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Abstract: This study presents a multi-analytical investigation of the wooden components
from Khufu’s Second Solar Boat, one of the valuable archaeological discoveries in ancient
Egypt. The research integrates advanced imaging and analytical techniques to identify
wood species, assess deterioration patterns, and characterize the fungal and bacterial
biodeteriogens. The initial visual examination documented the state of preservation at the
time of discovery. Subsequently, the identification of the wood species was carried out.
The deterioration status was assessed using a variety of tools, including scanning electron
microscopy (SEM) and high-resolution synchrotron radiation computed microtomography
(SR-uCT) for morphological alterations, X-ray diffraction (XRD) for crystallinity changes
and Fourier-transform infrared spectroscopy (FTIR) to assess chemical degradation indexes
of wood. Moreover, molecular techniques were used to identify and characterize the
presence of biodeterioration agents. Results indicate that ancient craftsmen used cedar
wood for the boat construction. The analysed samples exhibited advanced biotic and
abiotic degradation, as evidenced by microbiological assessments, XRD measurements
of cellulose crystallinity, FTIR indices, SEM micrographs and SR-puCT data. These results
provide crucial insights into the long-term degradation processes of archaeological wood
in arid environments, enhancing our understanding of ancient Egyptian woodworking
practices and informing future conservation strategies for similar artifacts.

Keywords: archaeological wood conservation; multi-analytical characterization; biodeteri-
oration analysis; ancient Egyptian woodworking; X-ray microtomography; Lebanon cedar

1. Introduction

In ancient Egypt, wood was essential for both practical and symbolic reasons. It was
used for the construction of buildings and ships and played a significant role in religious
and funerary practices. Ornate sarcophagi, ritual boats, temple doors and statues for
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the deceased’s spirit were made of wood, emphasising its spiritual significance. This
dual functionality underlined its importance in Egyptian culture [1,2]. Among the most
remarkable ancient wooden artifacts are the two solar boats of King Khufu (Cheops),
discovered at the base of the Great Pyramid of Giza [3-6]. Both vessels were found
carefully disassembled wooden boat, precisely stacked, with hieroglyphic inscriptions
on the planks. The ancient Egyptians thought that the inscriptions helped rebuild the
boats in the afterlife. The boats were designed to facilitate the pharaoh’s journey through
the afterlife and are unique examples of ancient Egyptian woodworking technology and
maritime architecture [7-10].

The Second Solar Boat of Khufu was discovered in 1954 together with the more
well-known and better-preserved Khufu'’s First Solar Boat, which was reconstructed and
exhibited shortly after its discovery in the museum of Pyramids of Giza (Cairo, Egypt).
Unlike the first one, the Second Solar Boat, due to its extremely poor state of preservation,
remained in situ until recent excavations and conservation efforts [5,6]. It represents a
unique opportunity to study ancient Egyptian wood in its original archaeological context,
having remained relatively undisturbed for over 4500 years [11,12]. This exceptional
preservation state offers valuable insights into the long-term degradation processes of
archaeological wood in arid environments [13].

Wood, as an organic material, undergoes complex deterioration processes influenced
by both environmental factors and biological agents [14-16]. The interaction between wood
and the surrounding environment is particularly critical in archaeological contexts, where
prolonged exposure to varying conditions can lead to significant physical [15,16], chemi-
cal [17-19] and biological alterations [20,21]. The cellular structure of wood, comprising
primarily cellulose, hemicellulose and lignin, makes it susceptible to various degrada-
tion mechanisms [22,23]. These include physical stress from environmental fluctuations,
chemical degradation from moisture and salt exposure and biological attack by microor-
ganisms [16].

In arid archaeological environments like those of Egypt, wood deterioration follows
specific patterns influenced by environmental and biological factors. Drying leads to shrink-
age and splitting, while salt crystallization breaks down cellular structures. Additionally,
biodeterioration by insects and microorganisms further deteriorates the integrity of wooden
artifacts [24-27]. Although dry conditions generally initially inhibit biodeterioration, they
are responsible for dimensional changes, cellular collapse and chemical modifications
of wood components [24,25]. The presence of salts, common in desert soils, can further
complicate these processes by catalysing chemical reactions and causing mechanical stress
through crystallization cycles [26,27].

The characterisation of wood species and the deterioration of ancient Egyptian wooden
artifacts have been extensively analysed using a combination of different tools such as
microscopy, spectroscopy and microbiological evaluations, providing valuable insights
into decay processes and wood preservation. XRD analyses give information about the
crystallinity of cellulose and the presence of inorganic compounds, while FTIR ones reveal
chemical and structural changes of decayed wood [16,28,29]. For example, wood degrada-
tion of the King Djedefre statue using XRD, FTIR and SEM was recently determined [16].
The species identification of ancient Egyptian wood by optical microscopy and the wood
deterioration processes and chemical changes were performed using XRD and FTIR spec-
troscopy [28]. Wood characterization and preservation for polychromatic wooden coffins
from the New Kingdom period were performed using multispectral imaging, optical mi-
croscopy, X-ray fluorescence (XRF) spectroscopy, visible reflectance spectroscopy (Vis-RS),
Raman spectroscopy, FTIR and XRD [30]. The same multi-analytical approach was used
by Vigorelli et al. [31] to evaluate an ancient Egyptian wooden statuette (representing an
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offering bearer). Combined imaging and spectroscopic techniques to evaluate the degrada-
tion state and chemical changes of ancient wood (a stucco in the historic Citadel of Salah
al-Din al-Ayyubi in Cairo, Egypt) were also recently used by Afifi et al. [32]. A protocol
for studying highly degraded waterlogged wood anatomy using SEM was provided by
Balzano et al. [33] for prehistoric pile dwellings, and new methodologies for examining
highly degraded dry archaeological wood samples from Egypt using SEM and attenu-
ated total reflectance-Fourier transform infrared (ATR-FTIR) were set up by Tamburini
et al. [34]. Some semi-invasive techniques involving the destruction of pieces of wood
for wood characterization have also been recently used [29]. Finally, new markers for
degradation in archaeological wood were recently established, specifically focusing on
characteristic changes in cellulose structure in arid environments using XRD and FTIR
spectroscopy [29,35]. However, comprehensive studies integrating multiple analytical
approaches remain relatively scarce, particularly those involving advanced imaging tech-
niques and molecular biological methods [36,37].

