The role of nutrients in drought-induced tree mortality and recovery. *New Phytol.* **214**, 513–520 (2017).
17. W. Mu et al., Photoperiod drives cessation of wood formation in northern conifers. *Glob. Ecol. Biogeogr.* **32**, 603–617 (2023).
18. A. Cabon et al., Water potential control of turgor-driven tracheid enlargement in Scots pine at its xeric distribution edge. *New Phytol.* **225**, 209–221 (2020).
19. R. L. Peters et al., Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. *New Phytol.* **229**, 213–229 (2021).

20. M. D. Cramer, V. Hoffmann, G. A. Verboom, Nutrient availability moderates transpiration in *Ehrharta calycina*. *New Phytol.* **179**, 1048–1057 (2008).
21. M. D. Cramer, H.-J. Hawkins, G. A. Verboom, The importance of nutritional regulation of plant water flux. *Oecologia* **161**, 15–24 (2009).
22. S. Wolf *et al.*, Warm spring reduced carbon cycle impact of the 2012 US summer drought. *Proc. Nat. Acad. Sci.* **113**, 5880–5885 (2016).
23. X. Lian *et al.*, Summer soil drying exacerbated by earlier spring greening of northern vegetation. *Sci. Adv.* **6**, eaax0255 (2020).
24. C. Dow *et al.*, Warm springs alter timing but not total growth of temperate deciduous trees. *Nature* **608**, 552–557 (2022).
25. S. A. Kannenberg *et al.*, Drought-induced decoupling between carbon uptake and tree growth impacts forest carbon turnover time. *Agric. For. Meteorol.* **322**, 108996 (2022).
26. S. Begum, S. Nakaba, Y. Yamagishi, Y. Oribe, R. Funada, Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. *Physiol. Plant.* **147**, 46–54 (2013).
27. S. Rossi *et al.*, Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. *Glob. Change Biol.* **22**, 3804–3813 (2016).
28. H. E. Cuny *et al.*, Woody biomass production lags stem-girth increase by over one month in coniferous forests. *Nat. Plants* **1**, 15160 (2015).
29. A. Deslauriers, J.-G. Huang, L. Baldacci, M. Beaulieu, S. Rossi, The contribution of carbon and water in modulating wood formation in black spruce saplings. *Plant Physiol.* **170**, 2072–2084 (2016).
30. J. Verbančič, J. E. Lunn, M. Stitt, S. Persson, Carbon supply and the regulation of cell wall synthesis. *Mol. Plant* **11**, 75–94 (2018).
31. V. Buttò, P. Rozenberg, A. Deslauriers, S. Rossi, H. Morin, Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. *New Phytol.* **230**, 957–971 (2021).
32. C. Bigler, Y. Vitasse, Premature leaf discoloration of European deciduous trees is caused by drought and heat in late spring and cold spells in early fall. *Agric. For. Meteorol.* **307**, 108492 (2021).
33. M. Meier, Y. Vitasse, H. Bugmann, C. Bigler, Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. *Agric. For. Meteorol.* **307**, 108485 (2021).
34. W. Wang *et al.*, Precipitation regulates the responses of xylem phenology of two dominant tree species to temperature in arid and semi-arid forest of the southern Altai Mountains. *Sci. Total Environ.* **886**, 163951 (2023).
35. J. I. Querejeta *et al.*, Higher leaf nitrogen content is linked to tighter stomatal regulation of transpiration and more efficient water use across dryland trees. *New Phytol.* **235**, 1351–1364 (2022).
36. M. Duan, S. X. Chang, Nitrogen fertilization improves the growth of lodgepole pine and white spruce seedlings under low salt stress through enhancing photosynthesis and plant nutrition. *For. Ecol. Manage.* **404**, 197–204 (2017).
37. D. Zani, T. W. Crowther, L. Mo, S. S. Renner, C. M. Zohner, Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. *Science* **370**, 1066–1071 (2020).
38. Y. Vitasse *et al.*, Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. *New Phytol.* **232**, 537–550 (2021).
39. R. P. Callahan *et al.*, Forest vulnerability to drought controlled by bedrock composition. *Nat. Geosci.* **15**, 714–719 (2022).
40. E. Larysch, D. F. Stangler, M. Nazari, T. Seifert, H.-P. Kahle, Xylem Phenology and Growth Response of European Beech, Silver Fir and Scots Pine along an Elevational Gradient during the Extreme Drought Year 2018. *Forests* **12**, 75 (2021).
41. X. Liang *et al.*, Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. *Glob. Change Biol.* **26**, 3585–3600 (2020).
42. C.-T. Lai, G. Katul, The dynamic role of root-water uptake in coupling potential to actual transpiration. *Adv. Water Resour.* **23**, 427–439 (2000).
43. Y. Zhang *et al.*, High preseason temperature variability drives convergence of xylem phenology in the Northern Hemisphere conifers. *Curr. Biol.* **34**, 1161–1167 (2024).
44. S. Rossi, A. Deslauriers, T. J. I. J. Anfodillo, Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. *IAWA J.* **27**, 383–394 (2006).
45. S. Rossi *et al.*, Trehphor: A New Tool for Sampling Microcores from tree stems. *IAWA J.* **27**, 89–97 (2006).