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Abstract 
Calcium sulfoaluminate (CSA)-based cements represent a promising alternative to traditional Portland cement, offering benefits such as rapid strength 
development, low shrinkage, and reduced carbon footprint. Despite their commercial availability and proven performance, the adoption of CSA cements 
remains hindered by gaps in standardization and understanding. This RILEM Technical Committee (TC) CSA aims to review current knowledge, identify 
research needs, and address challenges related to clinkering, hydration mechanisms, durability, applications, nomenclature, standardization, and testing 
of CSA-based cements. The outcomes will further the understanding of manufacturing, technical performance, use, and specification of CSA-based 
cements, ultimately leading to broader acceptance in concrete construction. 
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 Introduction 

In 2024, 4.0 billion metric tons of Portland cement (PC) were 
produced globally [1], and production is expected to increase 
due to population growth and the rehabilitation of existing 
infrastructure [2]. Over the past 200 years, PC has been the 
predominant binder used in concrete production worldwide. 
In most parts of the world, it remains irreplaceable due to its 
low cost, large production volumes and the availability of its 
primary raw materials, limestone and clays. 
However, the production of PC is the cause of significant CO2 
emissions, primarily released during the calcination of 
limestone and other steps in the manufacturing process. 
Meanwhile, the Paris Agreement calls for a 45% reduction in 
emissions by 2030 to limit global warming to below 2 °C [3], 
and global cement and concrete associations have set 
ambitious targets to achieve net-zero CO2 emissions in 

cement production by 2050 [4, 5]. From an applications 
perspective, the strength gain of PC during hydration is 
relatively slow, and the concrete is susceptible to dimensional 
instability, such as high drying shrinkage that can lead to 
cracking and substantial concrete design constraints. PC 
concrete and mortars are also susceptible to detrimental 
alkali-silica reactions, which are both durability and 
sustainability concerns. Therefore, alternative binders or 
accelerators for PC are needed to meet the demands of 
specialized applications, reduce the CO2 footprint, and 
improve the sustainability of the industry. 
Calcium sulfoaluminate (CSA) cements are distinct from PC 
due to their unique mineralogy, which features ye'elimite 
(idealized formula Ca4(AlO2)6SO4) as the characteristic 
reactive phase, as reviewed in [6-12]. CSA clinkers are 
generally manufactured from mixtures of limestone, bauxite 
and calcium sulfate in a rotary kiln at temperatures of around 
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1250°C; optional suitable waste materials can be used. CSA 
cement is produced from the clinker by intergrinding calcium 
sulfate and optionally further components, i.e. 
supplementary cementitious materials. Ye'elimite is known 
for its rapid hydration with calcium sulfates to form ettringite 
(Ca6Al2(SO4)3(OH)12·26H₂O), enabling CSA-based cements to 
achieve high early strength. This characteristic has positioned 
CSA cements as a viable solution for applications requiring 
rapid construction and repair [13]. Besides ye'elimite, other 
phases are present in the clinker. The most important one is 
belite (Ca2SiO4), and CSA cements with high belite contents 
are often named BCSA (belitic CSA) or BYF (belite-ye'elimite-
ferrite cements) if they contain a substantial amount of ferrite 
(Ca2(Al,Fe)2O5) [10]. Belite hydrates at later ages to produce 
first strätlingite (Ca₂Al₂SiO₇·8H₂O), and then calcium silicate 
hydrates (C-S-H), especially when belite content is high 
(BCSA, BYF) [14]. Alite (Ca3SiO5) is generally not present (or 
only in traces) in conventional CSA. Alite calcium 
sulfoaluminate cements (ACSA) are a special class of CSA 
cements, where alite is made coexistent with ye'elimite using 
either mineralizers, a two-stage heating process or a 
thorough control of kiln atmosphere [15]. 
Besides high early strength, CSA-based binders exhibit 
additional advantages, such as reduced shrinkage [16, 17] and 
various other performance characteristics, for instance rapid 
setting [18-20] or high sulfate resistance [21-23], making 
them suitable for a wide range of construction needs. It has, 
however, to be considered, that the properties of CSA-based 
binders depend on various factors related to the formulation 
of the product, i.e. the mineralogical composition of the CSA 
clinker, the amount and kind of the calcium sulfate added, the 
presence of other binder components such as PC or 
supplementary cementitious materials, or the use of 
admixtures.  
Furthermore, CSA-based binders provide environmental 
benefits, with studies indicating a reduction in global warming 
potential (GWP) of up to 30% compared to PC [24]. 
The history of CSA-based binders traces back to the work of 
Alexander Klein on expansive and shrinkage-compensating 
cements in the late 1950s [25]. Later, Klein’s work was 
adapted in China under the name “third cement series” [26] 
and in the USA in part due to Ost’s development of belitic 
calcium sulfoaluminate (BCSA) cements [27]. CSA cements 
have been commercially produced and used for decades in 
North America [28], China [29], and more recently in Europe 
[30-33]. 
The primary industry motivation for using CSA cements lies in 
their ability to significantly reduce construction times 
compared to PC. This unique advantage, combined with their 
potential to serve as a low-carbon binder, represents an 
important environmental opportunity, because an 
environmental benefit is intrinsically built into the economic 
benefit or rapid construction. 
Applications of CSA-based cements range from pavements, 
rapid repair works and shrinkage-compensating concrete to 
dry-mix mortars. They are also used as accelerating additives 
and as binder component in ternary systems PC-CSA-calcium 
sulfate [28, 34, 35]. However, despite their technical 

