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ABSTRACT Under the Integrated Sensing and Communication (ISAC) paradigm, wireless networks are
evolving into multifunctional platforms that seamlessly combine data transmission with high-precision
ranging for applications such as indoor navigation, asset tracking, and context-aware Internet of Things
(IoT). The Multi-Carrier Phase Difference (MCPD) method has emerged as an effective technique for
enabling localization in narrowband communication systems by estimating the channel frequency response
(CFR) used for distance estimation. Converting the two-way CFR (TWCFR) into a one-way CFR
(OWCFR) provides a physically consistent representation of the propagation channel and thus improves the
ranging performance. However, existing channel reconstruction (CR) methods rely on noise-sensitive phase
unwrapping which degrades in the presence of noise and interference, common in dense IoT deployments and
crowded frequency bands. To address these limitations, we propose a noise-resistant OWCFR reconstruction
algorithm that utilizes a peak-driven adaptive windowing strategy to generate a reference TWCFR for
reliable square-root branch selection and incorporates a delay alignment correction to restore the maximum
unambiguous range. Simulation and experimental results using IEEE 802.15.4 time-slotted channel hopping
(TSCH) compliant devices demonstrate that the proposed method achieves robust and accurate distance
estimation in more than 99.8% of interference scenarios.

INDEX TERMS Bluetooth, channel frequency response (CFR), channel impulse response (CIR),
IEEE 802.15.4, localization, multi-carrier phase difference (MCPD), one-way ranging, phase-based ranging
(PBR), time slotted channel hopping (TSCH), two-way ranging.

I. INTRODUCTION

Wireless communication systems are rapidly evolving from
single-purpose transmission systems to versatile platforms
that seamlessly integrate sensing, localization, and infor-
mation exchange [1]. Adopting the Integrated Sensing
and Communication (ISAC) paradigm, wireless networks
no longer treat localization as a supplementary feature
but embed sensing capabilities alongside conventional data
transmission [2]. This evolution is driven by a variety of
applications that require indoor positioning and navigation,
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real-time asset tracking, and secure, location-based access
control.

Empowering smart home and Internet of Things (IoT)
ecosystems, ISAC combines seamless connectivity with
precise localization, enabling context-aware automation
and intelligent interaction with the environment, such as
collaborative robots for household chores, presence-based
ambient control or touchless home appliances [2], [3].
In industrial IoT, factories and warehouses can achieve
greater efficiency and safety through systems that combine
communication and precise tracking of assets and person-
nel [4], [5]. Urban infrastructures can benefit from integrated
systems that provide both connectivity and situational
awareness, improving services such as traffic management,
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crowd management, and public safety in smart cities
(61, [7].

Distance estimation between devices is the first and essen-
tial step in most localization schemes and can be obtained
by measuring physical signal properties such as received
signal strength (RSS), time-of-arrival (ToA), or phase of the
signal. Practical IoT deployments with low-cost narrowband
radios cannot support the wide bandwidth or high sampling
rates that conventional ToA techniques require [8], [9].
As a result, IoT systems are often limited to coarse
positioning via RSS, which does not provide the accuracy
required for indoor navigation, precision asset tracking, and
collaborative robotics applications [10]. Phase-based ranging
(PBR) overcomes this constraint by estimating distance
through phase shifts introduced by the signal propagation
path. With the multi-carrier phase difference (MCPD)
technique [11], devices can estimate their mutual distance
with a decimeter-level accuracy without the need for wide
system bandwidth [12], [13]. The potential of PBR has been
recognized by several research works that have investigated
its incorporation into IoT communication technologies,
including Bluetooth [11], [14], IEEE 802.15.4 [15], [16] and
RFID [17]. These studies demonstrate that accurate ranging
can be achieved with low-cost narrowband devices, enabling
localization alongside existing communication. Recently, the
Bluetooth Special Interest Group (SIG) included MCPD in
the new channel sounding feature of the Bluetooth Core
Specification version 6.0, marking the first standardization
of PBR within a widely adopted IoT protocol [18], [19].

In a PBR process, the wireless channel is first sampled
using the MCPD technique, where two devices estimate the
channel frequency response (CFR) by sequentially hopping
across multiple frequencies and capturing the phase of the
received signal at each step. A key advantage of MCPD
is its ability to resolve the initial phase offsets introduced
by the phase-locked loops (PLLs) in each device, which
would otherwise distort the measurements. Phase mismatches
are eliminated by multiplying the measured one-way CFR
(OWCFR) from both devices, producing a two-way CFR
(TWCFR) that has traditionally served as the basis for range
estimation. Due to the harmonic nature of the measured CFR,
different spectral analysis techniques can be used to extract
the distance.

Early phase-slope methods estimate the range from the
slope of the CFR phase [11], [20], but can model only a single
propagation path and therefore suffer from bias in multipath
conditions. Fourier transform (FT)-based methods address
this limitation by transforming the CFR into a channel
impulse response (CIR), which reveals the underlying
propagation delays of the line-of-sight (LoS) and multipath
components (MPCs), enabling robust range estimation.
Variants of FT-based methods have been proposed [21],
[22], and comparative studies show that FT-based estima-
tors outperform phase-slope methods [19], [23]. Although
FT-based estimators are robust at low signal-to-noise ratio
(SNR) conditions, their accuracy is limited by the Fourier
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resolution set by the available bandwidth (BW). In [24] the
author proposed an iterative Bayesian refinement approach
to improve the separability of closely spaced MPCs.

Subspace-based range estimation methods decompose the
measured CFR into signal and noise subspaces and construct
a pseudo-spectrum, where distinct peaks appear at the
propagation delays corresponding to the true signal paths.
As demonstrated in [12], the MUItiple SIgnal Classification
(MUSIC) algorithm can achieve super-resolution when
spatial smoothing is applied to the CFR to decorrelate
closely spaced MPCs. Later work improved the accuracy
and performance of the MUSIC framework by incorporating
bandwidth extrapolation of the measured CFR, multi-antenna
combining and reduced-complexity pseudo-spectrum com-
putation [8]. In [25] the authors introduced a signal-subspace
decomposition (SSD) approach with a long-short term
memory (LSTM) model that provides improved distance
estimation accuracy compared to MUSIC estimators. Data-
driven range estimation approaches have also been explored.
Support vector regression (SVR) models have been used to
map CFR spectral features to distance estimates [26], and
deep learning (DL) models have been trained on spatially
smoothed CFR representations [9], both outperforming
subspace-based range estimation in indoor environments.

In the conventional PBR pipeline, the estimated TWCFR
is passed directly to the range estimation block, as shown in
Fig. 1. However, the two-way response produced by MCPD
represents a squared version of the physical channel, which
contains apparent multipath components that distort the
delay structure and reduce ranging accuracy [12], [27], [28].
The limitation can be addressed by introducing a channel
reconstruction (CR) stage before range estimation. The goal
of CR is to recover an OWCFR from the measured TWCFR
and improve range estimation performance.

MCPD Multiplication Range Estimation
— N\ ~ Y ——
Initiator  Reflector : H Two-Way Approach | |
fo T i - o } ->
BAVIEN i el TWCFR| |l iy
AV “ \/\/\ |
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FIGURE 1. Overview of the PBR process. The conventional two-way
approach estimates the range directly from the TWCFR, while the
one-way approach introduces a CR stage that recovers an OWCFR and
improves the ranging performance.

The CR process begins with a square root operation
on the TWCFR, which introduces a sign ambiguity that
must be resolved. In [29], authors propose to determine the
correct sign by comparing the square root TWCFR with
the measured OWCFR of one node. The approach relies on
maintaining PLL locked when switching between carriers,
and requires the time interval between initiator and reflector
measurements to remain constant, as any significant timing
mismatch can cause a root-flip error. These stringent PLL and
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timing requirements inherently limit the applicability of the
solution to systems with dedicated hardware.

A more generalized approach was presented in [27], which
determines the correct sign by applying phase unwrapping
and threshold detection. The proposed approach also extends
OWCER reconstruction to non-contiguous frequency chan-
nels, making it applicable to wireless systems operating
across multiple bands. However, the method is limited by the
accuracy of phase unwrapping, which becomes challenging
in the presence of noise in the measured phase. Measurement
deviations can confuse the unwrapping algorithm, making the
CR method unreliable.

