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Faster chemical mapping assisted by computer
vision: insights from glass and ice core samples†

Piers Larkman, *a,b Sebastiano Vascon,a Martin Šala, c Nicolas Stoll, a,d

Carlo Barbante a,e and Pascal Bohlebera,b,f

Recent advances in high-repetition-rate lasers and fast aerosol transfer facilitate laser ablation inductively

coupled plasma mass spectrometry (LA-ICP-MS) mapping rates of up to megapixels per hour, however,

practical limits in time and resources still hamper mapping the chemistry of square centimetre or larger

areas of target samples at high resolutions. This is especially relevant for the analysis of deep sections of

polar ice cores, motivating exploration of approaches to improve the efficiency of LA-ICP-MS data collec-

tion for large-area mapping. Assisted by computer vision, and demonstrated on glass and ice samples, we

show how an informed experimental design coupled with computational post processing can contribute

to large reductions in measurement times and lead to associated increases in measurement areas. Using

various inpainting techniques, we demonstrate how the collection of data can be reduced by up to two

thirds while still capturing spatial variability. Although motivated by ice core analysis, these approaches are

generalisable to other target matrices and represent a new approach to large-area LA-ICP-MS mapping.

1 Introduction

Laser ablation inductively coupled plasma mass spectrometry
(LA-ICP-MS) has become a key technology for investigating the
spatial distribution of elemental and isotopic chemistry for
various environmental, biological, and manufactured
samples.1,2 Ongoing advancements to the technique have
focused on increasing analysis speed to facilitate high-resolu-
tion acquisition, high mapping rates, and reducing cost.3

Development of high repetition rate laser systems, fast aerosol
transport, and fast ion detection have contributed to increased
mapping rates and image quality.4,5 The use of high-frequency
lasers facilitates a significant decrease in measurement times5

and pairs well with time of flight-ICP-MS systems to avoid the
restriction of mass cycling imposed by scanning mass spec-
trometers.6 However, practical constraints, such as ensuring
reasonable measurement times and resource consumption,

still hamper the mapping of large areas of square centimetres
or larger. To further increase the speed and efficiency at which
LA-ICP-MS data can be collected, improving the state-of-the-art
is vital.

Applied to approximate missing data in several fields,
inpainting approaches that fill in damaged or missing parts of
an image,7,8 represent a potential approach to facilitate large
area measurements using LA-ICP-MS. There are many inpaint-
ing techniques, with both traditional9 and deep learning10

approaches implemented and refined. Viewing LA-ICP-MS
spectral data as an elemental or chemical image motivates
experiments that collect sparse data using LA-ICP-MS and sub-
sequent approximation of missing regions using inpainting
techniques. Such experimental design removes the require-
ment to fully measure an area, thus facilitating faster mapping
of larger areas, but is yet to be tested.

A practical application that can benefit from increased
measurement efficiency using such approaches is the mapping
of ice core samples using LA-ICP-MS. Current ice core drilling
efforts target the acquisition of old ice samples, of approxi-
mately 1.5 million years old, from the bottom of the Antarctic
ice sheet.11 The deepest samples, amounting to hundreds of
metres of ice with more than 10 000 years of climate history
contained per vertical metre,12 will require high-resolution
spatial analysis for thorough interpretation of climate infor-
mation.13 Application of LA-ICP-MS to measure elemental
impurities in polar ice core samples has returned spatial infor-
mation at to-date unmatched micrometre resolutions.13–15

Such resolutions will be crucial for collecting and interpreting
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the wealth of paleoclimate data16 contained in deep ice
samples, particularly as 2D mapping, over collection of 1D par-
allel lines along the down-core axis, is vital for properly inter-
preting preserved signals.17–20 Therefore, LA-ICP-MS measure-
ments on ice must be routinely sped up to gather and manage
the large volume of high-resolution data needed to interpret
climate signals from deep ice samples best.

The utility of computer vision techniques for analysis of
chemical and optical data collected on ice core samples has
been previously demonstrated.21,22 Interpolation of chemical
LA-ICP-MS data has been carried out to fill in gaps in data col-
lected at resolutions of hundreds-of-microns23 and the ice
grain boundary (GB) network has been automatically masked
from optical data.22 To demonstrate a further application of
computer vision techniques to ice core data, and to aid
LA-ICP-MS analysis, modern inpainting techniques can be
applied as a postprocessing step. Given that GBs are visible in
optical images and the dominant localisation of soluble chem-
istry at GBs, optical data can be a further useful reference for
such analysis.

Here we demonstrate how carefully designed experimental
LA-ICP-MS data collection, collecting sparse spectral data
instead of full maps, can reduce measurement times, without
compromising the extent of the surface area mapped, or the
mapping resolution. Data is deliberately under-sampled
during measurement and both traditional and machine learn-
ing inpainting approaches are applied to approximate the
missing data. We utilise a murrina glass sample (Murano,
Italy), which are often used to demonstrate developments to

LA-ICP-MS measurement procedures due to regions showing
well-understood variation in elemental concentrations,24,25 as
a proof of concept application. Building on this demonstrative
case, this novel approach of sparse measurement and sub-
sequent inpainting is applied to ice core samples to show an
example of practical use. We first validate the performance of
the inpainting approaches before presenting data collected
and processed using this novel approach. The utility of optical
data, which can be rapidly collected and often shows varia-
bility which correlates with regions of variable chemistry, to
guide inpainting reconstructions is also demonstrated.