advantages and commercial presence, the adoption of CSA 
cements in concrete has been slow, primarily due their high 
costs associated mainly to the availability of the alumina 
source (i.e. bauxite) and to a lack of standardization. In dry mix 
mortars, however, where the standards are performance-
based and not descriptive and cost of the binder does not play 
such a role as for concrete, CSA clinkers and cements are 
rather well established as binder components. 

 State-of-the-art and knowledge gaps 

Within the scope of TC CSA five different areas of work were 
identified, which are shortly summarized below. 

 Nomenclature, standardization and testing 

The lack of a universal nomenclature for CSA cement is a 
unifying challenge across all working groups of TC CSA, and 
one that hinders progress in research and practice alike. A 
taxonomy is needed to clarify what “CSA cement” refers to 
because there is no one CSA cement—rather a family of CSA-
based cements with different chemistries and properties. Still, 
technical literature is often unclear about what type of CSA 
cement is discussed or if the discussion is relevant to all CSA 
cements. This can lead to uncertainty among potential users 
about the type(s) of CSA cement that may be appropriate for 
their project. A few authors have recommended classification 
schemes for CSA cements [11, 12, 28]. The American Concrete 
Institute (ACI) Committee 242 on Alternative Cements [36] 
has been working on a report on CSA cements since 2018 that 
will include some form of disambiguation. China is the only 
known jurisdiction with a formal classification for CSA 
cements [37]. This classification limits the CSA clinker 
composition to more than 30% by mass of Al2O3 and the SiO2 
to less than 10.5% by mass. This means that belitic calcium 
sulfoaluminate is not officially classified in China. This 
technical committee aims to recommend a universal 
nomenclature for CSA cements that will be a model for 
organizations worldwide. The TC developed a draft 
framework for CSA cement nomenclature, shown in Figure 1, 
which we will continue to refine. As a next step, the TC will 
attempt to catalog the full breadth of CSA-based materials 
available in global markets. 
Meanwhile, inadequate consideration of CSA cements in 
standards and specifications also presents a barrier to 
research progress and practical adoption. As “alternative” or 
“special” cements, CSA-based cements often fall outside of 
established norms, creating challenges in regulatory and 
industry adoption. In Europe, some agencies have provisions 
allowing the use of CSA-based cements. For example, in 
Germany CSA-type cements have received technical 
approvals to conform to European specifications (EN 197-1 
[38]) with some differences in classification, setting time and 
sulfate content [39-42]. It is worth noting that these European 
Technical Approvals (ETA) are not necessarily based on the 
same European Assessment Document (EAD) and, therefore, 
do not reflect a consistent set of properties [43]. 
Furthermore, manufacturers can omit some properties from 
the published ETA. Switzerland extended the EN 197-1 
European Standard for Portland cement with National 
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Standard SIA 215/1 [44] to allow “specially selected inorganic 
inert or reactive substances” as main constituents, effectively 
enabling the use of CSA cements and blends of CSA with PC. 
In the Americas, some CSA cements meet performance-based 
specifications such as ASTM C1600 [45] for rapid-hardening 
hydraulic cement or ASTM C845 [46] for shrinkage-
compensating additives. CSA-based cements are regularly 
used in the USA, but such approvals are granted state by state 
and have significant regional variations [28]. The American 
Concrete Institute (ACI) 318 Building Code Requirements for 
Structural Concrete [47] has allowed the use of “alternative” 
cements for structural concrete since 2019, but states that 
they are only permitted if “approved by the licensed design 
professional and building official.” Standardization is much 
more advanced in China, which has a series of national and 
industrial standards for CSA cements. This TC aims to develop 
a draft specification for CSA cements that will be a model for 
global standards organizations. As a first step, they will 
systematically review international standards and 
specifications to understand how CSA cements are treated 
globally. 