The identification of wood species in archaeological contexts has several challenges, tra-
ditionally relying on microscopic examination of anatomical features [28]. Three-dimensional
(8D) imaging technologies, particularly X-ray computed microtomography (X-uCT), have
introduced new possibilities for the non-destructive identification of wood species [38]. This
technique, when combined with the traditional SEM analyses, offers unique insights into wood
structure and deterioration patterns at multiple scales [39,40]. In this regard, high-resolution X-
uCT (e.g., synchrotron radiation computed microtomography, SR-p-CT) to identify degraded
archaeological wood species has been recently reported [41-43].

The traditional (cultivated-based) methods for biodeteriogen identification have been
the most frequently used in archaeological contexts. For example, the cultivation on media
and morphological identification of biodeteriogens by microscope (e.g., Aspergillus and
Penicillium fungal species, known for their ability to produce cellulolytic enzymes that
degrade cellulose-rich materials) and the plate assay for detecting fungal extracellular
cellulase activity have been the most techniques applied [44,45].

The characterisation of biodeteriogens of archaeological wood has improved signif-
icantly with molecular techniques (e.g., polymerase chain reaction (PCR)-based analy-
ses) [46], allowing precise identification of these microorganisms. Furthermore, high-
throughput sequencing of biodeteriogens has been recently used to explore the microbial
diversity and composition [46]. This information is crucial for understanding both historical
degradation processes and potential ongoing biological threats to wooden artifacts. When
combined with microscopic and molecular techniques, these methods offer a comprehen-
sive understanding of degradation mechanisms and their effects on wood structure and
composition [16].

Recent developments in conservation science emphasize the importance of under-
standing deterioration mechanisms for developing effective preservation strategies. This is
particularly relevant for unique artifacts like Khufu’s Second Solar Boat, where conserva-
tion decisions have to be based on thorough scientific analysis of current conditions and
potential degradation risks.

The multi-analytical study presented here aimed to bridge existing knowledge gaps by
implementing a comprehensive analytical approach to the study of the wooden components
of Khufu’s Second Solar Boat, focusing on a detailed understanding of the wood species of
the boat, state of preservation and the various degradation mechanisms. This information
is crucial not only for archaeological and historical interpretation but also for informing
future conservation strategies for similar artifacts.
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2. Materials and Methods
2.1. Historical Background and Samples’ Description

In 1954, two ancient boat pits were found just south of the Great Pyramid of King
Khufu, who ruled from 2589 to 2566 BCE [12,47]. The boat called the “First Boat” came from
the eastern pit, and the “Second Boat”, from the western one. Due to the poor state of wood
preservation, the Second Boat remained sealed in its pit until 2009, unlike the First Boat,
which was lifted in 1954 [12,47]. Since 2021, when the highly successful Egyptian-Japanese
collaboration to assemble the Second Khufu Boat began, the stone blocks which covered
the burial pit, were lifted for the first time since the reign of King Djedefre during the Old
Kingdom. Similar to the First Khufu Boat lifted in 1954, the pit of the Second Boat was
carefully sealed with limestone blocks, and the boat was typically dismantled into pieces,
with each component carefully placed in a specific arrangement [12,47]. The boat just after
lifting stone blocks is shown in Figure 1a. The poor state of preservation of the boat was
evident and was confirmed by the analyses reported in this study. The alteration of the
wood layers (Figure 1a, red arrow) was pronounced in the pit, which decreased as a result
of the loss of wood properties. The first wooden bar lifted, approximately 1 metre long, is
shown in Figure 1b. A large-scale conservation and reconstruction project of the Second
Boat is currently in progress. A key first step in conservation was to identify the types
of wood used by the ancient builder, assess the boat’s state of decay and determine the
best conservation methods. The boat consisted of various parts, including the deckhouse,

canopy, forecastle, deck beam, hull, ribs and oars [48,49].

Figure 1. Pictures of some wood parts of the King Khufu (Cheops) Solar Boat. (a): The state of the
boat just after lifting the stone blocks; the red arrows point to the wood height change marks resulting
from 4500 years of buried time. (b): The first bar of wood after lifting the pit (about 1 m long); blue
arrows indicate the variation of wood colour along the bar, while the red one indicates the surficial
normal wood cavities.

The present work focuses in particular on the types of wood used in the construction
of the deckhouse, canopy and bow castle. For this purpose, three small samples were
collected, one from each of the specified parts (referred to as sample 1, 2 and 3). The
shape of the samples was semi-cylindrical, with a diameter of 5-7 mm and a height of
approximately 10 mm.

2.2. Wood Identification

For the identification of wood species, synchrotron radiation computed microtomog-
raphy (SR-u-CT) measurements were performed at the SYRMEP (SYnchrotron Radiation
for MEdical Physics) beamline of the Elettra synchrotron facility in Basovizza (Trieste,
Italy) [50]. The measurements were performed in the polychromatic beam configuration
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using a multiscale approach. The white beam was pre-filtered using 1.0 mm of silicon plus
0.025 mm of molybdenum, corresponding to an average beam energy of ca. 20 keV. The
detector comprised a water-cooled 16-bit macroscope sCMOS camera (2048 x 2048 pixels)
lens coupled with a GGG scintillator screen. Two different pixel sizes were used for the to-
mographic image acquisition: 0.9 um (corresponding to a field of view of ca. 1.8 x 1.8 mm?)
and 2.4 um (corresponding to a field of view of ca. 4.9 x 4.9 mm?).