2 Dataset collection and processing
2.1 Overview

We demonstrate the utility of inpainting methods to reduce
demands on time and consumables for large area LA-ICP-MS
mapping. We present the experimental collection of spectral
and optical data from a murrina glass sample, and
Greenlandic and Antarctic ice core samples, using LA-ICP-MS.
An overview of data collection and use is shown in Fig. 1. Each
dataset consists of spatially coherent optical and chemical
maps. Application data are collected as sparse chemical maps,
while validation data are collected as full chemical maps and
are artificially masked to remove data.

We apply four inpainting approaches to approximate
missing data in chemical maps. Two inpainting approaches,
one channel Telea (1C Telea) and one channel neural network

Fig. 1 Diagram illustrating data collection and usage, using murrina glass data as an example. Optical and spectral data are collected using an
LA-ICP-MS system, and the optical data have distinct regions segmented. For training and validating the inpainting approaches, full chemical maps
are collected and processed into training and validation datasets by removing certain rows from chemical maps to produce sparse data as a target
for inpainting. Some masked chemical and optical data are isolated for assessing the performance of the four inpainting approaches. The rest of the
data are used as training data for the two inpainting approaches which utilise NNs. The trained NNs and two traditional approaches make up a set of
four possible inpainting approaches which are used to approximate full chemical data. Application data are experimentally collected as sparse
chemical maps, and are input directly to the inpainters.
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(1C NN), operate solely on the spectral data, and are referred to
as one-channel approaches. Where available, additional data
can be used to guide inpainting. To demonstrate this
approach, two more inpainters are presented that use an
additional optical data channel to give the inpainting algor-
ithms additional context. These two-channel approaches, two
channel mean replacement (2C MR) and two channel neural
network (2C NN), exploit the harmony between optical and
spectral data by conditioning the inpainting on a binary mask
separating regions based on optical data. Two methods, 1C
Telea and 2C MR, utilise traditional inpainting methods, while
the other two, 1C NN and 2C NN, use a simple neural network
architecture trained on an experimentally acquired dataset.
While demonstrated on glass and ice core samples, these
approaches can be extended to other matrices measured using
LA-ICP-MS.

2.2 Experimental data collection

2.2.1 Mapping procedure. Typically LA-ICP-MS mapping
experiments are carried out using uni-directional scanning,25

collecting data line-by-line in a pattern shown in Fig. 2(a). This
involves rapidly firing a laser at the surface of a target sample,
and transferring ablated material to an ICP-MS system where
its elemental composition is measured. Parametrising the
time taken to complete a LA-ICP-MS measurement, TM (s), over
a surface area, A (m2), gives the expression:

TM ¼ A� n
BS2 � RR

; ð1Þ

where n is the dosage (illustrated for n = 2 in Fig. 2), BS (m2) is
the spot size of the laser, and RR (Hz) the laser’s repetition
rate.25 The return time of the stage to its initial starting
location must also be considered. This establishes the total
measurement time, TT, as:

TT ¼ TM þ TR; ð2Þ

where TR is the total return time of the stage over the whole
measurement. Assuming the distance between parallel points
on adjacent profiles is much smaller than the distance
between the start and end of the profiles, the total return time
is dependent on the return time between a pair of adjacent
profiles, Tr, and the number, N, of profiles required to cover
the entire target area:

TR ¼ T rðN � 1Þ: ð3Þ
Using the expression for TR from eqn (3) and TM from eqn

(1) in eqn (2) gives the expression:

TT ¼ A� n
BS2 � RR

þ TrðN � 1Þ; ð4Þ

for the total measurement time for a map.
To reduce this measurement time, rows can be left out of

the traditional sampling pattern, as illustrated in Fig. 2(b),
reducing the information density (ID) of the measured area.
An ID of 1 represents a fully mapped area, while an ID 0 rep-
resents a wholly unmeasured area. In the limit where the
number of measured rows remains large (where N � 1

ID ), the
total measurement time can be approximated as:

TT ¼ A� n
BS2 � RR

þ TrðN � 1Þ
� �

� ID ð5Þ

and tasks inpainting approaches to replace the unmeasured
rows in the spectral data, restoring them to an ID of 1.

