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 A B S T R A C T

Excessive tree mortality is a global concern and remains poorly understood as it is a complex phenomenon. 
We lack global and temporally continuous coverage on tree mortality data. Ground-based observations on tree 
mortality, e.g., derived from national inventories, are very sparse, and may not be standardized or spatially 
explicit. Earth observation data, combined with supervised machine learning, offer a promising approach to 
map overstory tree mortality in a consistent manner over space and time. However, global-scale machine 
learning requires broad training data covering a wide range of environmental settings and forest types. Low 
altitude observation platforms (e.g., drones or airplanes) provide a cost-effective source of training data by 
capturing high-resolution orthophotos of overstory tree mortality events at centimeter-scale resolution. Here, 
we introduce deadtrees.earth, an open-access platform hosting more than two thousand centimeter-resolution 
orthophotos, covering more than 1,000,000 ha, of which more than 58,000 ha are manually annotated 
with live/dead tree classifications. This community-sourced and rigorously curated dataset can serve as a 
comprehensive reference dataset to uncover tree mortality patterns from local to global scales using space-
based Earth observation data and machine learning models. This will provide the basis to attribute tree 
mortality patterns to environmental changes or project tree mortality dynamics to the future. The open nature 
of deadtrees.earth, together with its curation of high-quality, spatially representative, and ecologically diverse 
data will continuously increase our capacity to uncover and understand tree mortality dynamics.
1. Introduction

In recent decades, elevated tree mortality rates have been reported 
for many regions of the world (Hartmann et al., 2022). This phe-
nomenon is attributed to climate change-induced more frequent and 
intense climate extremes such as droughts, heatwaves, and late frosts, 
that often trigger outbreaks of damaging insects or epidemic diseases 
(Hartmann et al., 2022; Trumbore et al., 2015; Senf et al., 2020; 
Anderegg et al., 2013; Gora and Esquivel-Muelbert, 2021; Bauman 
et al., 2022; Hartmann et al., 2025). Tree mortality is generally not 
driven by a single driver but by complex compound events, consisting 
of multiple biotic and abiotic agents and feedbacks (Bastos et al., 2023; 
Mahecha et al., 2024; Allen et al., 2010; Schiefer et al., 2024). This 
may include a combination of consecutive heatwaves, meteorological 
and soil droughts, followed by late frosts after leaf budding, and the 
infestation of already weakened trees by pest and pathogens (Trugman 
et al., 2021; Stephenson et al., 2019; Fettig et al., 2019; Coleman et al., 
2018).

Trees are long-lived and sessile organisms that cannot escape ex-
treme conditions via migration, and their capacity to acclimate or 
adapt evolutionary to rapid environmental changes is low (Allen et al., 
2015). Accordingly, the spatio-temporal patterns of standing dead tree 
canopies are direct indicators of how different tree species, functional 
types, ages, or entire ecosystems cope with biotic and abiotic stressors 
(Hartmann et al., 2022; Anderegg et al., 2013). Moreover, timely 
information on tree mortality dynamics is urgently needed by decision-
makers in forest management and nature conservation. Information 
on tree mortality patterns is required to identify adaptation strategies, 
including selecting tree species, optimizing harvesting cycle, managing 
pest and disease outbreaks (e.g., bark beetle), ensuring the provision 
of ecosystem services and controlling fuel accumulation for wildfire 
risk reduction (Stephens et al., 2018, 2022; Moghaddas et al., 2018; 
Vilanova et al., 2023; Garrity et al., 2013; Winter et al., 2024). Lastly, 
tracking tree mortality patterns helps indicate where ecosystems are 
undergoing rapid compositional transformations, i.e., shift in species 
and their role in the terrestrial carbon cycle, e.g., via declining net 
carbon sinks (Hill et al., 2023; Scheffer et al., 2001; Stephens et al., 
2022; Pan et al., 2011; Migliavacca et al., 2025).

Despite its importance, the extent and rate of tree mortality at 
the global scale remains largely unknown or imprecise (Allen et al., 
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2015). Although ground-based inventories are the gold standard in 
forestry, national forest inventories only sometimes record tree mor-
tality and are limited by sparse spatial coverage (Puletti et al., 2019) 
and low temporal sampling frequencies (e.g., 10-year intervals), which 
do not align well with the rapid dynamics of environmental stressors 
(International Tree Mortality Network et al., 2025). Therefore, these 
inventories provide limited assistance in attributing tree mortality to 
short-term environmental dynamics such as climate extremes or insect 
outbreaks (Woodall et al., 2005; Hülsmann et al., 2017). Consequently, 
meta-analyses based on such ground observations could be biased or 
underrepresented for recent elevated tree mortality (Yan et al., 2024; 
Hammond et al., 2022). The value of field inventories for global tree 
mortality studies is further complicated by the commonly low data 
accessibility and heterogeneity in sampling protocols and data quality 
(McRoberts et al., 2010; Senf et al., 2018). Recent initiatives such 
as the global tree mortality database (Hammond et al., 2022) have 
gathered and harmonized invaluable information towards a global 
assessment of tree mortality. However, they are still severely limited in 
their spatial and temporal coverage and are not based on a systematic 
assessment that would enable scaling to larger spatial scales (Inter-
national Tree Mortality Network et al., 2025). Uncovering global tree 
mortality patterns requires a multi-faceted approach that complements 
the ground-based assessments.