In order to enhance edge detection and interface visualization between phases with
similar X-ray attenuation coefficients, the images were acquired in propagation-based
phase-contrast mode [51] by setting up a sample-to-detector distance equal to 100 mm.
Prior to uCT scans, samples were embedded in thin Parafilm foils to ensure a constant
moisture content and a consequent stability in the X-ray beam. The sample radiographs
(projections) were collected by rotating each specimen over 180 degrees with an exposure
time per projection of 150 ms. In total, each puCT scan comprised 1800 sample projections.
In some cases, we focused on specific regions of interest (ROIs), while in other cases, we
used the vertical stack modality, moving the sample vertically in the X-ray beam and then
stitching contiguous volumes.

Tomographic reconstruction, including single-distance phase recovery (Paganin’s
algorithm [52]) of projections and removal of annular artifacts, was performed using the
SYRMEP Tomo Project software suite (STP, developed at Elettra synchrotron facility), using
Paganin’s phase recovery algorithms. The phase recovery algorithm reveals important
information from contrast images, improving the visibility of microstructures in organic
materials and preserving spatial resolution. The removal of annular artifacts eliminates
detector-induced patterns that could mask critical degradation features. Together, these
methods enable non-destructive visualisation of patterns of deterioration at the cellular
level that would be undetectable with conventional tomographic techniques, providing
conservators with valuable microstructural information without damaging samples [53].

The 2D virtual sections of the reconstructed volumes were visualized using the open-
source software Image]J Fiji [54], while for the volumetric visualization, by a 3D rendering
procedure, the commercial VGStudio 2.0 software (Volume Graphics, GmbH, Heidelberg,
Germany) was used.

Wooden sections were also examined using a light microscope (Axio Imager M2, Zeiss,
Microimaging GmbH, Géttingen, Germany) equipped with a digital camera. Images were
acquired and processed by Zen 2.3 Pro (Zeiss) to confirm identification of wood species [53].

2.3. Physical and Chemical Wood Degradation

To evaluate the physical and chemical degradations of the boat wood, a set of diagnos-
tic techniques were used, including SEM for identifying the wood surface morphology, as
well as XRD and FTIR to trace the chemical changes occurred [16,28,55].

2.3.1. SEM Analyses

Morphological characterization of the degraded wooden specimens was performed us-
ing a SEM-Quanta FEG-250 environmental scanning electron microscope (FEI Co., Hillsboro,
OR, USA) equipped with an energy dispersive X-ray (EDX) spectroscopy unit. Specimens
were examined under high vacuum conditions without prior preparation. Micrographs
were acquired using a backscattered electrons detector (BSED) with a spatial resolution of
1.4 nm at an accelerating voltage of 20 kV. EDX analysis was conducted to determine the
elemental composition at specific regions of interest [16].

2.3.2. XRD Analyses

X-ray diffraction analysis was conducted at the MCX beamline of the Elettra-Sincrotron
Trieste Research Centre to evaluate the cellulose crystallinity index (Crl) as a measure of
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wood degradation [56,57]. The wood samples were pulverized using an agate mortar and
analysed at room temperature using a capillary spinner sample holder. The experimental
setup comprised a 4-circle Huber diffractometer with a 3D translation stage, equipped
with a high-count rate fast scintillator detector. The detector configuration included two
slits with vertical apertures of 200 and 300 pum, positioned 90 cm from the sample. Diffrac-
tion patterns were acquired using a monochromatic beam with the following parameters:
energy = 12 keV, acceleration current = 158.84 mA and X-ray wavelength = 1.0332 A. Sam-
ple alignment was achieved using a laser interferometer, with measurements conducted at
a fixed incident angle of 4 degrees. Data collection was performed in transmission mode
across the angular range from 4° to 70° to identify cellulose crystallinity index and the
range from 4° to 30°; other interfering compounds were observed in the remaining ranges.
Data analysis was performed using the PDF4 software.

The degradation degree was quantified through cellulose crystallinity measurements
using the widely adopted Segal method. The crystallinity index (Crl%) was calculated
according to the following equation:

CrI% = [(Io00 — Lam)/T200] % 100

where Igo represents the intensity of the (200) peak, corresponding to both crystalline and
amorphous phases, and I, denotes the intensity minimum between the (200) and (101)
peaks, with the (101) peak representing amorphous cellulosic fibres [58,59].

2.3.3. FTIR Analyses

Attenuated total reflection (ATR) FTIR spectra were obtained using the ALPHA II
FTIR spectrometer (Bruker Optik GmbH, Ettlingen, Germany) in the spectral range of
4000-400 cm~! with a resolution of 4 cm 1.

Some FTIR indices were calculated according to previous studies for quantitative anal-
ysis and to assess wood degradation in archaeological or aged wood samples [59-66]. The
lignin index was estimated by the ratio between the absorption intensities at ~1592 cm™!
and ~1505 cm~!, where the lower values indicate lignin degradation. The carbohy-
drates/lignin index was estimated by the ratio between the absorption intensities at
~1735 ecm ™! for carbohydrates and ~1505 cm ™! for lignin. An increase in this ratio indicates
lignin degradation relative to carbohydrates. Crystallinity index (Crl) was estimated by
the ratio between the bands at ~1375 cm ! and ~2900 cm !, which indicates the relative
proportion of crystalline vs. amorphous cellulose, where the higher values suggest the
degradation of amorphous regions [67]. The peak intensities were calculated relative to the
baselines properly constructed for each peak.