Finally, the chemistry and performance of CSA cements can 
be incompatible with testing methods written with PC in mind 
[48]. In some cases, tests may be wholly unsuitable (e.g., the 
accelerated mortar bar test can fundamentally alter the 
hydrate assemblage in CSA cement mortars [49]). In other 
cases, testing ages may need modification (e.g., corrosion test 
results for BCSA cement concrete are extremely sensitive to 
age [50]). Even if the methods are appropriate, test results 
may not be comparable between CSA cement and PC systems 
(e.g., electrical properties are highly sensitive to changes in 
pore solution chemistry). The TC aims to produce a set of 
recommendations for testing CSA cements. To that end, the 
TC will identify the most common test methods used for CSA 
cement, mortar, and concrete. Using evidence from the 
literature, they will critically assess the suitability of each 
method for use with CSA cements, recommend appropriate 
modifications, and identify gaps in knowledge. 
 

Figure 1. Draft framework of a simplified taxonomy for CSA-based cements. 

 Clinkering 

CSA-based clinkers are generally produced by burning raw 
materials like limestone, marl, clay, bauxite and a sulfate 
source within a temperature range between 1250° and 1350 
°C [51, 52]. There is a wide range of compositions possible 
within the frame of belite-sulfoaluminate clinkers. The main 
mineral phase is sodalite-type ye'elimite, also called Klein´s 
compound; belite, ferrite, alite and ternesite can occur in 
different types of CSA cements [9, 15, 53]. Among minor 
phases, periclase, gehlenite, mayenite, perovskite, arcanite, 
akermanite, free lime, magnetite and anhydrite are most 
commonly reported for CSA clinkers [54-59]. Since mass 
production of high alumina clinkers faces economic and 
sustainability challenges - mainly due to the cost of alumina 
sources - current research is increasingly focused on iron-rich 
BCSA clinkers, i.e., belite–ye’elimite-ferrite (BYF) systems [9, 
60], as iron-containing alumina sources are cheaper and do 
not compete with aluminium metal production. The limited 
availability of alumina can also be addressed by using 
alumina-bearing waste materials such as anodization mud, 
steel slag or bottom ash [58, 61-63] - this has been used in the 
United States since the mid-90s. The potential of other 
secondary raw materials such as ashes and metallurgical by-

products (slags) for CSA-type clinker production has also been 
demonstrated [58, 63-65]. 
Both CaO–SiO₂–Al₂O₃–SO₃ and CaO–SiO₂–Al₂O₃–Fe₂O₃–SO₃ 
systems are characterized by a high complexity, and a wide 
range of factors affecting the properties of the resulting 
products, such as the composition of raw materials and raw 
mix, as well as the clinkering conditions in terms of 
temperature and time [66]. Besides phase composition, e.g. 
the ratio between belite and ye'elimite, the clinker 
microstructure, including phase grain size, morphology, 
distribution, and incorporation of foreign ions, is the main 
parameter influencing the reactivity of CSA clinker [67]. 
Although the targeted amounts of the main clinker phases 
can be well-predicted, the formation of minor phases strongly 
depends on the minor elements present in the raw materials 
[68]; these foreign elements can also enter the main clinker 
phases, altering their hydraulic properties [54, 58]. 
The major phases of CSA clinkers have a high tendency to 
form solid solutions. Ye'elimite belongs to the sodalite family 
of compounds with the general formula M4[T6O12]X, where T 
occupies tetrahedral sites and is often Si or Al, M is a low-
charge cation (e.g., Na+, Ca2+, Sr2+), and X is a charge-balancing 
anion (e.g., Cl−, SO4