In practical deployments, these deviations arise from
hardware fluctuations, sampling techniques, or electromag-
netic interference. The 2.4 GHz industrial, scientific, and
medical (ISM) band, for example, accommodates numerous
wireless technologies, resulting in overlapping transmissions,
transient collisions, and variable noise levels. As the number
of IoT devices increases [28], the likelihood of spurious emis-
sions and unpredictable interference also increases. ISAC
systems compound the problem by introducing dedicated
sensing signals alongside traditional data signals, intensifying
self-interference in the network, further degrading phase
measurement quality, and exacerbating the limitations of
OWCER reconstruction based on phase unwrapping.

In this paper, we propose an enhanced CR algorithm that
improves the performance of OWCFR restoration in the
presence of noise caused by low SNR values, interference,
or compressed sampling techniques. The main contributions
of this paper are:

o We develop a branch-selective CR method that switches
between square-root TWCFR phase branches using
denoised wrap indices to reconstruct a OWCFRthat is
consistent with the underlying propagation geometry,
while remaining robust to interference and noise.

e We propose a dynamic, peak-driven strategy that
identifies dominant CIR peaks and adaptively selects
windows around them to generate a noise-reduced
reference TWCFR for square-root branch selection.

« We introduce a delay alignment correction to restore the
unambiguous range lost during OWCEFR reconstruction.

o We validate our approach through simulations and
real-world experiments on IEEE 802.15.4 platforms,
demonstrating robust performance in multipath and
high-interference environments.

The remainder of this paper is organized as follows.
Section II presents the PBR and signal model, formal-
izing the MCPD distance estimation, range estimation,
and CR process. This section also introduces the delay
alignment correction to recover the full unambiguous range.
Section III details our branch-selective OWCFR recon-
struction method and the dynamic peak-driven windowing
technique. Section IVcompares the computational complex-
ity of the proposed method with baseline CR schemes.
Section V outlines the simulation framework and evaluates
performance under synthetic channel models. In addition,
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TABLE 1. List of key acronyms.

Acronym H Full Form
MCPD Multi-Carrier Phase Difference
CFR Channel Frequency Response
OWCFR One-Way Channel Frequency Response
TWCFR Two-Way Channel Frequency Response
CIR Channel Impulse Response
OWCIR One-Way Channel Impulse Response
TWCIR Two-Way Channel Impulse Response
BW Bandwidth
HPBW Half-Power Beam Width
UR Unambiguous Range
UuT Unambiguous Time
FFT Fast Fourier Transform
iFFT Inverse Fast Fourier Transform
PLL Phase-Locked Loop
LoS Line-of-Sight
MPC Multipath Component
SNR Signal-to-Noise Ratio
SIR Signal-to-Interference Ratio
AWGN Additive White Gaussian Noise
CR Channel Reconstruction
CR-DT Channel Reconstruction with Az
CR-PU || Channel Reconstruction with Phase Unwrapping
CR-BS Channel Reconstruction with Branch Selection

it describes the collection of real-world data and presents
the corresponding experimental results. Section VII provides
parameter sensitivity results and discusses the limitations
and advantages of the proposed method. Finally, Section VII
concludes the paper and discusses directions for future
research. The key acronyms and variables used in this paper
are summarized in Tables 1 and 2, respectively.

Notations: Throughout the paper, H[-] and A[-] denote
the discrete CFR and its corresponding time domain CIR,
respectively. Subscripts (-),, and (-)y, indicate one-way
and two-way quantities, subscript (-); indexes the carrier
frequency, while (-); and (),, label propagation paths.
Superscripts (D and (-)® refer to the initiator and reflector
nodes, and superscripts such as P (HPU) and (-)BS)
distinguish the different reconstruction methods. We use /-
and |-| for phase and magnitude, (-)* for complex conjugation,
and ® for circular convolution of length K. Ideal quantities

K
appear without decoration, measured quantities are marked
with a tilde (), estimated quantities use a hat (-), and filtered
quantities use a bar (-).

Il. PHASE-BASED RANGING

PBR maps phase measurements to a distance estimate
between two devices. The pipeline consists of three stages:
MCPD acquisition, an optional CR stage, and range esti-
mation. In the conventional two-way approach, the TWCFR
from MCPD is passed directly to range estimation, as shown
in Fig. 1. In the one-way approach, the additional CR stage

941



IEEE Access

G. Morano et al.: Interference Mitigation in One-Way CR for Robust Phase-Based Ranging

TABLE 2. List of key variables.

Variable ‘ Notation ‘ Description ‘
Ideal OWCER Hoyw One-way CFR with assumed perfect
phase coherency and no noise
Measured OWCFR at Phase incoherent one-way CFR

7%
initiator ow measured at initiator node
Measured OWCEFR at P

reflector o

Phase incoherent one-way CFR
measured at reflector node

Two-way CFR obtained by
multiplying estimated CFRs from
nodes

Estimated TWCFR H;,

Noise-reduced Windowed two-way CFR with

TWCFR How suppressed noise
Square root of the i Complex square root of the estimated
TWCFR saqrt two-way CFR
Estimated OWCFR | () Reconstructed one-way CFR
from CR-DT H,, obtained with channel reconstruction
method presented in [29]
Estimated OWCFR | (pv) Reconstructed one-way CFR
from CR-PU Hoy, obtained with channel reconstruction
method presented in [27]
Estimated OWCFR | = (5s) Reconstructed one-way CFR
from CR-BS H,, obtained with channel reconstruction

method proposed in this paper

Largest unambiguous time delay that

UT delay of OWCIR | To,0w can be estimated from one-way CIR

Largest unambiguous time delay that

UT delay of TWCIR To,mw can be estimated from two-way CIR

processes the TWCFR to recover an effective OWCFR that
more closely follows the true physical channel. The following
subsections describe the three stages in more detail.

A. MCPD TECHNIQUE

The MCPD ranging procedure leverages phase measurements
across multiple carrier frequencies to estimate the distance
between two devices. By adopting an active reflector (AR)
technique [20], one device acts as the initiator and the
other as the reflector, exchanging continuous wave tones
at K frequencies over the available bandwidth (BW), and
sampling the in-phase and quadrature (I/Q) components of
the received signals. Although early MCPD implementations
relied solely on phase measurements, it is now recognized
that incorporating amplitude information can further improve
distance estimation [12]. The measured OWCFR at the
reflector ITLS{? can be expressed as

’

7 o i(eh-an-G"-6) | )
HP[k) = z aje ) o) (1)
=1

and in the measured OWCFR at the initiator ITI,EQ can be

expressed as
L
~ il (o4 AD— (B —p®
H(EQ[k] _ Zale ./( Tfie(T+AD— (g — ¢y )) + n/({l), )
=1

where fj is the kth carrier frequency at which the measure-
ment was taken, L is the number of superimposed signal
paths, a; is the amplitude and 7; is the propagation time of the
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Ith path, At is the time difference between the initiator and
the reflector, ¢ is the initial PLL phase offset of a device,
and n,({l) and n,((R) are the assumed additive white Gaussian
noise (AWGN) terms for the measurement at kth frequency.
Following the MCPD technique, the measured CFR from the
reflector is communicated back to the initiator where the two
CFRs are multiplied to eliminate the time and phase offsets.
The resulting estimated TWCFR H,, for the kth frequency is

M
Hylk] = HQK) - AR = " aye2Fhm 5, (3)
m=1

where M is the number of newly created signal components,
each with the corresponding amplitude a,, and propagation
delay t,,, and 7; is the noise component at frequency k,
arising from the squared and cross terms of the one-way
noise.

B. RANGE ESTIMATION

The range estimation stage converts the measured CFR into
an estimate of the propagation distance between the initiator
and the reflector. Depending on the processing pipeline, the
input to this stage is either the TWCFR produced by MCPD
or an OWCEFR estimate produced by the CR stage. Several
range estimators have been proposed. Subspace-based and
data-driven methods can provide enhanced resolution within
the same BW, but they depend on design choices such
as the assumed number of signal components and model
training. In contrast, FT-based analysis applies a deterministic
transform to the measured CFR and produces a distance
estimate without tuning or training. Although not optimal
in terms of absolute ranging accuracy, FT-based range
estimation provides a reproducible and transparent baseline
suitable for assessing the impact of the CR stage, which is
the main focus of this paper.