Satellite-based Earth Observation offers a promising avenue for 
global forest monitoring (International Tree Mortality Network et al., 
2025). While remote sensing is generally only observing forest over-
story dynamics due to its birds-eye view, it provides seamless spatial 
coverage and consistent monitoring across time. Using spectral imagery 
from the Landsat satellite mission, Hansen et al. created the prominent 
global forest loss map, Global Forest Watch, by applying a decision 
tree classifier on time series of spectral metrics (Hansen et al., 2013). 
However, this approach reveals a binary classification of forest cover 
loss, not tree mortality, and is restricted to 30 m spatial resolution 
and thus cannot detect the often scattered patterns of tree mortality 
(Cheng et al., 2024; Espírito-Santo et al., 2014; Schiefer et al., 2024). 
Unsupervised approaches involving analysis without labeled reference 
data can reveal continuous forest responses using anomalies of vegeta-
tion indices, which are computed by combining multiple spectral bands 
for each pixel (Thonfeld et al., 2022; Lange et al., 2024; Senf et al., 
2018, 2020; Senf and Seidl, 2021). However, dynamics in vegetation 
indices reflect a wide range of vegetation changes and do not explicitly 
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Fig. 1. Four forest sites, 15 m in width and height and at resolutions of 5 cm to 60 cm. From top to bottom (A to C), the tree species are Picea abies, Fraxinus 
excelsior, and Pinus sylvestris. Row D shows an example where rocks cannot be distinguished from standing deadwood in coarse-resolution images. The original 
images have resolutions better than 5 cm and were resampled (nearest-neighbor) for this visualization. Airplane images at the same resolution commonly appear 
less clear at similar resolutions, hence these images are best-case scenarios.
reveal tree mortality (Zeng et al., 2022). Therefore, translating the 
complex Earth observation signals to tree mortality patterns requires 
a supervised approach (Schiefer et al., 2023).

The Earth observation community, thus, currently lacks a repre-
sentative collection of standardized reference data for training and 
validating supervised methods for monitoring tree mortality (Mansuy 
et al., 2024; Zhang et al., 2025). Given the relatively coarse reso-
lution, satellite data does not provide the necessary spatial detail to 
extract such reference data directly. Ground observations are currently 
insufficient as reference data, primarily because they provide only 
point-based measurements that are constrained by limited positional 
accuracy (Leitão et al., 2018; Purfürst, 2022a; Kattenborn et al., 2021; 
International Tree Mortality Network et al., 2025). Airplane aerial 
images typically have higher resolutions and are often freely available 
for regions or entire countries and, therefore, provide a promising 
source to map tree mortality (Cheng et al., 2024; Junttila et al., 2024; 
Schwarz et al., 2024; Khatri-Chhetri et al., 2024). Photo-interpretation 
of such aerial images has a long tradition in forestry and has been used 
in this way operationally for decades. However, airplane imagery are 
only openly available in a few countries and their spatial resolutions 
typically range from 20–60 cm (e.g., PNOA, Spain at 28 cm, NAIP, USA 
at 60 cm), in rare cases up to 10 cm (e.g., swisstopo, Switzerland at 10 
to 25 cm). This can be a critical constraint to uncover tree mortality, 
as an image resolution of 20 cm or less does not always enable most 
precise differentiation of dead from alive tree crowns and may lead to 
missing small dead trees (compare Fig.  1). For some species, crown 
shapes, or sizes, mortality is still clearly visible at 60 cm and in 
5 
studies that are limited to specific ecosystems, e.g., with dominantly 
coniferous species, coarse aerial images suffice (Junttila et al., 2024). 
Such resolution does not suffice, to accurately reveal partial dieback of 
broadleaf trees (row B in Fig.  1), mortality atop a bright forest floor 
(row C in Fig.  1), or in the presence of objects such as rocks that 
have a geometry that is similar to tree crowns (e.g., rocks, row D in 
Fig.  1). Hence, to achieve accurate reference data across all ecosystems 
and tree types a finer resolution in the centimeter range (≤10 cm) is 
needed, calling for a representative global collection of centimeter-scale 
imagery.

Drones are becoming increasingly accessible and user-friendly (Tang 
and Shao, 2015; Johnson et al., 2017; Rossi and Wiesmann, 2024). 
Suitable orthophotos for precise tree mortality identification at the 
centimeter scale can be obtained by non-technical users with consumer-
type drones and easy-to-use mapping apps. Drones can safely fly over 
areas with dense understory or steep terrain without requiring physical 
access to the surveyed region. In a recent case study in Germany, 
Schiefer et al. (2023) exemplified the value of such high-resolution 
drone aerial images as reference to infer the fractional cover of standing 
deadwood [%] in pixels of satellite data (Sentinel-1 and -2). However, 
drones require operators to go into the field, creating significant labor 
costs and logistics challenges, especially if ground control targets are 
needed. Hence, leveraging drone orthophotos for use in global tree 
mortality monitoring can only be achieved through a large collective 
effort across institutions, researchers, and citizens across the globe, to 
finally acquire a rich collection of orthophotos to represent all forest 
ecosystems.
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Fig. 2. Sample image sections of standing deadwood in a variety of contexts. The caption below each image denotes the acquisition location of the drone 
orthophoto. All images are available in the database.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
Here, we introduce deadtrees.earth, an open science, collaborative 
platform for accessing, sharing, analyzing, and visualizing a global 
database of orthophotos with labeled standing deadwood. The dea
dtrees.earth  platform features open-access interactive functionality, 
allowing users to upload and download images and labels through the 
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website and an API. It also incorporates expert quality control work-
flows to maintain high data standards. This collection, across spatial 
and temporal scales, offers unparalleled opportunities for researchers to 
advance satellite-based model training and validation. The platform’s 
backend is built with a scalable architecture to allow growth into a 

https://deadtrees.earth/
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Fig. 3. Temporal signature of standing deadwood (red) in multiple scenarios. Climate extreme events (blue) cause tree mortality to increase. Natural decomposition 
and/or salvage logging decreases standing deadwood.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
large machine learning model ecosystem. Beyond machine-learning ap-
plications, this database also enables verification of existing products. 
Contributors are acknowledged for their data contributions, fostering 
transparent community participation and acknowledgment.