2−, WO4
2−, CrO4

2−). In CSA clinkers two 
ye'elimite polymorphs are common, orthorhombic and 
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pseudocubic [57]. The orthorhombic form [69] develops 
between 1100–1200 °C, while higher temperatures favour 
cubic forms with variable iron content. Ye'elimite is 
orthorhombic at ambient temperature, but substitution of 
Ca²⁺ with Na⁺ and Al³⁺ with B³⁺, Si⁴⁺, and Fe³⁺ shifts symmetry 
to cubic [57, 70]. Iron content affects the phase's reactivity 
and grain morphology, with higher iron accelerating 
ye'elimite formation [10, 51, 52, 71, 72]. Belite, whose natural 
analogue is larnite, is recognised as a slowly reactive phase 
that exhibits temperature-dependent polymorphism [57, 73]. 
In the CSA clinkers, belite predominantly occurs as the ß-
polymorph, which is less reactive than the a-polymorphs (α´L 
and α´H) that form at higher clinkering temperatures [52]. 
Slow cooling transforms β-C2S to hydraulically inactive γ-C2S, 
which is stable at room temperature [74]. The ferrite phase is 
an orthorhombic solid solution of the endmembers Ca4Fe4O10 
and Ca4FeAl3O10 [75]. 
In general, the microstructure of CSA clinkers, see Figure 2, is 
formed by the reaction from solid-solid to liquid-solid state 
[67]. Belite typically forms irregularly shaped crystals with 
well-defined edges, ye'elimite develops as angular hexagonal 
crystals, and ferrite most commonly appears as an interstitial 
phase [67, 76]. The cooling regime significantly influences the 
crystal size and morphology of the main phases, while also 
affecting the formation of certain minor phases—for 
example, rapid cooling promotes the formation of highly 
hydraulic mayenite, whereas slow cooling favours the 
development of the less hydraulic gehlenite [77]. 
Minor components may have marked influence on clinkering 
reactions and clinker properties [78]. The impurities also exert 
a strong influence over which of the numerous polymorphs 
are obtained - the effects on chemical-stabilising ions on the 
stability of ß-phase belite have been extensively investigated 
[79]. 
Thermodynamic studies can accelerate the development and 
understanding of clinkering in novel systems; however, 
coupling thermodynamic modelling with experimental work 
is essential, and thermodynamic data for the relevant clinker 
phases such as ye'elimite, belite and ferrite are needed [80-
82]. The raw mix composition and clinkering parameters, 
including atmosphere in the kiln and type of fuel, strongly 
influence the phase composition and polymorphism of CSA 
clinker as demonstrated in the case of a novel production 
process using elemental sulfur both as fuel and source of SO3 
for ye'elimite formation [83, 84]. 

 
Figure 2. Main phases of BCSA clinker (scanning electron microscopy, 
polished section): C2S – belite, C4A3Ś – calcium sulfoaluminate, C4AF – 
ferrite. Image courtesy of Lea Žibret (Slovenian National Building and 
Civil Engineering Institute), published in [85] on page 107. 