The FT-based range estimator transforms the obtained CFR
into a CIR, identifies the LoS component, and multiplies
its propagation delay by the speed of light co to estimate
the distance. As the CFR is measured at discrete frequency
points, the CIR is obtained using the inverse discrete Fourier
transform (iDFT), which is typically implemented by the
inverse fast Fourier transform (iFFT) algorithm. The iFFT
maps the K collected frequency-domain samples, which are
equally spaced with frequency step Af over a total bandwidth
BW = KAf, into K time-domain taps (n = 0,..., K — 1)
with:

M
hin] = iDFT{H[k]} = D aw8[n—nn| +vinl, (4
m=1

where «;, denotes the complex amplitude of the mth path,
and n,, is the discrete time index corresponding to the
propagation delay t,, given by n,,, = TT—": The time resolution
Ty is determined by the measurement BW with 7y, =
ﬁ. The term v[n] represents noise in the time domain,
obtained as the inverse transform of the frequency-domain
noise. The resulting CIR k[n] spans a time window Ty =
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Frequency Domain Representation
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FIGURE 2. An example of a noisy two-tap channel with interference in a sin:

(ﬁtw )- (b) Phase of the ideal OWCFR (How ) and the reconstructed OWCFR (ﬁow

PU)

(c) Time Domain Representation
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le frequency bin at 2442 Mhz. (a) Phase plot of the estimated TWCFR
) based on CR-PU method, that incorrectly unwraps at 2442 MHz.

(c) Corresponding normalized impulse response magnitudes: TWCIR (ﬁtw) shows M = 3 paths with incorrect delays and magnitudes; the ideal OWCIR
(how) correctly identifies the LoS path (vertical dashed line) and MPC (vertical dotted line) whereas the one-way reconstruction based on CR-PU

(ﬁf,’,’,,’;’ )) erroneously restores the CIR.

K T, which defines the maximum unambiguous time (UT)
delay and consequently the unambiguous range (UR) over
which the MPCs can be distinguished. The CIR appears
as a sparse sequence of complex-valued Dirac delta pulses,
each corresponding to a propagation path m. Examining the
CIR magnitude |h[n]|, the height of each peak reflects the
amplitude of that path and its position indicates the path delay.
The first (and often largest) peak is usually the direct LoS
component of interest, while the subsequent smaller peaks
arise from reflections and scattering, representing the MPCs.

C. CHANNEL RECONSTRUCTION

The CR stage modifies the output of MCPD before range
estimation to align the effective channel representation with
the physical one-way propagation. Multiplying the two
measured OWCFRs in the MCPD stage mitigates initial
phase mismatches and time synchronization effects. In the
time domain, multiplication is equivalent to a circular
convolution of the two one-way CIRs (OWCIRs):

Tolnl = h%) [n] ® W®n]. 5)

As a result of the convolution, the two-way CIR (TWCIR)
contains an increased number of delay paths M compared to
the number of delay paths L in the OWCIR:

L) _LIL+1)

2 2 ©

M=L+ (
as shown in Fig. 2 (c). The extra taps appear as apparent
MPCs, which weaken the true first tap representing the
LoS path, making its detection more difficult and reducing
ranging accuracy in multipath-rich environments [27]. The
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introduction of apparent MPCs makes the CIR unusable
for sensing applications that require accurate multipath
characterization. Furthermore, the multiplication process
combines noise from both CFR measurements, increasing the
overall noise level in the TWCFR and spreading the channel
power over more taps, which reduces their magnitude and can
render some undetectable [27].

The CR stage addresses some drawbacks by inserting an
intermediate processing block between MCPD and range
estimation. The purpose of CR is to reverse the convolution
effects and recover a representation that closely resembles
the original OWCIR, thereby removing apparent MPCs,
restoring the strength of the LoS component, and improving
distance estimation. Reconstruction begins by taking the
complex square root of the estimated TWCFR and selecting
the principal branch, producing ﬁsq,, as follows:

Hyylk] = b/ Hywlk], where by € %1. @)

The square root operation introduces a sign ambiguity by that
must be resolved across the carrier frequency index k. When
the sequence of signs is recovered correctly, H sqre coincides
with the OWCFR, effectively reconstructing the OWCFR
from the TWCFR. Any error in the sequence produces
a mismatched OWCFR that generates a CIR unrelated to
the true OWCIR and renders the measurement completely
unusable.

In [29] the authors propose finding the correct signs by
by comparing the measured OWCFR of one device with the
square root of the TWCFR, evaluating ®[k] = Z(ITI,EQ [k] -
ﬁs*qn [k]). Using (2), (3), and (7), we obtain

O] =2mfidt — Mg, A =" — ¢ ®)
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Assuming that the PLL remains locked when switching from

frequency index k to k + 1 so that A¢y+1 = Agy, the time

difference At can be estimated as

—~  Olk+1]—0O[k]

At = —F——
2 Af

Since MCPD guarantees that At is constant across all carrier
frequencies, At makes a distinct jump at indices k where
I/-\[qut [k] exhibits an incorrect sign. The jump pattern helps
resolve the ambiguity in (7) and enables reconstruction of the
OWCEFR, denoted EEQT). Hereafter, we refer to the described
reconstruction approach as CR-DT.

However, the CR-DT method can be used only when
the PLL remains locked during frequency transitions in the
MCPD technique. A more general approach that relaxes
the PLL design requirements was presented in [27], which
determines the correct sign using phase unwrapping. Specif-
ically, the proposed method analyzes the phase slope of the
square root of the TWCFR, ﬁﬂm, and identifies the frequency
indices where the phase difference between consecutive
samples exceeds 5. By unwrapping the phase at the detected
indices, the method reconstructs the OWCFR, denoted as
ﬁoa;U). Hereafter, we refer to the described CR approach
based on phase unwrapping as CR-PU.

®

D. UNAMBIGUOUS RANGE

Although the effects of CFR multiplication on distance
estimation results are well understood [27], its reduction of
the maximum UT delay, and therefore the UR of the CIR
remain largely unexamined, leaving an important parameter
unaddressed by earlier work. For an ideal OWCFR sampled
with a frequency step Af, the FFT-based analysis produces
an OWCIR with a period of To,y = KIy, = ALf.
When two one-way measurements are multiplied to obtain
a TWCEFR, the corresponding delay-domain operation is a
circular convolution of the two impulse responses. The (5)
can be rewritten as:

K—-1
hoglnl = > KD P AR](n — p) mod K]. (10)
p=0

Although convolution increases the time support of the
impulse response to twice its original width 2K, the circular
nature (modulo K) folds the indices n > K back into the
interval [0, K — 1]. Consequently, the section of ’Em[n] that
remains alias-free is limited to the first % samples, and
therefore the maximum UT delay is reduced from T ,, = Alf
for a one-way measurement to:

K 1

Tow = — Ty = ——
00 = 5 ST OAf

for a two-way measurement. Any signal propagation compo-
nent with an excess delay t,, > Tp s, is cyclically aliased into
the interval [0, T, 5v), making the overall interpretation of the
impulse response unreliable. Therefore, we recommend using
a sufficiently small frequency step during measurements so
that practical propagation delays remain below the Tp 5,

, Y
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threshold. For example, with Af = 1MHz, common in
Bluetooth PBR, the two-way unambiguous delay becomes
Tosw = 500ns, which corresponds to an unambiguous
distance of approximately 150 m.