2.4. Evaluation of Biodeteriogens
2.4.1. Isolation of Deteriorating Fungi

Deteriorating fungal species were isolated from the wooden archaeological objects
by swabbing from the deteriorated surface of the wooden objects (10 swabs) and by serial
dilutions of the broken deteriorated parts from sample (5 samples). Each sampling was
performed in five replicates. Isolation was performed using two types of media: Carboxy
methyl cellulose agar (CMC) and wood straw agar media. CMC was prepared dissolving in
1 L: Carboxy methyl cellulose 10 g, NHy4 C1 1 g, KNO3 1 g, MgSO4 x 7H0 0.5 g, KHp POy
1g, Agar 20 g. Wood straw agar medium was prepared dissolving in 1 L: wood straw 10 g,
NH4Cl1 g, KNO;3 1 g, MgSos x 7H,0 0.5 g, KHyPO4 1 g, Agar 20 g. Inoculated plates
were incubated at 30 °C for 7 days [44,55]. Cultures were purified by sub-culturing several
times until pure isolates were obtained and preserved on potato dextrose agar slants.
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2.4.2. Morphological Identification of Deteriorating Fungal Isolates

For the identification of fungi at the species level, isolates were inoculated on the
Czapek-Dox agar medium and malt extract agar medium. Macroscopic characteristics
(colour, texture appearance and diameter of the colonies) and microscopic (microstructures)
were examined by a light microscope (Axio Imager.A2, Carl Zeiss, Oberkochen, Germany,
100x magnification). Fungal isolates were identified according to previous studies [68-77].

2.4.3. Identification of the Highly Frequent Fungal Species by Molecular Methods

Fungal isolates with cellulose activity (evaluated by the Congo red plate-based test [78])
were selected for molecular identification. The isolates were cultured in Czapek-Dox broth
at 30 °C for 5 days, and the fungal mycelium was filtered and ground into fine powder using
liquid nitrogen. DNA extraction was performed with the Quick DNA Fungal Microprep
Kit (Sigma-Aldrich), and PCR was carried out using Maxima Hot Start PCR Master Mix
(Thermo K1051, Sigma Aldrich, St. Louis, MO, USA) and ITS1/1TS4 primers. The reaction
(50 pL) contained 25 uL of Master Mix (2x), 5 puL of template DNA, 18 uL of nuclease-free
water and 1 pL (20 uM) of each primer. Thermal cycling included initial denaturation at
95 °C for 10 min, followed by 35 cycles: 30 s at 95 °C, 1 min at 57 °C and 90 s at 72 °C,
with a final extension at 72 °C for 10 min. PCR products were purified using the Gene]ET
PCR Purification Kit (Thermo Scientific, Waltham, MA, USA) and sequenced by GATC
Biotech (Ebersberg, Germany) on an ABI 3730XL DNA sequencer (Applied Biosystems,
Foster City, CA, USA). Sequences were aligned according to established protocols [79],
compared with GenBank reference sequences, and a phylogenetic tree was generated using
MEGA 11 software.

3. Results and Discussion
3.1. Wood Species Identification

The internal anatomical structure of the tested sample examined by SR-u-CT are
visible in Figure 2a. The images revealed the presence of soil particles. The anatomical
characteristics are consistent with Cedrus libani taxonomy. In fact, distinctive growth ring
formations with clear transitional boundaries and periodic patterns, which are characteristic
of Mediterranean cedar species, were observed. The cellular architecture displayed system-
atic tracheid arrangements typical of gymnosperm wood anatomy, with dimensions and
organizational patterns specifically concordant with C. libani morphology. Notable anatom-
ical features include well-defined ray structures, resin canal formations and degradation
patterns consistent with archaeological wood specimens [80]. This identification aligns with
previous historical evidence of extensive cedar importation from Lebanon during the Old
Kingdom period, particularly for elite shipbuilding projects, due to its superior mechanical
properties including enhanced durability and hydrophobic characteristics [47,81,82]. The
presence of C. libani in this royal naval architecture exemplifies the sophisticated material
selection practices employed in ancient Egyptian manufacturing processes.

These results were confirmed by both the SEM images (Figure 2b) and the light
microscope analyses (Figure 3). In particular, SEM analyses highlighted degraded parts of
the wood, soil residues and wood tissue separations.

The micromorphological features of the wooden sections, observed under a light
microscope (Figure 3), highlighted the presence of a distinct cellular arrangement, including
tracheids, ray parenchyma and resin canals, which are characteristic of Cedrus libani in
the transverse section (Figure 3a). Additionally, the radial section exhibited longitudinal
tracheids with bordered pits (Figure 3b,c) [28,47].
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Figure 2. Images of the tested wooden samples. (a): Synchrotron-based X-ray microtomography
(SR-p-CT) virtual section (isotropic voxel size = 2.4 um); the anatomical pattern of wood is visible.
The arrows highlight some degradation evidences in the form of separations on the wood texture
and the interferences with soil particulates. (b): A SEM image of the wood sample. Arrows highlight
the wood tissue separations and soil deposits.

Figure 3. Pictures of wooden sections, observed under a light microscope, for the observation of the
micromorphological features. (a): Transverse section showing the cellular arrangement, including
tracheids, ray parenchyma and resin canals characteristic of Cedrus libani. (b,c): Radial sections of the
wood sample. (b) Axial tracheid pits with scalloped tori, along with the presence of ray tracheids.
C: Longitudinal tracheids with bordered pits. The observed anatomical features, including tracheid
structure and pitting patterns, are consistent with Cedrus libani identification. Scale bars: a and
b =20 pm; ¢ =50 um.

3.2. Physical and Chemical Degradation
3.2.1. Results of SEM Analysis

The identification of the plant species (Cedrus libani), carried out by SR-u-CT, was
confirmed by SEM micrographs (Figure 4c—e), which also showed different mechanisms
of deterioration of the ultrastructure of the wood. SEM images can reveal how the phys-
ical and chemical properties of wood undergo a significant transformation as a result of
degradation over time. Overall, the extensive cell collapse visible in the images shows
how these degradation processes gradually disrupted the internal structure of the wood,
leading to significant changes in its material properties. Anatomical features showed
diagnostic characteristics, including the systematic arrangement of tracheids, distinctive
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pit formations in the radial walls and a species-specific radial morphology (Figure 4c).
The deterioration assessment indicated significant structural modifications manifesting in
several pathological phenomena: physical degradation evidenced by cellular deformation,
tracheid wall fracturing, middle lamella deterioration and partial structural collapse. Bio-
chemical deterioration was demonstrated by cell wall thinning, irregular erosion patterns
indicative of microbial activity and material loss in highly degraded regions, accompanied
by apparent mineral depositions visible as electron-dense regions (Figure 4d,e) [83,84].