 Hydration 

Generally, the hydration of CSA-based cements with respect 
to ye'elimite and the role of calcium sulfate are well 
understood as underlined by multiple studies during the last 
decades and supported by thermodynamic modelling [10, 14, 
55, 81, 86-90]. Ye'elimite reacts with calcium sulfate to form 
ettringite and aluminum hydroxide, Al(OH)3, of low 
crystallinity. The amount of calcium sulfate, i.e. the molar 
ratio of CaSO4 to ye'elimite which is known as "M-ratio" [91] 
as well as its reactivity (generally hemihydrate > gypsum > 
anhydrite) strongly influence early hydration kinetics [92-
101]. When the calcium sulfate is depleted, monosulfate 
forms instead of ettringite. However, this reaction scheme is 
rather idealized as, especially at early age, other phases might 
occur, such as CaAl2O4·10H2O [14, 102], nanocrystalline AFm-
phases [103] and Al(OH)3-gels with higher water contents 
and/or containing Ca [104, 105], which are also suggested to 
adsorb sulfate [106]. In general, a high amount of X-ray 
amorphous hydrates occurs [107]; however, it cannot be 
excluded that crystalline/amorphous content determined in 
experiments is often biased by various experimental issues 
such as hydration stoppage or poor description of single 
crystal structures of e.g. AFm-solid solutions. 
Belite is the most relevant of the other clinker constituents 
and plays a major role in BCSA and BYF cements. Belite starts 
to hydrate significantly after ye'elimite has been largely 
dissolved and primarily forms strätlingite, Ca2Al2SiO7·8H2O, 
under consumption of Al(OH)3 [14, 86, 98, 99, 108]. C-S-H 
forms only at high belite reaction degrees [14]. Figure 3 shows 
the hydrates formed in BCSA cement depending on time as 
derived by thermodynamic modelling. At an early age, 
ettringite is the dominant hydration phase. At later ages, i.e. 
years, strätlingite, monosulfate and C-S-H are the major 
hydrates predicted to be stable, while ettringite content 
decreases. Investigations of aged (B)CSA samples would be 
needed to confirm this change in phase assemblage 
experimentally. These experiments could prove if, after long 
hydration times, the thermodynamic prediction is fulfilled or 
if the amount of ettringite initially formed is still present after 
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years, and the transformation of ettringite to other hydrate 
phases is kinetically hindered due to missing water or low 
reactivity of parts of belite. 
Among other phases, ferrite, mayenite (Ca12Al14O33) and 
ternesite (Ca5(SO4)(SiO4)2), are the most important ones. The 
iron of the ferrite phase goes predominantly into the very 
stable Fe-containing siliceous hydrogarnet [109], while 
mayenite takes part in the very early hydration reactions 
[110], and ternesite reacts in the presence of aluminium 
hydroxide to strätlingite [88]. 
The pore solutions of CSA-based cements, see e.g. [32, 86, 89, 
111-114], are characterized by a low pH of ≈ 11 at early ages, 
but reach values close to 13 after 28 days and later, which 
should be sufficient to protect steel rebars from corrosion. 
The ionic composition differs from that one of PC, e.g. the Al 
concentrations are significantly higher. Some work has been 
done to link pore solution composition to phase stability [86, 
89, 113, 114], however, a critical evaluation of the pore 
solution data available in literature would be needed for a 
further understanding of the underlying mechanisms. 
Supplementary cementitious materials (SCMs) can react in 
CSA cements; much less information is available for BCSA 
cements. Limestone can participate in the hydration reactions 
of ye'elimite in case the molar ratio of calcium sulfate to 
ye'elimite is below 2, forming hemi- or monocarbonate [115-
118]. Blast furnace slag is activated by the alkaline medium of 
the pore solution, however the reaction degree seems 
generally lower than in PC [119]. As portlandite is generally 
not present in CSA cements, aluminosilicates do not exhibit a 
pozzolanic reaction in the true sense of the term. 
Nevertheless, a reaction of siliceous fly ash [120], calcined clay 
[121] or silica fume [122] is reported, which leads to the 
formation of strätlingite and possibly C-S-H. However, a 
systematic overview of the action of different SCMs is 
currently missing in literature. 
Admixtures are often needed to retard the early setting of 
CSA cements, and a wide range of materials are used, mostly 
citrate, but also borate, tartrate or gluconate [123]. To 
accelerate early hardening, Li-salts can be used [124], 
especially in combination with set retarders [125]. 
Superplasticizers used for PC also seem to work for CSA [126]. 
A detailed overview of the action of the various types of 
admixtures and their fields of use is currently still lacking. 
Ternary blends CSA-PC-calcium sulfate are in use as fast-
setting, rapid hardening or shrinkage-compensated binders 
which exhibit rather complex hydration mechanisms [34, 35, 
127, 128]. The mix designs are quite complicated as the raw 
materials and the blending ratio need to be thoroughly 
controlled, and specially-designed admixtures systems are 
needed to achieve the desired properties and to avoid 
deleterious expansion. Especially in the case of admixtures, 
there is significant proprietary knowledge in the mortar and 
concrete industry, which is generally not shared in open 
literature. 

 
Figure 3. Hydrates formed in a BCSA cement as a function of time by 
thermodynamic calculations at 20 °C and a water/cement ratio of 
0.50. Hydration kinetics is based on dissolution kinetics of the clinker 
phases derived from QXRD. Redrawn from [99]. 