Taking the square root of the TWCFR and resolving the
sign ambiguity in the CR stage does not remove the aliasing
caused by the circular convolution of the two one-way
impulse responses. In fact, under certain propagation condi-
tions, the reconstructed OWCIR may even be shifted from the
first to the second half of the delay window, as illustrated in
Fig. 3. To clarify the origin of the CIR shift, we examine the
incremental phase of the two-way response from (3), defined
as:

Ady, = LHylk + 11 — LHo [kl ~ -4 Aft.  (12)

As the time delay (t) between the transceivers increases,
A®,;, decreases linearly from O to —m. At certain delay
value, denoted ty,4p, the incremental phase reaches —m and
wraps to +7. Beyond 7,4 the incremental phase continues
to decrease until it reaches 0 again.

lA@tw <0 Aq>tw > Q

TWCIR l[ti:::=_

I T 1
0 TO,tw / 2 TO,tw

A®,, <0

Reconstructed
OWCIR I&
I

0 To’gw /2 TO,aw

A®,, >0

T T T 1

FIGURE 3. OWCIR reconstruction follows the phase slope of the TWCFR
A®4,. When the average A @4, is negative, the recovered OWCIR maps
correctly; when it is positive, the reconstructed OWCIR is shifted by half
the delay window (Tow /2).

By analyzing the 7, for the two-way and one-way
channel representations, we can observe that the TWCFR
completes a 7 cycle after only half the delay interval required
an ideal OWCFR:

1 Ty, To,
—4m Af‘fwrap = -7 = Tyrap = Iy = 2tw = 40W .
(13)

Since the CR procedure follows the TWCFR phase and
interprets A®;, as a one-way phase difference, two distinct
reconstructions can occur:

o For channels whose energy is mainly concentrated at
delays smaller than 7,4, the average A®, is negative,
so the recovered OWCIR maps correctly to the interval
[0, To.ow/2], where negative phase slopes are expected
(Fig. 3 blue shape).

« For channels whose dominant energy lies above 7,.4p,
the average A®;, appears positive, shifting the recon-
structed OWCIR to [To,ow/2, To,0w] (Fig. 3 yellow
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shape). In this case, the estimated propagation delay is
systematically greater by T, o /2.

If left unaddressed, this shift reduces the UT of the
reconstructed OWCFR to Ty /4, further constraining the
maximum resolvable range. To compensate for CIR mis-
placement, we apply a simple alignment correction. For each
estimated delay 7 obtained from the reconstructed OWCIR
we define

B

=< TO,ow/zy

. T,
Teorr =\ . " (14)
T— TO,OW/zv T > TO,()W/Zv

which maps the corrected delay estimate 7., back to the
physically valid interval [0, 79 ., /2) and restores the full
one-way UR.

IIl. ROBUST OWCFR RECONSTRUCTION

A key weakness in resolving the sign ambiguity in (7)
using either CR-DT or CR-PU methods is their sensitivity to
measurement deviations. The existing CR methods perform
reliably only under high SNR conditions and when the phase
slope of the TWCFR is sufficiently small. However, under
realistic conditions, several factors introduce or amplify noise
in the measured TWCFR, significantly degrading the effec-
tiveness of the CR. First, random fluctuations in hardware
and the environment cause unpredictable phase changes,
corrupting the measured phase response. Second, in MCPD
systems where measurements are taken sequentially at
multiple frequencies, external interference at one or more
frequencies can produce erroneous phase estimates [28],
causing strong deviations in the samples. Third, compressed
sampling approaches that extrapolate the TWCFR from fewer
samples can introduce additional deviations in the phase [16].

Such deviations in estimated TWCFR can cause incorrect
CR for any distance within the UR, as illustrated in Fig. 2,
where a single corrupted measurement leads to failure. Larger
distances between devices further increase the difficulty in
selecting the correct sign by, because the phase slope of
the TWCFR increases as the range approaches half the
UT. For CR-PU, the problem is particularly severe, as the
method relies on comparing the phase of two consecutive
measurements whose values become nearly m apart near
To/2, leaving no tolerance for small measurement deviations.
Any failure in the unwrapping step results in a reconstructed
OWCER that no longer reflects the true channel and becomes
unusable for ranging.

To address the identified limitations, we propose a noise
resistant CR that resolves the square root ambiguity in (7)
using a denoised reference extracted from the estimated
TWCFR (ﬁrw) The method operates in three steps: 1) peak
search, 2) windowing, and 3) square root branch selection,
as summarized in Fig. 4. The first two steps generate a
noise reduced TWCFR reference H s, Which is then used
in the final step to determine the correct square root branch
and obtain the reconstructed OWCFR f[ﬁs . Unlike CR-DT,
the proposed method does not require the PLL to remain
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FIGURE 4. The workflow diagram of the proposed CR-BS method.

locked during frequency transitions in MCPD. In addition,
the reconstruction is performed on each individual TWCFR
measurement without temporal averaging or repeated acqui-
sitions, enabling a single shot operation. Hereafter, we refer
to the proposed branch selective reconstruction method as
CR-BS. Algorithm 1 summarizes the complete procedure.

A. SQUARE-ROOT BRANCH SELECTION

The core of the proposed CR-BS method is the selection of
the correct square root branch in (7) across the carrier index k.
Rather than relying on raw phase differences of the estimated
TWCEFR, which are highly sensitive to noise and interference
bursts, the proposed approach anchors all sign transitions to
indices where a phase wrap is detected in a noise-reduced
TWCER reference. The reference is constructed through the
peak detection and windowing steps introduced later in the
section.

The reconstruction begins with the square root of the
TWCEFR, yielding two possible phase curves by considering
the principal branch of the square root ++/#,, and its negative
branch —+/H,,, as shown in Fig. 5 (b). The positive branch is
selected initially, and its progression is followed until a full
phase wrap is detected in the denoised TWCFR reference
H mw- A wrap is declared at carrier index k whenever the
difference |Zf1 wlk] — /H wlk — 11| > 7. At each detected
wrap index, the opposite branch is selected, and that trajectory
is followed until the next wrap. Repeating this process across
the carrier index aligns the evolution of the square root with
the physical progression of the true one-way channel response
and reconstructs the OWCFR Aéﬁs). By guiding branch
switching with stable wrap points extracted from the denoised
reference, the CR-BS produces a consistent OWCFR and
avoids erroneous sign flips that affect CR-DT and CR-PU
under practical conditions, as illustrated in Fig. 5 (c).

It is important to note that the denoised reference is not
used directly to reconstruct the OWCFR. Applying CR-PU
or related methods directly to the filtered TWCFR (FI w)
would distort the results, as windowing may suppress parts
of the delay profile that belong to the true channel. Instead,
the filtered TWCFR is used only to identify reliable wrap
indices, while the actual reconstruction is performed on the
original estimated TWCFR (ﬁrw). Separation ensures that the
reconstructed OWCEFR preserves the true channel structure
when the full square root sequence is stitched together.
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FIGURE 5. (a) Phase of the measured TWCFR ﬁtw and its noise-reduced

reference ﬁtw used to identify genuine 2z wraps (frequency indexes: 15,
63 and 150). (b) The square root of Hy,, yields two interleaved phase
curves for the positive and negative root branches. (c) CR-BS method
begins on the positive root branch and switches the branch at each #U)

detected wrap index, ensuring correct one-way phase traversal. The ﬁaw

makes an error at index 119, whereas ﬁt(,ﬁ,s) correctly follows the ideal
OWCFR How -

An effective approach to obtain a noise-reduced TWCFR
is to transform the estimated channel into the time domain,
where the inherent sparsity of the CIR enables easier
identification and isolation of signal components. The
measured CIR displays distinct peaks corresponding to
different signal propagation paths, with noise superimposing
additional spurious peaks. To retain only the primary CIR and
reduce noise, the true path-induced components are detected
and isolated, while the rest of the delay profile is suppressed.
In this paper, we propose a windowing technique based on the
dynamic identification of CIR peaks and the application of
corresponding bandpass windows aligned to the delay of each
detected path. Transforming the filtered CIR back into the
frequency domain yields a de-noised TWCFR, which serves
as a reliable reference for the subsequent branch selection
step.

B. PEAK DETECTION

Identifying signal components by detecting peaks in the CIR
is challenging in noisy environments, as spurious noise can
produce false peaks. To obtain a reference H ., we propose
defining a fixed amplitude threshold in the CIR and selecting
every peak that exceeds this threshold as a signal component.
Although a threshold-based approach may occasionally omit
very weak multipath arrivals or include a noise artifact,
it provides a simple and repeatable procedure for isolating
the dominant contributors to the CFR.