2.2.2 Murrina glass data. A murrina sample was measured
using a newly established LA-ICP-TOF-MS system at the Alfred
Wegener Institute Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany (AWI).26 This setup utilises
an Iridia 193 nm excimer laser ablation system, here using a
long pulse module (Teledyne Photon Machines), coupled to a
Vitesse ICP-TOF-MS (Nu Instruments) using an ARIS (Teledyne
CETAC Photon Machines) for rapid aerosol transfer. While a
large mass range is measured in the ICP-TOF-MS, only the m/z

Fig. 2 Typical LA-ICP-MS measurement pattern (a), and sparse measurement pattern (b). The overlap between adjacent spots is illustrative of the
dosage, n, in this case with n = 2. Numbering indicates the order in which rows are measured. The pattern in (a) returns a chemical map with ID of 1,
while the pattern in (b), with every other line unmeasured, returns a map with ID 0.5.
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= 56 (corresponding to Fe) is focused on in this study as it dis-
plays variability over both large and small scales.

Glass data were collected on two separate days. Multiple 2D
impurity maps, with full chemical maps with an ID of 1, and
sparse maps with IDs of less than 1, of mm-sized areas on the
sample’s surface collected with a laser spot size of 10 µm. We
used a firing rate of 500 Hz, dosage of 10, and a fluence of 4 J
cm−2. Optical mosaics of each measured area were taken using the
integrated optical camera, which is co-axial with the laser system.

2.2.3 Ice core data. The majority of ice data utilised in this
study are a compilation of measurements taken from different
samples using the LA-ICP-MS system at the University of
Venice (UNIVE). We utilise a total of 20 chemical (ID = 1) and
optical data pairs collected between November 2022 and
November 2023 on a total of 8 Antarctic and Greenlandic ice
intervals. The samples originate from the EDC,27 EGRIP,28 and
RECAP29 ice cores. Each measurement was carried out observ-
ing evolving best practice19,30 while following the same funda-
mental approach.

The system at UNIVE consists of an Analyte Excite ArF
excimer 193 nm laser (Teledyne CETAC Photon Machines) con-
nected via an ARIS rapid aerosol transfer line to an iCAP-RQ
ICP-MS (Thermo Scientific). Samples were hosted in a HelEx II
two-volume ablation chamber on a cryo-stage capable of main-
taining the solid state of samples during analysis. This setup
required samples to be prepared with approximately 1 cm
thickness, with varying widths of 2 cm and below, and length
not exceeding 9 cm.

Measured 2D impurity maps of square millimetre size were
acquired with a spot size of 20 or 40 µm, firing rates of between
200 and 300 Hz, dosages of 9 or 10 (adjusted to synchronise
material sampling with the ICP-MS measurement cycle), and flu-
ences of between 3 and 4.5 J cm−2. As some spectral measure-
ments on ice samples were collected with a 20 µm laser spot and
others with a 40 µm laser spot, the higher resolution data were
downsampled to 40 µm. Given its archetype as a soluble-in-ice
elemental species we primarily focus on Na (m/z 23) in this study,
although other elements were also recorded.

In contrast to most ice measurements being carried out
using the UNIVE system, an exemplary application dataset was
collected using the system at AWI, with a spot size of 40 µm.
Cryo components were integrated into this system26 to ensure
the sample remained frozen during measurement. This data
set comprises a full chemical map, with adjacent regions col-
lected with IDs of less than 1.

2.3 Data processing

Spectral data collected from the ICP-MS underwent standard
drift and background corrections and subsequent exporting
into 2D maps using the software HDIP (Teledyne CETAC
Photon Machines). Intensities adjusted to negative values
during background correction are subsequently assigned a
value of zero. Chemical maps, resulting from combining the
spectral data with spatial data from the LA system in HDIP,
detail relative chemical intensities on the surface of the
measured sample and remain uncalibrated.

The murrina sample has visible variability in the optical
data allowing a binary mask separating adjacent regions to be
hand-traced. Similarly, ice sample optical data show dark lines
identified as GBs, which are hand-traced to produce a binary
mask isolating the GB network from the grain interiors. These
segmentations are downsampled to the same resolution as the
chemcial maps, 10 µm for glass, and 40 µm for ice. Joining the
chemistry channel and downsampled optical segmentation
gives a combined two-channelled image.

2.4 Training, validation, and application dataset

To train the NNs a subset of one and two-channelled images
with full chemical maps were isolated to serve as the ground
truth data set. These training and validation data had regu-
larly-spaced rows of the chemical maps artificially masked to
provide an analogue to sparsely collected spectral data. The
effect of obscuring rows in the maps is to reduce the ID in the
map to between 0 and 1, analogue to experimental data collec-
tion. These masked maps are subsequently inpainted, and the
inpainted output compared to the original unmasked data,
providing a ground truth against which the inpainting per-
formance is quantified. Obscuring and inpainting are carried
out only on the chemical maps; optical data and derived
masks always have an ID of 1, representing a suggested experi-
mental procedure of full optical data collection and sparse
chemical mapping.

3 Inpainting methods
3.1 Traditional inpainting

The first of four implemented inpainting methods, 1C Telea,
utilises the well-established Telea algorithm9 to inpaint
missing data based on the spectral channel only. The algor-
ithm works iteratively from the outside of a missing region
inwards by taking a weighted sum of pixels in the neighbour-
hood of the missing pixel, approximating its value.