 Physical properties of fresh and hardened 
mortar/concrete 

The physical properties of CSA cements represent an 
important area for characterization since these properties will 
define the specifications, potential applications, and design of 
these materials. While many properties of CSA cements may 
be similar to PC, there are key differences, especially in terms 
of setting time, strength gain, and durability, which must be 
clearly understood to use CSA-based cements for 
infrastructure and buildings [18, 129, 130]. To enable broader 
use of CSA cements, (i) properties that differ substantially 
from PC should be clearly identified; (ii) existing design 
relationships must be recalibrated; (iii) the influence of 
practical factors—ambient weather, curing, and 
compaction—should be established; and (iv) standards and 
procedures should be updated. Finally, the goal is to design 
mortar/concrete that meets performance requirements with 
an optimized balance of safety and conservatism, thereby 
realizing the performance and CO₂ benefits of these binders. 
Concrete mix design procedures for BCSA cement are similar 
to PC [129], but a retarder (e.g. citric acid or borax) is generally 
a requirement [18, 19]. The workability must often be 
enhanced with water reducers [131] due to the short setting 
times. There is some guidance on mix proportioning and fresh 
properties of CSA-based cements [129, 132], but relationships 
between mix proportions and entrained air content, w/c and 
strength, and the effects of mixture design parameters on 
workability are fields of future research. Also, gathering the 
effects of practical field factors—placement method, curing, 
and compaction—from previous field experiences and 
research is critical for application-specific mix design across 
different weather conditions, helping to avoid unnecessary 
conservatism. Additionally, the rheology of CSA cements is a 
potential future focus area, particularly the dynamic yield 
stress and viscosity, which are particularly relevant for 
pumping or 3D printing. 
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The effect of curing and ambient temperature on CSA 
mixtures has been studied [133, 134], but there is no 
consensus on field and laboratory curing procedures. There is 
some published information on strength development, 
particularly compressive strength [18, 129, 135-137], but the 
relationships between modulus of elasticity [18], tensile 
strength [18, 138-140], flexural strength [138, 141, 142], and 
Poisson’s ratio are relatively unexplored. 
Dimensional stability is an important topic for CSA cements, 
as some of these materials exhibit early-age expansion, and 
they may be chosen specifically for their low-shrinkage or 
expansive behavior. The expansion and shrinkage behaviour 
have been studied on paste [23, 112, 143-145], mortar [146], 
and concrete [16, 17, 139, 147]. However, one downside of 
many of these studies is the variety of CSA formulations 
(some of which may be blended in varying quantities or made 
at a laboratory scale), which limits the ability to produce 
practicable shrinkage models applicable in field applications. 
Consequently, there are no existing shrinkage models for use 
in the design of structures. Creep is even less well-studied 
than shrinkage [16, 142, 148, 149], and likewise, the 
development of creep models and characterization of 
commonly available CSA formulations and their creep 
properties is an area of future study. 
A growing body of research has sought to connect the 
evolving microstructure of CSA cements with their physical 
properties, particularly compressive strength and expansion. 
Studies have shown that the degree of hydration strongly 
governs strength development. Porosity and pore structure 
have also been identified as critical parameters controlling 
strength gain and durability [150-153]. Expansion and 
dimensional stability, by contrast, are closely tied to the 
quantity and morphology of ettringite [143, 145, 154], with 
additional influences from overall strength, pore structure 
[155] and pore solution chemistry [112, 144]. Morphological 
changes in ettringite have been shown to directly impact 
expansive behaviour [143, 154], reinforcing the need to 
couple phase assemblage with physical performance. Other 
studies have extended this microstructure–property link to 
fresh-state performance, with hydration kinetics, admixtures, 
and additives shown to significantly influence the early 
workability and setting behaviour [18, 156]. Together, these 
findings highlight the critical role of microstructural 
parameters in governing both the mechanical and 
dimensional stability of CSA-based systems. Again, a 
weakness of the existing work is the variety of CSA cement 
chemistries present and the corresponding difficulty in 
extrapolating the results onto commercially available or 
widespread formulations which may be applied in practice. 
In reinforced concrete, the flexural capacity [131], shear 
capacity [157], and flexural stress block parameters [158] 
have been validated for BCSA cement compared to existing 
international building code equations. There is little 
information about the long-term behaviour under load, bond 
and anchorage to rebar, shear transfer after cracking, 
behaviour under dynamic loading, and fatigue performance. 
In general, the behaviour under extreme loading (blast, 
seismic, etc.) is an area of future research. 