Wood Texture

/

i

N Accumulated Soil
Accumulated Soil

&, :
‘Mierobial Attack
A

5 |

e S

10.0 12.0

Figure 4. (a): 3D rendering of a sub-volume obtained by SR-p-CT measurements (isotropic voxel
size = 2.4 um), and (b): zoomed region of this volume showing the details of interest: soil particles
inside the wood sample are evident; the shape of soil deposits and the wood anatomical structure
are also visible. (c—e): SEM micrographs. Different degradation signs of the wood samples (cellular
deformation, tracheid wall fracturing, middle lamella deterioration and partial structural collapse in
addition to microbiological attacks) are indicated by white arrows. In panel e, soil particulates are
indicated at the point of energy-dispersive X-ray spectroscopy (EDX) analysis. (f): EDX analysis. Ca
(as the indication of calcite and gypsum, the main compositions of the burial pit, Calcite Champer), Si
(as the indication for SiO, from the sealing mortar of covering blocks), C and O were the main wood
constituents. Small amounts of Al, Mg and Na were also detected as soil-derived components.

The structural alterations included weakened intercellular adhesion, cell wall separa-
tion, anatomical distortion and void formation through material loss.

From a physical point of view, the progressive cellular structure breakdown leads
to a reduction in strength, an increase in porosity, a decrease in density and an increase
in brittleness, ultimately altering the mechanical properties of wood [28,80]. Chemically,
wood undergoes complex molecular transformations with the breakdown of lignin and
cellulose. This leads to changes in its chemical composition, surface chemistry and molec-
ular reactivity [85,86]. These microscopic changes are the result of complex interactions,
including enzymatic degradation by microorganisms, oxidative reactions, the hydrolysis of
chemical bonds and environmental factors such as temperature and humidity [87].

The 3D rendering obtained by SR-uCT data revealed a soil particle accumulation within
the wood matrix (Figure 4a). The zoomed region in Figure 4b distinctly delineates soil deposits
while simultaneously illustrating the wood anatomical architecture in the 3D domain.
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Overall, the 3D SR-uCT images and SEM micrographs revealed that the soil-induced
wood decay was a complex, multifactorial process in which soil deposits played the role of
catalysts for mechanical, chemical and biological breakdown. Indeed, soil particles are known
to apply mechanical stresses to wood structures, inducing chemical changes and creating
microenvironments that promote microbial decomposition. By infiltrating cellular spaces
and simultaneously triggering multiple degradation mechanisms, these deposits significantly
compromised the integrity of the wood, accelerating its natural decomposition [88].

EDX analysis showed the presence of specific elements that played distinct roles in
the deterioration processes (Figure 4e,f). Calcium (Ca) indicates the deposition of calcite
from the burial chamber, forming crystalline deposits within the wood cells that exerted
mechanical stress through crystal growth. Gypsum, a degraded form of calcite, was
confirmed by the presence of sulphur (S), which accelerated the breakdown of cellulose
through mild acidification, forming hygroscopic compounds that attracted moisture and
created physical stress through hydration/dehydration cycles. Silicon (Si), probably due
to 5iO, contamination of the sealing mortar, led to the formation of silicate complexes
that penetrated the wood components, altering their physical properties. Overall, these
mineral intrusions had a significant impact on the mechanical properties, chemical stability,
porosity and long-term preservation potential of the wood, creating a complex degradation
environment [89,90]. The detection of carbon (C) and oxygen (O) corresponded to the
wood’s organic matrix, while trace elements including aluminium (Al), magnesium (Mg)
and sodium (Na), are attributed to soil-derived minerals [12,91,92].

3.2.2. FTIR Spectral Characterization and FTIR Indices

The detailed FTIR band assignments are listed in Table 1. The assignments were
performed in line with previous works [93-100]. The 3500-500 cm ! spectral region of the
FTIR spectra of the ancient wood sample is displayed in Figure 5a.

Table 1. FTIR band assignment of the wood samples.

FTIR Band (cm—1)

Band Assignment

3337
2979
2943
2914
1726
1590
1508
1448
1429
1376

1264

1233
1157
1108
1054
1029
898

851

O-H stretching of intermolecular hydrogen bonds

Asymmetric CH stretch of the methoxy group of lignin

Asymmetric CH stretching of CH, groups of lignin, cellulose, hemicellulose
Symmetric CH stretching of CHj groups of lignin, cellulose, hemicellulose
C=0 stretching of acetyl and carbonyl groups in hemicelluloses

Skeletal vibrations of the aromatic ring, together with C=0 stretch in lignin
C=C skeletal vibrations of the aromatic ring in lignin

Aromatic C-H deformation in lignin and carbohydrates

C-H in-plane deformation in lignin and carbohydrates

CH bending in cellulose, hemicellulose and lignin

Aromatic C-O stretching vibrations of methoxyl and phenyl propane guaiacol ring
units of lignin

Stretching vibrations of C-O in Xylene and syringyl ring

Asymmetric bridge C-O-C stretch mode in carbohydrates

Asymmetric in-plane aromatic skeletal stretching, C-C and C-O stretching

C-O stretching

Aromatic C-H in-plane deformation, and C-O deformation in primary alcohols
Aromatic C-H out-of-plane ring deformations of cellulose

Ring vibrations
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Figure 5. (a): FTIR spectra of the ancient wood. Red arrows indicate the characteristic bands for
the lignin index (1590 cm~! and 1508 cm ™). Blue arrows indicate the characteristic bands for the
carbohydrate/lignin index (1726 em~1 and 1508 cm™1), while green arrows point to the bands
of cellulose crystallinity index (1376 cm ! and 2914 cm ™1, see also Table 2). (b): XRD pattern of
the wood sample. Soil particulates clearly appeared since they were mainly composed of calcite,
gypsum and quartz in addition to the main beaks crystalline and amorphous cellulose at 26 = 15°
and 20 = 13°, respectively.

