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Abstract

Calcium sulfoaluminate (CSA)-based cements represent a promising alternative to traditional Portland cement, offering benefits such as rapid strength
development, low shrinkage, and reduced carbon footprint. Despite their commercial availability and proven performance, the adoption of CSA cements
remains hindered by gaps in standardization and understanding. This RILEM Technical Committee (TC) CSA aims to review current knowledge, identify
research needs, and address challenges related to clinkering, hydration mechanisms, durability, applications, nomenclature, standardization, and testing
of CSA-based cements. The outcomes will further the understanding of manufacturing, technical performance, use, and specification of CSA-based

cements, ultimately leading to broader acceptance in concrete construction.

Keywords: Calcium sulfoaluminate cement; Ye'elimite; Belite; Ettringite; Low-CO2 cement.

1 Introduction

In 2024, 4.0 billion metric tons of Portland cement (PC) were
produced globally [1], and production is expected to increase
due to population growth and the rehabilitation of existing
infrastructure [2]. Over the past 200 years, PC has been the
predominant binder used in concrete production worldwide.
In most parts of the world, it remains irreplaceable due to its
low cost, large production volumes and the availability of its
primary raw materials, limestone and clays.

However, the production of PC is the cause of significant CO,
emissions, primarily released during the calcination of
limestone and other steps in the manufacturing process.
Meanwhile, the Paris Agreement calls for a 45% reduction in
emissions by 2030 to limit global warming to below 2 °C [3],
and global cement and concrete associations have set
ambitious targets to achieve net-zero CO, emissions in
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cement production by 2050 [4, 5]. From an applications
perspective, the strength gain of PC during hydration is
relatively slow, and the concrete is susceptible to dimensional
instability, such as high drying shrinkage that can lead to
cracking and substantial concrete design constraints. PC
concrete and mortars are also susceptible to detrimental
alkali-silica reactions, which are both durability and
sustainability concerns. Therefore, alternative binders or
accelerators for PC are needed to meet the demands of
specialized applications, reduce the CO, footprint, and
improve the sustainability of the industry.

Calcium sulfoaluminate (CSA) cements are distinct from PC
due to their unique mineralogy, which features ye'elimite
(idealized formula Cas(Al0;)sSOs) as the characteristic
reactive phase, as reviewed in [6-12]. CSA clinkers are
generally manufactured from mixtures of limestone, bauxite
and calcium sulfate in a rotary kiln at temperatures of around
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1250°C; optional suitable waste materials can be used. CSA
cement is produced from the clinker by intergrinding calcium
sulfate  and optionally further components, i.e.
supplementary cementitious materials. Ye'elimite is known
for its rapid hydration with calcium sulfates to form ettringite
(CasAl(SO4)3(OH)12:26H,0), enabling CSA-based cements to
achieve high early strength. This characteristic has positioned
CSA cements as a viable solution for applications requiring
rapid construction and repair [13]. Besides ye'elimite, other
phases are present in the clinker. The most important one is
belite (Ca,Si04), and CSA cements with high belite contents
are often named BCSA (belitic CSA) or BYF (belite-ye'elimite-
ferrite cements) if they contain a substantial amount of ferrite
(Cay(Al,Fe),0s) [10]. Belite hydrates at later ages to produce
first stratlingite (Ca,Al,Si0;:8H,0), and then calcium silicate
hydrates (C—-S—H), especially when belite content is high
(BCSA, BYF) [14]. Alite (CasSiOs) is generally not present (or
only in traces) in conventional CSA. Alite calcium
sulfoaluminate cements (ACSA) are a special class of CSA
cements, where alite is made coexistent with ye'elimite using
either mineralizers, a two-stage heating process or a
thorough control of kiln atmosphere [15].

Besides high early strength, CSA-based binders exhibit
additional advantages, such as reduced shrinkage [16, 17] and
various other performance characteristics, for instance rapid
setting [18-20] or high sulfate resistance [21-23], making
them suitable for a wide range of construction needs. It has,
however, to be considered, that the properties of CSA-based
binders depend on various factors related to the formulation
of the product, i.e. the mineralogical composition of the CSA
clinker, the amount and kind of the calcium sulfate added, the
presence of other binder components such as PC or
supplementary cementitious materials, or the use of
admixtures.