 Durability and applications 

Durability is one of the key aspects of concrete due to its 
influence on the serviceability of concrete structures. Major 
durability indicators include permeability, sulfate attack, 
carbonation, chloride ingress, leaching, freeze-thaw, 
corrosion, acid attack, dimensional stability 
(cracking/shrinkage/expansion) and ASR. Although CSA/BCSA 
cements have been presented as an attractive alternative to 
PC, investigations on their durability indices are limited. 
CSA-based cements exhibit a high resistance toward freeze-
thaw and chemical attack in a wide range of aggressive 
environments [7]. They outperform PC in citric acid 
environment due to the absence of portlandite, while they 
seem to be less resistant to sulfuric acid attack [159, 160] PC-
CSA composites show improved corrosion resistance to 
sulfuric acid when compared to PC alone [161]. The 
deterioration of CSA cement was reported to be inversely 
proportional to the pH of the exposure solution, irrespective 
of chemical or biogenic sulfuric acid attack [162]. Additionally, 
CSA-based cements are good candidates for ASR mitigation 
[49, 163]. This has been related to the low generation of 
portlandite as well as to the presence of aluminate-rich 
phases such as ettringite that potentially get adsorbed in the 
silicate gel, thus reducing the dissolution of amorphous silica 
in the aggregate [163, 164]. Pore solution and alkalinity play a 
role as the pH of CSA is even at late ages often still lower 
(approx. 0.5 pH units) than for PC [86, 126, 165]. CSA-based 
cements have shown very good resistance to sulphate attack, 
compared to PC [21-23]. Long-term investigations indicate 
that they remained essentially unaffected by a 3-year 
exposure to highly-sulfated environments [21]. Their stability 
was superior to that of a Type V (0.5% C3A) Portland cement 
classified as ‘sulfate-resistant’ per ASTM standards. 
The carbonation of CSA-based cements results in ettringite 
decomposition and potential strength loss [7]. The 
carbonation resistance of CSA cements increases with 
decreasing water-to-cement ratio as well as with increasing 
calcium sulfate content in most cases [166]. The type and 
content of SCMs also influence the carbonation rate of CSA 
cements [167]. For instance, the use of fly ash as SCM has 
been shown to reduce the carbonation depth in concrete 
mixtures over time (105 days), whereas combinations with 
limestone presented mixed effects [168]. There is 
disagreement in the literature regarding the carbonation rate 
of CSA cements vs PC, and contradictory findings have been 
reported among the researchers [169]. The chemical buffer 
capacity [170] of CSA-based cements towards carbonation, 
however, is lower compared to the one of PC due to their 
lower content of reactive CaO [166]. 
Contradictory results are also published on the corrosion 
resistance of CSA-based cements [139, 171-173] which is 
highly time-dependent [50]. Weak corrosion resistance of 
CSA blends compared to pure CSA, due to the decomposition 
of ettringite and reduction of the alkalinity of the pore 
solution which is not sufficient to promote the formation of 
the passivation layer around steel fibres, is reported [139]. On 
the contrary, there was no evidence of corrosion on the 
surface of steel bars embedded in CSA concrete after 14 years 
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[172] which was ascribed to lower permeability and self-
desiccation of the concrete.  
The inconsistent data outlined above emphasize the need for 
further research. A deep understanding of the link between 
durability indicators - microstructure - pathway of hydration 
and pore solution would be needed. As emphasized in section 
2.4, the variability of CSA cement chemistries makes the 
extrapolation of these links challenging. Most and foremost, 
the durability of CSA-based binders in the long term and in 
field conditions must be investigated in detail to ensure a 
maximum service life of future structures. 
In terms of applications, CSA-based cements are gaining 
traction, particularly for expedited rehabilitation of roads, 
bridges, and airport pavements, and they have been used in 
large-scale reinforced and prestressed concrete applications 
as has been demonstrated recently [149, 174, 175]. BCSA 
cement-based concrete has demonstrated considerable 
promise in high-impact infrastructure applications, including 
pavement rehabilitation [176], bridge deck and structural 
repairs [177], precast and prestressed elements [149], and 
emergency interventions such as utility trench restoration 
and temporary structural components. These applications 
share a common requirement: rapid return to service. 
However, they are often designed using conventional 
concrete specifications, which may not fully consider the 
unique properties of BCSA. 
Proposed innovative uses of BCSA concrete include bonded 
concrete overlays over asphalt (BCOA) [178], large-format 
airfield pavement slabs [179], or rapid-strength ultra-high-
performance concrete (UHPC) [180], capable of achieving 
compressive strengths up to 145 MPa within days and 
opening strength within 4 hours. Integration into emerging 
technologies such as 3D concrete printing has also been 
proposed. 
Finally, the method of concrete production, whether through 
volumetric mixing or ready-mix batching, can significantly 
influence the performance, logistics, and cost of CSA-based 
concrete. A comprehensive understanding of the advantages, 
limitations, and practical challenges associated with each 
method is essential for developing standardized guidelines 
that support efficient and reliable implementation across 
various infrastructure applications. 