The threshold is determined by squaring the absolute CIR
to obtain a power delay profile (PDP) and sorting the samples
by amplitude to generate an empirical cumulative distribution
function (CDF) curve, as shown in Fig. 6. In a typical sparse
channel, the curve begins with a long, gently rising tail
that represents the noise floor values, followed by a convex
increase toward the end of the curve, which corresponds to
the peak values from the PDP. In low-noise channels, the
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Algorithm 1 Channel Reconstruction With Branch Selection
Input: FI,W,P,F

Output: I/-\I(Eﬁs)

Initialization:

I: K « length(ﬁ,w)

2: peaks <[]

3: W < ones(K)

Procedure:
/l Step 1: Peak search with threshold

4: win < Hann(K)

5: My < IFFT(Hp, - win)
6: PDP < [hip|?
7
8
9

: CDF « sort(PDP)

: dCDF « differentiate(CDF)

: THp < max(dCDF) - P
10: relmax < relmax(PDP) // indices of local maxima
11: for each pinrelmax do
12:  if PDP[p] > THp then

13: append ptopeaks
14:  endif
15: end for

// Step 2: Window segments and product of complements

16: for each t;inpeaks do

17:  A; < HPBW(t;) - F // Half-power width of peak t;

18: if A; > K then

19: A<~ K

20:  end if

21:  segment <— Hann(A;)

22: w; < zeros(K)

23:  for [/ = 0toA; — 1 do

24: leire < (I — |A;/2] + tj) mod K

25: Willeire] < segment[/]

26:  end for

27: W< W-(1—-w)

28: end for

29 W<«1—-W

30: gy < W - gy

31: Hpy < FET(hpy) B
/1 Step 3: Branch selection based on f]m.

32 ¢ < [H

33: qurt <~ \/I'ji;

34: b« 1

35: fork=1to K — 1do

36:  if |p[k] — ¢p[k — 1]| > 7 then

37: b <« —b

38:  end if

39:  Hy k] < b+ Hognlk]
40: end for

41: return ﬁgﬁ”

knee index of the CDF, i.e. the point of maximum curvature,
effectively separates the noise-related values from the steep
ascent caused by the peak values. This knee can be identified
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FIGURE 6. The operation of the peak search algorithm in noisy two-tap
channel. The PDP is plotted in blue, its CDF in yellow and the derivative of
the CDF in red. The threshold obtained with knee method THy,ce
erroneously classifies noise-related peaks as weak multipath
components. The threshold based on the maximum of the CDF derivative
THmax recognizes the dominant peak, while the threshold based on a
fraction P of the maximum derivative THp correctly identifies both signal
components and avoids the noise.

using the curvature-based method described in [30] and the
threshold (THy,..) is defined as the PDP value at the knee
location index. However, as noise variance increases, noise-
related peak values raise the tail of the CDF curve, causing the
knee detector to frequently misidentify noise peaks as weak
multipath components, thereby reducing the robustness of the
peak detection process.

To better align threshold selection with the shape of
the PDP, we analyze the rate of change in the empirical
CDF. Its derivative curve (dCDF) displays distinct spikes,
each corresponding to a jump in the CDF caused by high
peak values in the PDP. Although the maximum derivative
indicates the largest jump in the CDF and thus the strongest
peak in the PDP, we instead define the threshold using the
index of the first occurrence where the derivative exceeds
a fraction P of that maximum. The value of the PDP
at this index is taken as the peak search threshold THp.
The approach ensures that peaks of meaningful magnitude
are preserved while ignoring noisy variations, and provides
a flexible mechanism to adapt the threshold to different
propagation environments. For example, a lower P (e.g.,
0.2) will admit more moderate reflections in multipath-rich
scenarios, while a higher P (e.g., 0.5) will focus exclusively
on the very strong paths common in sparse settings.

C. DYNAMIC WINDOW DESIGN

The purpose of windowing is to isolate the signal’s com-
ponents of interest while attenuating the noise-dominated
regions. We observed the following design criteria for
effective window design:

« Sufficient bandpass width: The window must be wide
enough to capture all relevant information from the
signal components.

« Smooth transition: An abrupt drop from the bandpass
to the bandstop (a ‘“‘sharp window”) can introduce
undesirable phase distortions. Therefore, a gradual roll-
off in the window is essential to minimize unwanted
phase shifts.
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FIGURE 7. The PDP (blue curve) with individual Hann windows w;
(dashed green curve) centered at each detected peak z; (dotted gray line).
The windows w; are merged into a single composite window mask W,
wrapping around the borders of the PDP. Note that the rightmost window
w; is wider, reflecting the broader HPBW.

o Periodicity: As the FFT representation of the CIR
is inherently periodic, the window must maintain this
periodicity. If the detected peak lies near the edge of
the CIR, the window should roll over to the other side,
ensuring continuity for the iFFT.

Building on the dynamic peak-driven windowing frame-
work, we formalized the construction of individual narrow
windows centered on each detected CIR peak and the
procedure for combining them into a unified composite filter
mask, as shown in Fig. 7. To isolate the spectral contributions
of distinct propagation components, a finite-length Hann
window w;[n] is centered at each detected delay t;:

w;i[n]

Aj
n—(t— 5t
0.5/ 1 — cos ZnM , |n—r,-|§%,
= Al’—l

0, otherwise.
(15)

The window span A; is calculated from the half-power beam
width (HPBW) of the i-th peak (the difference between
the two delay indices where the PDP envelope falls to the
half of the peak value) and is scaled by a factor F to
capture side lobes and deep fade regions. Isolated propagation
paths produce sharp peaks, while densely clustered multipath
arrivals produce broader features. Using HPBW to determine
the width of each window enables the filter span to adapt
intrinsically to the local multipath density.

If any window extends beyond the edges [0, K] of the PDP
interval, its samples wrap around modulo K to maintain the
inherent periodicity of FFT. The individual window segments
wi[n] are then merged into a single smooth composite mask
W n] through the algebraic sum merge:

I
Win) =1 -] —wilnD, (16)

i=1
where [ is the total number of detected peaks. This
“fuzzy union” operation retains the individual Hann window
shapes in regions without overlap and smoothly saturates
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towards unity where overlaps occur, resulting in a composite
mask that preserves all signal components while effectively
suppressing noise.

IV. COMPUTATIONAL COMPLEXITY

PBR is typically implemented on resource constrained
IoT devices, where computational load is an important
design factor. In this section, we analyze the computational
complexity of the proposed CR-BS algorithm and compare it
with the CR-DT and CR-PU baseline methods to assess their
feasibility on embedded platforms.

The proposed CR-BS consists of three stages, as shown
in the diagram in Fig. 4. In the first stage, the TWCFR
is windowed, transformed to the time domain, and used to
identify signals of interest, where I denotes the number of
detected peaks, and I/ < K. In the second stage, the samples
around each peak are windowed with the global weighting
function W, producing the filtered TWCFR. In the third
stage, the denoised TWCFR is used for branch selection,
reconstructing the OWCFR. The three steps contribute to the
overall time complexity function:

TK,I)= Tpeak(K) + Twin(K, ) + Tps(K). (17)

The initial CFR windowing requires 2K operations, while
the subsequent K point IFFT has a cost of %K log K. The
computation of the PDP and its CDF involves sorting
the K wvalues, contributing another K logK operations.
The CDF differentiation, search for local maxima and
amplitude thresholding are performed through linear scans,
each requiring K operations. Selecting the valid peaks then
requires / comparisons. Hence, the total complexity of the
peak search stage is

Tpeak(K) = O(K log K). (18)

For each detected peak t; the algorithm generates a window
segment of length A;, performs circular indexing to place
it on a grid of length K, and updates the global window W
via elementwise multiplication. The computational cost for a
single peak is therefore 2K + 2A;. The cost of constructing
a global window over I peaks is O(IK + Y.1_, A;). Since
A; < K for all peaks, the total cost is dominated by O(IK).
Afterwards, the denoising is performed with multiplication
of TWCIR and W which requires K operations, followed
by FFT of length K to reconstruct the filtered TWCFR,
contributing 37K log K operations. The cost function of the
windowing stage becomes

Tywin(K,I) = OUK + K logK). (19)

In branch selection, the computation of the filtered
TWCEFR phase, the square root operation on the TWCFR, and
the phase jump-based branch selection loop each require K
operations. Therefore,

Tps(K) = O(K). (20)
Combining the stages yields
T(K,I)=O(K + KlogK + K). 21
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TABLE 3. Asymptotic time complexity of CR algorithms for TWCFR of K
carrier frequencies.