The second applied inpainting method, 2C MR, is a
custom-implemented approach based on the Telea algorithm
that also incorporates optical data alongside spectral data. The
added mask channel allows the classification of pixels into
two distinct regions. In the case of the murrina samples, adja-
cent optically distinct regions are classified separately, while
for ice samples regions are classified as either GB or grain
interior. During inpainting, a target pixel is replaced by the
mean of neighbourhood pixels with the same categorisation as
itself. Unlike the 1C Telea approach, no iterative operation
from outside the region inwards is implemented. To manage
situations where no pixels of the same category are adjacent to
a target pixel, the neighbourhood size increases with decreas-
ing ID.

3.2 Neural network inpainting

The third and fourth inpainting approaches, 1C NN and 2C
NN, each use a purpose-implemented NN for inpainting. In
both cases, the NN utilises the same simple architecture illus-
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trated in Fig. 3 with an encoder followed by a decoder, resem-
bling a very simple context encoder or autoencoder31,32 with
no reduction in patch size but changes in image dimension.

During application, data with ID of less than one, either
experimentally acquired or artificially masked from full chemi-
cal maps, are inpainted in patches of 64 by 64 pixels. These
patches are re-arranged to the original full maps to form the
final output. To avoid artifacts at the edge of patches after
reconstruction, patches are generated with small overlaps and
reconstructed intensities in edge regions are averaged.
Analogue to the processing applied to empirically collected
data, the output of the NN has pixels with values less than
zero set to zero. The NNs output an inpainted image with an
ID of 1, with every row in the image approximated by the
network. This image subsequently has the input data (ID < 1)
overlaid to form the final output of the NN approaches, a
hybrid of the measured and approximated rows.

Two NNs, one for 1C NN and one for 2C NN, are separately
trained a train in data set, with four networks trained in total,
two on glass reference data and two on ice reference data. This
learning uses supervised training. To produce a training
dataset, chemical maps were masked to generate data with IDs
between 0.2, representing the case where every 5th row is
measured, and 0.8, representing data where every 5th row is
omitted from measurement. The masked chemical maps and
their corresponding optical masks are split into 64 by 64-pixel
square patches and fed in batches of 32 as reference examples
to the NNs during training. These patches cover the entire
measured area and have some overlap to allow a larger training
set to be produced.

To quantify a network’s performance, the difference
between the output chemical map generated by the NN and
the ground truth chemical map is considered. The difference
between the images is calculated as their pixel-wise mean
squared error (MSE) across the whole image area, which is
used as the reconstruction loss function the network attempts
to minimise. Network weights are iteratively adjusted based on
this loss, and, therefore, the network learns to minimise the
pixel-by-pixel variance between the ground truth patches and
its output patches.

3.3 Validation and application

To determine the suitability of each implemented inpainting
method their performance must be assessed. This validation
uses data previously unseen by the NN approaches during
their training. The performance of each approach is quantified
by considering the MSE between the image output from each
inpainting technique and the ground truth data. The MSE is
calculated only in the inpainted areas and gives a simple pixel-
by-pixel quantification of variation between the two images
but does not capture structural information. Visual inspection
of images is also used to assess inpainting performance. The
small and large-scale variations captured by each inpainting
approach can be observed and discussed, giving a further view
of the operation and suitability of each approach.

To demonstrate an application of inpainting, experimental
datasets comprised of full optical data and sparse chemical
maps are collected. These chemical maps are then inpainted
using all four described inpainting methods. Given the nature
of these data as true applications of the method, there is no
ground truth chemical map to assess their performance
against.

4 Results
4.1 Data collection and processing

The validation dataset for the murrina sample is shown in
Fig. 4. This data shows typical elemental variability expected
from a murrina sample, with distinct elemental intensity
changes between regions. The optical data (Fig. 4b) was suit-
able for tracing segmentation masks, such as that in Fig. 4(c),
which separates adjacent areas of light and dark colour. The
NN training dataset for murrina samples consists of one
chemical map, which was collected during the same measure-
ment session as the application data.

For ice core samples, the dataset isolated for validation is a
full optical image and chemical map collected from an EDC
ice sample from 1096.7 m depth, and is shown in Fig. 4. All ice
sample data had grain boundary masks, such as that shown in
Fig. 4(f ), traced by hand using a digital tablet and image

Fig. 3 Design of the NNs used to inpaint missing regions in chemical maps. The network operates on input patches of size 64 by 64, with the 2C
NN approach taking both the chemical map and optical mask channels as input, while 1C NN takes only the chemical channel. The network uses an
encoder and decoder to increase and then decrease the number of channels sequentially. Only the chemical channel is considered at the output.
The non-masked input data is overlaid on the output before use.
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editing software to produce a binary mask, taking approxi-
mately 1 minute for a square millimetre. The ice application
dataset was collected from an ice sample which originated
from a depth of 1096.7 m in the EDC core.