 Objective of the TC and expected impact 

While a number of RILEM technical committees have focused 
on alternative cements such as alkali-activated cements (TC 
224-AAM [181], TC 247-DTA [182], TC-283-CAM [183], TC 
294-MPA [184]) and magnesium-based cements (TC 311-
MBC [185]), calcium sulfoaluminate-based cements have not 
yet received similar attention. The main objective of the TC-
CSA is to advance the scientific understanding and practical 
applications of CSA cements by addressing key gaps in 
knowledge and technology. It will also be a basis upon which 
specific topics related to CSA can be developed further, e.g. in 
future TCs. 
Despite their potential, CSA-based cements face several 
challenges that must be addressed to facilitate their broader 

adoption. One of the primary challenges is the limited 
understanding of hydration mechanisms, particularly in 
systems that include blends with SCMs and admixtures. The 
interactions of these materials during hydration remain 
poorly characterized, which complicates efforts to optimize 
their performance. Another significant challenge is the lack of 
comprehensive data on the durability of CSA-based materials, 
especially under aggressive environmental conditions. This 
knowledge gap raises concerns about their long-term 
performance in real-world applications. An additional 
challenge is the confusion among end users with other 
technologies, such as calcium aluminate cement. 
Additionally, the absence of unified testing methods and 
standards for CSA cements creates regulatory and technical 
barriers, limiting their acceptance by industry and agencies. 
To address these challenges, the TC will adopt a multifaceted 
approach structured by asking separate working groups to 
focus on the topics presented in sections 2.1-2.5 and compile 
a comprehensive overview of the state of the art, 
mineralogical characteristics and hydration behaviour of CSA 
cement. The TC will also evaluate the physical and mechanical 
properties of CSA-based materials and their long-term 
durability under various environmental conditions. 
Additionally, the committee will work toward developing 
recommendations for the nomenclature and standardization 
of CSA cements to facilitate their broader acceptance in the 
construction industry. Collaborative interlaboratory studies 
are to be defined and planned for the 2nd half of the TC 
lifetime to validate testing methods (e.g. phase analyses or 
mechanical properties) and generate reliable datasets, 
enabling the development of standardized procedures. We 
are aware that this TC will not be able to cover a wide range 
of testing methods, and that some activities might be shifted 
to future TCs on CSA-based cements and concrete. 
Experiences from field studies will also play a crucial role in 
documenting the performance of CSA-based materials both 
in long-term phase assemblage and in practical applications, 
offering insights into their durability and suitability for various 
conditions. Finally, the TC will foster collaboration between 
academia and industry through symposia, workshops, and 
publications, creating a platform for the exchange of 
knowledge and ideas. Synchronization with the activities of 
ACI (American Concrete Institute) committee 242 on 
Alternative Cements [36], which is dedicated to develop and 
report information on alternate cements for use in concrete, 
will be an important part of this work. 
Achieving these objectives could have significant implications 
for both the construction industry and society at large. By 
reviewing and promoting the use of CSA cements, the TC aims 
to reduce carbon emissions associated with cement 
production and accelerate construction processes, thereby 
addressing urgent sustainability challenges. While CSA 
cements may not embody the universal solution to the 
sustainability challenges of the construction industry, they 
may be a stepping stone or an intermediate step in the 
process. For example, most low-carbon cement alternatives 
are still at the concept or laboratory benchtop stages. No 
large production volumes of low-carbon cements are 
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currently operational or commercial. CSA cements are the 
only low-carbon alternative already produced in millions of 
tons worldwide. The knowledge generated by this TC has the 
potential to drive innovation in material science, expand the 
range of applications for CSA cements, and create new 
opportunities for industry collaboration and research. 
Furthermore, the outcomes of this work will contribute to the 
development of sustainable construction practices globally, 
supporting the transition to low-carbon infrastructure. By 
tackling these challenges, the TC aims to position CSA 
cements as a mainstream, rather than niche option in 
sustainable construction, bridging the gap between research 
and practice and paving the way for future innovations. In this 
context, it is important to note that among the different 
available cementitious binders the material should be 
selected which fits best to a certain application in terms of 
performance and sustainability. 
The establishment of the TC CSA marks an important step 
toward advancing the understanding and application of CSA 
cements. By addressing critical knowledge gaps, fostering 
collaboration, and promoting standardization, the committee 
aims to unlock the full potential of CSA technologies. The 
outcomes of this work will provide a foundation for more 
sustainable construction practices, support the development 
of low-carbon infrastructure, and contribute to the global 
transition toward more environmentally friendly and net-zero 
building materials. 
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