Algorithm H Computational Complexity ‘

CR-DT 0(K)
CR-PU O(K)
CR-BS O(K logK)

In the worst case scenario, where half of the points in
the PDP are selected as detected peaks and I = % the
complexity becomes quadratic, O(K?). However, in typical
sparse multipath channels, the number of significant detected
peaks I is small and does not increase with K. In this regime,
the dominant cost arises from the two FFT operations and the
sorting algorithm, giving the final time complexity

T(K) = O(K log K). 22)

For comparison, the baseline methods CR-PU and CR-DT
have linear complexity in the number of carrier frequencies
K. The CR-PU method first applies the square root to the
TWCFR and then unwraps the phase across the K carrier
frequencies. Both operations require K steps, so the overall
complexity is O(K). The CR-DT method applies the square
root to the TWCFR, forms a product sequence by combining
the square root of the TWCFR with the measured CFR of one
device, computes the time difference, detects phase jumps,
and constructs and applies the correction mask. Each of the
five steps requires K operations, so the complexity of CR-DT
also grows linearly with K. The asymptotic time complexity
of the three algorithms is summarized in Table 3.

The proposed CR-BS algorithm introduces an additional
logarithmic factor in time complexity compared to CR-DT
and CR-PU. This additional cost is mainly due to the FFT
operations and the sorting step in the peak search stage.
Nonetheless, in the complete PBR pipeline, the dominant
computational cost often arises in the subsequent range
estimation step. In case of FT-based analysis, the input CFR
is typically interpolated by zero padding to improve the
accuracy of delay estimation, and processed by an iFFT
with a size significantly larger than the number of measured
carriers K. The computational complexity of such range
estimation exceeds the cost of CR-BS, so the additional
CR stage has a low impact on overall runtime. The per
snapshot cost of CR-BS is therefore within capabilities
of resource-constrained IoT and modern embedded plat-
forms that already implement FT-based range estimators.
In exchange for the increased computational load, CR-BS
provides a significant improvement in robustness of OWCFR
reconstruction in the presence of noise and interference,
as demonstrated in the following Section V.

V. EVALUATION OF THE PROPOSED METHOD

The evaluation of the proposed algorithm is divided into
two parts: simulation-based results and results from real-
world deployments. Simulations enable analysis of the
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FIGURE 8. RMSE of distance estimation for a single-tap simulation. Plots (a) to (e) present the RMSE obtained when the range estimator uses different
CFR inputs, namely: (a) ideal OWCFR (How ), (b) estimated TWCFR (Hp, ), (c) estimated OWCFR from the CR-DT method (H‘(,e,,r)), (d) estimated OWCFR from
the CR-PU method (ITI((,‘:,,U)), and (e) estimated OWCFR from the proposed CR-BS method (ﬁ,(,ﬁ,s)). For ease of comparison, the 0 dB SNR level is indicated

with red vertical line.

algorithm under edge-case conditions, while measurements
provide valuable insights into its practical operability. For all
experiments, the range estimation stage was carried out with
a fixed FT-based procedure. The estimated CFR was zero-
padded to 8192 bins, and an iFFT was applied to generate
the corresponding CIR. The propagation delay was then
extracted as the delay of the maximum peak in the CIR
and multiplied by the speed of light to obtain the estimated
distance. The unified processing chain allowed for direct
comparison of the CR-PU, CR-DT and CR-BS methods
without bias from additional range estimator design choices.
For the proposed CR-BS algorithm, the following values were
used: the peak search parameter P was set to 0.2 and the
window factor F to 10, unless stated otherwise.

A. SIMULATION RESULTS
The simulations were performed using a custom-designed
simulation framework that emulates the MCPD algorithm.
The simulator takes propagation delays and their corre-
sponding amplitudes as input and then synthesizes the
CFR measurements of the initiator and reflector over
160 frequency carriers uniformly spaced from 2405 MHz
to 2484.5 MHz. AWGN is added according to a specified
SNR. The noise power is derived from the average received
signal power, computed as the sum of the mean powers
received across all propagation paths. For the analysis, ideal
synchronization is assumed, meaning that there is no carrier
frequency offset or clock drift between devices. Although
CFO or clock drift can introduce a linear phase slope across
frequencies that affects the absolute range estimate [13],
they do not introduce abrupt phase discontinuities that cause
failures in CR methods, which are the focus of the analysis.
Firstly, a single propagation path was considered and the
distance between the devices was swept from 1 m to 304 m
in steps of 3 m. Signal attenuation along this LoS path was
modeled using the free-space path loss propagation model.
As only a very strong LoS component is expected, the
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parameter P of the CR-BS algorithm is set to 0.5. Fig. 8
shows the root mean square error (RMSE) of 500 independent
distance estimations for SNRs ranging from —10dB to
50dB, where the RMSE is capped at 3.75 m as errors above
this threshold render the measurement unusable. It can be
observed that the distance estimation results depend strongly
on the CFR input provided to the range estimation stage.
When the ideal OWCEFR is used as input (Figs. 8 (a)), the
estimator operates at a lower SNR and maintains higher accu-
racy. When the estimated TWCFR is used (Figs. 8 (b)), the
multiplication step introduces combined noise that increases
the lower SNR limit of operation and degrades the accuracy of
distance estimates. Although not fully depicted (the distance
sweep was limited to 305m for visual clarity), the ideal
OWCEFR supports distance estimation up to 600 m, while
TWCFR measurements reach a maximum UR of only 300 m.
The reduced limit is a side effect of the circular convolution
that halves the UT of the two-way measurements. The results
of the CR-DT method presented in Fig. 8 (¢) show a limited
operating region. Reliable distance estimation appears only
at sufficiently high SNR (above 5dB) and the maximum
operational range remains below 150 m (co TOX"” ). Outside the
reliable region, the CR-DT method does not preserve the true
one-way channel representation, leading to large errors in
distance estimation. The CR-PU results in Fig. 8(d) show
an even more restricted region of correct operation as the
distance between devices increases. The increased RMSE can
be attributed to the phase unwrapping step, which compares
the phase of two consecutive measurements whose values
become nearly 7 apart around the 150 m, leaving no tolerance
for small measurement deviations. Fig. 8 (d) presents the
results of the proposed CR-BS. The method successfully
resolves the range ambiguity for delays above -%2 and
reduces the lower limit of operation to SNR below 0dB.
A small degradation appears near 150 m, which is the same
effect observed for the CR-DT and CR-PU methods, but the
impact on CR-BS is considerably smaller. Notably, although
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FIGURE 9. The percentage of distance estimates within +12.5 cm of the true distance (hit rate) with standardized channel models: (a) TGn model B,
(b) TGn model C, (c) TGn model D, and (d) TGn model B variant with the increased power of each path in the second cluster by 1.5 dB.

the proposed CR-BS reconstructs a one-way representation
of the channel, the UT does not return to the ideal
one-way limit and remains the same as that of the two-way
channel.

To assess the robustness of the algorithm in more realistic
propagation scenarios, we conducted additional simulations
using standardized IEEE 802.11 TGn channel models [31].
We considered three LoS channel models: a) Model B (15 ns
delay spread, two clusters), for small indoor environments
such as offices, b) Model C (30 ns delay spread, two clusters),
suited to larger indoor or mixed indoor/outdoor settings
such as open-plan offices and hallways, and c) Model D
(50ns delay spread, three clusters), representing spacious
environments such as large halls or classrooms, where richer
multipath is expected. In addition to the standardized models,
we analyzed a modified “high-reflection” variant of Model
B, in which the power of every tap in the second cluster
was increased by 1.5 dB. The proposed adjustment emulates
environments with strong nearby reflectors (e.g., metallic
furniture, computer monitors, or industrial equipment) and
provides insight into the performance of the algorithm in
wireless channels where two propagation paths produce an
apparent multipath artifact caused by the multiplication of
measured CFRs. AWGN was applied to each channel model
over an SNR range of —10dB to 20dB in 1dB increments.
At each SNR step, 1000 independent distance estimates were
generated from the corresponding CFRs, and the percentage
of estimates within 0.25 m of the true distance (hit rate) was
calculated. The results are presented in Fig. 9 where subplots
(a), (b), and (c) show Models B, C, and D, respectively,
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FIGURE 10. CDF of the absolute distance estimation error for the TGn
channel model C operating at SNR of 5 dB. The inset provides a magnified
view for clarity.

while subplot (d) corresponds to the high-reflection variant
of Model B.