Furthermore, CSA-based binders provide environmental
benefits, with studies indicating a reduction in global warming
potential (GWP) of up to 30% compared to PC [24].

The history of CSA-based binders traces back to the work of
Alexander Klein on expansive and shrinkage-compensating
cements in the late 1950s [25]. Later, Klein’s work was
adapted in China under the name “third cement series” [26]
and in the USA in part due to Ost’s development of belitic
calcium sulfoaluminate (BCSA) cements [27]. CSA cements
have been commercially produced and used for decades in
North America [28], China [29], and more recently in Europe
[30-33].

The primary industry motivation for using CSA cements lies in
their ability to significantly reduce construction times
compared to PC. This unique advantage, combined with their
potential to serve as a low-carbon binder, represents an
important environmental opportunity, because an
environmental benefit is intrinsically built into the economic
benefit or rapid construction.

Applications of CSA-based cements range from pavements,
rapid repair works and shrinkage-compensating concrete to
dry-mix mortars. They are also used as accelerating additives
and as binder component in ternary systems PC-CSA-calcium
sulfate [28, 34, 35]. However, despite their technical

advantages and commercial presence, the adoption of CSA
cements in concrete has been slow, primarily due their high
costs associated mainly to the availability of the alumina
source (i.e. bauxite) and to a lack of standardization. In dry mix
mortars, however, where the standards are performance-
based and not descriptive and cost of the binder does not play
such a role as for concrete, CSA clinkers and cements are
rather well established as binder components.

2 State-of-the-art and knowledge gaps

Within the scope of TC CSA five different areas of work were
identified, which are shortly summarized below.

2.1 Nomenclature, standardization and testing

The lack of a universal nomenclature for CSA cement is a
unifying challenge across all working groups of TC CSA, and
one that hinders progress in research and practice alike. A
taxonomy is needed to clarify what “CSA cement” refers to
because there is no one CSA cement—rather a family of CSA-
based cements with different chemistries and properties. Still,
technical literature is often unclear about what type of CSA
cement is discussed or if the discussion is relevant to all CSA
cements. This can lead to uncertainty among potential users
about the type(s) of CSA cement that may be appropriate for
their project. A few authors have recommended classification
schemes for CSA cements [11, 12, 28]. The American Concrete
Institute (ACl) Committee 242 on Alternative Cements [36]
has been working on a report on CSA cements since 2018 that
will include some form of disambiguation. China is the only
known jurisdiction with a formal classification for CSA
cements [37]. This classification limits the CSA clinker
composition to more than 30% by mass of Al,O; and the SiO,
to less than 10.5% by mass. This means that belitic calcium
sulfoaluminate is not officially classified in China. This
technical committee aims to recommend a universal
nomenclature for CSA cements that will be a model for
organizations worldwide. The TC developed a draft
framework for CSA cement nomenclature, shown in Figure 1,
which we will continue to refine. As a next step, the TC will
attempt to catalog the full breadth of CSA-based materials
available in global markets.

Meanwhile, inadequate consideration of CSA cements in
standards and specifications also presents a barrier to
research progress and practical adoption. As “alternative” or
“special” cements, CSA-based cements often fall outside of
established norms, creating challenges in regulatory and
industry adoption. In Europe, some agencies have provisions
allowing the use of CSA-based cements. For example, in
Germany CSA-type cements have received technical
approvals to conform to European specifications (EN 197-1
[38]) with some differences in classification, setting time and
sulfate content [39-42]. It is worth noting that these European
Technical Approvals (ETA) are not necessarily based on the
same European Assessment Document (EAD) and, therefore,
do not reflect a consistent set of properties [43].
Furthermore, manufacturers can omit some properties from
the published ETA. Switzerland extended the EN 197-1
European Standard for Portland cement with National
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Standard SIA 215/1 [44] to allow “specially selected inorganic
inert or reactive substances” as main constituents, effectively
enabling the use of CSA cements and blends of CSA with PC.
In the Americas, some CSA cements meet performance-based
specifications such as ASTM C1600 [45] for rapid-hardening
hydraulic cement or ASTM (845 [46] for shrinkage-
compensating additives. CSA-based cements are regularly
used in the USA, but such approvals are granted state by state
and have significant regional variations [28]. The American
Concrete Institute (ACl) 318 Building Code Requirements for
Structural Concrete [47] has allowed the use of “alternative”
cements for structural concrete since 2019, but states that
they are only permitted if “approved by the licensed design
professional and building official.” Standardization is much
more advanced in China, which has a series of national and
industrial standards for CSA cements. This TC aims to develop
a draft specification for CSA cements that will be a model for
global standards organizations. As a first step, they will
systematically review international standards and
specifications to understand how CSA cements are treated
globally.