4.2 Network training

Each network was trained for 60 epochs, with batches contain-
ing 32 example patches from the target matrix. An initial learn-
ing rate of 0.001 was used for the 1C NN networks and of
0.002 for 2C NN; this rate was halved after every 20 epochs.
The resulting change in MSE loss for each epoch for all four
trained networks are plotted in the ESI.† The epoch used for
the application was determined by inspecting the training
plots. For glass, this inspection led to epoch 20 for both the
1C NN and 2C NN. For ice epoch 23 was chosen for the 1C NN,
and epoch 40 for the 2C NN.

4.3 Performance validation

Validation examples for the performance of the inpainting
algorithms on the murrina sample are shown in Fig. 5. This
data originates from the ground truth chemical map
(Fig. 4(a)), with data masked to different IDs before testing,
with example-masked data in the top row of Fig. 5. Applying
the inpainting techniques to these masked data returns the
results displayed in subsequent rows of Fig. 5, with each row
showing the output of a different inpainting technique.
Visually, comparing Fig. 4(a) and each panel in Fig. 5 indicates
that higher IDs lead to inpainting outputs more similar to the
input data. At high input IDs of 0.5 and 0.8, all approaches
perform similarly well, with variation between regions cap-
tured and region boundaries well defined. At an input density
of 0.2, differences in output appear. 1C Telea blurs region
boundaries, while 2C MR has patches with poor quality recon-

Fig. 4 Murrina glass (first column) and ice (second column) validation data, showing the full chemical ((a) and (d)) and optical data ((b) and (e)), with
masks resulting from hand-segmenting the optical data ((c) and (f )). White areas in (c) separate adjacent black areas of variable brightness in (b),
while (f ) represent where GBs are seen in (e). The ice dataset was collected from EDC ice from approximately 1096.7 m depth, with a small subset of
the full measured area shown for readability.
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struction, possibly due to slight offsets in the chemical map
and optical mask.

Similarly, the inpainting techniques were applied to the
validation ice data, a spatial subset of which is shown in
Fig. 4(d), as illustrated in Fig. 6. There are visual differences
between the outputs. Comparison between Fig. 4(d) and Fig. 6
shows the input and output are visually more similar for data
inpainted with higher ID for all approaches. The large bright
spots are good performance indicators, with less well-perform-
ing cases showing these regions smudged into their surround-
ings. The high intensity of grain boundaries bleeds into the
grain interiors for the 1C Telea approach at all input densities.
This effect is constrained by the added optical information
provided to 2C MR. Both NN approaches produce visually

smoother outputs than traditional approaches, with fewer
missing intensity regions.

For both glass and ice samples, the performance of each
inpainting approach is quantified in Fig. 7 with the MSE
between the inpainted regions and corresponding regions in
the ground truth chemical map plotted for each approach.
This plot contains the cases shown in Fig. 5 and 6, alongside
results for other un-visualised IDs. The different absolute MSE
values are not comparable between applications to glass and
ice, as different elemental concentrations, and therefore
instrumental intensities, are expected between the materials.

The general trend in Fig. 7 is that MSE values increase with
decreasing ID, showing less faithful reconstructions of the
ground truth. Small deviations from this trend are seen in

Fig. 5 Illustration of the validation of inpainting performance on chemical data collected from a murrina glass sample. The masked chemical data
in the first row originates from the full map shown in 4(a). Subsequent rows show the inpainted outputs for each of the four implemented inpainting
algorithms, applied to the input data in the same column. The scale bar in the top left applies to all panels.
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cases where critical information is missing from obscured
maps. When applied to glass, the traditional approaches
perform the best above an ID of 0.6, below which the neural
networks perform the best. The two channel approaches gener-
ally perfom similarly to their respective traditional/NN
counterparts for all input IDs.

For ice, the neural network inpainters perform consistently
well, with better performances than the traditional approaches
across the entire range of information densities. 2C MR gener-
ally out performs its one channel counterpart, 1C Telea across
all IDs while there is a similar performance for the neural
network inpainters.

4.4 Application

Spectral data were collected from both an ice sample and
the murrina sample at a range of IDs to demonstrate the
practical application of inpainting. For both target matrices,
measurement time scaled linearly with information density.
The results from measuring the murrina sample are shown
in Fig. 8(a), with the inpainted output from the 2C NN
shown in (b). Similar to the validation data, the decrease in
performance with decreasing input ID is visible, with the
data measured at an ID of 0.5 showing the most faithful
reconstruction.

Fig. 6 Illustration of the validation of inpainting performance on the ice core sample from the EDC core, depth 1096.7 m. The masked chemical
data, taken from an expanded area of the plot shown in Fig. 4(d), for three different IDs is shown in the top row. Subsequent rows show the inpainted
outputs for each of the four implemented inpainting algorithms. The scale bar in the top left applies to all panels.
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Fig. 7 Plot of the performance validation of (a) glass and (b) ice for all inpainting techniques showing the MSE against input ID. The assessment is
carried out by inpainting masked data generated from the chemcial maps in Fig. 4(a) for glass, and (d) for ice. Input data and inpainting outputs for
IDs of 0.2, 0.5, and 0.8 are shown in Fig. 5 and 6. The difference in y-axis scale between the panels arises from different numbers of counts in
measured maps arising from differences in sample properties.