2. The deadtrees.earth platform

deadtrees.earth is a dynamic, community-built, open-access
database for aerial orthophotos of delineated standing deadwood. This 
section presents our definition of standing deadwood, the database 
structure, database statistics, and a web platform for the integration 
of the database into the community.

2.1. Standing deadwood

We focus on standing deadwood, defined as woody material (twigs, 
branches, or stems) in the upper canopy layer that has died off but has 
largely retained its original structure. Both evergreen and deciduous 
dead tree canopies are visually identified by either leaves or needles 
in a gray or brown state or a lack of foliage (Fig.  2). While evergreen 
trees can be detected in any season, for deciduous trees it is required 
to only consider imagery in leaf-on season, i.e., summer or wet season. 
Standing deadwood can be identified in centimeter-scale RGB images 
acquired by drones or airplanes by methods such as semantic segmen-
tation, which involves the generic segmentation of any dead tree crown 
or branch (Schiefer et al., 2023; Möhring et al., 2025), or instance 
segmentation, where each segment corresponds to an individual tree 
crown (Cheng et al., 2024).

Information on lying deadwood is not considered for this database. 
In contrast to standing dead tree crowns, fallen tree stems are less 
likely to be detected in drone and airplane imagery, as they are readily 
occluded by surrounding tree crowns or are rapidly covered by un-
derstory. Additionally, fallen trees can be several decades old and are 
hence less interesting for studying tree mortality as a response to recent 
environmental changes, climate extremes, or pests and pathogens.

The amount of standing deadwood changes over time with different 
events (Fig.  3). Climate extreme events, such as droughts, can cause 
tree mortality, increasing the amount of standing deadwood. Standing 
deadwood is not limited to fully dying trees; partial dieback also affects 
the amount of standing deadwood. Explicitly including partial dieback 
is important, as it is an important measure for ecosystem resilience and 
a key indicator for forest condition surveys. In subsequent years, the 
dead tree crowns decompose and the fraction of standing deadwood 
decreases. As soon as dead trees fall over, are felled, or are completely 
removed, they no longer count as standing deadwood.
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Although the concept of standing deadwood is simple, understand-
ing its temporal dynamics requires several considerations. First, the 
disappearance of healthy trees does not affect the fraction of standing 
deadwood. This also includes removing unhealthy trees that have not 
yet changed their appearance from above and are removed before 
visible leaf loss. Secondly, the amount of standing deadwood does not 
contain information about the year of death. Note that the year of the 
first appearance can be extracted from a standing deadwood time series 
(Schiefer et al., 2024). Thirdly, drought or cold semi-deciduous species 
that shed their leaves during climate extremes or species that resprout 
epicormically after disturbances such as fire, may visually appear as 
standing deadwood at one point in time but may regrow leaves at a 
later time, e.g., red needle cast (Watt et al., 2024) or drought-induced 
leaf shedding (Gentilesca et al., 2017).

2.2. Database structure

The deadtrees.earth database is a collection of geo-referenced RGB 
orthophotos with optionally one or more sets of labels depicting stand-
ing deadwood. Our database focuses on airborne imagery with res-
olutions finer than 10 cm while also allowing submissions of lower 
resolutions for unrepresented regions, where validated tree mortality 
labels are provided, or standing deadwood can be clearly identified 
(Fig.  1).

Each orthophoto comes with the following metadata: acquisition 
date, author(s), platform, resolution, greenness phenology curve, and 
license (compare Fig.  4). The author can be one or multiple individuals 
who contributed to capturing the orthophoto.

The acquisition date is crucial for linking with environmental con-
ditions to validate whether the orthophoto was captured in leaf-on 
season because one cannot differentiate between dead and alive trees 
in orthophotos that were captured in leaf-off season. Given that data 
contributors track the acquisition date with different accuracy, we 
accommodate three levels of precision for the acquisition date, that is, 
accurate in days, months, or years. Noting the possible temporal error 
is of utmost importance when combining these observations with other 
datasets, such as satellite time series (see Section 3.2).

Local information on canopy greenness phenology at the ecosystem 
scale is derived from the VIIRS Global Land Surface Phenology Product 
(Zhang et al., 2020). The VIIRS product reports up to two periods of 
‘Maximum Greenness’ based on the Enhanced Vegetation Index. This 
period is defined as between the ‘maturity onset or end of spring’ 
and the ‘senescence onset or start of fall’. Acquisitions within that 
period are most likely to be leaf-on. Observations outside this period 
are not necessarily in leaf-off season. The probability distribution for 
each day-of-year to be in this period is provided to users as additional 

https://deadtrees.earth/
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Fig. 4. Sample entry of an orthophoto(ID=306) (Jena, Germany, centroid: 50.911271◦N 11.509977◦E) with one label set for one area of interest (AOI) in the 
deadtrees.earth database. Only a simplified set of attributes are shown, see Figure 8 in Supplementary material for the precise database structure.
metadata (see Subsection 5.2 in Supplementary material). In some 
ecosystems this proxy should be interpreted with great care. Pixel-
level heterogeneity, can bias the inferred leaf-on period, particularly 
where summer- and winter-deciduous trees co-occur within a pixel or 
herbaceous groundcover influences the signal under sparse canopies 
(Zhang et al., 2018). Therefore, this product primarily serves as an in-
dicator. In the future, higher-resolution phenology products, e.g., based 
on Sentinel-2, PlanetScope, are expected to reduce these issues.