Finally, the chemistry and performance of CSA cements can
be incompatible with testing methods written with PCin mind
[48]. In some cases, tests may be wholly unsuitable (e.g., the
accelerated mortar bar test can fundamentally alter the
hydrate assemblage in CSA cement mortars [49]). In other
cases, testing ages may need modification (e.g., corrosion test
results for BCSA cement concrete are extremely sensitive to
age [50]). Even if the methods are appropriate, test results
may not be comparable between CSA cement and PC systems
(e.g., electrical properties are highly sensitive to changes in
pore solution chemistry). The TC aims to produce a set of
recommendations for testing CSA cements. To that end, the
TC will identify the most common test methods used for CSA
cement, mortar, and concrete. Using evidence from the
literature, they will critically assess the suitability of each
method for use with CSA cements, recommend appropriate
modifications, and identify gaps in knowledge.

CSA Cements
Clinker (Ye’emiet:rich) H (B(Jl)i(tF::r?ch) ’
Cement R
Blends with PC o setng | | companeog ’

Figure 1. Draft framework of a simplified taxonomy for CSA-based cements.

2.2 Clinkering

CSA-based clinkers are generally produced by burning raw
materials like limestone, marl, clay, bauxite and a sulfate
source within a temperature range between 1250° and 1350
°C [51, 52]. There is a wide range of compositions possible
within the frame of belite-sulfoaluminate clinkers. The main
mineral phase is sodalite-type ye'elimite, also called Klein's
compound; belite, ferrite, alite and ternesite can occur in
different types of CSA cements [9, 15, 53]. Among minor
phases, periclase, gehlenite, mayenite, perovskite, arcanite,
akermanite, free lime, magnetite and anhydrite are most
commonly reported for CSA clinkers [54-59]. Since mass
production of high alumina clinkers faces economic and
sustainability challenges - mainly due to the cost of alumina
sources - current research is increasingly focused on iron-rich
BCSA clinkers, i.e., belite—ye’elimite-ferrite (BYF) systems [9,
60], as iron-containing alumina sources are cheaper and do
not compete with aluminium metal production. The limited
availability of alumina can also be addressed by using
alumina-bearing waste materials such as anodization mud,
steel slag or bottom ash [58, 61-63] - this has been used in the
United States since the mid-90s. The potential of other
secondary raw materials such as ashes and metallurgical by-

products (slags) for CSA-type clinker production has also been
demonstrated [58, 63-65].

Both CaO—SiOz—AI203—503 and CaO—SiOZ—A|203—FEZO3—SO3
systems are characterized by a high complexity, and a wide
range of factors affecting the properties of the resulting
products, such as the composition of raw materials and raw
mix, as well as the clinkering conditions in terms of
temperature and time [66]. Besides phase composition, e.g.
the ratio between belite and ye'elimite, the clinker
microstructure, including phase grain size, morphology,
distribution, and incorporation of foreign ions, is the main
parameter influencing the reactivity of CSA clinker [67].
Although the targeted amounts of the main clinker phases
can be well-predicted, the formation of minor phases strongly
depends on the minor elements present in the raw materials
[68]; these foreign elements can also enter the main clinker
phases, altering their hydraulic properties [54, 58].