Fig. 8 Chemical maps superimposed on top of optical data collected from the murrina sample. Spectral data is measured at a range of IDs (a), and
the 2C NN used to restore the regions to approximated full images (b). Results for the 1C NN, 2C MR, and 1C Telea inpainting methods are contained
in the ESI.† The ID for each rectangular region is indicated in the upper left of the region, the region collected with ID = 1 is shown for reference and
is not inpainted. The spatial scale bar is applicable across both panels.
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The example data for the ice sample is shown in Fig. 9,
with sparse data shown in (a) and the output of the inpainting
approach 2C MR shown in (b) and 2C NN in (c). The inpaint-
ing results from the 0.5 ID input is, visually, significantly
better than for the 0.33 ID input, with boundary intensities
much more continuously populated. The 2C MR approach
appears to reproduce intensities along horizontal boundaries
better than vertical boundaries, with 2C NN showing the oppo-
site trend.

5 Discussion
5.1 Data collection

As illustrated in Fig. 4, which shows the chemical ((a), (d)) and
optical ((b), (e)) channels, there is good spatial co-registration
between the optical and spectral data, allowing effective
masking of spectral data based on features in the optical
images. The measured ice samples have a range of chemical
and physical properties, including concentrations of measured
Na and mean grain size, which aids the generalisation of the
trained inpainting models. Conversely, only the fully mapped

area in Fig. 8(a) is available as training data for the glass
sample. Given the relative simplicity of features in the chemi-
cal maps measured on glass which are all captured in the
training dataset, we are confident that this small dataset is
large enough for basic training. However, a larger training data
set collected from a range of similar glass samples could
increase the performance of the implemented NNs and would
be vital if such a network were to be applied to other glass
samples with different chemical variability.

For both glass and ice samples, the chemical maps col-
lected have approximately hundreds of pixels in each dimen-
sion, making patch sizes of 64 by 64 suitable for use in the
NNs. The suggested data collection scheme of leaving out
evenly spaced rows during measurements is easily
implemented on both LA-ICP-MS systems used, with examples
of the output of such experiments shown in the application
datasets in Fig. 8 and 9(a).

5.2 Network architecture and learning

Within the range of available inpainting architectures,33 the
choice of architecture related to an autoencoder32 or a context
encoder is well motivated. Similar architectures to a context

Fig. 9 Chemical maps superimposed on top of optical data collected from an ice sample collected from EDC at a depth of 1096.7 m (a). Spectral
data is measured at IDs of 1, 0.5, and 0.33 (a), and the 2C MR (b) and 2C NN (c) methods used to restore the regions to approximated full images.
Results for the 1C NN and 1C Telea inpainting methods are contained in the ESI.† The ID for each rectangular region is indicated in the upper left of
the region, the region collected with ID = 1 is shown for reference and is not inpainted. The chemical plot in the ID 1 region in (a) is transparent to
allow some visibility of optical data behind. The spatial scale bar in the top left is applicable across the whole figure.
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encoder, which is designed to repair patches in colour images,
can be used to reconstruct arbitrary sizes and shapes of
missing regions.31

Deeper learning architectures, including those using layers
to reduce image size, u-net-like cross connections, and
implementations of bottlenecks, were tested but resulted in
worse network performance. This is likely due to the relatively
small training dataset these models are trained on, and the
small size of patches the network operates on. Small training
datasets can lead to overfitting of complex NN architectures,
leading to good performance on training data but bad general-
isation to application data. As the training dataset is very small
for the glass NNs the network will likely generalise worse than
the ice NNs. As only one murrina with a relatively simple
chemical distribution was measured for this study generalis-
ation is less important than for the application to ice. In the
case of ice, the networks were trained on data collected from a
relatively large number of samples. This dataset can be added
to in the future, furthering the generalised performance of
such networks. Increasing training dataset size could allow
more complex networks to be trained, for example those using
skip connections in a u-net like architecture allow features to
be preserved between network layers. Such architectures may
also benefit from increasing the patch size to larger than 64 by
64 pixels to include more contextual information in each
patch. The option to utilise more complex network architec-
tures in the future motivates collection of larger datasets, with
both an increased number of example maps and of the dimen-
sions of each map.

The NNs’ training curves (shown in the ESI†) for the net-
works trained on ice data, show suitable training behaviour
with an expected decrease in loss, followed by a convergence to
stable performance. The flattening of the curves and reduction
in oscillation after epoch 20 can be explained by the corres-
ponding reduction in learning rate.

5.3 Inpainting performance validation

The performance validation for both glass and ice illustrated
in Fig. 5 and 6 respectively, and quantified in Fig. 7, highlights
the strengths and weaknesses of each approach.