For each orthophoto, the average ground sampling distance (GSD) is 
automatically calculated to allow users to filter data based on different 
spatial resolutions (see Fig.  4). Orthophotos can be submitted using 
established coordinate reference system and are stored accordingly. 
Reprojection is only performed for coherent visualization on the web-
site. Finally, the location quality of a submitted orthophoto is visually 
assessed by the project team using open aerial map services to compare 
conspicuous features. Orthophotos with a more than 15 m shift are 
discarded.

Regardless of the spatial resolution, the information quality of an 
orthophoto can be constrained by various factors. These constraints 
include poor lighting conditions (e.g., underexposure), reconstruction 
artifacts, motion blur, or data gaps (Dandois et al., 2015; Frey et al., 
2018). The image condition can vary heavily across an orthophoto,
e.g., image edges are often distorted. The non-distorted parts of the 
orthophoto may still not represent the true appearance of the forest 
and small-scale mortality can be missed in the stitching process in 
rare cases (Koontz et al., 2021). To account for such variance within 
orthoimages, we assign each orthophoto an area of interest (AOI), 
a multi-polygon the delineates the part of the orthophoto where tree 
mortality can be clearly identified and the image is not distorted. The 
AOI is determined during a meticulous manual audit by data stewards 
of the deadtrees.earth platform, provided for each dataset for download 
and visualized for each individual aerial image submission under https:
//deadtrees.earth/dataset.

Label sets are polygons or points located over standing deadwood 
in orthophotos identified through visual inspection or from automatic 
segmentation (Schiefer et al., 2023; Cheng et al., 2024; Junttila et al., 
2024). More specifically, there are four types of labels: (i) centroids 
of individual dead tree crowns, (ii) bounding boxes of individual dead 
trees, (iii) delineations of individual dead tree crowns (instance segmen-
tation), and (iv) delineations around a group of adjacent dead trees or 
dead tree parts (semantic segmentation). Each label set is associated 
with an AOI, that also acts as boundary of the labeling effort. This 
means area inside the AOI that was not marked as deadwood can be 
assumed to be alive or non-tree objects (see Fig.  4). Lastly, there can be 
multiple sets of labels from different sources for the same orthophoto,
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e.g., one may have been created manually while a second set was 
machine-generated by a segmentation model.

The quality of the labels will be assessed during an audit, where, 
again, a quality score between 1 and 3 will be assigned. A score of 3∕3
means accurately delineated standing deadwood and partial dieback 
(see Fig.  4). In the score of 2∕3 we include sets where the vast ma-
jority of deadwood is labeled and/or delineations have imperfections,
e.g., partially include forest floor or disregard partial dieback. Label 
sets with a score 1∕3 include all other sets and are recommended to 
be excluded in further analysis or machine learning applications.

2.3. Platform architecture

The deadtrees.earth platform is an integrated web-based system de-
signed to facilitate visualization, participation, management, and access 
to the deadtrees.earth database. The platform architecture consists of 
the following components: a user-facing front-end application, a self-
hosted database for metadata and labels, a Cloud-hosted storage server 
for orthophotos and Cloud Optimized GeoTIFFs (COGs), a processing 
server for generating COGs, and user authentication (see Fig.  5).

The front-end of the platform includes a landing page introducing 
users to the platform’s features, and a dataset page for searching 
and filtering the database through a list or world map. Users can 
select a specific dataset to access the details page, which visualizes 
one orthophoto with corresponding labels and their metadata. From 
here, users can download datasets without needing an account. Each 
label set is uniquely linked to one orthophoto (N:1 schema), and this 
relationship is preserved during download: dataset IDs are shown to the 
user and embedded in filenames to ensure reliable traceability between 
imagery and labels. A second page visualizes large-scale satellite-based 
deadwood maps. Finally, a user-specific profile page, which requires 
login, enables users to upload orthophotos and labels and manage their 
data.

Registered users can upload orthophotos, in the form of GeoTIFFs, 
and labels to the system together with a set of metadata data that 
includes the author names and acquisition date per orthophoto. Upon 
successful submission to the system, additional metadata is generated, 
that is, administrative level, information about local phenology and 
technical image details. All metadata, along with vector labels, is stored 
in a self-hosted Supabase database, which is accessible via Python and 
JavaScript client libraries. Data audit workflows require specific user 
access levels, which are assigned to the deadtrees.earth core team. 
For user authentication, we use Supabase Auth, which is based on 
JavaScript Object Notation Web Tokens (JWTs). This ensures secure 
access while integrating with Supabase’s database features to imple-
ment Row Level Security (RLS), ensuring that each user can only access 

https://deadtrees.earth/dataset/306
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https://supabase.com/
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Fig. 5. System diagram illustrating the main components of the deadtrees.earth platform and their interactions. Users can search and filter the database, visualize 
and download orthophotos, and explore a large-scale mortality map. The processing server generates Cloud Optimized GeoTIFFs (COGs) by pulling GeoTIFF files 
and pushing processed COGs to the storage server.
data they are authorized to view. All critical components, including 
the storage server and Supabase database, are backed up daily us-
ing Borg (https://www.borgbackup.org/). Backups are stored offsite 
on a university-maintained file server at the University of Freiburg, 
integrated into the institutional backup strategy.