Table 2. FTIR indices of the ancient wood samples calculated by selected FTIR absorption bands.

Index Index Value
Lignin Index L1590/ 11508 4.040
Carbohydrates/Lignin Index T1726 /11508 7.656
Crystallinity Index of Cellulose Bands I1376 /12914 1.019

The FTIR indices for lignin, carbohydrates/lignin and Crystallinity (Table 2) were
calculated on the basis of six absorption bands (Table 1). Specifically, the intensities of
lignin peaks at ~1590 cm~! and ~1508 cm~! were chosen as lignin references as they are
due to the aromatic skeletal vibration (C=C) in lignin [64].

Moreover, the band at ~1730-1700 cm~! was chosen as a reference for carbohydrate,
as it possesses no contribution from lignin.

The lignin index (I1594/I1505) provides information on the molecular structure of
aromatic lignin, while the carbohydrate/lignin index indicates the state of preservation of
the carbohydrate content of wood [101]. The crystallinity index of wood cellulose in the
sample was determined by calculating the Iy37¢ /12914 ratio [67]. This index is particularly
useful for understanding structural changes in lignin, especially in archaeological wood. An
increase in this ratio suggests the oxidation of aromatic lignins, the loss of guaiacyl units or,
more likely, the demethoxylation of guaiacyl units [96,102]. Since lignin index refers to the
extent of possible oxidation of aromatic lignin and formation of free phenol groups [88,96],
it is therefore useful in revealing the state of ancient wood as some of the degradation
products in aged lignin, such catechols, can result from fungal degradation [88,96].

In the present work, among the different indexes, the lignin one was the highest in the
examined sample (Table 2), indicating selective decomposition within the wood’s lignin
structure. This suggests the oxidative breakdown of lignin aromatic rings rather than
complete lignin loss, leading to increased brittleness and reduced structural integrity [102].
Moreover, the lignin index value (4.040) is comparable to those of fresh wood standard
(~1.5-2.0) [103]. The high lignin index found in this work suggests a relative enrichment
of lignin content. This is indeed common in archaeological wood because cellulose and
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hemicellulose tend to degrade more readily than lignin, leaving behind a higher proportion
of lignin in the remaining wood structure [88,96,104].

The carbohydrate/lignin index (given by the I;7,4 /11508 ratio) revealed that the car-
bohydrate content represented by hemicellulose was very high in the sample, indicating
a high content in hemicellulose with the lowest preserved lignin content [66,102]. The
lower carbohydrate/lignin ratio of the sample (7.656) compared to the fresh wood stan-
dard (~8.5-10.0) [103] further confirmed the degradation pattern. This indicates a loss of
carbohydrates (cellulose and hemicellulose) relative to lignin, which is a classic signature
of wood degradation over time [85,104].

The lower crystallinity index (1.019) compared to fresh wood standard (~1.5-1.8) [103]
suggests a degradation of the crystalline cellulose structure. This is typical in archaeological
wood as the more organized crystalline regions of cellulose break down over time [85,103].

FTIR indices provided a detailed chemical analysis of wood degradation, revealing a
complex process characterized by selective molecular breakdown. Overall, these results
suggests a moderate to significant degradation, which is characterized by the selective loss
of carbohydrates (cellulose and hemicellulose), relative enrichment of lignin content and
breakdown of crystalline cellulose structures. The results show high hemicellulose content
with relatively low conserved lignin, accompanied by lignin enrichment due to preferential
degradation of cellulose and hemicellulose. The decrease in the carbohydrate-to-lignin
ratio and reduction in crystallinity index indicate ongoing structural disorganization as the
more ordered crystalline regions of cellulose degrade over time. This chemical fingerprint
suggests a moderate to significant degradation pattern in which lignin remains relatively
stable while carbohydrate structures gradually disintegrate.

These results provide valuable insights into the state of wood preservation and long-term
molecular changes. Such molecular disintegration leaded to reduced mechanical strength,
increased brittleness and alterations in porosity and dimensional stability [85,101,102,104].

3.2.3. XRD Results

The Synchrotron radiation X-ray diffraction (SR-XRD) analysis of the wood sample are
shown in Figure 5b. The results revealed significant soil deposits that interfered the wood’s
structural composition, reflecting the extent to which the burial environment influenced
the degradation stage of the boat. The XRD pattern, also supported by energy-dispersive
X-ray spectroscopy (EDX) data, demonstrated the presence of calcite, gypsum and quartz—
primary constituents of the burial chamber environment. XRD and EDX analyses revealed a
complex degradation process driven by the mineral composition of the burial environment,
with calcite, gypsum and quartz acting as key agents in wood deterioration. These mineral
deposits physically alter the cellular structure of wood, trigger chemical reactions and
alter internal conditions, thus creating multiple pathways of degradation. By occupying
cellular spaces, altering internal pH, promoting moisture retention and catalysing oxidative
processes, these minerals in the burial environment significantly transformed the physical
and chemical properties of wood [88-90].