When the range estimation stage operates directly on
the TWCFR input, the first three scenarios show nearly
perfect hit rates for SNR values above 2dB. However,
these high hit rates conceal the fact that the resulting
TWCIR contains apparent multipath components, rendering
the impulse response unusable for sensing tasks that require
an exact channel representation. The limitation becomes
evident in the modified Model B scenario (Fig. 9 (d)),
where an apparent peak introduced by the two-way operation
dominates the true LoS component and causes the range
estimator to select an incorrect delay. Consequently, the
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hit rate of the TWCFR input drops to zero, revealing a
fundamental weakness in relying on two-way measurements
in the range estimation stage. In contrast, the CR-DT and
CR-PU provide a reconstructed OWCFR to the estimator
and succeed in recovering the correct impulse response, but
only when the SNR exceeds 15dB. Below this level, their
hit rates fall rapidly. The proposed CR-BS reduces the SNR
requirement to below 10 dB and maintains high hit rates even
in the presence of considerable noise.

The empirical cumulative distribution of absolute distance
errors at an SNR of 5 dB for Model C, based on 10000 trials,
is shown in Fig. 10. The zero-padding length for distance
estimation was increased from 8192 to 65536 bins so
that the CDF appears as a smooth curve rather than a
stepped one. When the range estimation stage receives the
OWCEFR from CR-PU as input, phase unwrapping failures
cause approximately half of the estimates to deviate by up
to 8 m or more, rendering these measurements unusable.
The CR-DT produces a similar distribution, with slightly
better performance than CR-PU. The proposed CR-BS
reconstruction removes the extreme errors and achieves a
tighter error distribution, outperforming the TWCFR in the
low SNR regime.

B. MEASUREMENTS WITH INTERFERENCE

The performance of the proposed algorithm was evaluated
using real-world channel measurements taken in a conference
room (4m by 6m) where magnetic boards mounted on
the walls provided strong reflective surfaces for multipath
components, as shown in Fig. 11. Two proprietary VESNA
devices [32], equipped with an AT86RF215 radio support-
ing 1IQ sampling, probed the channel under a modified
IEEE 802.15.4 Time Slotted Channel Hopping (TSCH)
protocol [16] that enables seamless PBR alongside standard
communication. Each device captured 160 1Q samples in the
frequency range from 2400.5 MHz to 2480.0 MHz.

The transceivers were placed in three LoS configurations,
Setup 1, Setup 2 and Setup 3 with separations of 2m, 3m
and 4 m, respectively. The ground truth distances for all three
setups were confirmed using a laser ranger. We obtained
2140 measurements in Setup 1, 2200 measurements in
Setup 2 and 2015 measurements in Setup 3. Each distance
estimate includes a fixed hardware offset caused by additional
propagation paths through the antennas, cables, and circuit
board traces. In our deployment, this offset was measured
at 1.8 m. The resilience of the algorithm to in-band inter-
ference was assessed by injecting additive noise into IEEE
802.15.4 channel 19 (center frequency 2445 MHz and span of
5MHz) in all three setups, so that the signal-to-interference
ratio (SIR) was -3 dB.

Only three CFRs were evaluated in the measurement study:
TWCFR and the OWCFRs obtained from the CR-PU and
CR-BS methods. The CR-DT method was excluded because
the radios used in the experiment do not enable PLL lock.
Nonetheless, simulation analysis has already demonstrated
that CR-PU performs comparably with CR-DT, so the
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FIGURE 11. Measurements in a conference room with two magnetic
whiteboards.
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FIGURE 12. Estimated peak locations from real-world measurements
with interference on channel 19. Each dot on the plot represents the
location of a maximum peak for the estimated CIR.

exclusion of CR-DT does not affect the interpretation of the
measurement results.

The distance estimates obtained from different CFR across
the setups are shown in Fig. 12. Each dot marks the position
of the strongest CIR peak selected as the LoS component.
In Setup 1, the TWCFR estimates cluster tightly around
4m instead of the true 2m because the multiplication
artifact peak in TWCIR outweighs the actual LoS arrival
peak and directs the estimator to an incorrect delay. The
CR-PU method produces a more dispersed cloud of points
that largely lie on the correct distance but occasionally
fall below or above it, reflecting phase unwrapping failures
caused by in-band interference on channel 19. Note that
some of the plotted estimates fall below zero, which results
from the hardware offset calibration. In contrast, the OWCFR
of the proposed CR-BS method adheres to the 2 m reference
line in 99.8 percent of all trials, confirming its ability to
reconstruct the channel accurately even in the presence of
interference.

An example of impulse responses from measurements
in Setup 1 is shown in Fig. 13. The plot illustrates the
combination of one-way peaks at 3.7m and 8.4m (at 1.9m
and 6.6m after hardware offset calibration) to create the
apparent two-way peak at 5.8 m (at 4m after calibration).
Additionally, the plot demonstrates an occasional distortion
of distance estimation due to CR-PU creating a CIR that does
not resemble the true channel. These real-world measurement
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FIGURE 13. Example of CIR estimates from measurements in Setup 1.
Since the x-axis is not calibrated for hardware distance offset, the LoS
peak is located at 3.7 m instead of 2m.

results also reveal the fundamental limitation of FT-based
range estimation imposed by the 80 MHz measurement
bandwidth. Closely spaced MPCs that fall within the %
resolution merge into a single peak or shift each other through
spectral leakage. This systematic error prevents any CR
method from achieving perfect accuracy in Setups 2 and 3,
where multiple reflections lie near the direct path.

Key error statistics across all three setups are summarized
in Table 4. The mean absolute error (MAE) measures
the average magnitude of the estimation errors, while the
standard deviation (STD) quantifies the spread of those errors
around the mean. The hit rate (HR) is the percentage of
distance estimates that are within the £ 1.875 m of the true
separation. This threshold was chosen to match the resolution
of the FT-based range estimator, given by co/BW. In Setup
1 the CR-BS delivers highly accurate results, whereas the
CR-PU shows high variability, with HR of only 84.5 percent
and STD of 0.93m. In Setup 2 both TWCFR and OWCFR
from CR-BS achieve flawless HR with MAE values of
0.65 and 0.69 respectively, reflecting the systematic range
estimation error due to bandwidth limitation. The CR-PU
remains more erratic with HR of 84.6% and STD of 1.07 m.
In Setup 3 the CR-BS again maintains its accuracy with
99.8% HR, while the CR-PU degrades to 78.6%. Overall, CR-
BS consistently outperforms baseline methods by combining
correct peak recovery with low variance, even under strong
interference and across varying propagation channels.

C. MEASUREMENTS WITH COMPRESSED SAMPLING

We further validated the algorithm using a publicly available
data set [16] that uses compressed sampling measurements
in three real-world deployments: an indoor office, an indoor
hallway, and an outdoor park. The measurements were
obtained using a modified MCPD scheme, in which the
Golomb ruler technique was used to reduce the number of
carrier frequencies sampled, thereby decreasing interference
with other devices and lowering the energy usage of the
devices. After extraction of the samples, the CFR consists
of 160 samples with a frequency step of Af = 0.5 MHz.
Fig. 14 shows the distance estimation results for the three
scenarios with the true distance on the x-axis and the distance
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TABLE 4. Mean absolute error (MAE), standard deviation (STD), root
mean square error (RMSE) and hit rate (HR) counting estimates within
+ 1.875 m of the true distance.