To efficiently visualize a large collection of orthophotos with min-
imal resources, the platform uses Cloud Optimized GeoTIFFs (COGs). 
COGs allow users to view and work with large orthophotos quickly and 
efficiently, which is especially helpful when bandwidth or processing 
power is limited. COGs are internally tiled and include overviews, 
making them accessible via HTTP range requests without the need 
for server-side processing. This approach allows clients to fetch only 
the necessary data, optimizing transfer and reducing server load. As a 
result, COGs significantly improve performance compared to traditional 
Web Map Services (WMS) such as GeoServer (https://geoserver.org/) 
or MapServer (https://mapserver.org/).

The resource-intensive generation of COGs is performed on a sep-
arate processing server. The server periodically pulls user-uploaded 
GeoTIFF files from the storage server, performs the necessary process-
ing, and pushes the generated COGs back to the storage server (see Fig. 
5).

A Python-based REST API (REpresentational State Transfer Ap-
plication Programming Interface) built with FastAPI (https://fastapi.
tiangolo.com/) manages upload/download workflows, processing
tasks, user management, and resource allocation. While this API is not 
yet public, larger data requests can be fulfilled upon request, and full 
API access is a near-term development goal. The front-end initiates 
tasks such as uploading, downloading, metadata generation, and pro-
cessing COGs through this REST API, which can also be used directly 
for programmatic data ingestion and processing. The deadtrees.earth 
API also employs a queuing system to manage processes and prevent 
downtime which ensures stability and scalability.
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Finally, the platform’s modular design allows for future integration 
of advanced workflows, such as machine learning models for automated 
deadwood segmentation from drone imagery. By leveraging powerful 
local processing servers, these workflows can be added seamlessly, 
making the platform adaptable and flexible to meet evolving needs.

2.4. Data sources and current state of the database

The primary sources for the orthophotos and labels are commu-
nity contributions, i.e., datasets that individuals or institutions actively 
contributed. Given the large interest in monitoring tree mortality dy-
namics worldwide, the deadtrees.earth database received tremendous 
support from a wide array of individuals and institutions. So far, 136 
institutions shared data across 89 countries.

Crowd-Sourcing: In addition to community contributions, the
database integrates crowd-sourced data, i.e., datasets already freely 
available online. Indeed despite extensive community efforts to date, 
significant portions of the Earth remain uncovered in our database. 
Therefore to maximize database coverage, we integrate publicly avail-
able databases that adhere to appropriate licensing schemes.

While other initiatives, such as GeoNadir, OpenAerialMap, and 
OpenDroneMap, also collect drone orthophotos, only OpenAerialMap 
currently ensures that all contributions are licensed under CC BY (Cre-
ative Commons), making them suitable for use in projects like dead-
trees.earth. As of June 2024, OpenAerialMap hosts over 15,000 aerial 
orthophotos. We use this community-driven resource to expand the 
deadtrees.earth database. However, most of the contributions to Ope-
nAerialMap do not meet our database criteria due to limitations in 
resolution, site relevance, quality, or acquisition timing. To be able 
to extract usable images, we downloaded a summary of the metadata 
on 24th April 2024 through their open API. Then we first filter the 
entries where at least 30% is covered by forest according to ESA 
Worldcover (Zanaga et al., 2022). To then remove orthophotos that 
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Fig. 6. Initial statistics of the database upon launch depicting geographical, temporal, and resolution diversity. In the two bottom panels, drone orthophotos are 
accumulated by area (light blue) and count (dark gray). Statistics are only shown for years with more than five orthophotos. Different colors in the background 
depict different biomes (Olson et al., 2001).  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
lack the necessary spatial resolution (Fig.  1), we filtered images to 
include only resolutions finer than 10 cm, yielding 1102 samples. To 
only include orthophotos of forests within the growing season, we 
filtered the months May to August for samples north of latitude 23.5◦N, 
December to March for samples south of latitude 23.5◦S, and included 
all images for latitudes in between. Note that at a later stage we will 
differentiate between wet and dry seasons for tropical region. Finally, 
we manually iterated through the thumbnails to remove imagery with 
obvious quality issues and then assessed the original GeoTIFF. This 
resulted in a final set of 448 (out of >15,000 on OpenAerialMap) or-
thophotos with wide temporal (2007 to 2024) and geographic coverage 
(see Fig.  6).

It is worth noting that the dataset extracted from OpenAerialMap 
has a bias towards forests near human settlements, potentially over-
representing ecosystems that might not be representative of the region. 
For example, an orthophoto may contain 20 ha of a relevant forest, 
but another 100 ha of the image contains a building site that the 
drone operator originally planned to capture. Nevertheless, this crowd-
sourced dataset provides valuable, high-resolution imagery of forests 
in ecosystems that would otherwise not be part of our database. Ad-
ditionally, this bias may provide an opportunity for studies focusing 
on studying forest fragments and urban forests. As OpenAerialMap 
grows in the future, we will continuously monitor their database for 
relevant submissions. Also, other relevant sources with a CC-BY license 
or similar permissive licenses will be integrated.

Database Statistics: We launched the seed database with 2694 
centimeter-scale orthophotos covering 1,033,1099 ha and spanning all 
continents (except Antarctica) through community contributions and 
crowd-sourced data. By the time of writing (Jul. 2025), the database 
consists of 2246 (83%) drone orthophotos from community contri-
butions and 448 (17%) crowd-sourced orthophotos extracted from 
OpenAerialMap (Fig.  6). The increasing ease of use of drones within 
the last decade is reflected in the greater number of unique orthophotos 
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in recent years. Additionally, the database includes 539 aerial images 
with resolutions less than 10 cm (Fig.  6).