All approaches show good performance for IDs above 0.5
on glass and 0.33 on ice, as quantified in Fig. 7. This suggests
that in cases where only small amounts of data require
inpainting, for example, where small regions are corrupted or
otherwise missing, all approaches can be used. As both 1C
Telea and 2C MR do not need a training dataset they can be
applied to data immediately they are well positioned for such
reconstructions. These approaches can be applied in cases
where detector saturation or other instrumental factors (such
as temporary loss of instrument connection, stage tripping, or
lack of focus) lead to small missing areas of data, which can
be quickly and reliably approximated using traditional inpaint-
ing approaches.

For IDs below 0.5, the NNs perform best on glass, while
they perform consistently the best on ice across all information
densities. This places these approaches well for experiments

where data is deliberately under-sampled and subsequently
reconstructed. Collecting data at an ID of 0.5 represents an
immediate saving of 50% of the laser shots used to fully map
an area, with very little extra post-processing burden or
reduction in output quality. The nature of these approaches as
interpolations must be considered when interpreting
inpainted maps. At the micro-scale, these approaches can not
precisely insert features in unmeasured regions but do provide
suitable impressions of larger-scale variability.

Added optical information can improve the performance of
inpainters, with the 2C MR approach generally performing
better than 1C Telea on ice. Visual inspection of inpainted
outputs shows that 2C MR is sensitive to offsets in registration
between the mask and chemical map. These offsets are often
unavoidable due to differences between the optical and chemi-
cal data. For example, the ice GB mask can be slightly spatially
offset from the spectral data, and the chemical width of grain
boundaries is not identical to their optical or physical width.
Therefore, two-channel methods resilient to offsets between
the spectral data and GB masks, such as 2C NN which does
not show such rigidity, are practical.

Exploration of further performance metrics reveal similar
trends. A metric that considers structural, intensity, and con-
trast differences between images is the structural similarity
index (SSIM).34 Previously explored when optimising 2D maps
collected using LA-ICP-MS,35 this metric varies between −1
and 1, where two images with a SSIM of near to 1 are similar.
Plots equivalent to those in Fig. 7 but showing SSIM are con-
tained in the ESI,† and reveal similar strong performance of
the NN approaches on ice samples. This metric also places 2C
MR consistently higher performing than 1C Telea on ice across
all IDs when tested on the ice validation sample.

Where better performances, as quantified by either MSE or
SSIM are required, or different matrices that do not train well
with this network structure are analysed, other approaches to
inpainting may prove suitable. For example, generative
approaches can be used to provide an adversarial loss along-
side the reconstruction loss31 while masked autoencoders36

and diffusion models37 are also used for similar tasks. Where
possible, using larger training datasets, potentially utilising
transfer learning to fine-tune pre-trained networks, and/or
using larger patch sizes may also return better generalisation.

Where computational power is important, after initial train-
ing of the NN approaches, the time taken for all algorithms
except the 2C MR to run at is comparably fast. On a standard
laptop computer, the ice validation data shown in Fig. 6 takes
on the order of 0.1 seconds to inpaint using the 1C Telea, 1C
NN, and 2C MR approaches. At low IDs, the 2C MR takes a sig-
nificantly longer time to run (on the order of 1 second) due to
crudely implemented requirements to increase the neighbour-
hood size to find nearby classified pixels drastically. This time-
based performance motivates the use of the NN approaches
and 1C Telea. The speed of 2C MR could be improved by devel-
oping a new method to utilise a Telea-like algorithm, incorpor-
ating fast inpainting while considering the boundary and
interior regions separately.
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5.4 Inpainting application

The demonstrated inpainting approaches show promise for
practical application to both relatively simple matrices such as
murrina glass and to more complex matrices such as ice. In
the case of glass analysis, Fig. 8 shows that measurement at an
ID of 0.5 collects representative chemical data, including cap-
turing small scale variations in chemical intensity. Very low
IDs of 0.2 could be used to rapidly map large areas during
initial analysis of such samples, to identify regions of interest
for future full-mapping analysis.

The potential for enhanced performance for inpainting
approaches using optical data demonstrates the utility of such
for studies of soluble chemistry in ice core research. Thus, it
should be exploited where possible. Since optical data are
already used for localisation studies via LA-ICP-MS,38 imple-
menting an approach to collecting higher-quality, and there-
fore easily machine-segmentable, optical images co-axial with
LA-ICP-MS data is of interest. Indicative early experiments,
briefly described in the ESI,† on higher-quality optical data
which shows GB and grain interior regions at higher contrast a
high likelihood that automatic segmentation can be applied to
such data using a purpose-trained segmentation u-net.

In the case of ice, there is a demand to analyse centimetre-
square ice samples to investigate the paleoclimate. Such ana-
lyses require the collection of representative chemical data
from hundreds of metres of ice. Achieving such an objective
requires industrial-style high-throughput rates of measure-
ment of ice samples if LA-ICP-MS is to be applied. The results
shown in Fig. 9 motivates a hybrid approach to such measure-
ments, using full-area mapping for both localisation studies
and provide a training dataset for inpainting NN, coupled with
sparse data collection and subsequent inpainting to cover
large areas. This approach can be useful for applications cover-
ing large scales where further data processing will take place,
such as paleoclimate signal acquisition through combination
of parallel profiles.20 Averaging inpainted areas may produce
more accurate palaeoclimate reconstructions than non-
inpainted data, but this process is yet to be verified.