The major phases of CSA clinkers have a high tendency to
form solid solutions. Ye'elimite belongs to the sodalite family
of compounds with the general formula My[Ts012]X, where T
occupies tetrahedral sites and is often Si or Al, M is a low-
charge cation (e.g., Na*, Ca%, Sr¥*), and X is a charge-balancing
anion (e.g., CI5, SO WO4%, CrO4%). In CSA clinkers two
ye'elimite polymorphs are common, orthorhombic and
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pseudocubic [57]. The orthorhombic form [69] develops
between 1100-1200 °C, while higher temperatures favour
cubic forms with variable iron content. Ye'elimite is
orthorhombic at ambient temperature, but substitution of
Ca?* with Na* and AI** with B3+, Si**, and Fe** shifts symmetry
to cubic [57, 70]. Iron content affects the phase's reactivity
and grain morphology, with higher iron accelerating
ye'elimite formation [10, 51, 52, 71, 72]. Belite, whose natural
analogue is larnite, is recognised as a slowly reactive phase
that exhibits temperature-dependent polymorphism [57, 73].
In the CSA clinkers, belite predominantly occurs as the B-
polymorph, which is less reactive than the a-polymorphs (a’
and a’y) that form at higher clinkering temperatures [52].
Slow cooling transforms B-C,S to hydraulically inactive y-C,S,
which is stable at room temperature [74]. The ferrite phase is
an orthorhombic solid solution of the endmembers Ca;Fe,010
and CasFeAl;0q [75].

In general, the microstructure of CSA clinkers, see Figure 2, is
formed by the reaction from solid-solid to liquid-solid state
[67]. Belite typically forms irregularly shaped crystals with
well-defined edges, ye'elimite develops as angular hexagonal
crystals, and ferrite most commonly appears as an interstitial
phase [67, 76]. The cooling regime significantly influences the
crystal size and morphology of the main phases, while also
affecting the formation of certain minor phases—for
example, rapid cooling promotes the formation of highly
hydraulic mayenite, whereas slow cooling favours the
development of the less hydraulic gehlenite [77].

Minor components may have marked influence on clinkering
reactions and clinker properties [78]. The impurities also exert
a strong influence over which of the numerous polymorphs
are obtained - the effects on chemical-stabilising ions on the
stability of B-phase belite have been extensively investigated
[79].

Thermodynamic studies can accelerate the development and
understanding of clinkering in novel systems; however,
coupling thermodynamic modelling with experimental work
is essential, and thermodynamic data for the relevant clinker
phases such as ye'elimite, belite and ferrite are needed [80-
82]. The raw mix composition and clinkering parameters,
including atmosphere in the kiln and type of fuel, strongly
influence the phase composition and polymorphism of CSA
clinker as demonstrated in the case of a novel production
process using elemental sulfur both as fuel and source of SO;
for ye'elimite formation [83, 84].

Figure 2. Main phases of BCSA clinker (scanning electron microscopy,
polished section): C2S — belite, C4AsS — calcium sulfoaluminate, C4AF —
ferrite. Image courtesy of Lea Zibret (Slovenian National Building and
Civil Engineering Institute), published in [85] on page 107.

2.3 Hydration

Generally, the hydration of CSA-based cements with respect
to ye'elimite and the role of calcium sulfate are well
understood as underlined by multiple studies during the last
decades and supported by thermodynamic modelling [10, 14,
55, 81, 86-90]. Ye'elimite reacts with calcium sulfate to form
ettringite and aluminum hydroxide, AI(OH);, of low
crystallinity. The amount of calcium sulfate, i.e. the molar
ratio of CaSO, to ye'elimite which is known as "M-ratio" [91]
as well as its reactivity (generally hemihydrate > gypsum >
anhydrite) strongly influence early hydration kinetics [92-
101]. When the calcium sulfate is depleted, monosulfate
forms instead of ettringite. However, this reaction scheme is
rather idealized as, especially at early age, other phases might
occur, such as CaAl,0,-10H,0 [14, 102], nanocrystalline AFm-
phases [103] and Al(OH)s-gels with higher water contents
and/or containing Ca [104, 105], which are also suggested to
adsorb sulfate [106]. In general, a high amount of X-ray
amorphous hydrates occurs [107]; however, it cannot be
excluded that crystalline/amorphous content determined in
experiments is often biased by various experimental issues
such as hydration stoppage or poor description of single
crystal structures of e.g. AFm-solid solutions.