Notable Collections: Although a large part of the database con-
sists of individual locations that have been captured, it also features 
noteworthy collections that provide independent value, for example 
through temporal coverage across multiple months or years. Notable 
collections include:

• Barro Colorado Island (Panama) 90 orthophotos capturing the 
same 50 ha plot across 6 years (Vasquez et al., 2023).

• Québec (Canada) Seven consecutive orthophotos of the same 
lake area from May to October 2021 (Cloutier et al., 2023).

• Sierra Nevada Mountain Range (California, United States) 32 
(>30 ha) plots distributed over a 350 km and 1000 m elevational 
gradient in dry mixed conifer forest of California. Imagery cap-
tures the aftermath of a mass tree mortality event arising from 
the 2012 to 2016 hot drought (Koontz et al., 2021).

• Black Forest National Park (Germany) A 10-year timeseries 
covering the entire national park (Christoph Dreiser).

• Baden-Württemberg (Germany) 135 unique plots (>1 ha) in 
southwest Germany captured in up to three different years, re-
spectively (ConFoBi).

• ECOSENSE (Germany) A highly dense and continued time se-
ries at approximately monthly interval of the forest site of the 
ECOSENSE Collaborative Research Centre (3 ha) in southwest 
Germany (Werner et al., 2024).

• Andalusia (Spain) 60 tree mortality sites (>15 ha) in other-
wise protected national parks in 2023 (Clemens Mosig and Oscar 
Pérez-Priego).

• Eastern Cape (South Africa) 35 tree mortality sites captured be-
tween 2022 and 2024 providing unique data from Africa (Alastair 
Potts).

https://confobi.uni-freiburg.de/de/projekte
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• Zagros forests (Iran) 16 RGB Orthophotos captured in ca. 1 ha 
sample plots representing Quercus brantii Lindl. (Brant’s oak) de-
cline. Distributed over the large latitudinal gradient of semiarid 
Zagros Forests in western Iran (Ghasemi et al., 2022, 2024b,a).

• Norwegian Institute of Bioeconomy Research archive (NIBIO, 
Norway): 50 orthophotos RGB orthophotos captured by NIBIO’s 
Forest and Forest Resource division between 2017–2022 using 
a variety of DJI drones. These data were collected primarily in 
south eastern Norway (Puliti et al., 2020, 2019; Bhatnagar et al., 
2022).

• World Wildlife Fund (WWF) (Democratic Republic of the 
Congo): Orthophotos at 218 locations systematically sampled 
across closed-canopy forests in the Congo Basin in 2014. Com-
prehensive collection from the world’s second largest tropical 
rainforest (Xu et al., 2017).

The latter eight collections have not been available to the public 
until now.

Labels: The database contains 54,320 manually delineated poly-
gons delineating partial dieback, individual trees or multiple dead tree 
crowns. In total, 493 orthophotos and 58,219 ha are fully labeled, of 
which 245 label sets have quality 3/3, 231 have quality 2/3, and 5 
have quality 1/3 (see Section 2.2 for quality definition). The manual 
label set covers all biomes, predominantly focusing on Temperate and 
Mediterranean biomes (Möhring et al., 2025). These datasets will soon 
be available as machine learning ready datasets (see Section Section 3) 
to support the community with training semantic or instance segmen-
tation models. At present, this unique data collection would result in 
more than 600,000 labeled 512 × 512 patches or 170.000 labeled 
1024 × 1024 patches.

For this data collection we strictly adhere to the FAIR principle 
(Wilkinson et al., 2016). All data is Findable, i.e., has a unique identi-
fier, is described with metadata, and thus searchable. Access is provided 
through industry-standard and authentication-free HTTP requests on 
the website or programmatically (see Section 2.3). We provide data
Interoperability by using GeoTIFF format and standard datatypes for 
metadata (see Figure 8 in Supplementary material). Lastly, all data is
Reusable as it is published under a Creative Commons license.

In summary, through community efforts and crowd-sourcing of 
data, and to the best of our knowledge, the deadtrees.earth database 
curates an unprecedented amount of centimeter-resolution optical im-
agery and corresponding labels. With the increasing recognition of this 
database and the general growing willingness for open data in science 
and the public, we expect this database to continue expanding rapidly.

3. Outlook and perspective

3.1. Database expansion through community contribution

Excess tree mortality is a global phenomenon whose underlying 
complexity can only be effectively assessed through community effort 
(International Tree Mortality Network et al., 2025). The deadtrees.earth 
platform initiates with a collection of centimeter-scale forest orthopho-
tos that is already orders of magnitude larger in spatial coverage and 
diversity than in any mortality-related study used. However, this collec-
tion is biased towards the Global North, and regions in Asia and Africa 
are particularly underrepresented (see Fig.  6). This presents an oppor-
tunity for future orthophoto contributions from additional geographic 
regions around the world, helping to establish a more representative 
collection of global tree mortality. We therefore encourage everyone in 
every community to take the opportunity to participate in this global 
initiative.

Newly submitted orthophotos of local tree mortality events bolster 
the global and temporal representativeness of the database. This is 
critical for training models that aim for a global transferability (Meyer 
and Pebesma, 2022; Kattenborn et al., 2022; Möhring et al., 2025), 
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be it computer vision models that segment dead trees in drone data 
or satellite-based models. Hence, an individual submission of a user’s 
local forest can be an important missing puzzle piece in creating a 
representative training dataset. Subsequently, machine-learning models 
will improve in the user’s local region, providing a strong incentive to 
contribute their data as they indirectly benefit.