The moderate-intensity peak (012) of calcite at about 15.4° 20 and the high-intensity
peak (121) of gypsum at about 13.1° 20 significantly overlapped with the characteristic cel-
lulose peaks at 15.0°, 12.5° and 10.5° 20. Where the (200) lattice plane at 15.0° 20 represents
a critical structural feature encompassing both crystalline and amorphous phases, 12.5°20
represents the intensity minimum between the (200) and (101) planes, demonstrating the
transitional structural characteristics, and the (101) lattice plane at 10.5° 20 represents
the amorphous cellulosic fibres [28,58,59]. Therefore, the mentioned interference in the
diffraction pattern hinders the accurate determination of the cellulose crystallinity index
(Crl) in the composite sample when using the Segal method for quantitative analysis [105].
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Consequently, the CrI measurement was performed on another pure ancient wood
sample collected from the same source, yielding a Crl value of 13%. This low value indicates
substantial degradation of the crystalline cellulose regions, which aligns with the Fourier-
transform infrared spectroscopy (FTIR) results, demonstrating how mineral components
systematically degraded the wood’s molecular integrity [85,89]. The findings revealed
that the burial environment was not a passive factor but an active participant in wood
degradation, with mineral deposits acting as key catalysts that progressively dismantled
the wood’s structural and molecular composition [88-90]. The observed shift in diffraction
peak positions occurred because synchrotron radiation SR- X-rays have higher energy and
shorter wavelengths than conventional laboratory X-ray sources. According to Bragg’s Law,
shorter wavelengths produce smaller diffraction angles (26) for the same crystal planes.
The superior monochromaticity, brilliance and collimation of synchrotron radiation also
contributed to this systematic peak shift, requiring appropriate calibration when comparing
diffraction patterns obtained from different X-ray sources [106,107].

3.3. Deteriorating Fungi

The 14 fungal species isolated from the deteriorated wooden objects and identified by
morphological characteristics are listed in Table 3. Eight species belonged to the Aspergillus
genera and six species belonged to Penicillium one. The most frequently deterioration-causing
fungi species found in the current study were Aspergillus flavus and A. terreus, in line with
previous studies. For example, Ahmad et al. [108] isolated A. flavus and A. terreus (together
with A. fumigatus, A. niger, and P. chrysogenum) from a Nabataean wooden coffin, Jordon.
Aspergillus spp. and Penicillium spp. were the most dominant genera isolated from the storage
area of Cheops’s Solar Boat and wooden frames of the Stucco window in the Islamic Art
Museum [109]. Aspergillus flavus and A. terreus together with other fungal species (A. fumigatus,
A. niger, Cladosporium cladosporioides, Fusarium oxysporum and Trichoderma longibrachiatum) were
isolated by Abdel-Azeem et al. [24] from 35 archaeological pharaonic wooden artifacts. Helmi
etal. [110] isolated A. flavus and A. niger from ancient funeral masks in Saqqara, Egypt, which
revealed various deterioration aspects (discoloration, cracks and stains). Finally, twenty-six
fungal species from the wooden objects were isolated and identified by Geweely et al. [37],
and the four most frequent species belonged to the genus Aspergillus.

Table 3. Total counts, relative density (%) and frequency of occurrence of fungal species isolated from
King Khufu’s Second Boat. In bold the sum of the fungal species for each genera.

Fungal Species Total Count Relative Density %
Aspergillus clavatus 6 3.84
Aspergillus flavus 34 21.79
Aspergillus fumigatus 12 7.69
Aspergillus niger 15 9.61
Aspergillus ochraceus 4 2.56
Aspergillus parasiticus 8 5.12
Aspergillus terreus 24 15.38
Aspergillus versicolor 3 1.92

Total Aspergillus spp. 106 67.95
Penicillium citrinum 13 8.33
Penicillium chrysogenum 10 6.41
Penicillium glabrum 5 3.20
Penicillium multicolor 6 3.84
Penicillium capsulatum 7 4.438
Penicillium oxalicum 9 5.76

Total Penicillium spp. 50 32.05

Total count 156
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Identification of the Selected Deteriorating Fungal Isolates by Metagenomic Analyses

The isolate belonging to the Aspergillus flavus and the other isolate belonging to
the Aspergillus terreus with the highest cellulose activity were identified using molecular
biology methods based on ITS1 and ITS4 region sequences. Sequences of PCR products
were aligned with the reference sequences on GenBank, identified and deposited with
accession numbers on NCBI. Their identification was confirmed to be Aspergillus flavus
(accession number PQ226812) and Aspergillus terreus (accession number PQ227217). Their
phylogenetic Neighbour Joining (NJ) trees are shown in Figures 6 and 7. The closely related
species were found using the p-distance model with the Molecular Evolutionary Genetics
Analysis (MEGA) software version11 [111].

— AY216669.1:14-573 Aspergillus flavus strain UWFP 570

MH&75710.1:16-575 Aspergillus novoparasiticus culture CBS:126850 strain CBS 126850
MH&66264.1:17-576 Aspergillus oryzae var. oryzae culture CB5:108.24 strain CBS 108.24
OmM420252 1:1-560 Aspergillus flavus isolate 26a ML

OLV11676.1:708-1267 Aspergillus caelatus strain CBS 763.97 2

0.000

ToddM283753.1:563-1122 Aspergillus flavus isolate 6.3 Asper

0.0

~ OM283752.1:559-1118 Aspergillus flavus isolate 6.2 Asper

004
— PQ226812.1:1-598 Aspergillus flavus isolate A3

05
Q423742 1:21-585 Aspergillus flavus isolate B8-5

Figure 6. Neighbour joining (NJ) phylogenetic tree of Aspergillus flavus A3 PQ226812 based on ITS1
and ITS4 sequence, with the phylogenetic position and the closely related species.

The results found here are in line previous studies. For example, Ortiz-Santana
et al. [112] isolated and identified morphologically and molecularly different species of
white, brown and soft rot fungi in the structural woods of eight historical churches in
Chiloé, Chile, causing decay in these historical buildings. Pedersen et al. [113] also isolated
several species of Ascomycota soft rot and Basidiomycota fungi that attacked wood, leaving a
weak and vulnerable wood structure. Two types of fungal degradation (brown rot and soft
rot) were observed on archaeological objects in the Museum of Fine Arts, Boston and the
Metropolitan Museum, New York [114].
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OMN231659.1:552-1064 Aspergillus terreus strain LJJ20-Y MO0

JQO070159.1:4-516 Aspergillus terreus strain ATCC 12238

OR528601.1:565-1077 Aspergillus terreus strain VT35 2

MT448842 2:520-1032 Aspergillus terreus strain CE 58 5.85

0.008

Sk
0,000

EF669581.1:554-1066 Aspergillus cameus isolate MRREL 1928

MHE78509.1:3-515 Aspergillus terreus culture CBS5:132948 strain CBS 132948

PQ227217 1:1-589 Aspergillus terreus isolate AB

Figure 7. Neighbour joining (NJ) phylogenetic tree of Aspergillus terreus A8 PQ227217 based on ITS1
and ITS4 sequence, with the phylogenetic position and the closely related species.