Belite is the most relevant of the other clinker constituents
and plays a major role in BCSA and BYF cements. Belite starts
to hydrate significantly after ye'elimite has been largely
dissolved and primarily forms stratlingite, Ca,Al,SiO7-8H-0,
under consumption of Al(OH); [14, 86, 98, 99, 108]. C-S—H
forms only at high belite reaction degrees [14]. Figure 3 shows
the hydrates formed in BCSA cement depending on time as
derived by thermodynamic modelling. At an early age,
ettringite is the dominant hydration phase. At later ages, i.e.
years, stratlingite, monosulfate and C-S—H are the major
hydrates predicted to be stable, while ettringite content
decreases. Investigations of aged (B)CSA samples would be
needed to confirm this change in phase assemblage
experimentally. These experiments could prove if, after long
hydration times, the thermodynamic prediction is fulfilled or
if the amount of ettringite initially formed is still present after
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phases is kinetically hindered due to missing water or low 80

reactivity of parts of belite. _\
Among other phases, ferrite, mayenite (Ca;Al140s3) and 704 pore solution

ternesite (Cas(SQ4)(Si04),), are the most important ones. The 60 -

iron of the ferrite phase goes predominantly into the very
stable Fe-containing siliceous hydrogarnet [109], while
mayenite takes part in the very early hydration reactions
[110], and ternesite reacts in the presence of aluminium
hydroxide to stratlingite [88].

The pore solutions of CSA-based cements, see e.g. [32, 86, 89,
111-114], are characterized by a low pH of = 11 at early ages,
but reach values close to 13 after 28 days and later, which
should be sufficient to protect steel rebars from corrosion.
The ionic composition differs from that one of PC, e.g. the Al
concentrations are significantly higher. Some work has been
done to link pore solution composition to phase stability [86,
89, 113, 114], however, a critical evaluation of the pore
solution data available in literature would be needed for a
further understanding of the underlying mechanisms.

Supplementary cementitious materials (SCMs) can react in
CSA cements; much less information is available for BCSA
cements. Limestone can participate in the hydration reactions
of ye'elimite in case the molar ratio of calcium sulfate to
ye'elimite is below 2, forming hemi- or monocarbonate [115-
118]. Blast furnace slag is activated by the alkaline medium of
the pore solution, however the reaction degree seems
generally lower than in PC [119]. As portlandite is generally
not present in CSA cements, aluminosilicates do not exhibit a
pozzolanic reaction in the true sense of the term.
Nevertheless, a reaction of siliceous fly ash [120], calcined clay
[121] or silica fume [122] is reported, which leads to the
formation of stratlingite and possibly C-S-H. However, a
systematic overview of the action of different SCMs is
currently missing in literature.

Admixtures are often needed to retard the early setting of
CSA cements, and a wide range of materials are used, mostly
citrate, but also borate, tartrate or gluconate [123]. To
accelerate early hardening, Li-salts can be used [124],
especially in combination with set retarders [125].
Superplasticizers used for PC also seem to work for CSA [126].
A detailed overview of the action of the various types of
admixtures and their fields of use is currently still lacking.

Ternary blends CSA-PC-calcium sulfate are in use as fast-
setting, rapid hardening or shrinkage-compensated binders
which exhibit rather complex hydration mechanisms [34, 35,
127, 128]. The mix designs are quite complicated as the raw
materials and the blending ratio need to be thoroughly
controlled, and specially-designed admixtures systems are
needed to achieve the desired properties and to avoid
deleterious expansion. Especially in the case of admixtures,
there is significant proprietary knowledge in the mortar and
concrete industry, which is generally not shared in open
literature.

phase volume (cm®/100g dry cement)

504 aluminium hydroxide monosulfate

40 + ettringite

30 stratlingite

siliceous hydrogarnet

0 Iirlne ‘I/ ine :
0.001 0.01 0.1 1 10 100 1000 10000 100000
time (d)

Figure 3. Hydrates formed in a BCSA cement as a function of time by
thermodynamic calculations at 20 °C and a water/cement ratio of