This platform is deliberately calling for RGB imagery only. While 
multispectral and hyperspectral sensors offer additional spectral bands, 
they typically come with lower spatial resolution and significant vari-
ability in band configurations and radiometric quality, making them 
less suitable for crowd-sourced applications. Additionally, drones
equipped with such sensors are currently several times more expensive 
than consumer drones with RGB cameras. Low-cost consumer drones 
with RGB cameras are widely available and offer spectral homogeneity 
and centimeter-level spatial detail. Hence, to maximize participation, 
and thus the coverage of this database, we opted to focus only on RGB 
orthophotos.

3.2. Towards tree mortality models and products from local to global scale

Delineated standing deadwood identified from large amounts of 
centimeter-scale orthophotos is a powerful data source for creating 
high-precision training data. Deadtrees.earth provides a unique dataset 
that will enable the machine-learning community to create models 
and maps that are transferable at a global scale and robust across the 
diversity of forest ecosystems (Fig.  7).

Given the rich database presented here, users can train various types 
of computer vision models for identifying standing deadwood in 
drone orthoimagery, e.g., in the form of semantic segmentation (poly-
gons of dead crowns, twigs or branches), object detection (bounding 
boxes of individual trees), or instance segmentation (precise crowns of 
individual trees). One such example is Möhring et al. (2025), a globally 
generalizing semantic segmentation which was directly trained on this 
database. With such models, one can perform inference on all orthopho-
tos in the database to automatically reveal the local distributions of 
standing deadwood. This is particularly relevant for orthophotos that 
do not have labels from a human interpreter. Machine-learning-based 
predictions may even be advantageous over labels from human inter-
preters as they might be more standardized and objective (in contrast to 
manually delineated polygons from different human interpreters). This 
automated mapping of standing deadwood is also meant to be one of 
the core incentives for users interacting with the deadtrees.earth. Thus, 
deadtrees.earth will provide a hub for making machine-learning-based 
technology developed by the community accessible for non-experts 
(e.g., practitioners, citizens, non-government organizations) or people 
with limited resources.

The local patterns of overstory mortality derived from orthophotos 
can be used as a reference for large-scale machine-learning-based 
mapping using satellite data from Sentinel, Landsat, or future satellite 
missions (Schiefer et al., 2023). While Sentinel and Landsat data are 
much coarser in resolution than drone data, approximately 10 m to 
30 m, respectively, they have the advantage of having global coverage 
and being multi-spectral data. The temporal continuity of Sentinel 
or Landsat data supports the creation of accurate global products, 
as machine-learning models can harness the temporal and spectral 
patterns. For example, in optical satellite imagery, standing deadwood 
may look visually similar to a grayish forest floor or rocks (Fig.  1). 
However, in a time series of multiple years, a dead tree can be dif-
ferentiated from a forest floor or rocks based on its spectral history. 
For example, Schiefer et al. leveraged this approach to build a yearly, 
fractional tree mortality map for Germany based on an orthophoto 
dataset that makes up less than 1% of this database by area achieving 
an RMSE of 0.22 Pearson’s R of 0.66. Building on this methodology, 
deadtrees.earth will provide satellite-based models and predictions at 
a global scale in the near future.

https://deadtrees.earth/
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Fig. 7. Generalized workflow to derive a global tree mortality product through the deadtrees.earth database and machine learning (ML) models.
To stimulate the development of machine-learning models for ana-
lyzing drone and satellite data, deadtrees.earth will provide ML-ready 
datasets, e.g., integrated into the torchgeo library (Stewart et al., 2022). 
This will enable the community to develop and benchmark different 
methods effectively. Incentives for this might be further propelled 
by related coding competitions. Moreover, the machine-learning-ready 
datasets will enable the development of workflows that are directly 
compatible with the deadtrees.earth ecosystem, so that models and 
workflows developed in the community can be directly integrated as 
an application.

With the launch of deadtrees.earth we aim to attract a variety of 
communities to this multifaceted platform. Through simple, interactive 
visualizations of orthophotos together with labels and satellite-derived 
products on the website, we truly enable anyone to explore our and oth-
ers’ tree mortality-related products. Viewing centimeter-scale imagery 
and satellite products side-by-side will enable benchmarks, validation, 
and finally an understanding of large-scale patterns of forest mortal-
ity. In a citizen science approach, non-specialists can also contribute 
data without prior knowledge of machine-learning methods used for 
further processing by us and the broad scientific community. In the 
future, we aim to further increase participation on deadtrees.earth by 
enabling users to delineate standing deadwood manually, correct AI 
segmentation outputs, and flag faulty predictions in the satellite data.

3.3. Combining aerial imagery with ground-based observations

While aerial imagery and machine-learning models enable scalable 
mapping of tree mortality, a critical next step is to link these obser-
vations with field data. Such a combination would not only provide a 
pathway for validating remote sensing products, but also enable new 
applications, for example by combining crown-level mortality maps 
with field-based biomass estimates to quantify carbon loss. However, 
this integration remains highly challenging (International Tree Mor-
tality Network et al., 2025; Kattenborn et al., 2019). Ground-based 
surveys currently provide rather coarse plot-level information, not 
spatially explicit crown data (International Tree Mortality Network 
et al., 2025). Even when individual tree positions are recorded, they 
are typically mapped as stem points, which cannot be directly aligned 
with polygons of crowns in aerial imagery (Schiefer et al., 2023). This 
mismatch is further amplified by GNSS errors, which commonly range 
from 3–5 m and may exceed 10 m under dense canopies (Valbuena 
et al., 2010; Kaartinen et al., 2015; Purfürst, 2022b), far beyond the 
location accuracy and centimeter-scale resolution that can be achieved 
with drone imagery (Hugenholtz et al., 2016). Moreover, tree crowns 
are rarely centered above stems, often have irregular shapes, and are 
difficult to observe from below due to canopy occlusion. As a result, 
both complete mortality (whole crowns) and partial dieback (branches 
or crown sectors) are very likely to be underestimated in ground 
surveys (Kattenborn et al., 2021; Schiefer et al., 2023). In addition, field 
surveys are typically very resource intensive, and in combination with 
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sampling uncertainties and the above-described measurement limita-
tions, they may hardly suffice to serve as validation for remote sensing 
products at global scales.