An example case to demonstrate how TT in eqn (5) changes
based on variations in spot size and ID can be established by con-
sidering measurements over a square-shaped surface of 1 cm2.
For a typical uni-directional area scan, Tr can be estimated by
setting up measurements in the software used to design laser
ablation scans and recording the projected measurement time.
For the setup at AWI the software gives a Tr of approximately 3.5 s
for each profile in this target geometry. Considering a typical
dosage of n = 10 and a repetition rate of 500 Hz, eqn (5) can be
used to calculate TT under different experimental conditions, the
results of which are shown in Fig. 10.

The surface plotted in Fig. 10 can be used to identify the
spot size and ID required to achieve a target analysis time.
Exploring such a parameter space allows an optimisation
between measurement time, resolution, and ID to be deter-
mined. However, the plotted parameter space represents a sim-
plification of the relationships established in eqn (5). This

equation can be further explored to understand how measure-
ment times can be reduced. For example, RR is often changed
based on BS, while Tr is dependent on the geometry of the
measured area and can be considered negligible in the case of
a bi-directional raster scan. Experiments are best designed
while considering this entire parameter space, and the
addition of ID as a parameter is intended to add a further con-
sideration to experimental design decisions.

5.5 Broader application

In theory, these inpainting approaches can be applied to other
LA-ICP-MS target samples to facilitate large-area measurement
or reduce time and resource consumption. To maximise
inpainting performance, each target matrix will require careful
design of experimental data collection and selection of
inpainting method.

Interpolation approaches such as image inpainting are
applied across scale and dimension. Inpainting is not
restricted to the choice of spot size discussed in this analysis,
with 10 µm chosen for glass and 40 µm for ice samples to
match the specific application of LA-ICP-MS to these samples.
These spatial scales can be adjusted based on the specific
target application and matrix. Furthermore, given that the 3D
manifestation of chemistry is important to understanding
material composition and behaviour, such approaches could
also be extended to facilitate 3D analysis. LA-ICP-MS has
already proved a suitable method for collecting planes of spec-
tral data from a 3D object.39 Gaps between adjacent layers col-
lected during such analysis could be filled using similar
inpainting techniques.

The range of analysed spectral channels can be extended
and inpainting applied to calibrated data. The ESI† for this
manuscript shows the results of training and applying the 2C NN

Fig. 10 Visualisation of the time taken to measure a square-shaped
area under different experimental conditions. Measurement time is cal-
culated using eqn (5), with A, n, RR, and Tr set to constant values of,
1 cm2, 10, 500 Hz, and 3.5 s, respectively. ID and BS are varied, and N is
set to the number of profiles required to cover the area based on the
spot size. Note the time axis is on a logarithmic scale, with the colour
map and z axis representing the same information.
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inpainter to the m/z = 146 (Nd) and m/z = 23 (Na) channels
measured on the murrina glass sample. In such cases where mul-
tiple chemistry channels are analysed, NN architecture could be
adjusted to simultaneously inpaint all spectral channels simul-
taneously, with the extra information potentially aiding inpaint-
ing performance. Dimensionality reduction on groups of ICP-MS
mass channel outputs could allow discussions of multiple chan-
nels at once. In the case of ice core analysis, a representative
boundary localised channel could be isolated and discussed,
rather than discussing channels individually. Although elements
dispersed away from grain boundaries in ice samples shows less
obvious spatial distributions, similar discussions are likely
extendable to consider these components.

General image analysis toolsets can be shared and
enhanced by considering different matrices and analytical
techniques. Studies on biological samples, which can share
similar structures to ice, are analysed using dedicated image
analysis approaches which can be applied to other matrices.40

Furthermore, the chemistry of samples is often closely linked
to patterns in other measured data, with optical and backscat-
tered electron images having been used as reference points for
LA-ICP-MS.38,41 Correlations between these data types can be
exploited to propagate information about the chemistry into
unmeasured regions, similarly to how the two channel inpaint-
ing approaches presented in this study utilise optical data to
guide their inpainting.

6 Conclusions

Carefully designed experiments joined with computational post-
processing can be utilised to save time and resources during
LA-ICP-MS data acquisition. Experiments can be designed to
collect only a fraction of the full spatial spectral data usually
measured with LA-ICP-MS and inpainting techniques utilised to
fill in the gaps, with often minimal difference in output. Such
approaches can also benefit from harmonies with other more
easily measurable data types, such as optical data, to guide
approximations of spectral data. This approach to sparse data col-
lection and subsequent inpainting is demonstrated on both glass
and ice samples. These developments, coupled with the increased
speed of LA-ICP-MS analyses, enable measurement of the large
areas and high sample numbers required to fully collect high-
resolution climate signals from highly thinned ice core samples.
The presented approach is widely applicable to facilitate rapid
data collection on a range of target matrices.
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