0.50. Hydration kinetics is based on dissolution kinetics of the clinker
phases derived from QXRD. Redrawn from [99].

2.4 Physical properties of fresh and hardened
mortar/concrete

The physical properties of CSA cements represent an
important area for characterization since these properties will
define the specifications, potential applications, and design of
these materials. While many properties of CSA cements may
be similar to PC, there are key differences, especially in terms
of setting time, strength gain, and durability, which must be
clearly understood to wuse CSA-based cements for
infrastructure and buildings [18, 129, 130]. To enable broader
use of CSA cements, (i) properties that differ substantially
from PC should be clearly identified; (ii) existing design
relationships must be recalibrated; (iii) the influence of
practical  factors—ambient  weather, curing, and
compaction—should be established; and (iv) standards and
procedures should be updated. Finally, the goal is to design
mortar/concrete that meets performance requirements with
an optimized balance of safety and conservatism, thereby
realizing the performance and CO, benefits of these binders.
Concrete mix design procedures for BCSA cement are similar
to PC[129], but a retarder (e.g. citric acid or borax) is generally
a requirement [18, 19]. The workability must often be
enhanced with water reducers [131] due to the short setting
times. There is some guidance on mix proportioning and fresh
properties of CSA-based cements [129, 132], but relationships
between mix proportions and entrained air content, w/c and
strength, and the effects of mixture design parameters on
workability are fields of future research. Also, gathering the
effects of practical field factors—placement method, curing,
and compaction—from previous field experiences and
research is critical for application-specific mix design across
different weather conditions, helping to avoid unnecessary
conservatism. Additionally, the rheology of CSA cements is a
potential future focus area, particularly the dynamic yield
stress and viscosity, which are particularly relevant for
pumping or 3D printing.
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The effect of curing and ambient temperature on CSA
mixtures has been studied [133, 134], but there is no
consensus on field and laboratory curing procedures. There is
some published information on strength development,
particularly compressive strength [18, 129, 135-137], but the
relationships between modulus of elasticity [18], tensile
strength [18, 138-140], flexural strength [138, 141, 142], and
Poisson’s ratio are relatively unexplored.

Dimensional stability is an important topic for CSA cements,
as some of these materials exhibit early-age expansion, and
they may be chosen specifically for their low-shrinkage or
expansive behavior. The expansion and shrinkage behaviour
have been studied on paste [23, 112, 143-145], mortar [146],
and concrete [16, 17, 139, 147]. However, one downside of
many of these studies is the variety of CSA formulations
(some of which may be blended in varying quantities or made
at a laboratory scale), which limits the ability to produce
practicable shrinkage models applicable in field applications.
Consequently, there are no existing shrinkage models for use
in the design of structures. Creep is even less well-studied
than shrinkage [16, 142, 148, 149], and likewise, the
development of creep models and characterization of
commonly available CSA formulations and their creep
properties is an area of future study.

A growing body of research has sought to connect the
evolving microstructure of CSA cements with their physical
properties, particularly compressive strength and expansion.
Studies have shown that the degree of hydration strongly
governs strength development. Porosity and pore structure
have also been identified as critical parameters controlling
strength gain and durability [150-153]. Expansion and
dimensional stability, by contrast, are closely tied to the
quantity and morphology of ettringite [143, 145, 154], with
additional influences from overall strength, pore structure
[155] and pore solution chemistry [112, 144]. Morphological
changes in ettringite have been shown to directly impact
expansive behaviour [143, 154], reinforcing the need to
couple phase assemblage with physical performance. Other
studies have extended this microstructure—property link to
fresh-state performance, with hydration kinetics, admixtures,
and additives shown to significantly influence the early
workability and setting behaviour [18, 156]. Together, these
findings highlight the critical role of microstructural
parameters in governing both the mechanical and
dimensional stability of CSA-based systems. Again, a
weakness of the existing work is the variety of CSA cement
chemistries present and the corresponding difficulty in
extrapolating the results onto commercially available or
widespread formulations which may be applied in practice.

In reinforced concrete, the flexural capacity [131], shear
capacity [157], and flexural stress block parameters [158]
have been validated for BCSA cement compared to existing
international building code equations. There is little
information about the long-term behaviour under load, bond
and anchorage to rebar, shear transfer after cracking,
behaviour under dynamic loading, and fatigue performance.
In general, the behaviour under extreme loading (blast,
seismic, etc.) is an area of future research.

2.5 Durability and applications

Durability is one of the key aspects of concrete due to its
influence on the serviceability of concrete structures. Major
durability indicators include permeability, sulfate attack,
carbonation, chloride ingress, leaching, freeze-thaw,
corrosion, acid attack, dimensional stability
(cracking/shrinkage/expansion) and ASR. Although CSA/BCSA
cements have been presented as an attractive alternative to
PC, investigations on their durability indices are limited.