Looking forward, a systematic strategy is required to overcome 
these challenges and enable robust integration of aerial, satellite and 
ground observations across forest types and biomes. This includes both 
improved positioning technologies and standardized protocols that ex-
plicitly address the mismatch between point- and plot-based field data 
and crown- or area-based aerial observations (Leitão et al., 2018). 
Several authors have emphasized the lack of suitable reference data and 
stressed the need for harmonized global mortality datasets (Allen et al., 
2010; McDowell et al., 2016; Buras et al., 2020; Schuldt et al., 2020). 
Initiatives such as the International Tree Mortality Network are moving 
towards such harmonization (Hammond et al., 2022), but large-scale, 
spatially explicit integration of aerial and ground data remains a long-
term goal (International Tree Mortality Network et al., 2025). Progress 
in this direction would substantially enhance both the validation of re-
mote sensing products and the ability to link mortality to carbon fluxes, 
thereby advancing our understanding of forest mortality dynamics and 
their role in the Earth system. In the future, platforms such as deadtrees.
earth could contribute to this goal by not only hosting remote sensing 
products but also accommodating ground-based mortality observations, 
thereby providing the technological interface needed to connect field 
data with remote sensing products.

3.4. Applications of global tree mortality products

Global, high-quality tree mortality products derived from aerial and 
satellite imagery can be used with environmental layers to attribute 
mortality dynamics to respective drivers and understand the variation 
in tree mortality dynamics (Schiefer et al., 2024). The variety of global 
tree mortality products that can be derived from the database will be 
a key component in enabling researchers to answer pressing questions:
Why are trees dying in the first place and how do the drivers (co)vary across 
tree species, ecosystems, or biomes? Why do some areas experience excess 
tree mortality while similar areas experience greening? Is tree mortality 
dependent upon the species or diversity of neighboring trees? What is the 
anthropogenic contribution to excess tree mortality? How long does standing 
deadwood remain in different ecosystems and does this relate to large-scale 
carbon balances? Where can tree mortality be attributed to global warming 
and climate extremes? Do the latter factors facilitate (invasive) pests and 
pathogens? Given high product quality and increasing global coverage, 
we hope to support research on tree mortality from a local to a global 
scale and across biomes.

For example, one can combine standing deadwood maps with large-
scale biomass maps (Santoro et al., 2020; Shendryk, 2022) to facilitate 
our understanding of carbon fluxes. Given the temporal dynamics of 
standing deadwood, we can compare results to the outputs of vege-
tation models (e.g., Köhler and Huth, 1998). Thereby, using remote 
sensing derived products to evaluate and also fine-tune or initialize 
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parameterizations of vegetation models. Beyond Now- and Hindcasting, 
Forecasting of tree mortality should be possible if the community finds 
effective environmental predictors such that tree mortality dynamics 
for the subsequent year can be modeled.

Beyond tree mortality applications, we envision the orthophoto 
database to be used in a variety of other use cases. Since in gen-
eral, this is a centimeter-scale orthophoto database of forests, one can 
also attempt to detect tree species, analyze tree line patterns, derive 
tree/non-tree products, pioneer studies on tree health, tree phenology, 
or attempt to track forest cover dynamics. Broadly speaking the general 
workflow (see Fig.  7) of upscaling to global products can also be 
attempted for the same use cases. Especially suited may be forest cover 
products, tree species distribution maps, or revealing tree loss by forest 
management or disturbances.

4. Conclusions

The deadtrees.earth database is a centimeter-scale orthophoto col-
lection with standing deadwood delineations. Already, it comprises 
2694 centimeter-scale orthophotos with more than 55,000 manually 
obtained deadwood labels from the last decade distributed across the 
entire globe. The dataset has unprecedented coverage, and through 
machine learning methods and global remote sensing satellite missions, 
the scientific community can leverage this dataset to create models 
and global datasets, unlocking the potential to effectively track over-
story tree mortality dynamics. Ultimately, these data in concert with 
environmental layers will enable the scientific community to answer 
pressing questions on tree mortality. To reach this goal, the platform 
www.deadtrees.earth encompasses an interactive online system that 
aims to exploit aerial and satellite imagery for uncovering spatial and 
temporal patterns of tree mortality at a global scale. The web platform 
supports and encourages uploading and downloading user-generated 
orthophotos optionally together with labeled standing deadwood. The 
vision of this platform is an improved understanding of tree mortality 
patterns and processes from local to global scales. And this vision 
can only be accomplished through the collective effort of citizens and 
researchers. The dynamic nature of this database is meant to contin-
uously increase our capacity to detect and understand tree mortality 
patterns. We hope that through the services of deadtrees.earth, we can 
attract ample data input from geographic regions that are currently 
still underrepresented, e.g., Africa and Asia. Finally, with this initiative, 
we support the paradigm shift in (FAIR) data-sharing practices in the 
scientific community.
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