Biological attacks on wood, particularly by fungi, involve complex enzymatic pro-
cesses that contribute to oxidative degradation and hydrolysis of chemical bonds. Fungi,
for example, use enzymes active on carbohydrates (CAZymes) and reactive oxygen species
(ROS), such as hydrogen peroxide (H,O;), to degrade lignocellulose, a key component
of wood decay. This enzymatic activity not only accelerates the degradation of wood
components but also induces oxidative changes in the proteins involved in these processes.
Fungal species isolated from wood artifacts are significant because they play a direct role
in these degradation mechanisms, providing valuable insights into how biological factors
contribute to structural and chemical changes in wood over time [87].

4. Implications for Egyptian Woodworking and Conservation Practices

The identification of Cedrus libani in this study provides empirical evidence of the strate-
gic utilization of durable timber by Old Kingdom Egyptian craftsmen. Their knowledge of
wood properties—including dimensional stability, resistance to biological degradation and
mechanical strength—demonstrates an advanced understanding of material science and its
application in construction and preservation.

The taxonomic identification of Aspergillus flavus and A. terreus as dominant biodeteri-
oration agents highlights the impact of biological factors on the structural and chemical
degradation of wood over time. To mitigate this, conservators should prioritize eco-friendly
disinfection methods over traditional biocides, which may accelerate deterioration.

A multi-analytical approach utilizing synchrotron radiation micro-computed tomogra-
phy (SR-uCT) at 0.65 pm spatial resolution enabled the non-destructive three-dimensional
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visualization and quantification of internal structural changes with statistically significant
reproducibility. Additionally, Fourier-transform infrared (FTIR) indices, combined with X-
ray diffraction (XRD) and scanning electron microscopy (SEM), provided valuable insights
into the physical and chemical degradation of archaeological wood.

Conservation strategies for Cedrus libani should include controlled consolidation to
prevent further loss of crystallinity, fumigation to inhibit fungal growth and optimized
exhibition conditions, including regulated relative humidity, temperature and light intensity,
to ensure long-term preservation.

5. Conclusions

This comprehensive, multi-analytical investigation of the wood components of the
4500-year-old Second Solar Boat of Khufu yielded significant insights into ancient Egyptian
woodworking practices, degradation mechanisms and conservation challenges. Through
the integration of advanced imaging and analytical techniques, wood species were iden-
tified, degradation was assessed and fungal biodeteriogens that affected this remarkable
archaeological artifact were characterized.

Cedrus libani (Lebanon cedar) is the main wood species used in the construction of the
boat, consistent with historical evidence of the import of cedar from Lebanon during the
Old Kingdom period for elite boat-building projects, highlighting the sophisticated material
selection practices used by the ancient Egyptians. The choice of cedar was likely due to its
superior mechanical properties, enhanced durability and hydrophobic characteristics.

Assessment of deterioration revealed complex degradation mechanisms operating at
multiple scales. Significant structural changes of the woody cells were evidenced, including
their deformation, fracture of the tracheal wall, deterioration of the central lamella and
partial structural collapse.

There was evidence of extensive accumulation of soil particles within the woody
matrix, which served as catalysts for mechanical, chemical and biological disintegration.
Several minerals, such as calcium (Ca), silicon (Si) and sulphur (5), indicated the presence
of calcite, gypsum and quartz from the burial environment, which had a significant impact
on the mechanical properties, chemical stability and porosity of the wood.

Chemical characterization demonstrated selective molecular disintegration, with in-
dices revealing a high hemicellulose content with relatively low conserved lignin. The high
lignin index (4.040) suggests an oxidative breakdown of the aromatic rings of lignin rather
than a complete loss. The carbohydrate to lignin ratio (7.656) confirmed the degradation
pattern, indicating a loss of carbohydrate to lignin. The low crystallinity index (1.019),
corroborated by the crystallinity index (13%), indicates substantial degradation of the crys-
talline regions of cellulose, resulting in reduced mechanical strength, increased brittleness
and altered dimensional stability. Future research should focus on developing conservation
protocols specific to cedar wood from arid archaeological contexts, taking into account the
unique degradation patterns identified in this study.

Among the fungal species isolated from the deteriorated wooden artifacts, Aspergillus
(68%) and Penicillium (32%) were the predominant genera. Molecular analysis confirmed
the identity of the most active cellulolytic species as Aspergillus flavus and Aspergillus terreus.
These fungal species probably employed complex enzymatic processes, including the action
of carbohydrate-active enzymes (CAZymes) and reactive oxygen species (ROS), which
accelerated the breakdown of wood components and induced oxidative changes. Further in-
vestigation into the enzymatic mechanisms employed by the identified fungal species could
provide new insights into biodeterioration processes and potential mitigation strategies.

The burial environment was found to be not only a passive factor but also an active
player in the degradation process. Mineral deposits in the burial chamber acted as key
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catalysts in the systematic dismantling of the structural and molecular composition of
wood through the physical disruption of cellular structures, initiation of chemical reactions
and modification of internal conditions.

Overall, these results provide valuable insights into the long-term degradation pro-
cesses of archaeological wood in arid environments and enhance our understanding of
ancient Egyptian woodworking practices. The multi-analytical approach used in this
study provides a comprehensive framework for assessing the conservation status of similar
wooden artifacts and can inform future conservation strategies. The results underscore
the importance of considering the complex interplay of physical, chemical and biological
factors in the deterioration of archaeological wood and highlight the need for customized
conservation approaches that address these multifaceted deterioration mechanisms.
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