CSA-based cements exhibit a high resistance toward freeze-
thaw and chemical attack in a wide range of aggressive
environments [7]. They outperform PC in citric acid
environment due to the absence of portlandite, while they
seem to be less resistant to sulfuric acid attack [159, 160] PC-
CSA composites show improved corrosion resistance to
sulfuric acid when compared to PC alone [161]. The
deterioration of CSA cement was reported to be inversely
proportional to the pH of the exposure solution, irrespective
of chemical or biogenic sulfuric acid attack [162]. Additionally,
CSA-based cements are good candidates for ASR mitigation
[49, 163]. This has been related to the low generation of
portlandite as well as to the presence of aluminate-rich
phases such as ettringite that potentially get adsorbed in the
silicate gel, thus reducing the dissolution of amorphous silica
in the aggregate [163, 164]. Pore solution and alkalinity play a
role as the pH of CSA is even at late ages often still lower
(approx. 0.5 pH units) than for PC [86, 126, 165]. CSA-based
cements have shown very good resistance to sulphate attack,
compared to PC [21-23]. Long-term investigations indicate
that they remained essentially unaffected by a 3-year
exposure to highly-sulfated environments [21]. Their stability
was superior to that of a Type V (0.5% CsA) Portland cement
classified as ‘sulfate-resistant’ per ASTM standards.

The carbonation of CSA-based cements results in ettringite
decomposition and potential strength loss [7]. The
carbonation resistance of CSA cements increases with
decreasing water-to-cement ratio as well as with increasing
calcium sulfate content in most cases [166]. The type and
content of SCMs also influence the carbonation rate of CSA
cements [167]. For instance, the use of fly ash as SCM has
been shown to reduce the carbonation depth in concrete
mixtures over time (105 days), whereas combinations with
limestone presented mixed effects [168]. There s
disagreement in the literature regarding the carbonation rate
of CSA cements vs PC, and contradictory findings have been
reported among the researchers [169]. The chemical buffer
capacity [170] of CSA-based cements towards carbonation,
however, is lower compared to the one of PC due to their
lower content of reactive CaO [166].

Contradictory results are also published on the corrosion
resistance of CSA-based cements [139, 171-173] which is
highly time-dependent [50]. Weak corrosion resistance of
CSA blends compared to pure CSA, due to the decomposition
of ettringite and reduction of the alkalinity of the pore
solution which is not sufficient to promote the formation of
the passivation layer around steel fibres, is reported [139]. On
the contrary, there was no evidence of corrosion on the
surface of steel bars embedded in CSA concrete after 14 years
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[172] which was ascribed to lower permeability and self-
desiccation of the concrete.

The inconsistent data outlined above emphasize the need for
further research. A deep understanding of the link between
durability indicators - microstructure - pathway of hydration
and pore solution would be needed. As emphasized in section
2.4, the variability of CSA cement chemistries makes the
extrapolation of these links challenging. Most and foremost,
the durability of CSA-based binders in the long term and in
field conditions must be investigated in detail to ensure a
maximum service life of future structures.

In terms of applications, CSA-based cements are gaining
traction, particularly for expedited rehabilitation of roads,
bridges, and airport pavements, and they have been used in
large-scale reinforced and prestressed concrete applications
as has been demonstrated recently [149, 174, 175]. BCSA
cement-based concrete has demonstrated considerable
promise in high-impact infrastructure applications, including
pavement rehabilitation [176], bridge deck and structural
repairs [177], precast and prestressed elements [149], and
emergency interventions such as utility trench restoration
and temporary structural components. These applications
share a common requirement: rapid return to service.
However, they are often designed using conventional
concrete specifications, which may not fully consider the
unique properties of BCSA.

Proposed innovative uses of BCSA concrete include bonded
concrete overlays over asphalt (BCOA) [178], large-format
airfield pavement slabs [179], or rapid-strength ultra-high-
performance concrete (UHPC) [180], capable of achieving
compressive strengths up to 145 MPa within days and
opening strength within 4 hours. Integration into emerging
technologies such as 3D concrete printing has also been
proposed.

Finally, the method of concrete production, whether through
volumetric mixing or ready-mix batching, can significantly
influence the performance, logistics, and cost of CSA-based
concrete. A comprehensive understanding of the advantages,
limitations, and practical challenges associated with each
method is essential for developing standardized guidelines
that support efficient and reliable implementation across
various infrastructure applications.