H MAE [m] \ STD [m] \ RMSE [m] \ HR [%] \

— TWCFR 2.054 0.025 2.054 0.0
=%
§ CR-PU 0.476 0.931 1.02 84.5
#  Cr-BS 0.104 0.111 0.143 99.8
«a TWCFR 0.649 0.017 0.649 100.0
=3
g CR-PU 0.957 1.073 1.16 84.6
@ CR-BS 0.695 0.065 0.698 100.0
en TWCFR 1.394 0.033 1.394 100.0
=%
‘E CR-PU 2.136 1.362 2.533 78.6
@ CR-BS 1.426 0.132 1.432 99.8
R
8
Z
T 2
k]
E -
s3] T T T T T T T T T T
(a) 05 10 15 20 25 30 35 40 45 50
True distance [m]
% 20 A —0— CRPU Hallway .. O
2 O~ CRBS e o
E 0 s e | A e o o
Z oo e .
E gt
2 GG A
2 0
m T T T T T T T T T T
(b) 2 4 6 8 10 12 14 16 18 20
True distance [m]
% —— CR-PU Park
2 100 { O~ CRBS .0
‘2 ..... True O_O
B o O
}3 50 o o O
L’IAJ 0 L T T T T T T T T T T T T T T T
(© 5101520253035404550 60 70 80 90 100

True distance [m]

FIGURE 14. Real-world measurement results for: (a) indoor office,

(b) indoor hallway and (c) outdoor park. Diamonds and dots denote the
median distance estimates when the input for range estimation is
obtained from the CR-DT and CR-BS, respectively. The shaded area
represents the standard deviation of the measurements.

estimation on the y-axis. Each point in the plot corresponds
to the median of the estimated distances, and the spline area
around indicates the standard deviation of the estimations.
The compressed sampling technique introduces spikes
in the phase response of the TWCFR, as presented in
Fig. 15, which completely confuse the CR-PU reconstruction
algorithm. As observed in Fig. 14, the algorithm functions
only when the distance between devices is short, and
otherwise fails to determine the correct distance. In contrast,
the proposed CR-BS successfully reconstructs the OWCFR
and with it the distance estimation in all three scenarios,
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FIGURE 15. Phase of the CFR estimates made using the Golomb ruler
technique. The TWCFR is reconstructed by extrapolating 15 measured
samples (marked with blue dots) to 160 points, introducing pronounced
phase spikes (around 2420 and 2468 MHz) that confuse the phase
unwrapping algorithm and render the OWCFR from CR-PU unreliable.

with a noticeably lower standard deviation compared to the
CR-PU.

V1. DISCUSSION
To assess the robustness of the proposed peak-driven
windowing method, we conducted a detailed parameter sen-
sitivity analysis focusing on the two key design parameters,
the peak-selection threshold P and the window-scaling factor
F. The evaluation was performed on a modified TGn model
B channel. For SNR levels between —4dB and 14dB,
we generated 1000 independent noisy realizations of the
TWCEFR. For each realization and every combination of P and
F, we obtained the OWCFR from the CR-BS reconstruction,
estimated the distance using the FT-based estimator, and
recorded the hit rate as the percentage of cases in which the
dominant CIR peak was within £12.5 cm of the true delay.

The results, corresponding to P values of 0.01, 0.05,
0.1 and 0.5, are shown in the four subplots of Fig. 16 and
reveal a clear interaction between the two parameters. When
P is set very low, the peak detector accepts even weak noise-
induced fluctuations, especially under low SNR conditions.
When many peaks are falsely identified as valid signal
components, numerous windows are created, collectively
passing a significant amount of noise and reducing the
hit rate. Increasing the threshold avoids spurious peak
detections and improves performance, as only CIR peaks
that correspond to actual propagation paths are admitted. For
higher thresholds, such as P = 0.1 and P = 0.5, the algorithm
identifies only the strongest components, so the window must
be wider to capture the surrounding energy of the multipath
features. Consequently, the best results for P = 0.1 and P =
0.5 are obtained when the window factor is approximately
F = 8. Once P becomes sufficiently large to reliably exclude
noise peaks, further increases of P do not significantly affect
the behavior, and the performance curves become visually
indistinguishable. Across all threshold levels, a consistent
pattern emerges: wider windows allow more noise to pass
through, and once F becomes excessively large the filter
spans nearly the entire CIR, so performance gradually
declines.

The main limitation of the proposed approach is
the reliance on accurate peak detection and appropriate
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FIGURE 16. Parameter sensitivity of the proposed method for the
standardized BN channel model. Each subplot shows the hit rate of CR-BS
performance as a function of the window factor F for a peak-selection
threshold P: (a) 0.01, (b) 0.05, (c) 0.1 and (d) 0.5. Plot curves represent
different SNR levels ranging from -4 dB to 14 dB. Results are obtained
from 1000 simulations per SNR value.

windowing. In scenarios with very weak or strongly
overlapping MPCs, the thresholding strategy may fail
to identify all physically significant peaks, leading to
incomplete reconstruction. Similarly, an inappropriate choice
of F can either truncate useful signal energy or admit
excessive noise, making CR-BS performance sensitive to
parameter tuning in channels that deviate from the assumed
sparse multipath structure. Nonetheless, the overall study
confirms that the proposed CR-BS is highly adaptable and
that appropriate adjustment of P and F enables reliable
reconstruction even under low SNR conditions.

The simulation and experimental results show that with
80MHz measurement bandwidth, closely spaced MPCs
partially overlap and become distorted through spectral
leakage, producing a systematic range error that no CR
method can resolve. CR-BS can restore the correct one-way
structure at the available delay resolution, but it cannot
separate MPCs that fall within the same delay bin or undo the
bias caused by clusters that already appear as a single tap in
the measured CIR. As aresult, CR-BS improves the quality of
the input to the range estimator, but the final distance estimate
is still constrained by the sounding bandwidth and by the
simple maximum peak rule in the FT-based estimator.

Another limitation of the proposed CR-BS method con-
cerns computational complexity and, consequently, energy
consumption on constrained IoT devices. As presented
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in Section IV, the proposed method imposes additional
computational load compared to baseline CR methods.
In channels with many significant MPCs, the constant
factors in (21) increase, so the energy cost per ranging
instance can rise even further. As a trade off, the higher
complexity provides improved reconstruction accuracy and
ranging performance compared to baseline CR methods,
particularly in the presence of strong phase distortions and
noise.

At the same time, CR-BS operates on a single snapshot
of the TWCFR and does not rely on temporal averaging or
tracking. Therefore, the method remains applicable in the
presence of non-stationary interference and device mobility,
provided that the MCPD frequency sweep is completed
within the channel coherence time. Moreover, the algorithm
works with the estimated TWCFR and is therefore indepen-
dent of the underlying physical layer or protocol. Although
the experiments are performed with a MCPD implementation
in IEEE 802.15.4 TSCH hardware, the method is directly
compatible with Bluetooth due to the shared multi-carrier
channel sounding procedure, making the approach applicable
to other practical PBR solutions.

VIi. CONCLUSION

In this work, we propose CR-BS, a branch selective OWCFR
reconstruction method that operates on noisy TWCFR
measurements and recovers a one-way channel representation
consistent with the underlying propagation channel. We also
address the implicit misalignment of OWCIR caused by
the reconstruction procedure and present a simple delay
alignment correction to recover the full unambiguous range.
In contrast to the baseline reconstruction schemes CR-PU
and CR-DT, the proposed method enables reliable operation
at lower SNR and under strong interference. Simulation
results for single-tap and standardized multipath channel
models demonstrate that our method lowers the operational
SNR threshold to below 0dB for single-path scenarios
and below 10dB in rich multipath, while maintaining the
original maximum UR. Real-world measurements using
IEEE 802.15.4 TSCH platforms, even under strong in-band
interference and compressed sampling, confirm hit rates
above 99% and robust one-way channel recovery, demon-
strating that CR-BS provides a practical and reliable CR
solution for low-cost PBR systems. In future work, we plan
to integrate super-resolution range estimation algorithms to
mitigate the systematic delay error introduced by bandwidth
limitations and to analyze their operation in combination with
our proposed OWCFR reconstruction method.
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