3 Objective of the TC and expected impact

While a number of RILEM technical committees have focused
on alternative cements such as alkali-activated cements (TC
224-AAM [181], TC 247-DTA [182], TC-283-CAM [183], TC
294-MPA [184]) and magnesium-based cements (TC 311-
MBC [185]), calcium sulfoaluminate-based cements have not
yet received similar attention. The main objective of the TC-
CSA is to advance the scientific understanding and practical
applications of CSA cements by addressing key gaps in
knowledge and technology. It will also be a basis upon which
specific topics related to CSA can be developed further, e.g. in
future TCs.

Despite their potential, CSA-based cements face several
challenges that must be addressed to facilitate their broader

adoption. One of the primary challenges is the limited
understanding of hydration mechanisms, particularly in
systems that include blends with SCMs and admixtures. The
interactions of these materials during hydration remain
poorly characterized, which complicates efforts to optimize
their performance. Another significant challenge is the lack of
comprehensive data on the durability of CSA-based materials,
especially under aggressive environmental conditions. This
knowledge gap raises concerns about their long-term
performance in real-world applications. An additional
challenge is the confusion among end users with other
technologies, such as calcium aluminate cement.
Additionally, the absence of unified testing methods and
standards for CSA cements creates regulatory and technical
barriers, limiting their acceptance by industry and agencies.

To address these challenges, the TC will adopt a multifaceted
approach structured by asking separate working groups to
focus on the topics presented in sections 2.1-2.5 and compile
a comprehensive overview of the state of the art,
mineralogical characteristics and hydration behaviour of CSA
cement. The TC will also evaluate the physical and mechanical
properties of CSA-based materials and their long-term
durability under various environmental conditions.
Additionally, the committee will work toward developing
recommendations for the nomenclature and standardization
of CSA cements to facilitate their broader acceptance in the
construction industry. Collaborative interlaboratory studies
are to be defined and planned for the 2™ half of the TC
lifetime to validate testing methods (e.g. phase analyses or
mechanical properties) and generate reliable datasets,
enabling the development of standardized procedures. We
are aware that this TC will not be able to cover a wide range
of testing methods, and that some activities might be shifted
to future TCs on CSA-based cements and concrete.
Experiences from field studies will also play a crucial role in
documenting the performance of CSA-based materials both
in long-term phase assemblage and in practical applications,
offering insights into their durability and suitability for various
conditions. Finally, the TC will foster collaboration between
academia and industry through symposia, workshops, and
publications, creating a platform for the exchange of
knowledge and ideas. Synchronization with the activities of
ACl (American Concrete Institute) committee 242 on
Alternative Cements [36], which is dedicated to develop and
report information on alternate cements for use in concrete,
will be an important part of this work.

Achieving these objectives could have significant implications
for both the construction industry and society at large. By
reviewing and promoting the use of CSA cements, the TC aims
to reduce carbon emissions associated with cement
production and accelerate construction processes, thereby
addressing urgent sustainability challenges. While CSA
cements may not embody the universal solution to the
sustainability challenges of the construction industry, they
may be a stepping stone or an intermediate step in the
process. For example, most low-carbon cement alternatives
are still at the concept or laboratory benchtop stages. No
large production volumes of low-carbon cements are



E. Bescher et al., RILEM Technical Letters (2025) 10: 106-118

113

currently operational or commercial. CSA cements are the
only low-carbon alternative already produced in millions of
tons worldwide. The knowledge generated by this TC has the
potential to drive innovation in material science, expand the
range of applications for CSA cements, and create new
opportunities for industry collaboration and research.
Furthermore, the outcomes of this work will contribute to the
development of sustainable construction practices globally,
supporting the transition to low-carbon infrastructure. By
tackling these challenges, the TC aims to position CSA
cements as a mainstream, rather than niche option in
sustainable construction, bridging the gap between research
and practice and paving the way for future innovations. In this
context, it is important to note that among the different
available cementitious binders the material should be
selected which fits best to a certain application in terms of
performance and sustainability.

The establishment of the TC CSA marks an important step
toward advancing the understanding and application of CSA
cements. By addressing critical knowledge gaps, fostering
collaboration, and promoting standardization, the committee
aims to unlock the full potential of CSA technologies. The
outcomes of this work will provide a foundation for more
sustainable construction practices, support the development
of low-carbon infrastructure, and contribute to the global
transition toward more environmentally friendly and net-zero
building materials.
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